1
|
Ruiz Manzano A, Jensen D, Galburt EA. Regulation of Steady State Ribosomal Transcription in Mycobacterium tuberculosis: Intersection of Sigma Subunits, Superhelicity, and Transcription Factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.24.639987. [PMID: 40060575 PMCID: PMC11888270 DOI: 10.1101/2025.02.24.639987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
The regulation of ribosomal RNA (rRNA) is closely tied to nutrient availability, growth phase, and global gene expression, serving as a key factor in bacterial adaptability and pathogenicity. Mycobacterium tuberculosis (Mtb) stands out from other species with a single ribosomal operon controlled by two promoters: rrnAP3 and rrnAP1 and a high ratio of sigma (σ) factors to genome size. While the primary σ factor σA is known to drive ribosomal transcription, the alternative σ factor σB has been proposed to contribute to the transcription of housekeeping genes, including rRNA under a range of conditions. However, σB's precise role remains unclear. Here, we quantify steady-state rates in reconstituted transcription reactions and establish that σA-mediated transcription from rrnAP3 dominates rRNA production by almost two orders of magnitude with minimal contributions from σB holoenzymes and/or rrnAP1 under all conditions tested. We measure and compare the kinetics of individual initiation steps for both holoenzymes which, taken together with the steady-state rate measurements, lead us to a model where σB holoenzymes exhibit slower DNA unwinding and slower holoenzyme recycling. Our data further demonstrate that the transcription factors CarD and RbpA reverse or buffer the stimulatory effect of negative superhelicity on σA and σB holoenzymes respectively. Lastly, we show that a major determinant of σA's increased activity is due to its N-terminal 205 amino acids. Taken together, our data reveal the intricate interplay of promoter sequence, σ factor identity, DNA superhelicity, and transcription factors in shaping transcription initiation kinetics and, by extension, the steady-state rates of rRNA production in Mtb.
Collapse
Affiliation(s)
- Ana Ruiz Manzano
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA, 63108
| | - Drake Jensen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA, 63108
| | - Eric A. Galburt
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA, 63108
| |
Collapse
|
2
|
Wang M, González L, Saha S, Josić K, Mugler A, Bennett MR. Hyperballistic intercellular signaling through growth assisted positive feedback. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626899. [PMID: 39677820 PMCID: PMC11643040 DOI: 10.1101/2024.12.04.626899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Intercellular signaling in bacteria is often mediated by small molecules secreted by cells. These small molecules disperse via diffusion which limits the speed and spatial extent of information transfer in spatially extended systems. Theory shows that a secondary signal and feedback circuits can speed up the flow of information and allow it to travel further. Here, we construct and test several synthetic circuits in Escherichia coli to determine to what extent a secondary signal and feedback can improve signal propagation in bacterial systems. We find that positive feedback-regulated secondary signals propagate further and faster than diffusion-limited signals. Additionally, the speed at which the signal propagates can accelerate in time, provided the density of the cells within the system increases. These findings provide the foundation for creating fast, long-range signal propagation circuits in spatially extended bacterial systems.
Collapse
|
3
|
Genel N, Tunca S. Combined effect of polyphosphate kinase and lon protease in Streptomyces coelicolor A3(2) antibiotic production. Arch Microbiol 2024; 206:420. [PMID: 39331181 DOI: 10.1007/s00203-024-04138-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
The bacterial stringent response is a global regulatory process in which polyphosphate kinase (Ppk) and lon protease are important players. Previous studies have shown that overexpression of the lon gene and deletion of the ppk gene significantly increased actinorhodin production in Streptomyces coelicolor (SCO). In this study, a recombinant SCOΔppk-lon cell, expressing the extra lon gene in Δppk cells, was simulated using a modified in silico (computational) model, ecSco-GEM, and the negative effect of Ppk on actinorhodin production was confirmed. In addition, we identified key enzymes that play a positive role in actinorhodin production. Of these, NADH dehydrogenase/complex-I, beta-ketoacyl-[acyl-carrier-protein] synthase III, glycine cleavage system, and superoxide dismutase were identified as the most significant. By confirming these results with experiments, we have shown that GEMs can be a reliable starting point for in vitro (lab-based) studies of Streptomyces..
Collapse
Affiliation(s)
- Nagihan Genel
- Faculty of Science, Molecular Biology and Genetics Department, Gebze Technical University, Gebze, Kocaeli, 41400, Turkey
| | - Sedef Tunca
- Faculty of Science, Molecular Biology and Genetics Department, Gebze Technical University, Gebze, Kocaeli, 41400, Turkey.
| |
Collapse
|
4
|
Bassett S, Da Silva NA. Engineering a carbon source-responsive promoter for improved biosynthesis in the non-conventional yeast Kluyveromyces marxianus. Metab Eng Commun 2024; 18:e00238. [PMID: 38845682 PMCID: PMC11153928 DOI: 10.1016/j.mec.2024.e00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/17/2024] [Indexed: 06/09/2024] Open
Abstract
Many desired biobased chemicals exhibit a range of toxicity to microbial cell factories, making industry-level biomanufacturing more challenging. Separating microbial growth and production phases is known to be beneficial for improving production of toxic products. Here, we developed a novel synthetic carbon-responsive promoter for use in the rapidly growing, stress-tolerant yeast Kluyveromyces marxianus, by fusing carbon-source responsive elements of the native ICL1 promoter to the strong S. cerevisiae TDH3 or native NC1 promoter cores. Two hybrids, P IT350 and P IN450 , were validated via EGFP fluorescence and demonstrated exceptional strength, partial repression during growth, and late phase activation in glucose- and lactose-based medium, respectively. Expressing the Gerbera hybrida 2-pyrone synthase (2-PS) for synthesis of the polyketide triacetic acid lactone (TAL) under the control of P IN450 increased TAL more than 50% relative to the native NC1 promoter, and additional promoter engineering further increased TAL titer to 1.39 g/L in tube culture. Expression of the Penicillium griseofulvum 6-methylsalicylic acid synthase (6-MSAS) under the control of P IN450 resulted in a 6.6-fold increase in 6-MSA titer to 1.09 g/L and a simultaneous 1.5-fold increase in cell growth. Finally, we used P IN450 to express the Pseudomonas savastanoi IaaM and IaaH proteins and the Salvia pomifera sabinene synthase protein to improve production of the auxin hormone indole-3-acetic acid and the monoterpene sabinene, respectively, both extremely toxic to yeast. The development of carbon-responsive promoters adds to the synthetic biology toolbox and available metabolic engineering strategies for K. marxianus, allowing greater control over heterologous protein expression and improved production of toxic metabolites.
Collapse
Affiliation(s)
- Shane Bassett
- Department of Chemical & Biomolecular Engineering, University of California, Irvine, CA, 92697-2580, USA
| | - Nancy A. Da Silva
- Department of Chemical & Biomolecular Engineering, University of California, Irvine, CA, 92697-2580, USA
| |
Collapse
|
5
|
Li D, Liang W, Huang Z, Ma W, Liu Q. The spontaneously produced lysogenic prophage phi456 promotes bacterial resistance to adverse environments and enhances the colonization ability of avian pathogenic Escherichia coli strain DE456. Vet Res 2024; 55:37. [PMID: 38532498 DOI: 10.1186/s13567-024-01292-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
In the last decade, prophages that possess the ability of lysogenic transformation have become increasingly significant. Their transfer and subsequent activity in the host have a significant impact on the evolution of bacteria. Here, we investigate the role of prophage phi456 with high spontaneous induction in the bacterial genome of Avian pathogenic Escherichia coli (APEC) DE456. The phage particles, phi456, that were released from DE456 were isolated, purified, and sequenced. Additionally, phage particles were no longer observed either during normal growth or induced by nalidixic acid in DE456Δphi456. This indicated that the released phage particles from DE456 were only phi456. We demonstrated that phi456 contributed to biofilm formation through spontaneous induction of the accompanying increase in the eDNA content. The survival ability of DE456Δphi456 was decreased in avian macrophage HD11 under oxidative stress and acidic conditions. This is likely due to a decrease in the transcription levels of three crucial genes-rpoS, katE, and oxyR-which are needed to help the bacteria adapt to and survive in adverse environments. It has been observed through animal experiments that the presence of phi456 in the DE456 genome enhances colonization ability in vivo. Additionally, the number of type I fimbriae in DE456Δphi456 was observed to be reduced under transmission electron microscopy when compared to the wild-type strain. The qRT-PCR results indicated that the expression levels of the subunit of I fimbriae (fimA) and its apical adhesin (fimH) were significantly lower in DE456Δphi456. Therefore, it can be concluded that phi456 plays a crucial role in helping bacterial hosts survive in unfavorable conditions and enhancing the colonization ability in DE456.
Collapse
Affiliation(s)
- Dezhi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wei Liang
- The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Zhiqiang Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wenwen Ma
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Qing Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
6
|
Saito S, Kobayashi I, Hoshina M, Uenaka E, Sakurai A, Imamura S, Shimada T. Regulatory Role of GgaR (YegW) for Glycogen Accumulation in Escherichia coli K-12. Microorganisms 2024; 12:115. [PMID: 38257942 PMCID: PMC10819704 DOI: 10.3390/microorganisms12010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Glycogen, the stored form of glucose, accumulates upon growth arrest in the presence of an excess carbon source in Escherichia coli and other bacteria. Chromatin immunoprecipitation screening for the binding site of a functionally unknown GntR family transcription factor, YegW, revealed that the yegTUV operon was a single target of the E. coli genome. Although none of the genes in the yegTUV operon have a clear function, a previous study suggested their involvement in the production of ADP-glucose (ADPG), a glycogen precursor. Various validation through in vivo and in vitro experiments showed that YegW is a single-target transcription factor that acts as a repressor of yegTUV, with an intracellular concentration of consistently approximately 10 molecules, and senses ADPG as an effector. Further analysis revealed that YegW repressed glycogen accumulation in response to increased glucose concentration, which was not accompanied by changes in the growth phase. In minimal glucose medium, yegW-deficient E. coli promoted glycogen accumulation, at the expense of poor cell proliferation. We concluded that YegW is a single-target transcription factor that senses ADPG and represses glycogen accumulation in response to the amount of glucose available to the cell. We propose renaming YegW to GgaR (repressor of glycogen accumulation).
