1
|
Retnakumar RJ, Chettri P, Lamtha SC, Sivakumar KC, Dutta P, Sen P, Biswas S, Agarwal N, Nath AN, Devi TB, Thapa N, Tamang JP, Chattopadhyay S. Genome-wide accumulations of non-random adaptive point mutations drive westward evolution of Helicobacter pylori. BMC Microbiol 2025; 25:229. [PMID: 40263995 PMCID: PMC12013172 DOI: 10.1186/s12866-025-03944-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/01/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND For last seven decades we remained convinced that the natural point mutations occur randomly in the genome of an organism. However, our whole genome sequence analyses show that for the gastric pathogen Helicobacter pylori, which causes peptic ulcer and gastric cancer, accumulations of point mutations in the genome are non-random and they contribute to its unidirectional evolution. Based on the oncoprotein CagA, the pathogen can be classified into Eastern (East Asian countries like China and Japan; high incidence of gastric cancer) and Western (Europe, Africa, South-West Asian countries like India; low incidence of gastric cancer) types. RESULTS We have found a unique high-altitude Himalayan region, Sikkim (an Indian state bordering China, Nepal and Bhutan), where the evolving Eastern and Western H. pylori types co-exist and show the signs of genetic admixtures. Here, we present genomic evidence for more virulent Eastern-H. pylori getting converted to less virulent Western-H. pylori by accumulating non-random adaptive point mutations. CONCLUSION The lesser virulence of the westernized H. pylori is beneficial since this pathogen typically remains colonized in the stomach for decades before causing terminal diseases like gastric cancer. Moreover, the mutation-driven westward evolution of H. pylori is a global phenomenon, which occurred in the geographical regions where people from Eastern and Western ethnicities met and cohabited. The identified evolution of virulent Eastern H. pylori strains to lesser virulent Western variants by accumulation of point mutations also provides insight into the pathogenic potentials of different H. pylori strains.
Collapse
Affiliation(s)
- R J Retnakumar
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Prakash Chettri
- Biotech Hub, Department of Zoology, Nar Bahadur Bhandari Degree College, Tadong, Sikkim, India
| | | | - K C Sivakumar
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Priya Dutta
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Pahil Sen
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Sanjit Biswas
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
- Barry Marshall Research Centre for Helicobacter pylori, Asian Institute of Gastroenterology, Telangana, 500032, Hyderabad, India
| | - Nikita Agarwal
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Angitha N Nath
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - T Barani Devi
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Namrata Thapa
- Biotech Hub, Department of Zoology, Nar Bahadur Bhandari Degree College, Tadong, Sikkim, India.
| | | | - Santanu Chattopadhyay
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
- Barry Marshall Research Centre for Helicobacter pylori, Asian Institute of Gastroenterology, Telangana, 500032, Hyderabad, India.
| |
Collapse
|
2
|
Alexander SM, Retnakumar RJ, Chouhan D, Devi TNB, Dharmaseelan S, Devadas K, Thapa N, Tamang JP, Lamtha SC, Chattopadhyay S. Helicobacter pylori in Human Stomach: The Inconsistencies in Clinical Outcomes and the Probable Causes. Front Microbiol 2021; 12:713955. [PMID: 34484153 PMCID: PMC8416104 DOI: 10.3389/fmicb.2021.713955] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
Pathogenic potentials of the gastric pathogen, Helicobacter pylori, have been proposed, evaluated, and confirmed by many laboratories for nearly 4 decades since its serendipitous discovery in 1983 by Barry James Marshall and John Robin Warren. Helicobacter pylori is the first bacterium to be categorized as a definite carcinogen by the International Agency for Research on Cancer (IARC) of the World Health Organization (WHO). Half of the world’s population carries H. pylori, which may be responsible for severe gastric diseases like peptic ulcer and gastric cancer. These two gastric diseases take more than a million lives every year. However, the role of H. pylori as sole pathogen in gastric diseases is heavily debated and remained controversial. It is still not convincingly understood, why most (80–90%) H. pylori infected individuals remain asymptomatic, while some (10–20%) develop such severe gastric diseases. Moreover, several reports indicated that colonization of H. pylori has positive and negative associations with several other gastrointestinal (GI) and non-GI diseases. In this review, we have discussed the state of the art knowledge on “H. pylori factors” and several “other factors,” which have been claimed to have links with severe gastric and duodenal diseases. We conclude that H. pylori infection alone does not satisfy the “necessary and sufficient” condition for developing aggressive clinical outcomes. Rather, the cumulative effect of a number of factors like the virulence proteins of H. pylori, local geography and climate, genetic background and immunity of the host, gastric and intestinal microbiota, and dietary habit and history of medicine usage together determine whether the H. pylori infected person will remain asymptomatic or will develop one of the severe gastric diseases.
Collapse
Affiliation(s)
| | | | - Deepak Chouhan
- Rajiv Gandhi Centre for Biotechnology, Trivandrum, India.,Centre for Doctoral Studies, Manipal Academy of Higher Education, Manipal, India
| | | | | | - Krishnadas Devadas
- Department of Gastroenterology, Government Medical College, Trivandrum, India
| | - Namrata Thapa
- Biotech Hub, Department of Zoology, Nar Bahadur Bhandari Degree College, Gangtok, India
| | | | | | | |
Collapse
|
3
|
Lee DH, Ha JH, Shin JI, Kim KM, Choi JG, Park S, Park JS, Seo JH, Park JS, Shin MK, Baik SC, Lee WK, Youn HS, Cho MJ, Kang HL, Jung M. Increased Risk of Severe Gastric Symptoms by Virulence Factors vacAs1c, alpA, babA2, and hopZ in Helicobacter pylori Infection. J Microbiol Biotechnol 2021; 31:368-379. [PMID: 33622995 PMCID: PMC9705970 DOI: 10.4014/jmb.2101.01023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 12/15/2022]
Abstract
Two virulence factors of Helicobacter pylori, cagA and vacA, have been known to play a role in the development of severe gastric symptoms. However, they are not always associated with peptic ulcer or gastric cancer. To predict the disease outcome more accurately, it is necessary to understand the risk of severe symptoms linked to other virulence factors. Several other virulence factors of H. pylori have also been reported to be associated with disease outcomes, although there are many controversial descriptions. H. pylori isolates from Koreans may be useful in evaluating the relevance of other virulence factors to clinical symptoms of gastric diseases because the majority of Koreans are infected by toxigenic strains of H. pylori bearing cagA and vacA. In this study, a total of 116 H. pylori strains from Korean patients with chronic gastritis, peptic ulcers, and gastric cancers were genotyped. The presence of virulence factors vacAs1c, alpA, babA2, hopZ, and the extremely strong vacuolating toxin was found to contribute significantly to the development of severe gastric symptoms. The genotype combination vacAs1c/alpA/babA2 was the most predictable determinant for the development of severe symptoms, and the presence of babA2 was found to be the most critical factor. This study provides important information on the virulence factors that contribute to the development of severe gastric symptoms and will assist in predicting clinical disease outcomes due to H. pylori infection.