Collapse
Affiliation(s)
- Shunsuke Saito
- School of Agriculture, Meiji University, 1-1-1 Kawasaki-Shi, Kanagawa 214-8571, Japan
| | - Ikki Kobayashi
- School of Agriculture, Meiji University, 1-1-1 Kawasaki-Shi, Kanagawa 214-8571, Japan
| | - Motoki Hoshina
- Research and Development Section, Diagnostics Division, YAMASA Corporation, 2-10-1 Araoicho, Choshi, Chiba 288-0056, Japan
| | - Emi Uenaka
- School of Agriculture, Meiji University, 1-1-1 Kawasaki-Shi, Kanagawa 214-8571, Japan
- Space Environment and Energy Laboratories, Nippon Telegraph and Telephone Corporation, Musashino-shi, Tokyo 180-8585, Japan
| | - Atsushi Sakurai
- Space Environment and Energy Laboratories, Nippon Telegraph and Telephone Corporation, Musashino-shi, Tokyo 180-8585, Japan
| | - Sousuke Imamura
- Space Environment and Energy Laboratories, Nippon Telegraph and Telephone Corporation, Musashino-shi, Tokyo 180-8585, Japan
| | - Tomohiro Shimada
- School of Agriculture, Meiji University, 1-1-1 Kawasaki-Shi, Kanagawa 214-8571, Japan
| |
Collapse
|
7
|
Brugger C, Schwartz J, Novick S, Tong S, Hoskins JR, Majdalani N, Kim R, Filipovski M, Wickner S, Gottesman S, Griffin PR, Deaconescu AM. Structure of phosphorylated-like RssB, the adaptor delivering σ s to the ClpXP proteolytic machinery, reveals an interface switch for activation. J Biol Chem 2023; 299:105440. [PMID: 37949227 PMCID: PMC10755785 DOI: 10.1016/j.jbc.2023.105440] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023] Open
Abstract
In enterobacteria such as Escherichia coli, the general stress response is mediated by σs, the stationary phase dissociable promoter specificity subunit of RNA polymerase. σs is degraded by ClpXP during active growth in a process dependent on the RssB adaptor, which is thought to be stimulated by the phosphorylation of a conserved aspartate in its N-terminal receiver domain. Here we present the crystal structure of full-length RssB bound to a beryllofluoride phosphomimic. Compared to the structure of RssB bound to the IraD anti-adaptor, our new RssB structure with bound beryllofluoride reveals conformational differences and coil-to-helix transitions in the C-terminal region of the RssB receiver domain and in the interdomain segmented helical linker. These are accompanied by masking of the α4-β5-α5 (4-5-5) "signaling" face of the RssB receiver domain by its C-terminal domain. Critically, using hydrogen-deuterium exchange mass spectrometry, we identify σs-binding determinants on the 4-5-5 face, implying that this surface needs to be unmasked to effect an interdomain interface switch and enable full σs engagement and hand-off to ClpXP. In activated receiver domains, the 4-5-5 face is often the locus of intermolecular interactions, but its masking by intramolecular contacts upon phosphorylation is unusual, emphasizing that RssB is a response regulator that undergoes atypical regulation.
Collapse
Affiliation(s)
- Christiane Brugger
- Laboratories of Molecular Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Jacob Schwartz
- Laboratories of Molecular Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Scott Novick
- Department of Molecular Medicine, The Wertheim UF Scripps Institute for Biomedical Innovation and Technology, University of Florida, Jupiter, Florida, USA
| | - Song Tong
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Joel R Hoskins
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Nadim Majdalani
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Rebecca Kim
- Laboratories of Molecular Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Martin Filipovski
- Laboratories of Molecular Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Sue Wickner
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Susan Gottesman
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Patrick R Griffin
- Department of Molecular Medicine, The Wertheim UF Scripps Institute for Biomedical Innovation and Technology, University of Florida, Jupiter, Florida, USA
| | - Alexandra M Deaconescu
- Laboratories of Molecular Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA.
| |
Collapse
|
8
|
Liu H, Zhang L, Wang W, Hu H, Ouyang X, Xu P, Tang H. An Intelligent Synthetic Bacterium for Chronological Toxicant Detection, Biodegradation, and Its Subsequent Suicide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304318. [PMID: 37705081 PMCID: PMC10625131 DOI: 10.1002/advs.202304318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/24/2023] [Indexed: 09/15/2023]
Abstract
Modules, toolboxes, and synthetic biology systems may be designed to address environmental bioremediation. However, weak and decentralized functional modules require complex control. To address this issue, an integrated system for toxicant detection and biodegradation, and subsequent suicide in chronological order without exogenous inducers is constructed. Salicylic acid, a typical pollutant in industrial wastewater, is selected as an example to demonstrate this design. Biosensors are optimized by regulating the expression of receptors and reporters to get 2-fold sensitivity and 6-fold maximum output. Several stationary phase promoters are compared, and promoter Pfic is chosen to express the degradation enzyme. Two concepts for suicide circuits are developed, with the toxin/antitoxin circuit showing potent lethality. The three modules are coupled in a stepwise manner. Detection and biodegradation, and suicide are sequentially completed with partial attenuation compared to pre-integration, except for biodegradation, being improved by the replacements of ribosome binding site. Finally, a long-term stability test reveals that the engineered strain maintained its function for ten generations. The study provides a novel concept for integrating and controlling functional modules that can accelerate the transition of synthetic biology from conceptual to practical applications.
Collapse
Affiliation(s)
- Huan Liu
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Lige Zhang
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Weiwei Wang
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Haiyang Hu
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Xingyu Ouyang
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Ping Xu
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Hongzhi Tang
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiP. R. China
| |
Collapse
|
9
|
Njenga R, Boele J, Öztürk Y, Koch HG. Coping with stress: How bacteria fine-tune protein synthesis and protein transport. J Biol Chem 2023; 299:105163. [PMID: 37586589 PMCID: PMC10502375 DOI: 10.1016/j.jbc.2023.105163] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023] Open
Abstract
Maintaining a functional proteome under different environmental conditions is challenging for every organism, in particular for unicellular organisms, such as bacteria. In order to cope with changing environments and stress conditions, bacteria depend on strictly coordinated proteostasis networks that control protein production, folding, trafficking, and degradation. Regulation of ribosome biogenesis and protein synthesis are cornerstones of this cellular adaptation in all domains of life, which is rationalized by the high energy demand of both processes and the increased resistance of translationally silent cells against internal or external poisons. Reduced protein synthesis ultimately also reduces the substrate load for protein transport systems, which are required for maintaining the periplasmic, inner, and outer membrane subproteomes. Consequences of impaired protein transport have been analyzed in several studies and generally induce a multifaceted response that includes the upregulation of chaperones and proteases and the simultaneous downregulation of protein synthesis. In contrast, generally less is known on how bacteria adjust the protein targeting and transport machineries to reduced protein synthesis, e.g., when cells encounter stress conditions or face nutrient deprivation. In the current review, which is mainly focused on studies using Escherichia coli as a model organism, we summarize basic concepts on how ribosome biogenesis and activity are regulated under stress conditions. In addition, we highlight some recent developments on how stress conditions directly impair protein targeting to the bacterial membrane. Finally, we describe mechanisms that allow bacteria to maintain the transport of stress-responsive proteins under conditions when the canonical protein targeting pathways are impaired.
Collapse
Affiliation(s)
- Robert Njenga
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany; Faculty of Biology, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Julian Boele
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Yavuz Öztürk
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany.
| |
Collapse
|
10
|
Zoheir AE, Sobol MS, Meisch L, Ordoñez-Rueda D, Kaster AK, Niemeyer CM, Rabe KS. A three-colour stress biosensor reveals multimodal response in single cells and spatiotemporal dynamics of biofilms. NPJ Biofilms Microbiomes 2023; 9:57. [PMID: 37604827 PMCID: PMC10442448 DOI: 10.1038/s41522-023-00424-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 07/31/2023] [Indexed: 08/23/2023] Open
Abstract
The plethora of stress factors that can damage microbial cells has evolved sophisticated stress response mechanisms. While existing bioreporters can monitor individual responses, sensors for detecting multimodal stress responses in living microorganisms are still lacking. Orthogonally detectable red, green, and blue fluorescent proteins combined in a single plasmid, dubbed RGB-S reporter, enable simultaneous, independent, and real-time analysis of the transcriptional response of Escherichia coli using three promoters which report physiological stress (PosmY for RpoS), genotoxicity (PsulA for SOS), and cytotoxicity (PgrpE for RpoH). The bioreporter is compatible with standard analysis and Fluorescent Activated Cell Sorting (FACS) combined with subsequent transcriptome analysis. Various stressors, including the biotechnologically relevant 2-propanol, activate one, two, or all three stress responses, which can significantly impact non-stress-related metabolic pathways. Implemented in microfluidic cultivation with confocal fluorescence microscopy imaging, the RGB-S reporter enabled spatiotemporal analysis of live biofilms revealing stratified subpopulations of bacteria with heterogeneous stress responses.
Collapse
Affiliation(s)
- Ahmed E Zoheir
- Institute for Biological Interfaces 1 (IBG-1), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
- Department of Genetics and Cytology, National Research Centre (NRC), Cairo, Egypt
| | - Morgan S Sobol
- Institute for Biological Interfaces 5 (IBG-5), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Laura Meisch
- Institute for Biological Interfaces 1 (IBG-1), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Diana Ordoñez-Rueda
- European Molecular Biology Laboratory (EMBL), Flow Cytometry Core Facility, Heidelberg, Germany
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces 5 (IBG-5), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Christof M Niemeyer
- Institute for Biological Interfaces 1 (IBG-1), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Kersten S Rabe
- Institute for Biological Interfaces 1 (IBG-1), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
11
|
Maharjan RP, Sullivan GJ, Adams F, Shah B, Hawkey J, Delgado N, Semenec L, Dinh H, Li L, Short F, Parkhill J, Paulsen I, Barquist L, Eijkelkamp B, Cain A. DksA is a conserved master regulator of stress response in Acinetobacter baumannii. Nucleic Acids Res 2023; 51:6101-6119. [PMID: 37158230 PMCID: PMC10325922 DOI: 10.1093/nar/gkad341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 04/11/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023] Open
Abstract
Coordination of bacterial stress response mechanisms is critical for long-term survival in harsh environments for successful host infection. The general and specific stress responses of well-studied Gram-negative pathogens like Escherichia coli are controlled by alternative sigma factors, archetypically RpoS. The deadly hospital pathogen Acinetobacter baumannii is notoriously resistant to environmental stresses, yet it lacks RpoS, and the molecular mechanisms driving this incredible stress tolerance remain poorly defined. Here, using functional genomics, we identified the transcriptional regulator DksA as a master regulator for broad stress protection and virulence in A. baumannii. Transcriptomics, phenomics and in vivo animal studies revealed that DksA controls ribosomal protein expression, metabolism, mutation rates, desiccation, antibiotic resistance, and host colonization in a niche-specific manner. Phylogenetically, DksA was highly conserved and well-distributed across Gammaproteobacteria, with 96.6% containing DksA, spanning 88 families. This study lays the groundwork for understanding DksA as a major regulator of general stress response and virulence in this important pathogen.
Collapse
Affiliation(s)
- Ram P Maharjan
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW2109, Australia
| | - Geraldine J Sullivan
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW2109, Australia
| | - Felise G Adams
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Bhumika S Shah
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW2109, Australia
| | - Jane Hawkey
- Department of Infectious Diseases, Central Clinical School, Monash University, Victoria, Australia
| | - Natasha Delgado
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW2109, Australia
| | - Lucie Semenec
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW2109, Australia
| | - Hue Dinh
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW2109, Australia
| | - Liping Li
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW2109, Australia
| | - Francesca L Short
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Ian T Paulsen
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW2109, Australia
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080Würzburg, Germany
- Faculty of Medicine, University of Würzburg, 97080Würzburg, Germany
| | - Bart A Eijkelkamp
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Amy K Cain
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW2109, Australia
| |
Collapse
|
12
|
Ratti A, Fassi EMA, Forlani F, Mori M, Villa F, Cappitelli F, Sgrignani J, Roda G, Cavalli A, Villa S, Grazioso G. Mechanistic Insights into the Antibiofilm Mode of Action of Ellagic Acid. Pharmaceutics 2023; 15:1757. [PMID: 37376205 DOI: 10.3390/pharmaceutics15061757] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Bacterial biofilm is a major contributor to the persistence of infection and the limited efficacy of antibiotics. Antibiofilm molecules that interfere with the biofilm lifestyle offer a valuable tool in fighting bacterial pathogens. Ellagic acid (EA) is a natural polyphenol that has shown attractive antibiofilm properties. However, its precise antibiofilm mode of action remains unknown. Experimental evidence links the NADH:quinone oxidoreductase enzyme WrbA to biofilm formation, stress response, and pathogen virulence. Moreover, WrbA has demonstrated interactions with antibiofilm molecules, suggesting its role in redox and biofilm modulation. This work aims to provide mechanistic insights into the antibiofilm mode of action of EA utilizing computational studies, biophysical measurements, enzyme inhibition studies on WrbA, and biofilm and reactive oxygen species assays exploiting a WrbA-deprived mutant strain of Escherichia coli. Our research efforts led us to propose that the antibiofilm mode of action of EA stems from its ability to perturb the bacterial redox homeostasis driven by WrbA. These findings shed new light on the antibiofilm properties of EA and could lead to the development of more effective treatments for biofilm-related infections.
Collapse
Affiliation(s)
- Alessandro Ratti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milano, Italy
| | - Enrico M A Fassi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milano, Italy
| | - Fabio Forlani
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Via G. Celoria 2, 20133 Milano, Italy
| | - Matteo Mori
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milano, Italy
| | - Federica Villa
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Via G. Celoria 2, 20133 Milano, Italy
| | - Francesca Cappitelli
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Via G. Celoria 2, 20133 Milano, Italy
| | - Jacopo Sgrignani
- Institute for Research in Biomedicine (IRB), Università della Svizzera Italiana (USI), Via Chiesa 5, 6500 Bellinzona, Switzerland
| | - Gabriella Roda
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milano, Italy
| | - Andrea Cavalli
- Institute for Research in Biomedicine (IRB), Università della Svizzera Italiana (USI), Via Chiesa 5, 6500 Bellinzona, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Stefania Villa
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milano, Italy
| | - Giovanni Grazioso
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milano, Italy
| |
Collapse
|
13
|
Li X, Xue X, Jia J, Zou X, Guan Y, Zhu L, Wang Z. Nonsteroidal anti-inflammatory drug diclofenac accelerates the emergence of antibiotic resistance via mutagenesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121457. [PMID: 36958653 DOI: 10.1016/j.envpol.2023.121457] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Overuse of antimicrobial agents are generally considered to be a key factor in the occurrence of antibiotic resistance bacteria (ARB). Nevertheless, it is unclear whether ARB can be induced by non-antibiotic chemicals such as nonsteroidal anti-inflammatory drug (NSAID). Thus, the objective of this study is to investigate whether NSAID diclofenac (DCF) promote the emergence of antibiotic resistance in Escherichia coli K12 MG1655. Our results suggested that DCF induced the occurrence of ARB which showed hereditary stability of resistance. Meanwhile, gene variation was identified on chromosome of the ARB, and DCF can cause bacterial oxidative stress and SOS response. Subsequently, transcriptional levels of antioxidant (soxS, sodA, sodC, gor, katG, ahpF) and SOS (recA, lexA, uvrA, uvrB, ruvA, ruvB, dinB, umuC, polB) system-related genes were enhanced. However, the expression of related genes cannot be increased in high-dosage treatment compared with low-dosage samples because of cytotoxicity and cellular damage. Simultaneously, high-dosage DCF decreased the mutation frequency but enhanced the resistance of mutants. Our findings expand our knowledge of the promoting effect on the emergence of ARB caused by DCF. More attention and regulations should be given to these potential ecological and health risks for widespread DCF.
Collapse
Affiliation(s)
- Xiangju Li
- Department of Aquaculture, College of Animal Science and Technology, Northwest A&F University, Xinong Road 22, Yangling, Shaanxi, 712100, China
| | - Xue Xue
- Department of Aquaculture, College of Animal Science and Technology, Northwest A&F University, Xinong Road 22, Yangling, Shaanxi, 712100, China
| | - Jia Jia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiaocui Zou
- Department of Aquaculture, College of Animal Science and Technology, Northwest A&F University, Xinong Road 22, Yangling, Shaanxi, 712100, China
| | - Yongjing Guan
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Long Zhu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Zaizhao Wang
- Department of Aquaculture, College of Animal Science and Technology, Northwest A&F University, Xinong Road 22, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
14
|
Chen Y, Zhang Q, Wang D, Shu YG, Shi H. Memory Effect on the Survival of Deinococcus radiodurans after Exposure in Near Space. Microbiol Spectr 2023; 11:e0347422. [PMID: 36749041 PMCID: PMC10100890 DOI: 10.1128/spectrum.03474-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023] Open
Abstract
Near space (20 to 100 km in altitude) is an extreme environment with high radiation and extreme cold, making it difficult for organisms to survive. However, many studies had shown that there were still microbes living in this extremely harsh environment. It was particularly important to study which factors affected the survival of microorganisms living in near space after exposure to irradiation, as this was related to many studies, such as studies of radioresistance mechanisms, panspermia hypothesis, long-distance microbial transfer, and developing extraterrestrial habitats. Survival after radiation was probably influenced by the growth condition before radiation, which is called the memory effect. In this research, we used different growth conditions to affect the growth of Deinococcus radiodurans and lyophilized bacteria in exponential phase to maintain the physiological state at this stage. Then high-altitude scientific balloon exposure experiments were carried out by using the Chinese Academy of Sciences Balloon-Borne Astrobiology Platform (CAS-BAP) at Dachaidan, Qinghai, China (37°44'N, 95°21'E). The aim was to investigate which factors influence survival after near-space exposure. The results suggested that there was a memory effect on the survival of D. radiodurans after exposure. If the differences in growth rate were caused by differences in nutrition, the survival rate and growth rate were positively correlated. Moreover, the addition of paraquat and Mn2+ during the growth phase can also increase survival. This finding may help to deepen the understanding of the mechanics of radiation protection and provide relevant evidence for many studies, such as of long-distance transfer of microorganisms in near space. IMPORTANCE Earth's near space is an extreme environment with high radiation and extreme cold. Which factors affect the survival of microbes in near space is related to many studies, such as studies of radioresistance mechanisms, panspermia hypothesis, long-distance microbial transfer, and developing extraterrestrial habitats. We performed several exposure experiments with Deinococcus radiodurans in near space to investigate which factors influence the survival rate after near-space exposure; that is, there was a relationship between survival after radiation and the growth condition before radiation. The results suggested that there was a memory effect on the survival of D. radiodurans after exposure. This finding may help to deepen the understanding of the mechanism of radiation protection and provide relevant evidence for many studies, such as of long-distance transfer of microorganisms in near space.
Collapse
Affiliation(s)
- Yining Chen
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qing Zhang
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China
| | - Deyu Wang
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yao-Gen Shu
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Hualin Shi
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| |
Collapse
|
15
|
Baek J, Yoon H. Cyclic di-GMP Modulates a Metabolic Flux for Carbon Utilization in Salmonella enterica Serovar Typhimurium. Microbiol Spectr 2023; 11:e0368522. [PMID: 36744926 PMCID: PMC10100716 DOI: 10.1128/spectrum.03685-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/16/2023] [Indexed: 02/07/2023] Open
Abstract
Salmonella enterica serovar Typhimurium is an enteric pathogen spreading via the fecal-oral route. Transmission across humans, animals, and environmental reservoirs has forced this pathogen to rapidly respond to changing environments and adapt to new environmental conditions. Cyclic di-GMP (c-di-GMP) is a second messenger that controls the transition between planktonic and sessile lifestyles, in response to environmental cues. Our study reveals the potential of c-di-GMP to alter the carbon metabolic pathways in S. Typhimurium. Cyclic di-GMP overproduction decreased the transcription of genes that encode components of three phosphoenolpyruvate (PEP):carbohydrate phosphotransferase systems (PTSs) allocated for the uptake of glucose (PTSGlc), mannose (PTSMan), and fructose (PTSFru). PTS gene downregulation by c-di-GMP was alleviated in the absence of the three regulators, SgrS, Mlc, and Cra, suggesting their intermediary roles between c-di-GMP and PTS regulation. Moreover, Cra was found to bind to the promoters of ptsG, manX, and fruB. In contrast, c-di-GMP increased the transcription of genes important for gluconeogenesis. However, this effect of c-di-GMP in gluconeogenesis disappeared in the absence of Cra, indicating that Cra is a pivotal regulator that coordinates the carbon flux between PTS-mediated sugar uptake and gluconeogenesis, in response to cellular c-di-GMP concentrations. Since gluconeogenesis supplies precursor sugars required for extracellular polysaccharide production, Salmonella may exploit c-di-GMP as a dual-purpose signal that rewires carbon flux from glycolysis to gluconeogenesis and promotes biofilm formation using the end products of gluconeogenesis. This study sheds light on a new role for c-di-GMP in modulating carbon flux, to coordinate bacterial behavior in response to hostile environments. IMPORTANCE Cyclic di-GMP is a central signaling molecule that determines the transition between motile and nonmotile lifestyles in many bacteria. It stimulates biofilm formation at high concentrations but leads to biofilm dispersal and planktonic status at low concentrations. This study provides new insights into the role of c-di-GMP in programming carbon metabolic pathways. An increase in c-di-GMP downregulated the expression of PTS genes important for sugar uptake, while simultaneously upregulating the transcription of genes important for bacterial gluconeogenesis. The directly opposing effects of c-di-GMP on sugar metabolism were mediated by Cra (catabolite repressor/activator), a dual transcriptional regulator that modulates the direction of carbon flow. Salmonella may potentially harness c-di-GMP to promote its survival and fitness in hostile environments via the coordination of carbon metabolic pathways and the induction of biofilm formation.
Collapse
Affiliation(s)
- Jiwon Baek
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
- Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
16
|
Bacillus subtilis Stressosome Sensor Protein Sequences Govern the Ability To Distinguish among Environmental Stressors and Elicit Different σ B Response Profiles. mBio 2022; 13:e0200122. [PMID: 36409125 PMCID: PMC9765535 DOI: 10.1128/mbio.02001-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bacteria use a variety of systems to sense stress and mount an appropriate response to ensure fitness and survival. Bacillus subtilis uses stressosomes-cytoplasmic multiprotein complexes-to sense environmental stressors and enact the general stress response by activating the alternative sigma factor σB. Each stressosome includes 40 RsbR proteins, representing four paralogous (RsbRA, RsbRB, RsbRC, and RsbRD) putative stress sensors. Population-level analyses suggested that the RsbR paralogs are largely redundant, while our prior work using microfluidics-coupled fluorescence microscopy uncovered differences among the RsbR paralogs' σB response profiles with respect to timing and intensity when facing an identical stressor. Here, we use a similar approach to address the question of whether the σB responses mediated by each paralog differ in the presence of different environmental stressors: can they distinguish among stressors? Wild-type cells (with all four paralogs) and RsbRA-only cells activate σB with characteristic transient response timing irrespective of stressor but show various response magnitudes. However, cells with other individual RsbR paralogs show distinct timing and magnitude in their responses to ethanol, salt, oxidative, and acid stress, implying that RsbR proteins can distinguish among stressors. Experiments with hybrid fusion proteins comprising the N-terminal half of one paralog and the C-terminal half of another argue that the N-terminal identity influences response magnitude and that determinants in both halves of RsbRA are important for its stereotypical transient σB response timing. IMPORTANCE Bacterial survival depends on appropriate responses to diverse stressors. The general stress-response system in the environmental model bacterium Bacillus subtilis is constantly poised for an immediate response and uses unusual stress-sensing protein complexes called stressosomes. Stressosomes typically contain four different types of putative sensing protein. We asked whether each type of sensor has a distinct role in mediating response dynamics to different environmental stressors. We find that one sensor type always mediates a transient response, while the others show distinct response magnitude and timing to different stressors. We also find that a transient response is exceptional, as several engineered hybrid proteins did not show strong transient responses. Our work reveals functional distinctions among subunits of the stressosome complex and represents a step toward understanding how the general stress response of B. subtilis ensures its survival in natural environmental settings.