Collapse
Affiliation(s)
- Dong-Hae Lee
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea,BK21 Center for Human Resource Development in the Bio-Health Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jong-Hun Ha
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea,BK21 Center for Human Resource Development in the Bio-Health Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jeong-Ih Shin
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea,BK21 Center for Human Resource Development in the Bio-Health Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Kyu-Min Kim
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea,BK21 Center for Human Resource Development in the Bio-Health Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jeong-gyu Choi
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea,BK21 Center for Human Resource Development in the Bio-Health Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Seorin Park
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea,BK21 Center for Human Resource Development in the Bio-Health Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jin-Sik Park
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Ji-Hyeun Seo
- Department of Pediatrics, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea,Institute of Health Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Ji-Shook Park
- Department of Pediatrics, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea,Institute of Health Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Min-Kyoung Shin
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea,BK21 Center for Human Resource Development in the Bio-Health Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea,Institute of Health Science, Gyeongsang National University, Jinju 52727, Republic of Korea,Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Seung-Chul Baik
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea,Institute of Health Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Woo-Kon Lee
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea,Institute of Health Science, Gyeongsang National University, Jinju 52727, Republic of Korea,Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hee-Shang Youn
- Department of Pediatrics, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea,Institute of Health Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Myung-Je Cho
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea,Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyung-Lyun Kang
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea,Institute of Health Science, Gyeongsang National University, Jinju 52727, Republic of Korea,Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea,H.L. Kang Phone: +82-55-772-8085 Fax: +82-55-772-8089 E-mail:
| | - Myunghwan Jung
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea,BK21 Center for Human Resource Development in the Bio-Health Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea,Institute of Health Science, Gyeongsang National University, Jinju 52727, Republic of Korea,Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea,Corresponding authors M. Jung Phone: +82-55-772-8082 Fax: +82-55-772-8089 E-mail:
| |
Collapse
|
4
|
Rogawski McQuade ET, Liu J, Kang G, Kosek MN, Lima AAM, Bessong PO, Samie A, Haque R, Mduma ER, Shrestha S, Leite JP, Bodhidatta L, Iqbal N, Page N, Kiwelu I, Bhutta Z, Ahmed T, Houpt ER, Platts-Mills JA. Protection From Natural Immunity Against Enteric Infections and Etiology-Specific Diarrhea in a Longitudinal Birth Cohort. J Infect Dis 2021; 222:1858-1868. [PMID: 31984416 PMCID: PMC7653087 DOI: 10.1093/infdis/jiaa031] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/22/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The degree of protection conferred by natural immunity is unknown for many enteropathogens, but it is important to support the development of enteric vaccines. METHODS We used the Andersen-Gill extension of the Cox model to estimate the effects of previous infections on the incidence of subsequent subclinical infections and diarrhea in children under 2 using quantitative molecular diagnostics in the MAL-ED cohort. We used cross-pathogen negative control associations to correct bias due to confounding by unmeasured heterogeneity of exposure and susceptibility. RESULTS Prior rotavirus infection was associated with a 50% lower hazard (calibrated hazard ratio [cHR], 0.50; 95% confidence interval [CI], 0.41-0.62) of subsequent rotavirus diarrhea. Strong protection was evident against Cryptosporidium diarrhea (cHR, 0.32; 95% CI, 0.20-0.51). There was also protection due to prior infections for norovirus GII (cHR against diarrhea, 0.67; 95% CI, 0.49-0.91), astrovirus (cHR, 0.62; 95% CI, 0.48-0.81), and Shigella (cHR, 0.79; 95% CI, 0.65-0.95). Minimal protection was observed for other bacteria, adenovirus 40/41, and sapovirus. CONCLUSIONS Natural immunity was generally stronger for the enteric viruses than bacteria, potentially due to less antigenic diversity. Vaccines against major causes of diarrhea may be feasible but likely need to be more immunogenic than natural infection.
Collapse
Affiliation(s)
- Elizabeth T Rogawski McQuade
- Department of Public Health Sciences, University of Virginia, Charlottesville, Virgina, USA.,Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, Virgina, USA
| | - Jie Liu
- Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, Virgina, USA
| | | | - Margaret N Kosek
- Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, Virgina, USA.,Asociación Benéfica PRISMA, Iquitos, Peru
| | | | | | | | - Rashidul Haque
- International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | | | | | | | - Ladaporn Bodhidatta
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | | | - Nicola Page
- National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Ireen Kiwelu
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
| | | | - Tahmeed Ahmed
- International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Eric R Houpt
- Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, Virgina, USA
| | - James A Platts-Mills
- Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, Virgina, USA
| |
Collapse
|
5
|
Inference from the analysis of genetic structure of Helicobacter pylori strains isolates from two paediatric patients with recurrent infection. BMC Microbiol 2019; 19:184. [PMID: 31395006 PMCID: PMC6686460 DOI: 10.1186/s12866-019-1554-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 07/26/2019] [Indexed: 01/06/2023] Open
Abstract
Background Helicobacter pylori recurrence after successful eradication is an important problem. Children are particularly vulnerable to reinfection, by intrafamilial transmission which facilitates the acquisition or recombination of new genetic information by this bacterium. We investigated the evolutionary dynamics of 80 H. pylori strains isolated from two paediatric patients with recurrent infection (recrudescence and reinfection). Results We characterized the virulence genes vacA (s1, m1, s2, and m2), cagA, cagE, and babA2 and performed multilocus sequence typing (MLST) on 7 housekeeping genes (atpA, efp, ureI, ppa, mutY, trpC, and yphC) to infer the evolutionary dynamics of the H. pylori strains through phylogenetic and genealogic inference analyses, genetic diversity analysis and the exploration of recombination events during recurrent infections. The virulence genotype vacAs1m1/cagA+/cagE+/babA2 was present at a high frequency, as were the EPIYA motifs EPIYA-A, −B and -C. Furthermore, the housekeeping genes of the H. pylori strains exhibited high genetic variation, comprising 26 new alleles and 17 new Sequence Type (ST). In addition, the hpEurope (76.5%) and hspWAfrica (23.5%) populations predominated among the paediatric strains. All strains, regardless of their ancestral affiliation, harboured western EPIYA motifs. Conclusions This study provides evidence of the evolutionary dynamics of the H. pylori strains in two paediatric patients during recrudescence and reinfection events. In particular, our study shows that the strains changed during these events, as evidenced by the presence of different STs that emerged before and after treatment; these changes may be due to the accumulation of mutations and recombination events during the diversification process and recolonization of the patients by different genotypes. Electronic supplementary material The online version of this article (10.1186/s12866-019-1554-z) contains supplementary material, which is available to authorized users.