Collapse
|
17
|
Delavault A, Zoheir AE, Muller D, Hollenbach R, Rabe KS, Ochsenreither K, Rudat J, Syldatk C. Enhanced Bioactivity of Tailor-Made Glycolipid Enriched Manuka Honey. Int J Mol Sci 2022; 23:12031. [PMID: 36233331 PMCID: PMC9570014 DOI: 10.3390/ijms231912031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 11/16/2022] Open
Abstract
Glycolipids can be synthetized in deep eutectic solvents (DESs) as they possess low water content allowing a reversed lipase activity and thus enables ester formation. Based on this principle, honey can also serve as a media for glycolipid synthesis. Indeed, this supersaturated sugar solution is comparable in terms of physicochemical properties to the sugar-based DESs. Honey-based products being commercially available for therapeutic applications, it appears interesting to enhance its bioactivity. In the current work, we investigate if enriching medical grade honey with in situ enzymatically-synthetized glycolipids can improve the antimicrobial property of the mixture. The tested mixtures are composed of Manuka honey that is enriched with octanoate, decanoate, laurate, and myristate sugar esters, respectively dubbed GOH, GDH, GLH, and GMH. To characterize the bioactivity of those mixtures, first a qualitative screening using an agar well diffusion assay has been performed with methicillin-resistant Staphylococcus aureus, Bacillus subtilis, Candida bombicola, Escherichia coli, and Pseudomonas putida which confirmed considerably enhanced susceptibility of these micro-organisms to the different glycolipid enriched honey mixtures. Then, a designed biosensor E. coli strain that displays a stress reporter system consisting of three stress-specific inducible, red, green, and blue fluorescent proteins which respectively translate to physiological stress, genotoxicity, and cytotoxicity was used. Bioactivity was, therefore, characterized, and a six-fold enhancement of the physiological stress that was caused by GOH compared to regular Manuka honey at a 1.6% (v/v) concentration was observed. An antibacterial agar well diffusion assay with E. coli was performed as well and demonstrated an improved inhibitory potential with GOH upon 20% (v/v) concentration.
Collapse
Affiliation(s)
- André Delavault
- Technical Biology, Institute of Process Engineering in Life Sciences II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Ahmed E. Zoheir
- Department of Genetics and Cytology, National Research Center (NRC), Cairo 12622, Egypt
- Molecular Evolution, Institute for Biological Interfaces 1 (IBG-1), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Delphine Muller
- Technical Biology, Institute of Process Engineering in Life Sciences II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Rebecca Hollenbach
- Technical Biology, Institute of Process Engineering in Life Sciences II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Technikum Laubholz GmbH, Biotechnologische Konversion, 89143 Blaubeuren, Germany
| | - Kersten S. Rabe
- Molecular Evolution, Institute for Biological Interfaces 1 (IBG-1), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Katrin Ochsenreither
- Technical Biology, Institute of Process Engineering in Life Sciences II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Technikum Laubholz GmbH, Biotechnologische Konversion, 89143 Blaubeuren, Germany
| | - Jens Rudat
- Technical Biology, Institute of Process Engineering in Life Sciences II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Christoph Syldatk
- Technical Biology, Institute of Process Engineering in Life Sciences II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| |
Collapse
|
18
|
Dale AG, Porcu A, Mann J, Neidle S. The mechanism of resistance in Escherichia coli to ridinilazole and other antibacterial head-to-head bis-benzimidazole compounds. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02918-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractThe appY gene has been characterised as conferring resistance to a novel series of antimicrobial benzimidazole derivatives in E. coli MC1061 cells when expressed in high copy-number. A microarray approach was used to identify genes involved in the mechanism of appY-mediated antibacterial resistance, that were up- or down-regulated following induction of the gene in the appY knockout strain JW0553. In total, expression of 90 genes was induced and 48 repressed greater than 2.5-fold (P < 0.05), 45 min after appY induction. Over half the genes up-regulated following appY expression had confirmed or putative roles in acid resistance (AR) and response to oxidative and antibiotic stresses. These included the genes for MdtE and MdtF, which form a multi-drug transporter with TolC and have been implicated in resistance to several antibiotics including erythromycin. Amongst the acid resistance genes were gadAB and adiAC encoding the glutamate-dependant (AR2) and arginine-dependant (AR3) acid resistance systems respectively, in addition to the transcriptional activators of these systems gadE and gadX. In agreement with earlier studies, appA, appCB and hyaA-F were also up-regulated following induction of appY. This study has also confirmed that over-expression of mdtEF confers resistance to these antibacterial benzimidazoles, indicating that the observation of appY conferring resistance to these compounds, proceeds through an appY-mediated up-regulation of this efflux transporter. To assess the importance of the AppY enzyme to acid stress responses, the percentage survival of bacteria in acidified media (pH ≤ 2) was measured. From an initial input of 1 × 106 CFU/ml, the wild-type strain MG1655 showed 7.29% and 0.46% survival after 2 and 4 h, respectively. In contrast, strain JW0553 in which appY is deleted was completely killed by the treatment. Transformation of JW0553 with a plasmid carrying appY returned survival to wild-type levels (7.85% and 1.03% survival at 2 and 4 h). Further dissection of the response by prior induction of each of the three AR systems has revealed that AR1 and AR3 were most affected by the absence of appY. This work highlights an important and previously unidentified role for the AppY enzyme in mediating the responses to several stress conditions. It is likely that the appY gene fits into a complex transcriptional regulatory network involving σS and gadE and gadX. Further work to pinpoint its position in such a hierarchy and to assess the contribution of appY to oxidative stress responses should help determine its full significance. This work is also consistent with recent studies in C. difficile showing that the mechanism of action of ridinilazole involves AT-rich DNA minor groove binding.
Collapse
|
19
|
Sharma A, Alajangi HK, Pisignano G, Sood V, Singh G, Barnwal RP. RNA thermometers and other regulatory elements: Diversity and importance in bacterial pathogenesis. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1711. [PMID: 35037405 DOI: 10.1002/wrna.1711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/09/2021] [Accepted: 12/16/2021] [Indexed: 01/11/2023]
Abstract
Survival of microorganisms depends to a large extent on environmental conditions and the occupied host. By adopting specific strategies, microorganisms can thrive in the surrounding environment and, at the same time, preserve their viability. Evading the host defenses requires several mechanisms compatible with the host survival which include the production of RNA thermometers to regulate the expression of genes responsible for heat or cold shock as well as of those involved in virulence. Microorganisms have developed a variety of molecules in response to the environmental changes in temperature and even more specifically to the host they invade. Among all, RNA-based regulatory mechanisms are the most common ones, highlighting the importance of such molecules in gene expression control and novel drug development by suitable structure-based alterations. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA in Disease and Development > RNA in Disease RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
- Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh, India.,University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Hema Kumari Alajangi
- Department of Biophysics, Panjab University, Chandigarh, India.,University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | | - Vikas Sood
- Department of Biochemistry, Jamia Hamdard, New Delhi, India
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | |
Collapse
|
20
|
Valencia EY, Barros JP, Ferenci T, Spira B. A Broad Continuum of E. coli Traits in Nature Associated with the Trade-off Between Self-preservation and Nutritional Competence. MICROBIAL ECOLOGY 2022; 83:68-82. [PMID: 33846820 DOI: 10.1007/s00248-021-01751-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
A trade-off between reproduction and survival is a characteristic of many organisms. In bacteria, growth is constrained when cellular resources are channelled towards environmental stress protection. At the core of this trade-off in Escherichia coli is RpoS, a sigma factor that diverts transcriptional resources towards general stress resistance. The constancy of RpoS levels in natural isolates is unknown. A uniform RpoS content in E. coli would impart a narrow range of resistance properties to the species, whereas a diverse set of RpoS levels in nature should result in a diverse range of stress susceptibilities. We explore the diversity of trade-off settings and phenotypes by measuring the level of RpoS protein in strains of E. coli cohabiting in a natural environment. Strains from a stream polluted with domestic waste were investigated in monthly samples. Analyses included E. coli phylogroup classification, RpoS protein level, RpoS-dependent stress phenotypes and the sequencing of rpoS mutations. The most striking finding was the continuum of RpoS levels, with a 100-fold range of RpoS amounts consistently found in individuals in the stream. Approximately 1.8% of the sampled strains carried null or non-synonymous mutations in rpoS. The natural isolates also exhibited a broad (>100-fold) range of stress resistance responses. Our results are consistent with the view that a multiplicity of survival-multiplication trade-off settings is a feature of the species E. coli. The phenotypic diversity resulting from the trade-off permits bet-hedging and the adaptation of E. coli strains to a very broad range of environments.
Collapse
Affiliation(s)
- Estela Ynes Valencia
- Departamento de Microbiologia, Instituto de Ciências Biomédicas Universidade de São Paulo, São Paulo, SP, Brazil
| | - Jackeline Pinheiro Barros
- Departamento de Microbiologia, Instituto de Ciências Biomédicas Universidade de São Paulo, São Paulo, SP, Brazil
| | - Thomas Ferenci
- School of Life and Environmental Sciences, University of Sydney, 6/403 Pacific Highway, Sydney, New South Wales, 2070, Australia
| | - Beny Spira
- Departamento de Microbiologia, Instituto de Ciências Biomédicas Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
21
|
Zhan J, Qiao J, Wang X. Role of sigma factor RpoS in Cronobacter sakazakii environmental stress tolerance. Bioengineered 2021; 12:2791-2809. [PMID: 34157953 PMCID: PMC8806803 DOI: 10.1080/21655979.2021.1938499] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/31/2021] [Indexed: 11/12/2022] Open
Abstract
Cronobacter sakazakii is a food-borne, conditionally pathogenic bacterium that mainly infects neonates, especially premature infants. Previous studies have indicated that an important route of infection for C. sakazakii is through infant formula, suggesting a high stress resistance of the bacterium. RpoS is a σ-factor that is closely related to the bacterial resistance mechanisms. In this study, a C. sakazakii BAA894 model strain was used. An rpoS-deficient mutant strain Δrpos was constructed using Red homologous recombination, and the differences between the mutant and the wild-type strains were compared. To investigate the functions of the rpoS gene, the membrane formation and cell wall properties of the strains were studied, and the tolerance of each strain to acid, osmotic pressure, desiccation, and drug resistance were compared. The results showed that the membrane formation ability in the mutant strain was increased, auto-aggregation was enhanced, motility, acid resistance and hyperosmotic resistance were alternated to different degrees, and desiccation resistance was stronger than observed in the wild type grown in LB medium but weaker than the wild type cultured in M9 medium. These results showed that rpoS is involved in environmental stress resistance in C. sakazakii BAA894. Finally, transcriptome analysis verified that the deletion of the rpoS gene caused differential expression of resistance-related genes and instigated changes in related metabolic pathways. These messenger RNA results were consistent with the functional experimental results and help explain the phenotypic changes observed in the mutant strain.
Collapse
Affiliation(s)
- Jie Zhan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jun Qiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
22
|
Meyer L, Germain E, Maisonneuve E. Regulation of ytfK by cAMP-CRP Contributes to SpoT-Dependent Accumulation of (p)ppGpp in Response to Carbon Starvation YtfK Responds to Glucose Exhaustion. Front Microbiol 2021; 12:775164. [PMID: 34803996 PMCID: PMC8600398 DOI: 10.3389/fmicb.2021.775164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Guanosine penta- or tetraphosphate (known as (p)ppGpp) serves as second messenger to respond to nutrient downshift and other environmental stresses, a phenomenon called stringent response. Accumulation of (p)ppGpp promotes the coordinated inhibition of macromolecule synthesis, as well as the activation of stress response pathways to cope and adapt to harmful conditions. In Escherichia coli, the (p)ppGpp level is tightly regulated by two enzymes, the (p)ppGpp synthetase RelA and the bifunctional synthetase/hydrolase SpoT. We recently identified the small protein YtfK as a key regulator of SpoT-mediated activation of stringent response in E. coli. Here, we further characterized the regulation of ytfK. We observed that ytfK is subjected to catabolite repression and is positively regulated by the cyclic AMP (cAMP)-cAMP receptor protein (CRP) complex. Importantly, YtfK contributes to SpoT-dependent accumulation of (p)ppGpp and cell survival in response to glucose starvation. Therefore, regulation of ytfK by the cAMP-CRP appears important to adjust (p)ppGpp level and coordinate cellular metabolism in response to glucose availability.
Collapse
Affiliation(s)
- Laura Meyer
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS-Aix Marseille Univ (UMR7283), Marseille, France
| | - Elsa Germain
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS-Aix Marseille Univ (UMR7283), Marseille, France
| | - Etienne Maisonneuve
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS-Aix Marseille Univ (UMR7283), Marseille, France
| |
Collapse
|
23
|
Mohiuddin SG, Ghosh S, Ngo HG, Sensenbach S, Karki P, Dewangan NK, Angardi V, Orman MA. Cellular Self-Digestion and Persistence in Bacteria. Microorganisms 2021; 9:2269. [PMID: 34835393 PMCID: PMC8626048 DOI: 10.3390/microorganisms9112269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/30/2022] Open
Abstract
Cellular self-digestion is an evolutionarily conserved process occurring in prokaryotic cells that enables survival under stressful conditions by recycling essential energy molecules. Self-digestion, which is triggered by extracellular stress conditions, such as nutrient depletion and overpopulation, induces degradation of intracellular components. This self-inflicted damage renders the bacterium less fit to produce building blocks and resume growth upon exposure to fresh nutrients. However, self-digestion may also provide temporary protection from antibiotics until the self-digestion-mediated damage is repaired. In fact, many persistence mechanisms identified to date may be directly or indirectly related to self-digestion, as these processes are also mediated by many degradative enzymes, including proteases and ribonucleases (RNases). In this review article, we will discuss the potential roles of self-digestion in bacterial persistence.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mehmet A. Orman
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77004, USA; (S.G.M.); (S.G.); (H.G.N.); (S.S.); (P.K.); (N.K.D.); (V.A.)
| |
Collapse
|
24
|
Identification and Characterization of Pleiotropic High-Persistence Mutations in the Beta Subunit of the Bacterial RNA Polymerase. Antimicrob Agents Chemother 2021; 65:e0052221. [PMID: 34424038 DOI: 10.1128/aac.00522-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations conferring resistance to bactericidal antibiotics reduce the average susceptibility of mutant populations. It is unknown, however, how those mutations affect the survival of individual bacteria. Since surviving bacteria can be a reservoir for recurring infections, it is important to know how survival rates may be affected by resistance mutations and by the choice of antibiotics. Here, we present evidence that (i) Escherichia coli mutants with 100 to 1,000 times increased frequency of survival in ciprofloxacin, an archetypal fluoroquinolone antibiotic, can be readily obtained in a stepwise selection; (ii) the high survival frequency is conferred by mutations in the switch region of the beta subunit of the RNA polymerase; (iii) the switch-region mutations are (p)ppGpp mimics, partially analogous to rpoB stringent mutations; (iv) the stringent and switch region rpoB mutations frequently occur in clinical isolates of E. coli, Acinetobacter baumannii, Mycobacterium tuberculosis, and Staphylococcus aureus, and at least one of them, RpoB S488L, which is a common rifampicin resistance mutations, dramatically increases the survival of a clinical methicillin-resistant S. aureus (MRSA) strain in ampicillin; and (v) the RpoB-associated high-survival phenotype can be reversed by subinhibitory concentrations of chloramphenicol.
Collapse
|
25
|
Abstract
During antibiotic persistence, bacterial cells become transiently tolerant to antibiotics by restraining their growth and metabolic activity. Detailed molecular characterization of antibiotic persistence is hindered by low count of persisting cells and the need for their isolation. Here, we used sustained addition of stable isotope-labeled lysine to selectively label the proteome during hipA-induced persistence and hipB-induced resuscitation of Escherichia coli cells in minimal medium after antibiotic treatment. Time-resolved, 24-h measurement of label incorporation allowed detection of over 500 newly synthesized proteins in viable cells, demonstrating low but widespread protein synthesis during persistence. Many essential proteins were newly synthesized, and several ribosome-associated proteins such as RaiA and Sra showed high synthesis levels, pointing to their roles in maintenance of persistence. At the onset of resuscitation, cells synthesized the ribosome-splitting GTPase HflX and various ABC transporters, restored translation machinery, and resumed metabolism by inducing glycolysis and biosynthesis of amino acids. IMPORTANCE While bactericidal antibiotics typically require actively growing cells to exploit their function, persister cells are slowly replicating which makes them tolerant to the lethal action of antimicrobials. Here, we used an established in vitro model of bacterial persistence based on overexpression of the paradigm toxin-antitoxin (TA) system hipA/hipB to devise a generic method for temporal analysis of protein synthesis during toxin-induced persistence and antitoxin-mediated resuscitation. Our time-resolved, 24-h measurement of label incorporation demonstrated low but widespread protein synthesis during persistence. At the onset of resuscitation, cells restored translation machinery and resumed metabolism by inducing glycolysis and biosynthesis of amino acids. Our study provides the first global analysis of protein synthesis in persisting and resuscitating bacterial cells, and as such, presents an unprecedented resource to study the processes governing antibiotic persistence.
Collapse
|
26
|
Shoemaker WR, Polezhaeva E, Givens KB, Lennon JT. Molecular Evolutionary Dynamics of Energy Limited Microorganisms. Mol Biol Evol 2021; 38:4532-4545. [PMID: 34255090 PMCID: PMC8476154 DOI: 10.1093/molbev/msab195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Microorganisms have the unique ability to survive extended periods of time in environments with extremely low levels of exploitable energy. To determine the extent that energy limitation affects microbial evolution, we examined the molecular evolutionary dynamics of a phylogenetically diverse set of taxa over the course of 1,000 days. We found that periodic exposure to energy limitation affected the rate of molecular evolution, the accumulation of genetic diversity, and the rate of extinction. We then determined the degree that energy limitation affected the spectrum of mutations as well as the direction of evolution at the gene level. Our results suggest that the initial depletion of energy altered the direction and rate of molecular evolution within each taxon, though after the initial depletion the rate and direction did not substantially change. However, this consistent pattern became diminished when comparisons were performed across phylogenetically distant taxa, suggesting that while the dynamics of molecular evolution under energy limitation are highly generalizable across the microbial tree of life, the targets of adaptation are specific to a given taxon.
Collapse
Affiliation(s)
- William R Shoemaker
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.,Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USACurrent affiliation
| | | | - Kenzie B Givens
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.,Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, 47408, USACurrent affiliation
| | - Jay T Lennon
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
27
|
Impact of the Resistance Responses to Stress Conditions Encountered in Food and Food Processing Environments on the Virulence and Growth Fitness of Non-Typhoidal Salmonellae. Foods 2021; 10:foods10030617. [PMID: 33799446 PMCID: PMC8001757 DOI: 10.3390/foods10030617] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 01/22/2023] Open
Abstract
The success of Salmonella as a foodborne pathogen can probably be attributed to two major features: its remarkable genetic diversity and its extraordinary ability to adapt. Salmonella cells can survive in harsh environments, successfully compete for nutrients, and cause disease once inside the host. Furthermore, they are capable of rapidly reprogramming their metabolism, evolving in a short time from a stress-resistance mode to a growth or virulent mode, or even to express stress resistance and virulence factors at the same time if needed, thanks to a complex and fine-tuned regulatory network. It is nevertheless generally acknowledged that the development of stress resistance usually has a fitness cost for bacterial cells and that induction of stress resistance responses to certain agents can trigger changes in Salmonella virulence. In this review, we summarize and discuss current knowledge concerning the effects that the development of resistance responses to stress conditions encountered in food and food processing environments (including acid, osmotic and oxidative stress, starvation, modified atmospheres, detergents and disinfectants, chilling, heat, and non-thermal technologies) exerts on different aspects of the physiology of non-typhoidal Salmonellae, with special emphasis on virulence and growth fitness.
Collapse
|
28
|
Oguienko A, Petushkov I, Pupov D, Esyunina D, Kulbachinskiy A. Universal functions of the σ finger in alternative σ factors during transcription initiation by bacterial RNA polymerase. RNA Biol 2021; 18:2028-2037. [PMID: 33573428 DOI: 10.1080/15476286.2021.1889254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The bacterial σ factor plays the central role in promoter recognition by RNA polymerase (RNAP). The primary σ factor, involved in transcription of housekeeping genes, was also shown to participate in the initiation of RNA synthesis and promoter escape by RNAP. In the open promoter complex, the σ finger formed by σ region 3.2 directly interacts with the template DNA strand upstream of the transcription start site. Here, we analysed the role of the σ finger in transcription initiation by four alternative σ factors in Escherichia coli, σ38, σ32, σ28 and σ24. We found that deletions of the σ finger to various extent compromise the activity of RNAP holoenzymes containing alternative σ factors, especially at low NTP concentrations. All four σs are able to utilize NADH as a noncanonical priming substrate but it has only mild effects on the efficiency of transcription initiation. The mediators of the stringent response, transcription factor DksA and the alarmone ppGpp decrease RNAP activity and promoter complex stability for all four σ factors on tested promoters. For all σs except σ38, deletions of the σ finger conversely increase the stability of promoter complexes and decrease their sensitivity to DksA and ppGpp. The result suggests that the σ finger plays a universal role in transcription initiation by alternative σ factors and sensitizes promoter complexes to the action of global transcription regulators DksA and ppGpp by modulating promoter complex stability.