Collapse
|
6
|
Fung C, Tan S, Nakajima M, Skoog EC, Camarillo-Guerrero LF, Klein JA, Lawley TD, Solnick JV, Fukami T, Amieva MR. High-resolution mapping reveals that microniches in the gastric glands control Helicobacter pylori colonization of the stomach. PLoS Biol 2019; 17:e3000231. [PMID: 31048876 PMCID: PMC6497225 DOI: 10.1371/journal.pbio.3000231] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/29/2019] [Indexed: 12/22/2022] Open
Abstract
Lifelong infection of the gastric mucosa by Helicobacter pylori can lead to peptic ulcers and gastric cancer. However, how the bacteria maintain chronic colonization in the face of constant mucus and epithelial cell turnover in the stomach is unclear. Here, we present a new model of how H. pylori establish and persist in stomach, which involves the colonization of a specialized microenvironment, or microniche, deep in the gastric glands. Using quantitative three-dimensional (3D) confocal microscopy and passive CLARITY technique (PACT), which renders tissues optically transparent, we analyzed intact stomachs from mice infected with a mixture of isogenic, fluorescent H. pylori strains with unprecedented spatial resolution. We discovered that a small number of bacterial founders initially establish colonies deep in the gastric glands and then expand to colonize adjacent glands, forming clonal population islands that persist over time. Gland-associated populations do not intermix with free-swimming bacteria in the surface mucus, and they compete for space and prevent newcomers from establishing in the stomach. Furthermore, bacterial mutants deficient in gland colonization are outcompeted by wild-type (WT) bacteria. Finally, we found that host factors such as the age at infection and T-cell responses control bacterial density within the glands. Collectively, our results demonstrate that microniches in the gastric glands house a persistent H. pylori reservoir, which we propose replenishes the more transient bacterial populations in the superficial mucosa.
Collapse
Affiliation(s)
- Connie Fung
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Mifuyu Nakajima
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Emma C Skoog
- Center for Comparative Medicine, University of California, Davis School of Medicine, Davis, California, United States of America
| | | | - Jessica A Klein
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Trevor D Lawley
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Jay V Solnick
- Center for Comparative Medicine, University of California, Davis School of Medicine, Davis, California, United States of America
- Department of Medicine, University of California, Davis School of Medicine, Davis, California, United States of America
- Department of Microbiology and Immunology, University of California, Davis School of Medicine, Davis, California, United States of America
| | - Tadashi Fukami
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Manuel R Amieva
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
7
|
Bubendorfer S, Krebes J, Yang I, Hage E, Schulz TF, Bahlawane C, Didelot X, Suerbaum S. Genome-wide analysis of chromosomal import patterns after natural transformation of Helicobacter pylori. Nat Commun 2016; 7:11995. [PMID: 27329939 PMCID: PMC4917963 DOI: 10.1038/ncomms11995] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/19/2016] [Indexed: 12/17/2022] Open
Abstract
Recombination plays a dominant role in the evolution of the bacterial pathogen Helicobacter pylori, but its dynamics remain incompletely understood. Here we use an in vitro transformation system combined with genome sequencing to study chromosomal integration patterns after natural transformation. A single transformation cycle results in up to 21 imports, and repeated transformations generate a maximum of 92 imports (8% sequence replacement). Import lengths show a bimodal distribution with averages of 28 and 1,645 bp. Reanalysis of paired H. pylori genomes from chronically infected people demonstrates the same bimodal import pattern in vivo. Restriction endonucleases (REases) of the recipient bacteria fail to inhibit integration of homeologous DNA, independently of methylation. In contrast, REases limit the import of heterologous DNA. We conclude that restriction-modification systems inhibit the genomic integration of novel sequences, while they pose no barrier to homeologous recombination, which reconciles the observed stability of the H. pylori gene content and its highly recombinational population structure. Uptake and integration of exogenous DNA into the bacterial genome play an important role in the evolution of the pathogen Helicobacter pylori. Here, the authors describe a bimodal pattern of chromosomal integration and show how restriction-modification systems limit the import of heterologous DNA.
Collapse
Affiliation(s)
- Sebastian Bubendorfer
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.,DZIF-German Center for Infection Research, Hannover-Braunschweig Site, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Juliane Krebes
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.,DZIF-German Center for Infection Research, Hannover-Braunschweig Site, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Ines Yang
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.,DZIF-German Center for Infection Research, Hannover-Braunschweig Site, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Elias Hage
- DZIF-German Center for Infection Research, Hannover-Braunschweig Site, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.,Institute of Virology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Thomas F Schulz
- DZIF-German Center for Infection Research, Hannover-Braunschweig Site, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.,Institute of Virology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Christelle Bahlawane
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Xavier Didelot
- Department of Infectious Disease Epidemiology, Imperial College, Norfolk Place, London W2 1PG, UK
| | - Sebastian Suerbaum
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.,DZIF-German Center for Infection Research, Hannover-Braunschweig Site, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| |
Collapse
|
8
|
Farzi N, Malekian T, Alebouyeh M, Vaziri F, Zali MR. Genotype Diversity and Quasispecies Development of Helicobacter pylori in a Single Host. Jpn J Infect Dis 2016; 68:176-80. [PMID: 25672355 DOI: 10.7883/yoken.jjid.2014.165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Infection with different strains of Helocobacter pylori and emergence of new genomic variants during their long-term gastric colonization are assumed to be the main reasons for eradication failure. We used genotyping and arbitrarily primed PCR fingerprinting (RAPD) to detect relatedness and genetic variations among H. pylori single isolates from each patient in Iran. Multiplex-PCR amplification of gene alleles encoding the virulence factors vacA (m/s), cagA, and iceA (A1/A2) and comparison of RAPD patterns of different singles colonies were performed for each individual patient's isolate. Results showed a high frequency of diversity among the H. pylori strains. Nearly 23% of infected patients showed a single type infection. The infection types related, unrelated, and related/unrelated were found among 25.6%, 12.8%, and 38.5% of patients, respectively. Both mixed type infections (77%) and quasispecies development (15.4%) were detected in these patients. Genotype conversion among vacA (41.6%), cagA (41.6%), and iceA (50%) alleles was observed for the strains with identical or related RAPD patterns. Coevolution of different alleles was also detected in a patient infected with strains presenting the same RAPD patterns. Collectively, results of this study revealed the occurrence of quasispecies development, mixed type infections, and changes in virulence properties of H. pylori strains among the studied patients.
Collapse
Affiliation(s)
- Nastaran Farzi
- Foodborne and Waterborne Diseases Research Center; Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Tehran
| | | | | | | | | |
Collapse
|
9
|
Sullivan MJ, Bachmann NL, Timms P, Polkinghorne A. HapFlow: visualizing haplotypes in sequencing data. Bioinformatics 2015; 32:441-3. [PMID: 26449930 DOI: 10.1093/bioinformatics/btv551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/16/2015] [Indexed: 11/12/2022] Open
Abstract
SUMMARY HapFlow is a python application for visualizing haplotypes present in sequencing data. It identifies variant profiles present and reads and creates an abstract visual representation of these profiles to make haplotypes easier to identify. AVAILABILITY AND IMPLEMENTATION HapFlow is freely available (under a GPL license) for download (for Mac OS X, Unix and Microsoft Windows) from github (http://mjsull.github.io/HapFlow). CONTACT apolking@usc.edu.au.
Collapse
Affiliation(s)
- Mitchell J Sullivan
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Australia
| | - Nathan L Bachmann
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Australia
| | - Peter Timms
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Australia
| | - Adam Polkinghorne
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Australia
| |
Collapse
|
10
|
Kibria KMK, Hossain ME, Sultana J, Sarker SA, Bardhan PK, Rahman M, Nahar S. The Prevalence of Mixed Helicobacter pylori Infections in Symptomatic and Asymptomatic Subjects in Dhaka, Bangladesh. Helicobacter 2015; 20:397-404. [PMID: 25827337 DOI: 10.1111/hel.12213] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Helicobacter pylori is a highly genetically diverse bacterial species, which can persist in the gastric environment for decades. Recent studies have shown that single infections predominate in developed countries, whereas mixed infections are more prevalent in developing countries. Mixed infections of this bacterium may be important for adaptation to the hostile gastric environment and may facilitate dyspeptic symptoms. MATERIALS AND METHODS To calculate the prevalence of mixed infections in symptomatic and asymptomatic subjects, 2010 H. pylori isolates collected from 83 symptomatic and 91 asymptomatic subjects from Dhaka, Bangladesh, were analyzed by (i) random amplified polymorphic DNA fingerprinting (RAPD) and (ii) multiplex PCR amplification for cagA and vacA virulence gene alleles. RESULTS The overall prevalence of mixed H. pylori infection was 60.15% (77/128), indicating substantial co-colonization in this population. We additionally found that symptomatic subjects (53%) had a significantly higher rate of mixed infection than asymptomatic individuals (36.3%) (p = .016) and that the prevalence of the cagA and vacA and vacA m1/s1 and vacA m2/s1 alleles were higher in subjects with mixed infection. CONCLUSION Our findings suggest that an increased diversity of the H. pylori strains in the gastric environment may contribute to the development of disease symptoms.
Collapse
Affiliation(s)
| | - Md Enayet Hossain
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | | | - Shafiqul A Sarker
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | | | - Motiur Rahman
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Shamsun Nahar
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| |
Collapse
|
11
|
Analysis of a single Helicobacter pylori strain over a 10-year period in a primate model. Int J Med Microbiol 2015; 305:392-403. [PMID: 25804332 DOI: 10.1016/j.ijmm.2015.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/30/2015] [Accepted: 03/01/2015] [Indexed: 12/18/2022] Open
Abstract
Helicobacter pylori from different individuals exhibits substantial genetic diversity. However, the kinetics of bacterial diversification after infection with a single strain is poorly understood. We investigated evolution of H. pylori following long-term infection in the primate stomach; Rhesus macaques were infected with H. pylori strain USU101 and then followed for 10 years. H. pylori was regularly cultured from biopsies, and single colony isolates were analyzed. At 1-year, DNA fingerprinting showed that all output isolates were identical to the input strain; however, at 5-years, different H. pylori fingerprints were observed. Microarray-based comparative genomic hybridization revealed that long term persistence of USU101 in the macaque stomach was associated with specific whole gene changes. Further detailed investigation showed that levels of the BabA protein were dramatically reduced within weeks of infection. The molecular mechanisms behind this reduction were shown to include phase variation and gene loss via intragenomic rearrangement, suggesting strong selective pressure against BabA expression in the macaque model. Notably, although there is apparently strong selective pressure against babA, babA is required for establishment of infection in this model as a strain in which babA was deleted was unable to colonize experimentally infected macaques.
Collapse
|
12
|
Dynamics of Lewis b binding and sequence variation of the babA adhesin gene during chronic Helicobacter pylori infection in humans. mBio 2014; 5:mBio.02281-14. [PMID: 25516619 PMCID: PMC4271554 DOI: 10.1128/mbio.02281-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori undergoes rapid microevolution during chronic infection, but very little is known about how this affects host interaction factors. The best-studied adhesin of H. pylori is BabA, which mediates binding to the blood group antigen Lewis b [Le(b)]. To study the dynamics of Le(b) adherence during human infection, we analyzed paired H. pylori isolates obtained sequentially from chronically infected individuals. A complete loss or significant reduction of Le(b) binding was observed in strains from 5 out of 23 individuals, indicating that the Le(b) binding phenotype is quite stable during chronic human infection. Sequence comparisons of babA identified differences due to mutation and/or recombination in 12 out of 16 strain pairs analyzed. Most amino acid changes were found in the putative N-terminal extracellular adhesion domain. One strain pair that had changed from a Le(b) binding to a nonbinding phenotype was used to study the role of distinct sequence changes in Le(b) binding. By transformations of the nonbinding strain with a babA gene amplified from the binding strain, H. pylori strains with mosaic babA genes were generated. Recombinants were enriched for a gain of Le(b) binding by biopanning or for BabA expression on the bacterial surface by pulldown assay. With this approach, we identified several amino acid residues affecting the strength of Le(b) binding. Additionally, the data showed that the C terminus of BabA, which is predicted to encode an outer membrane β-barrel domain, plays an essential role in the biogenesis of this protein. Helicobacter pylori causes a chronic infection of the human stomach that can lead to ulcers and cancer. The bacterium can bind to gastric epithelial cells with specialized outer membrane proteins. The best-studied protein is the BabA adhesin which binds to the Lewis b blood group antigen. Since H. pylori is a bacterium with very high genetic variability, we asked whether babA evolves during chronic infection and how mutations or recombination in babA affect binding. We found that BabA-mediated adherence was stable in most individuals but observed a complete loss of binding or reduced binding in 22% of individuals. One strain pair in which binding was lost was used to generate babA sequences that were mosaics of a functional allele and a nonfunctional allele, and the mosaic sequences were used to identify amino acids critically involved in binding of BabA to Lewis b.