Collapse
Affiliation(s)
| | - Ivan Petushkov
- Institute of Molecular Genetics, NRC "Kurchatov Institute", Moscow, Russia
| | - Danil Pupov
- Institute of Molecular Genetics, NRC "Kurchatov Institute", Moscow, Russia
| | - Daria Esyunina
- Institute of Molecular Genetics, NRC "Kurchatov Institute", Moscow, Russia
| | | |
Collapse
|
29
|
Schellhorn HE. Function, Evolution, and Composition of the RpoS Regulon in Escherichia coli. Front Microbiol 2020; 11:560099. [PMID: 33042067 PMCID: PMC7527412 DOI: 10.3389/fmicb.2020.560099] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/25/2020] [Indexed: 11/13/2022] Open
Abstract
For many bacteria, successful growth and survival depends on efficient adaptation to rapidly changing conditions. In Escherichia coli, the RpoS alternative sigma factor plays a central role in the adaptation to many suboptimal growth conditions by controlling the expression of many genes that protect the cell from stress and help the cell scavenge nutrients. Neither RpoS or the genes it controls are essential for growth and, as a result, the composition of the regulon and the nature of RpoS control in E. coli strains can be variable. RpoS controls many genetic systems, including those affecting pathogenesis, phenotypic traits including metabolic pathways and biofilm formation, and the expression of genes needed to survive nutrient deprivation. In this review, I review the origin of RpoS and assess recent transcriptomic and proteomic studies to identify features of the RpoS regulon in specific clades of E. coli to identify core functions of the regulon and to identify more specialized potential roles for the regulon in E. coli subgroups.
Collapse
|
30
|
Oliveira M, Nunes M, Barreto Crespo MT, Silva AF. The environmental contribution to the dissemination of carbapenem and (fluoro)quinolone resistance genes by discharged and reused wastewater effluents: The role of cellular and extracellular DNA. WATER RESEARCH 2020; 182:116011. [PMID: 32623198 DOI: 10.1016/j.watres.2020.116011] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/18/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Wastewater treatment plants (WWTPs) are major reservoirs and sources for the dissemination of antibiotic resistance into the environment. In this study, the population dynamics of two full-scale WWTPs was characterized along different sampling points, including the reused effluents, in both cellular and extracellular DNA samples. The analysis was performed by high throughput sequencing targeting the 16S rRNA V4 gene region and by three in-house TaqMan multiplex qPCR assays that detect and quantify the most clinically relevant and globally distributed carbapenem (bla) and (fluoro)quinolone (qnr) resistance genes. The obtained results identify the biological treatment as the crucial step on tailoring the wastewater bacterial community, which is thereafter maintained in both discharged and reused effluents. The influent bacterial community does not alter the WWTP core community, although it clearly contributes for the introduction and spread of antibiotic resistance to the in-house bacteria. The presence of high concentrations of bla and qnr genes was not only detected in the wastewater influents and discharged effluents, but also in the reused effluents, which therefore represent another gateway for antibiotic resistant bacteria and genes into the environment and directly to the human populations. Moreover, and together with the study of the cellular DNA, it was described for the first time the role of the extracellular DNA in the dissemination of carbapenem and (fluoro)quinolone resistance, as well as the impact of the wastewater treatment process on this DNA fraction. Altogether, the results prove that the current wastewater treatments are inefficient in the removal of antibiotic resistant bacteria and genes and reinforce that targeted treatments must be developed and implemented at full-scale in the WWTPs for wastewater reuse to become a safe and sustainable practice, able to be implemented in areas such as agricultural irrigation.
Collapse
Affiliation(s)
- Micaela Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.
| | - Mónica Nunes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.
| | - Maria Teresa Barreto Crespo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.
| | - Ana Filipa Silva
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen, Denmark.
| |
Collapse
|
31
|
Pip serves as an intermediate in RpoS-modulated phz2 expression and pyocyanin production in Pseudomonas aeruginosa. Microb Pathog 2020; 147:104409. [PMID: 32707314 DOI: 10.1016/j.micpath.2020.104409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 11/22/2022]
Abstract
Pyocyanin, a main virulence factor that is produced by Pseudomonas aeruginosa, plays an important role in pathogen-host interaction during infection. Two copies of phenazine-biosynthetic operons on genome, phz1 (phzA1B1C1D1E1F1G1) and phz2 (phzA2B2C2D2E2F2G2), contribute to phenazine biosynthesis. In our previous study, we found that RpoS positively regulates expression of the phz2 operon and pyocyanin biosynthesis in P. aeruginosa PAO1. In this work, when a TetR-family regulator gene, pip, was knocked out, we found that pyocyanin production was dramatically reduced, indicating that Pip positively regulates pyocyanin biosynthesis. With further phenazines quantification and β-galactosidase assay, we confirmed that Pip positively regulates phz2 expression, but does not regulate phz1 expression. In addition, while the rpoS gene was deleted, expression of pip was down-regulated. Expression of rpoS in the wild-type PAO1 strain, however, was similar to that in the Pip-deficient mutant PAΔpip, suggesting that expression of pip could positively be regulated by RpoS, whereas rpoS could not be regulated by Pip. Taken together, we drew a conclusion that Pip might serve as an intermediate in RpoS-modulated expression of the phz2 operon and pyocyanin biosynthesis in P. aeruginosa.
Collapse
|
32
|
Local and Universal Action: The Paradoxes of Indole Signalling in Bacteria. Trends Microbiol 2020; 28:566-577. [PMID: 32544443 DOI: 10.1016/j.tim.2020.02.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/05/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
Indole is a signalling molecule produced by many bacterial species and involved in intraspecies, interspecies, and interkingdom signalling. Despite the increasing volume of research published in this area, many aspects of indole signalling remain enigmatic. There is disagreement over the mechanism of indole import and export and no clearly defined target through which its effects are exerted. Progress is hindered further by the confused and sometimes contradictory body of indole research literature. We explore the reasons behind this lack of consistency and speculate whether the discovery of a new, pulse mode of indole signalling, together with a move away from the idea of a conventional protein target, might help to overcome these problems and enable the field to move forward.
Collapse
|
33
|
Gummesson B, Shah SA, Borum AS, Fessler M, Mitarai N, Sørensen MA, Svenningsen SL. Valine-Induced Isoleucine Starvation in Escherichia coli K-12 Studied by Spike-In Normalized RNA Sequencing. Front Genet 2020; 11:144. [PMID: 32211022 PMCID: PMC7066862 DOI: 10.3389/fgene.2020.00144] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/07/2020] [Indexed: 12/19/2022] Open
Abstract
Escherichia coli cells respond to a period of famine by globally reorganizing their gene expression. The changes are known as the stringent response, which is orchestrated by the alarmone ppGpp that binds directly to RNA polymerase. The resulting changes in gene expression are particularly well studied in the case of amino acid starvation. We used deep RNA sequencing in combination with spike-in cells to measure global changes in the transcriptome after valine-induced isoleucine starvation of a standard E. coli K12 strain. Owing to the whole-cell spike-in method that eliminates variations in RNA extraction efficiency between samples, we show that ribosomal RNA levels are reduced during isoleucine starvation and we quantify how the change in cellular RNA content affects estimates of gene regulation. Specifically, we show that standard data normalization relying on sample sequencing depth underestimates the number of down-regulated genes in the stringent response and overestimates the number of up-regulated genes by approximately 40%. The whole-cell spike-in method also made it possible to quantify how rapidly the pool of total messenger RNA (mRNA) decreases upon amino acid starvation. A principal component analysis showed that the first two components together described 69% of the variability of the data, underlining that large and highly coordinated regulons are at play in the stringent response. The induction of starvation by sudden addition of high valine concentrations provoked prominent regulatory responses outside of the expected ppGpp, RpoS, and Lrp regulons. This underlines the notion that with the high resolution possible in deep RNA sequencing analysis, any different starvation method (e.g., nitrogen-deprivation, removal of an amino acid from an auxotroph strain, or valine addition to E. coli K12 strains) will produce measurable variations in the stress response produced by the cells to cope with the specific treatment.
Collapse
Affiliation(s)
- Bertil Gummesson
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Shiraz Ali Shah
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Mathias Fessler
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Namiko Mitarai
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
34
|
Trösch R, Willmund F. The conserved theme of ribosome hibernation: from bacteria to chloroplasts of plants. Biol Chem 2020; 400:879-893. [PMID: 30653464 DOI: 10.1515/hsz-2018-0436] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/03/2019] [Indexed: 12/21/2022]
Abstract
Cells are highly adaptive systems that respond and adapt to changing environmental conditions such as temperature fluctuations or altered nutrient availability. Such acclimation processes involve reprogramming of the cellular gene expression profile, tuning of protein synthesis, remodeling of metabolic pathways and morphological changes of the cell shape. Nutrient starvation can lead to limited energy supply and consequently, remodeling of protein synthesis is one of the key steps of regulation since the translation of the genetic code into functional polypeptides may consume up to 40% of a cell's energy during proliferation. In eukaryotic cells, downregulation of protein synthesis during stress is mainly mediated by modification of the translation initiation factors. Prokaryotic cells suppress protein synthesis by the active formation of dimeric so-called 'hibernating' 100S ribosome complexes. Such a transition involves a number of proteins which are found in various forms in prokaryotes but also in chloroplasts of plants. Here, we review the current understanding of these hibernation factors and elaborate conserved principles which are shared between species.
Collapse
Affiliation(s)
- Raphael Trösch
- Department of Biology, Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Straße 23, D-67663 Kaiserslautern, Germany
| | - Felix Willmund
- Department of Biology, Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Straße 23, D-67663 Kaiserslautern, Germany
| |
Collapse
|
35
|
Survival of acid-adapted and non-adapted Shiga toxin-producing Escherichia coli using an in vitro model. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Structural basis for transcription activation by Crl through tethering of σ S and RNA polymerase. Proc Natl Acad Sci U S A 2019; 116:18923-18927. [PMID: 31484766 DOI: 10.1073/pnas.1910827116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In bacteria, a primary σ-factor associates with the core RNA polymerase (RNAP) to control most transcription initiation, while alternative σ-factors are used to coordinate expression of additional regulons in response to environmental conditions. Many alternative σ-factors are negatively regulated by anti-σ-factors. In Escherichia coli, Salmonella enterica, and many other γ-proteobacteria, the transcription factor Crl positively regulates the alternative σS-regulon by promoting the association of σS with RNAP without interacting with promoter DNA. The molecular mechanism for Crl activity is unknown. Here, we determined a single-particle cryo-electron microscopy structure of Crl-σS-RNAP in an open promoter complex with a σS-regulon promoter. In addition to previously predicted interactions between Crl and domain 2 of σS (σS 2), the structure, along with p-benzoylphenylalanine cross-linking, reveals that Crl interacts with a structural element of the RNAP β'-subunit that we call the β'-clamp-toe (β'CT). Deletion of the β'CT decreases activation by Crl without affecting basal transcription, highlighting the functional importance of the Crl-β'CT interaction. We conclude that Crl activates σS-dependent transcription in part through stabilizing σS-RNAP by tethering σS 2 and the β'CT. We propose that Crl, and other transcription activators that may use similar mechanisms, be designated σ-activators.
Collapse
|
37
|
Abstract
The global regulatory protein CsrA coordinates gene expression in response to physiological cues reflecting cellular stress and nutrition. CsrA binding to the 5' segments of mRNA targets affects their translation, RNA stability, and/or transcript elongation. Recent studies identified probable mRNA targets of CsrA that are involved in iron uptake and storage in Escherichia coli, suggesting an unexplored role for CsrA in regulating iron homeostasis. Here, we assessed the impact of CsrA on iron-related gene expression, cellular iron, and growth under various iron levels. We investigated five new targets of CsrA regulation, including the genes for 4 ferritin or ferritin-like iron storage proteins (ISPs) and the stress-inducible Fe-S repair protein, SufA. CsrA bound with high affinity and specificity to ftnB, bfr, and dps mRNAs and inhibited their translation, while it modestly activated ftnA expression. Furthermore, CsrA was found to regulate cellular iron levels and support growth by repressing the expression of genes for ISPs, most importantly, ferritin B (FtnB) and bacterioferritin (Bfr). Iron starvation did not substantially affect cellular levels of CsrA or its small RNA (sRNA) antagonists, CsrB and CsrC. csrA disruption led to increased resistance to the lethal effects of H2O2 during exponential growth, consistent with a regulatory role in oxidative stress resistance. We propose that during exponential growth and under minimal stress, CsrA represses the deleterious expression of the ISPs that function under oxidative stress and stationary-phase conditions (FtnB, Bfr, and Dps), thus ensuring that cellular iron is available to processes that are required for growth.IMPORTANCE Iron is an essential micronutrient for nearly all living organisms but is toxic in excess. Consequently, the maintenance of iron homeostasis is a critical biological process, and the genes involved in this function are tightly regulated. Here, we explored a new role for the bacterial RNA binding protein CsrA in the regulation of iron homeostasis. CsrA was shown to be a key regulator of iron storage genes in Escherichia coli, with consequential effects on cellular iron levels and growth. Our findings establish a model in which robust CsrA activity during the exponential phase of growth leads to repression of genes whose products sequester iron or divert it to unnecessary stress response processes. In so doing, CsrA supports E. coli growth under iron-limiting laboratory conditions and may promote fitness in the competitive iron-limited environment of the host large intestine.
Collapse
|
38
|
Chromosomally Encoded hok-sok Toxin-Antitoxin System in the Fire Blight Pathogen Erwinia amylovora: Identification and Functional Characterization. Appl Environ Microbiol 2019; 85:AEM.00724-19. [PMID: 31101613 DOI: 10.1128/aem.00724-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/08/2019] [Indexed: 12/28/2022] Open
Abstract
Toxin-antitoxin (TA) systems are genetic elements composed of a protein toxin and a counteracting antitoxin that is either a noncoding RNA or protein. In type I TA systems, the antitoxin is a noncoding small RNA (sRNA) that base pairs with the cognate toxin mRNA interfering with its translation. Although type I TA systems have been extensively studied in Escherichia coli and a few human or animal bacterial pathogens, they have not been characterized in plant-pathogenic bacteria. In this study, we characterized a chromosomal locus in the plant pathogen Erwinia amylovora Ea1189 that is homologous to the hok-sok type I TA system previously identified in the Enterobacteriaceae-restricted plasmid R1. Phylogenetic analysis indicated that the chromosomal location of the hok-sok locus is, thus far, unique to E. amylovora We demonstrated that ectopic overexpression of hok is highly toxic to E. amylovora and that the sRNA sok reversed the toxicity of hok through mok, a reading frame presumably translationally coupled with hok We also identified the region that is essential for maintenance of the main toxicity of Hok. Through a hok-sok deletion mutant (Ea1189Δhok-sok), we determined the contribution of the hok-sok locus to cellular growth, micromorphology, and catalase activity. Combined, our findings indicate that the hok-sok TA system, besides being potentially self-toxic, provides fitness advantages to E. amylovora IMPORTANCE Bacterial toxin-antitoxin systems have received great attention because of their potential as targets for antimicrobial development and as tools for biotechnology. Erwinia amylovora, the causal agent of fire blight disease on pome fruit trees, is a major plant-pathogenic bacterium. In this study, we identified and functionally characterized a unique chromosomally encoded hok-sok toxin-antitoxin system in E. amylovora that resembles the plasmid-encoded copies of this system in other Enterobacteriaceae This study of a type I toxin-antitoxin system in a plant-pathogenic bacterium provides the basis to further understand the involvement of toxin-antitoxin systems during infection by a plant-pathogenic bacterium. The new linkage between the hok-sok toxin-antitoxin system and the catalase-mediated oxidative stress response leads to additional considerations of targeting this system for antimicrobial development.
Collapse
|
39
|
Torres Montaguth OE, Bervoets I, Peeters E, Charlier D. Competitive Repression of the artPIQM Operon for Arginine and Ornithine Transport by Arginine Repressor and Leucine-Responsive Regulatory Protein in Escherichia coli. Front Microbiol 2019; 10:1563. [PMID: 31354664 PMCID: PMC6640053 DOI: 10.3389/fmicb.2019.01563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/21/2019] [Indexed: 11/20/2022] Open
Abstract
Two out of the three major uptake systems for arginine in Escherichia coli are encoded by the artJ-artPIQM gene cluster. ArtJ is the high-affinity periplasmic arginine-specific binding protein (ArgBP-I), whereas artI encodes the arginine and ornithine periplasmic binding protein (AO). Both ArtJ and ArtI are supposed to combine with the inner membrane-associated ArtQMP2 transport complex of the ATP-binding cassette-type (ABC). Transcription of artJ is repressed by arginine repressor (ArgR) and the artPIQM operon is regulated by the transcriptional regulators ArgR and Leucine-responsive regulatory protein (Lrp). Whereas repression by ArgR requires arginine as corepressor, repression of PartP by Lrp is partially counteracted by leucine, its major effector molecule. We demonstrate that binding of dimeric Lrp to the artP control region generates four complexes with a distinct migration velocity, and that leucine has an effect on both global binding affinity and cooperativity in the binding. We identify the binding sites for Lrp in the artP control region, reveal interferences in the binding of ArgR and Lrp in vitro and demonstrate that the two transcription factors act as competitive repressors in vivo, each one being a more potent regulator in the absence of the other. This competitive behavior may be explained by the partial steric overlap of their respective binding sites. Furthermore, we demonstrate ArgR binding to an unusual position in the control region of the lrp gene, downstream of the transcription initiation site. From this unusual position for an ArgR-specific operator, ArgR has little direct effect on lrp expression, but interferes with the negative leucine-sensitive autoregulation exerted by Lrp. Direct arginine and ArgR-dependent repression of lrp could be observed with a 25-bp deletion mutant, in which the ArgR binding site was artificially moved to a position immediately downstream of the lrp transcription initiation site. This finding is reminiscent of a previous observation made for the carAB operon encoding carbamoylphosphate synthase, where ArgR bound in overlap with the downstream promoter P2 does not block transcription initiated 67 bp upstream at the P1 promoter, and further supports the hypothesis that ArgR does not act as an efficient roadblock.
Collapse
Affiliation(s)
- Oscar E Torres Montaguth
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Indra Bervoets
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eveline Peeters
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Daniel Charlier
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
40
|
Regulation of arginine biosynthesis, catabolism and transport in Escherichia coli. Amino Acids 2019; 51:1103-1127. [DOI: 10.1007/s00726-019-02757-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/27/2019] [Indexed: 11/26/2022]
|
41
|
Gottesman S. Trouble is coming: Signaling pathways that regulate general stress responses in bacteria. J Biol Chem 2019; 294:11685-11700. [PMID: 31197038 DOI: 10.1074/jbc.rev119.005593] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bacteria can rapidly and reversibly respond to changing environments via complex transcriptional and post-transcriptional regulatory mechanisms. Many of these adaptations are specific, with the regulatory output tailored to the inducing signal (for instance, repairing damage to cell components or improving acquisition and use of growth-limiting nutrients). However, the general stress response, activated in bacterial cells entering stationary phase or subjected to nutrient depletion or cellular damage, is unique in that its common, broad output is induced in response to many different signals. In many different bacteria, the key regulator for the general stress response is a specialized sigma factor, the promoter specificity subunit of RNA polymerase. The availability or activity of the sigma factor is regulated by complex regulatory circuits, the majority of which are post-transcriptional. In Escherichia coli, multiple small regulatory RNAs, each made in response to a different signal, positively regulate translation of the general stress response sigma factor RpoS. Stability of RpoS is regulated by multiple anti-adaptor proteins that are also synthesized in response to different signals. In this review, the modes of signaling to and levels of regulation of the E. coli general stress response are discussed. They are also used as a basis for comparison with the general stress response in other bacteria with the aim of extracting key principles that are common among different species and highlighting important unanswered questions.
Collapse
Affiliation(s)
- Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
42
|
Herr CQ, Macomber L, Kalliri E, Hausinger RP. Glutarate L-2-hydroxylase (CsiD/GlaH) is an archetype Fe(II)/2-oxoglutarate-dependent dioxygenase. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 117:63-90. [PMID: 31564307 DOI: 10.1016/bs.apcsb.2019.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Escherichia coli gene initially named ygaT is located adjacent to lhgO, encoding L-2-hydroxyglutarate oxidase/dehydrogenase, and the gabDTP gene cluster, utilized for γ-aminobutyric acid (GABA) metabolism. Because this gene is transcribed specifically during periods of carbon starvation, it was renamed csiD for carbon starvation induced. The CsiD protein was structurally characterized and shown to possess a double-stranded ß-helix fold, characteristic of a large family of non-heme Fe(II)- and 2-oxoglutarate (2OG)-dependent oxygenases. Consistent with a role in producing the substrate for LhgO, CsiD was shown to be a glutarate L-2-hydroxylase. We review the kinetic and structural properties of glutarate L-2-hydroxylase from E. coli and other species, and we propose a catalytic mechanism for this archetype 2OG-dependent hydroxylase. Glutarate can be derived from l-lysine within the cell, with the gabDT genes exhibiting expanded reactivities beyond those known for GABA metabolism. The complete CsiD-containing pathway provides a means for the cell to obtain energy from the metabolism of l-lysine during periods of carbon starvation. To reflect the role of this protein in the cell, a renaming of csiD to glaH has been proposed.
Collapse
Affiliation(s)
- Caitlyn Q Herr
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Lee Macomber
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Efthalia Kalliri
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
| | - Robert P Hausinger
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
43
|
Dorich V, Brugger C, Tripathi A, Hoskins JR, Tong S, Suhanovsky MM, Sastry A, Wickner S, Gottesman S, Deaconescu AM. Structural basis for inhibition of a response regulator of σ S stability by a ClpXP antiadaptor. Genes Dev 2019; 33:718-732. [PMID: 30975721 PMCID: PMC6546054 DOI: 10.1101/gad.320168.118] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 03/19/2019] [Indexed: 11/25/2022]
Abstract
Dorich et al. present the first crystal structure of RssB bound to an antiadaptor, the DNA damage-inducible IraD. The structural data, together with mechanistic studies, suggest that RssB plasticity is critical for regulation of σS degradation. The stationary phase promoter specificity subunit σS (RpoS) is delivered to the ClpXP machinery for degradation dependent on the adaptor RssB. This adaptor-specific degradation of σS provides a major point for regulation and transcriptional reprogramming during the general stress response. RssB is an atypical response regulator and the only known ClpXP adaptor that is inhibited by multiple but dissimilar antiadaptors (IraD, IraP, and IraM). These are induced by distinct stress signals and bind to RssB in poorly understood manners to achieve stress-specific inhibition of σS turnover. Here we present the first crystal structure of RssB bound to an antiadaptor, the DNA damage-inducible IraD. The structure reveals that RssB adopts a compact closed architecture with extensive interactions between its N-terminal and C-terminal domains. The structural data, together with mechanistic studies, suggest that RssB plasticity, conferred by an interdomain glutamate-rich flexible linker, is critical for regulation of σS degradation. Structural modulation of interdomain linkers may thus constitute a general strategy for tuning response regulators.