Collapse
|
13
|
Krebes J, Didelot X, Kennemann L, Suerbaum S. Bidirectional genomic exchange between Helicobacter pylori strains from a family in Coventry, United Kingdom. Int J Med Microbiol 2014; 304:1135-46. [PMID: 25218701 DOI: 10.1016/j.ijmm.2014.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/06/2014] [Accepted: 08/10/2014] [Indexed: 02/08/2023] Open
Abstract
The human gastric pathogen Helicobacter pylori is characterised by a high mutation rate and frequent recombination during mixed infection, which result in extensive genetic diversity and rapid allelic diversification. Mixed infections are believed to be much more common in regions with a high H. pylori prevalence than in industrialised countries. To better understand the genomic flexibility of H. pylori in a low prevalence region, we used 454 sequencing technology to investigate whole genome sequences of H. pylori strains isolated from members of three generations of a family living in Coventry, UK. The genomes of four H. pylori strains isolated from a grandfather, two of his sons and one grandson were sequenced. Three of these genomes showed a high overall sequence similarity, suggesting a recent common ancestor. The genomes differed by 316-336 SNPs, and recombination events (imports) resulted in 170-251 clusters of polymorphisms (CNPs). Imports were particularly frequent in genes encoding Helicobacter outer membrane proteins, suggesting an adaptation of the strains to their individual host. The fourth strain differed substantially from these three highly related strains but still shared long fragments of identical sequence, which most likely reflect imports from the highly related family variants. The data show extensive bidirectional exchange of DNA between the strains isolated from the family members, illustrating both the convergence and divergence effect that recombination can lead to. Detailed analysis of the distribution of SNPs and imports permits to draw up a complex scenario of the transmission history involving infection with at least two, and probably more separate strains. This complexity and the resulting high frequency of recombination were unexpected for an industrialised country where the prevalence of H. pylori infection has strongly declined in recent decades.
Collapse
Affiliation(s)
- Juliane Krebes
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; German Center for Infection Research, Hannover-Braunschweig Site, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
| | - Xavier Didelot
- Department of Infectious Disease Epidemiology, Imperial College London, London W2 1PG, United Kingdom.
| | - Lynn Kennemann
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Sebastian Suerbaum
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; German Center for Infection Research, Hannover-Braunschweig Site, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
| |
Collapse
|
14
|
Patel SK, Mishra GN, Pratap CB, Jain AK, Nath G. Helicobacter pylori is not eradicated after triple therapy: a nested PCR based study. BIOMED RESEARCH INTERNATIONAL 2014; 2014:483136. [PMID: 25054141 PMCID: PMC4094868 DOI: 10.1155/2014/483136] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 06/07/2014] [Accepted: 06/07/2014] [Indexed: 01/06/2023]
Abstract
Detection of Helicobacter pylori after triple therapy is usually carried out by either rapid urease test (RUT), urea breath test (UBT), histology, bacterial isolation, and single round PCR or serological tests. In this study, antral biopsy specimens from 25 patients were tested for H. pylori by RUT, culture, histology, and nested PCR in their antral biopsy specimens before and after treatment. Three genes, namely, heat shock protein (hsp60), phosphoglucosamine mutase (ureC), and flagellar export ATP synthase (fliI) of H. pylori were targeted. Of the 25 antral biopsy specimens, the RUT, culture, histology, and nested PCR positivity dropped from 81.8% to 12%, 31% to 0%, 100 to 84%, and 100% to 92%, respectively, before and after therapy. Further, hsp60 specific amplicons from 23 out of 25 patients gave identical restriction pattern, while 6 fliI and 1 ureC specific amplicon produced different restriction pattern. Furthermore, variations in fliI gene sequences in H. pylori after treatment were also confirmed by sequencing and compared in silico. Nested PCR based detection of H. pylori is more sensitive method to detect H. pylori after therapy than culture, RUT, and histology. Further, this study suggests that H. pylori is not eradicated completely after triple therapy.
Collapse
Affiliation(s)
- Saurabh Kumar Patel
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Girish Narayan Mishra
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Chandra Bhan Pratap
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Ashok Kumar Jain
- Department of Gastroenterology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Gopal Nath
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
15
|
Michel A, Pawlita M, Boeing H, Gissmann L, Waterboer T. Helicobacter pylori antibody patterns in Germany: a cross-sectional population study. Gut Pathog 2014; 6:10. [PMID: 24782915 PMCID: PMC4004453 DOI: 10.1186/1757-4749-6-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/17/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Helicobacter pylori infection that is usually acquired in childhood and lasts for lifetime is mostly asymptomatic but associated with severe gastrointestinal disease including cancer. During chronic infection, the gastric mucosa is histologically changing. This forces H. pylori to permanent adaptation in its gastric habitat by expression of different proteins which might be reflected in distinctive antibody patterns. METHODS To characterize dynamics of the immune response to H. pylori we analysed 1797 sera of a cross-sectional study representative for the German population (age range 1-82 years) with multiplex serology, a fluorescent bead-based antibody binding assay that allows simultaneous and quantitative detection of antibodies. Fifteen recombinant, affinity-purified H. pylori proteins (UreA, GroEL, Catalase, NapA, CagA, CagM, Cagδ, HP0231, VacA, HpaA, Cad, HyuA, Omp, HcpC and HP0305) were used as antigens. RESULTS H. pylori seroprevalence (positivity for at least three antigens) was 48% and increased with age from 12% in children <15 years to 69% in females and 90% in males >65 years. Prevalences were highest (>83%) for Omp, VacA and GroEL. For 11 proteins, seroprevalence was higher in males than females (P < 0.05) from age 55 onwards. For all antigens, the median prevalence increase per age decade was stronger in males (8.4%, range 3.8-12.9%) than females (6.1%, range 3.4-10.8%). However, among seropositives the median number of antigens recognized increased from children <15 years to individuals >65 years stronger in females (P = 0.02). Antibody reactivities to GroEL, HyuA, CagM, Catalase, NapA and UreA also increased stronger in females (average 1.7-fold/decade, SD 0.5) than in males (1.5-fold/decade, SD 0.4). CONCLUSION H. pylori antibody response accumulates qualitatively and quantitatively with age. This may reflect a lifelong stimulation of the immune response by chronically active infection.