Collapse
Affiliation(s)
- Victoria Dorich
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02903, USA
| | - Christiane Brugger
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02903, USA
| | - Arti Tripathi
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Joel R Hoskins
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Song Tong
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Margaret M Suhanovsky
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02903, USA
| | - Amita Sastry
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02903, USA
| | - Sue Wickner
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Alexandra M Deaconescu
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02903, USA
| |
Collapse
|
44
|
Coxiella burnetii RpoS Regulates Genes Involved in Morphological Differentiation and Intracellular Growth. J Bacteriol 2019; 201:JB.00009-19. [PMID: 30745369 DOI: 10.1128/jb.00009-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/30/2019] [Indexed: 12/19/2022] Open
Abstract
Coxiella burnetii, the etiological agent of Q fever, undergoes a unique biphasic developmental cycle where bacteria transition from a replicating (exponential-phase) large cell variant (LCV) form to a nonreplicating (stationary-phase) small cell variant (SCV) form. The alternative sigma factor RpoS is an essential regulator of stress responses and stationary-phase physiology in several bacterial species, including Legionella pneumophila, which has a developmental cycle superficially similar to that of C. burnetii Here, we used a C. burnetii ΔrpoS mutant to define the role of RpoS in intracellular growth and SCV development. Growth yields following infection of Vero epithelial cells or THP-1 macrophage-like cells with the rpoS mutant in the SCV form, but not the LCV form, were significantly lower than that of wild-type bacteria. RNA sequencing and whole-cell mass spectrometry of the C. burnetii ΔrpoS mutant revealed that a substantial portion of the C. burnetii genome is regulated by RpoS during SCV development. Regulated genes include those involved in stress responses, arginine transport, peptidoglycan remodeling, and synthesis of the SCV-specific protein ScvA. Genes comprising the dot/icm locus, responsible for production of the Dot/Icm type 4B secretion system, were also dysregulated in the rpoS mutant. These data were corroborated with independent assays demonstrating that the C. burnetii ΔrpoS strain has increased sensitivity to hydrogen peroxide and carbenicillin and a thinner cell wall/outer membrane complex. Collectively, these results demonstrate that RpoS is an important regulator of genes involved in C. burnetii SCV development and intracellular growth.IMPORTANCE The Q fever bacterium Coxiella burnetii has spore-like environmental stability, a characteristic that contributes to its designation as a potential bioweapon. Stability is likely conferred by a highly resistant, small cell variant (SCV) stationary-phase form that arises during a biphasic developmental cycle. Here, we define the role of the alternative sigma factor RpoS in regulating genes associated with SCV development. Genes involved in stress responses, amino acid transport, cell wall remodeling, and type 4B effector secretion were dysregulated in the rpoS mutant. Cellular impairments included defects in intracellular growth, cell wall structure, and resistance to oxidants. These results support RpoS as a central regulator of the Coxiella developmental cycle and identify developmentally regulated genes involved in morphological differentiation.
Collapse
|
45
|
Moshiri J, Kaur D, Hambira CM, Sandala JL, Koopman JA, Fuchs JR, Gunn JS. Identification of a Small Molecule Anti-biofilm Agent Against Salmonella enterica. Front Microbiol 2018; 9:2804. [PMID: 30515144 PMCID: PMC6256085 DOI: 10.3389/fmicb.2018.02804] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/31/2018] [Indexed: 12/20/2022] Open
Abstract
Biofilm formation is a common strategy utilized by bacterial pathogens to establish persistence in a host niche. Salmonella enterica serovar Typhi, the etiological agent of Typhoid fever, relies on biofilm formation in the gallbladder to chronically colonize asymptomatic carriers, allowing for transmission to uninfected individuals. S. enterica serovar Typhimurium utilizes biofilms to achieve persistence in human and animal hosts, an issue of both clinical and agricultural importance. Here, we identify a compound that selectively inhibits biofilm formation in both S. Typhi and S. Typhimurium serovars at early stages of biofilm development with an EC50 of 21.0 and 7.4 μM, respectively. We find that this compound, T315, also reduces biofilm formation in Acinetobacter baumannii, a nosocomial and opportunistic pathogen with rising antibiotic resistance. T315 treatment in conjunction with sub-MIC dosing of ciprofloxacin further reduces S. enterica biofilm formation, demonstrating the potential of such combination therapies for therapeutic development. Through synthesis of two biotin-labeled T315 probes and subsequent pull-down and proteomics analysis, we identified a T315 binding target: WrbA, a flavin mononucleotide-dependent NADH:quinone oxidoreductase. Using a S. Typhimurium strain lacking WrbA we demonstrate that this factor contributes to endogenous S. enterica biofilm formation processes and is required for full T315 anti-biofilm activity. We suggest WrbA as a promising target for further development of anti-biofilm agents in Salmonella, with potential for use against additional bacterial pathogens. The development of anti-biofilm therapeutics will be essential to combat chronic carriage of Typhoid fever and thus accomplish a meaningful reduction of global disease burden.
Collapse
Affiliation(s)
- Jasmine Moshiri
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Darpan Kaur
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Chido M Hambira
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Jenna L Sandala
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Jacob A Koopman
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - James R Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - John S Gunn
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
46
|
Shaw JA, Henard CA, Liu L, Dieckman LM, Vázquez-Torres A, Bourret TJ. Salmonella enterica serovar Typhimurium has three transketolase enzymes contributing to the pentose phosphate pathway. J Biol Chem 2018; 293:11271-11282. [PMID: 29848552 DOI: 10.1074/jbc.ra118.003661] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/23/2018] [Indexed: 11/06/2022] Open
Abstract
The genus Salmonella is responsible for many illnesses in humans and other vertebrate animals. We report here that Salmonella enterica serovar Typhimurium harbors three transketolases that support the non-oxidative branch of the pentose phosphate pathway. BLAST analysis identified two genes, STM14_2885 and STM14_2886, that together encode a putative transketolase (TktC) with 46-47% similarity to the known TktA and TktB isoforms. Assessing the mRNA and protein expression for each of the three transketolases, we determined that all are expressed in WT cells and regulated to varying extents by the alternative sigma factor RpoS. Enzyme assays with lysates from WT and transketolase-knockout strains established that TktA is responsible for >88% of the transketolase activity in WT cells. We purified recombinant forms of each isoenzyme to assess the kinetics for canonical transketolase reactions. TktA and TktB had comparable values for Vmax (539-1362 μm NADH consumed/s), Km (80-739 μm), and catalytic efficiency (1.02 × 108-1.06 × 109 m-1/s) for each substrate tested. The recombinant form of TktC had lower Km values (23-120 μm), whereas the Vmax (7.8-16 μm NADH consumed/s) and catalytic efficiency (5.58 × 106 to 6.07 × 108 m-1/s) were 10-100-fold lower. Using a murine model of Salmonella infection, we showed that a strain lacking all three transketolases is avirulent in C57BL/6 mice. These data provide evidence that S Typhimurium possesses three transketolases that contribute to pathogenesis.
Collapse
Affiliation(s)
- Jeff A Shaw
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska 68178
| | - Calvin A Henard
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80011
| | - Lin Liu
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80011
| | - Lynne M Dieckman
- Department of Chemistry, Creighton University, Omaha, Nebraska 68178
| | - Andrés Vázquez-Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80011; Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado 80220
| | - Travis J Bourret
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska 68178.
| |
Collapse
|
47
|
Di Sante L, Pugnaloni A, Biavasco F, Giovanetti E, Vignaroli C. Multicellular behavior of environmental Escherichia coli isolates grown under nutrient-poor and low-temperature conditions. Microbiol Res 2018; 210:43-50. [DOI: 10.1016/j.micres.2018.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/20/2018] [Accepted: 03/10/2018] [Indexed: 11/26/2022]
|
48
|
Rudat AK, Pokhrel A, Green TJ, Gray MJ. Mutations in Escherichia coli Polyphosphate Kinase That Lead to Dramatically Increased In Vivo Polyphosphate Levels. J Bacteriol 2018; 200:e00697-17. [PMID: 29311274 PMCID: PMC5826030 DOI: 10.1128/jb.00697-17] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/20/2017] [Indexed: 11/20/2022] Open
Abstract
Bacteria synthesize inorganic polyphosphate (polyP) in response to a wide variety of stresses, and production of polyP is essential for stress response and survival in many important pathogens and bacteria used in biotechnological processes. However, surprisingly little is known about the molecular mechanisms that control polyP synthesis. We have therefore developed a novel genetic screen that specifically links growth of Escherichia coli to polyP synthesis, allowing us to isolate mutations leading to enhanced polyP production. Using this system, we have identified mutations in the polyP-synthesizing enzyme polyP kinase (PPK) that lead to dramatic increases in in vivo polyP synthesis but do not substantially affect the rate of polyP synthesis by PPK in vitro These mutations are distant from the PPK active site and found in interfaces between monomers of the PPK tetramer. We have also shown that high levels of polyP lead to intracellular magnesium starvation. Our results provide new insights into the control of bacterial polyP accumulation and suggest a simple, novel strategy for engineering bacteria with increased polyP contents.IMPORTANCE PolyP is an ancient, universally conserved biomolecule and is important for stress response, energy metabolism, and virulence in a remarkably broad range of microorganisms. PolyP accumulation by bacteria is also important in biotechnology applications. For example, it is critical to enhanced biological phosphate removal (EBPR) from wastewater. Understanding how bacteria control polyP synthesis is therefore of broad importance in both the fields of bacterial pathogenesis and biological engineering. Using Escherichia coli as a model organism, we have identified the first known mutations in polyP kinase that lead to increases in cellular polyP content.
Collapse
Affiliation(s)
- Amanda K Rudat
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Arya Pokhrel
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Todd J Green
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael J Gray
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
49
|
Liu J, Summers D. Indole at low concentration helps exponentially growing Escherichia coli survive at high temperature. PLoS One 2017; 12:e0188853. [PMID: 29216232 PMCID: PMC5720752 DOI: 10.1371/journal.pone.0188853] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/14/2017] [Indexed: 12/25/2022] Open
Abstract
A culture of stationary phase Escherichia coli cells has been reported to produce copious indole when exposed to high temperature (50°C), and this response has been proposed to aid survival. We reinvestigated this phenomenon and found that indole production under these conditions is probably not a direct response to heat stress. Rather, E. coli produces indole when growth is prevented, irrespective of whether this is due to heat stress, antibiotic treatment or the removal of nutrients. Moreover, 300μM indole produced at 50°C does not improve the viability of heat stressed cells. Interestingly, a much lower concentration of indole (20 μM) improves the survival of an indole-negative strain (ΔtnaA) when heat stressed during exponential growth. In addition we have shown that the distribution of tryptophanase, the enzyme responsible for indole synthesis, is highly heterogeneous among cells in a population, except during the transition between exponential and stationary phases. The observation that, despite the presence of the tryptophanase, very little indole is produced during early exponential phase suggests that there is post-translational regulation of the enzyme.
Collapse
Affiliation(s)
- Junyan Liu
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - David Summers
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
50
|
Iwadate Y, Kato JI. Involvement of the ytfK gene from the PhoB regulon in stationary-phase H 2 O 2 stress tolerance in Escherichia coli. Microbiology (Reading) 2017; 163:1912-1923. [DOI: 10.1099/mic.0.000534] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yumi Iwadate
- Department of Biological Sciences, Graduate Schools of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Jun-ichi Kato
- Department of Biological Sciences, Graduate Schools of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|