Collapse
Affiliation(s)
- Angelika Michel
- Infections and Cancer Epidemiology (F020), Infection and Cancer Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Michael Pawlita
- Department of Genome Modifications and Carcinogenesis, Infection and Cancer Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition (DIFE) Potsdam-Rehbrücke, Arthur Scheunert Strasse 114-116, Nuthetal 14558, Germany
| | - Lutz Gissmann
- Department of Genome Modifications and Carcinogenesis, Infection and Cancer Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Tim Waterboer
- Infections and Cancer Epidemiology (F020), Infection and Cancer Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| |
Collapse
|
16
|
Environmental determinants of transformation efficiency in Helicobacter pylori. J Bacteriol 2013; 196:337-44. [PMID: 24187089 DOI: 10.1128/jb.00633-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Helicobacter pylori uses natural competence and homologous recombination to adapt to the dynamic environment of the stomach mucosa and maintain chronic colonization. Although H. pylori competence is constitutive, its rate of transformation is variable, and little is known about factors that influence it. To examine this, we first determined the transformation efficiency of H. pylori strains under low O2 (5% O2, 7.6% CO2, 7.6% H2) and high O2 (15% O2, 2.9% CO2, 2.9% H2) conditions using DNA containing an antibiotic resistance marker. H. pylori transformation efficiency was 6- to 32-fold greater under high O2 tension, which was robust across different H. pylori strains, genetic loci, and bacterial growth phases. Since changing the O2 concentration for these initial experiments also changed the concentrations of CO2 and H2, transformations were repeated under conditions where O2, CO2, and H2 were each varied individually. The results showed that the increase in transformation efficiency under high O2 was largely due to a decrease in CO2. An increase in pH similar to that caused by low CO2 was also sufficient to increase transformation efficiency. These results have implications for the physiology of H. pylori in the gastric environment, and they provide optimized conditions for the laboratory construction of H. pylori mutants using natural transformation.
Collapse
|
17
|
Jiménez-Soto LF, Clausen S, Sprenger A, Ertl C, Haas R. Dynamics of the Cag-type IV secretion system of Helicobacter pylori as studied by bacterial co-infections. Cell Microbiol 2013; 15:1924-37. [PMID: 23844976 DOI: 10.1111/cmi.12166] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 06/21/2013] [Accepted: 06/26/2013] [Indexed: 12/24/2022]
Abstract
Many pathogenic Gram-negative bacteria possess type IV secretion systems (T4SS) to inject effector proteins directly into host cells to modulate cellular processes to their benefit. The human bacterial pathogen Helicobacter pylori, a major aetiological agent in the development of chronic gastritis, duodenal ulcer and gastric carcinoma, harbours the cag-T4SS to inject the cytotoxin associated Antigen (CagA) into gastric epithelial cells. This results in deregulation of major signalling cascades, actin-cytoskeletal rearrangements and eventually gastric cancer. We show here that a pre-infection with live H. pylori has a dose-dependent negative effect on the CagA translocation efficiency of a later infecting strain. This effect of the 'first' strain was independent of any of its T4SS, the vacuolating cytotoxin (VacA) or flagella. Other bacterial pathogens, e.g. pathogenic Escherichia coli, Campylobacter jejuni, Staphylococcus aureus, or commensal bacteria, such as lactobacilli, were unable to interfere with H. pylori's CagA translocation capacity in the same way. This interference was independent of the β1 integrin receptor availability for H. pylori, but certain H. pylori outer membrane proteins, such as HopI, HopQ or AlpAB, were essential for the effect. We suggest that the specific interference mechanism induced by H. pylori represents a cellular response to restrict and control CagA translocation into a host cell to control the cellular damage.
Collapse
Affiliation(s)
- Luisa F Jiménez-Soto
- Max von Pettenkofer-Institute for Hygiene and Medical Microbiology, Ludwig-Maximilians-University, Pettenkoferstraße 9a, D-80336, Munich, Germany
| | | | | | | | | |
Collapse
|
18
|
Genomic evolution and transmission of Helicobacter pylori in two South African families. Proc Natl Acad Sci U S A 2013; 110:13880-5. [PMID: 23898187 DOI: 10.1073/pnas.1304681110] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori infects the stomachs of one in two humans and can cause sequelae that include ulcers and cancer. Here we sequenced the genomes of 97 H. pylori isolates from 52 members of two families living in rural conditions in South Africa. From each of 45 individuals, two H. pylori strains were isolated from the antrum and corpus parts of the stomach, and comparisons of their genomes enabled us to study within-host evolution. In 5 of these 45 hosts, the two genomes were too distantly related to be derived from each other and therefore represented evidence of multiple infections. From the remaining 40 genome pairs, we estimated that the synonymous mutation rate was 1.38 × 10(-5) per site per year, with a low effective population size within host probably reflecting population bottlenecks and immune selection. Some individuals showed very little evidence for recombination, whereas in others, recombination introduced up to 100-times more substitutions than mutation. These differences may reflect unequal opportunities for recombination depending on the presence or absence of multiple infections. Comparing the genomes carried by distinct individuals enabled us to establish probable transmission links. Transmission events were found significantly more frequently between close relatives, and between individuals living in the same house. We found, however, that a majority of individuals (27/52) were not linked by transmission to other individuals. Our results suggest that transmission does not always occur within families, and that coinfection with multiple strains is frequent and evolutionarily important despite a fast turnover of the infecting strains within-host.
Collapse
|
19
|
PCR-Based Detection and Genotyping of Helicobacter pylori in Endoscopic Biopsy Samples from Brazilian Patients. Gastroenterol Res Pract 2013; 2013:951034. [PMID: 23401678 PMCID: PMC3562691 DOI: 10.1155/2013/951034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 12/16/2012] [Accepted: 12/23/2012] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori (H. pylori) is considered the second most prevalent infection in man. A precise diagnosis is important for treating patients with the indicative gastrointestinal symptoms. The present study analyzes the effectiveness of a molecular biology method (PCR) comparing the results obtained with the histology and with the rapid urease tests. PCR was used in the detection and genotyping of the H. pylori urease-C gene and the patterns which were obtained from the patients studied. 141 biopsy samples from 131 patients were evaluated. 59 paraffin biopsies samples were positive for H. pylori according to the histological examination. Of those, 59/12 (20.3%) were amplified using PCR. Of the 82 samples from the fresh biopsies, 64 were positive for H. pylori according to the rapid urease test (78%); there was an agreement of 100% with PCR. Sixty positive H. pylori samples were genotyped (58 samples of fresh biopsies and 2 samples of paraffin biopsies) using two restriction enzymes. The patterns observed were analyzed with the computational program BIO 1D; 11 patterns with the enzyme HhaI and 12 patterns with the enzyme MboI were found. However, it was not possible to find a statistically significant correlation between the specific genotypes and digestive pathologies. Accordingly, future research should be performed to confirm a statistically significant relationship between genotyping and gastrointestinal symptoms.
Collapse
|
20
|
In vivo sequence variation in HopZ, a phase-variable outer membrane protein of Helicobacter pylori. Infect Immun 2012; 80:4364-73. [PMID: 23027539 DOI: 10.1128/iai.00977-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Helicobacter pylori outer membrane protein HopZ is regulated by a phase-variable CT repeat and occurs in two distinct allelic variants. Whole-genome comparisons of isolates from one human volunteer recently provided evidence for in vivo selection for the hopZ ON status. We explored the frequency of sequence variation in hopZ during acute and chronic human infection and studied the association of hopZ with the phylogeographic population structure of H. pylori. hopZ ON variants were cultured from 24 out of 33 volunteers challenged with the hopZ OFF strain BCS 100. Transmission of H. pylori within families was also frequently associated with a status change of hopZ. In contrast, hopZ sequences obtained from 26 sets of sequential isolates from chronically infected individuals showed no changes of status, suggesting that the hopZ status selected during early infection is subsequently stable. Mutations leading to amino acid changes in HopZ occurred more frequently in ON than in OFF status isolates during chronic infection, indicating that sequence changes are more likely the result of positive selection in ON isolates than of a loss of negative selection pressure in OFF isolates. Analysis of 63 isolates from chronically infected individuals revealed no significant correlation of hopZ status with chronic atrophic gastritis. hopZ sequences were obtained from a globally representative collection of 54 H. pylori strains. All H. pylori populations contained hopZ-positive isolates. The data suggest that hopZ has been acquired and split into the two variants before the human migration out of Africa.
Collapse
|
21
|
Patra R, Chattopadhyay S, De R, Ghosh P, Ganguly M, Chowdhury A, Ramamurthy T, Nair GB, Mukhopadhyay AK. Multiple infection and microdiversity among Helicobacter pylori isolates in a single host in India. PLoS One 2012; 7:e43370. [PMID: 22952670 PMCID: PMC3428359 DOI: 10.1371/journal.pone.0043370] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 07/23/2012] [Indexed: 01/06/2023] Open
Abstract
Helicobacter pylori is one of the most diverse bacterial species that chronically infects more than 70% of Indian population. Interestingly, data showing microdiversity of the H. pylori strains within a particular gastric niche remained scarce. To understand the extent of genetic diversity among H. pylori strains within a given host, 30 patients with gastro-duodenal problems were subjected to endoscopy and from each patient 10 single colonies were isolated. Characterization of each of these 10 single colonies by DNA fingerprinting as well as genotyping of several important genetic markers viz. cagA, vacA, iceA, vapD, cag PAI empty site, IS605, RFLP and two other genetic segments within cag PAI revealed that all of the 30 patients were infected with more than one strain and sometimes strains with 5 to 6 types of genetic variants. Analyses of certain genetic loci showed the microdiversity among the colonies from single patient, which may be due to the recombination events during long-term carriage of the pathogen. These results suggest that most of the patients have acquired H. pylori due to repeated exposure to this pathogen with different genetic make-up, which may increase the possibility of super infections. Genetic exchanges between these unrelated H. pylori strains may support certain H. pylori variant to grow better in a given host than the parental strain and thereby increasing the possibility for the severity of the infection.
Collapse
Affiliation(s)
- Rajashree Patra
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | | - Ronita De
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Prachetash Ghosh
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Mou Ganguly
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Abhijit Chowdhury
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - T. Ramamurthy
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - G. B. Nair
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | |
Collapse
|
22
|
Ezzat AHH, Ali MH, El-Seidi EA, Wali IE, Sedky NAER, Naguib SMM. Genotypic characterization of Helicobacter pylori isolates among Egyptian patients with upper gastrointestinal diseases. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s10330-011-0880-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Secka O, Antonio M, Berg DE, Tapgun M, Bottomley C, Thomas V, Walton R, Corrah T, Thomas JE, Adegbola RA. Mixed infection with cagA positive and cagA negative strains of Helicobacter pylori lowers disease burden in The Gambia. PLoS One 2011; 6:e27954. [PMID: 22140492 PMCID: PMC3226634 DOI: 10.1371/journal.pone.0027954] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 10/28/2011] [Indexed: 01/11/2023] Open
Abstract
Background The prevalence of Helicobacter pylori including strains with putatively virulent genotypes is high, whereas the H. pylori-associated disease burden is low, in Africa compared to developed countries. In this study, we investigated the prevalence of virulence-related H. pylori genotypes and their association with gastroduodenal diseases in The Gambia. Methods and Findings DNA extracted from biopsies and H. pylori cultures from 169 subjects with abdominal pain, dyspepsia or other gastroduodenal diseases were tested by PCR for H. pylori. The H. pylori positive samples were further tested for the cagA oncogene and vacA toxin gene. One hundred and twenty one subjects (71.6%) were H. pylori positive. The cagA gene and more toxigenic s1 and m1 alleles of the vacA gene were found in 61.2%, 76.9% and 45.5% respectively of Gambian patients harbouring H. pylori. There was a high prevalence of cagA positive strains in patients with overt gastric diseases than those with non-ulcerative dyspepsia (NUD) (p = 0.05); however, mixed infection by cagA positive and cagA negative strains was more common in patients with NUD compared to patients with gastric disease (24.5% versus 0%; p = 0.002). Conclusion This study shows that the prevalence of H. pylori is high in dyspeptic patients in The Gambia and that many strains are of the putatively more virulent cagA+, vacAs1 and vacAm1 genotypes. This study has also shown significantly lower disease burden in Gambians infected with a mixture of cag-positive and cag-negative strains, relative to those containing only cag-positive or only cag-negative strains, which suggests that harbouring both cag-positive and cag-negative strains is protective.
Collapse
Affiliation(s)
- Ousman Secka
- Medical Research Council Unit, Fajara, The Gambia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Breurec S, Michel R, Seck A, Brisse S, Côme D, Dieye FB, Garin B, Huerre M, Mbengue M, Fall C, Sgouras DN, Thiberge JM, Dia D, Raymond J. Clinical relevance of cagA and vacA gene polymorphisms in Helicobacter pylori isolates from Senegalese patients. Clin Microbiol Infect 2011; 18:153-9. [PMID: 21722260 DOI: 10.1111/j.1469-0691.2011.03524.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The molecular epidemiology of Helicobacter pylori in Africa is poorly documented. From January 2007 to December 2008, we investigated 187 patients with gastric symptoms in one of the main tertiary hospitals in Dakar, Senegal. One hundred and seventeen patients were culture-positive for H. pylori. Polymorphisms in vacA and cagA status were investigated by PCR; the 3'-region of cagA was sequenced, and EPIYA motifs were identified. Bacterial heterogeneity within individuals was extensively assessed by using an approach based on vacA and cagA heterogeneity. Fourteen per cent of H. pylori-positive patients displayed evidence of mixed infection, which may affect disease outcome. Patients with multiple vacA alleles were excluded from subsequent analyses. Among the final study population of 105 patients, 29 had gastritis only, 61 had ulcerated lesions, and 15 had suspicion of neoplasia based on endoscopic findings. All cases of suspected neoplasia were histologically confirmed as gastric cancer (GC). The cagA gene was present in 73.3% of isolates. CagA proteins contained zero (3.7%), one (93.9%) or two (2.4%) EPIYA-C segments, and all were western CagA. Most of the isolates possessed presumed high-vacuolization isotypes (s1i1m1 (57.1%) or s1i1m2 (21.9%)). Despite the small number of cases, GC was associated with cagA (p 0.03), two EPIYA-C segments in the C-terminal region of CagA (p 0.03), and the s1 vacA allele (p 0.002). Multiple EPIYA-C segments were less frequent than reported in other countries, possibly contributing to the low incidence of GC in Senegal.
Collapse
Affiliation(s)
- S Breurec
- Institut Pasteur, Unité de Biologie Médicale et Environnementale, Dakar, Senegal.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Secka O, Antonio M, Tapgun M, Berg DE, Bottomley C, Thomas V, Walton R, Corrah T, Adegbola RA, Thomas JE. PCR-based genotyping of Helicobacter pylori of Gambian children and adults directly from biopsy specimens and bacterial cultures. Gut Pathog 2011; 3:5. [PMID: 21507253 PMCID: PMC3107793 DOI: 10.1186/1757-4749-3-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Accepted: 04/20/2011] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Helicobacter pylori is an important agent of gastroduodenal disease in Africa and throughout the world. We sought to determine an optimum method for genotyping H. pylori strains from children and adults in The Gambia, West Africa. RESULTS Virulence genes were amplified in 127 of 190 cases tested (121 adults and 6 children); each of 60 bacterial cultures, and 116 from DNA extracted directly from biopsies. The proportion of biopsies that were cagA+, the ratio of vacAs1/s2, and vacAm1/m2, and the proportion of mixed strain populations in individual subjects changed with age. Strains lacking virulence cagA and vacA genes and with apparently homogeneous (one predominant strain) infections were more common among infants than adults. CONCLUSIONS In order to detect the range of bacterial genotypes harbored by individual patients, direct PCR proved slightly superior to isolation of H. pylori by biopsy culture, but the techniques were complementary, and the combination of both culture and direct PCR produced the most complete picture. The seemingly higher virulence of strains from adult than infant infections in The Gambia merits further analysis.
Collapse
Affiliation(s)
- Ousman Secka
- Bacterial Diseases Programme, Medical Research Council Laboratories, The Gambia
| | - Martin Antonio
- Bacterial Diseases Programme, Medical Research Council Laboratories, The Gambia
| | - Mary Tapgun
- Bacterial Diseases Programme, Medical Research Council Laboratories, The Gambia
| | - Douglas E Berg
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, USA
| | | | - Vivat Thomas
- Bacterial Diseases Programme, Medical Research Council Laboratories, The Gambia
| | - Robert Walton
- Bacterial Diseases Programme, Medical Research Council Laboratories, The Gambia
| | - Tumani Corrah
- Bacterial Diseases Programme, Medical Research Council Laboratories, The Gambia
| | - Richard A Adegbola
- Bacterial Diseases Programme, Medical Research Council Laboratories, The Gambia
- Bill & Melinda Gates Foundation, Seattle, USA
| | - Julian E Thomas
- School of Clinical Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
26
|
Abstract
Despite the fact that sequential therapy has been evaluated in more than 2500 patients and has been shown to on average provide Helicobacter pylori eradication in 90% to 94%, some authorities still question whether it should be a first-line anti-H. pylori regimen. Here, we discuss H. pylori eradication using experience and expectations with other common bacterial infections as a frame of reference. H. pylori is no exception and near 100% success is expected for optimized regimens treating susceptible infections. As such, the proper comparator would be the relation to 100% eradication. Superiority to another, often proven inferior, therapy per se provides little or no useful information. Treatment failures in infectious diseases are typically easily explainable and most often relate to the presence of antimicrobial resistance or failure to take the drugs. We provide a model for predicting the results of H. pylori combination therapies in relation to the pattern and prevalence of resistance. The results are consistent with clinical practice and explain why sequential is typically superior and essentially never inferior to triple therapy. We also show when meta-analysis is an inappropriate technique for the analysis of H. pylori clinical trials and discuss how to appropriately use the technique. Finally, we discuss why the location of studies (eg, Italy), is unimportant and explain why, from the standpoint of a therapy for an infectious disease, sequential therapy is a significant advance and should be considered one of the replacements for the outdated legacy triple therapy (proton pump inhibitor--clarithromycin--amoxicillin).
Collapse
Affiliation(s)
- David Y Graham
- Department of Medicine, Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
27
|
Patra R, Chattopadhyay S, De R, Datta S, Chowdhury A, Ramamurthy T, Nair GB, Berg DE, Mukhopadhyay AK. Intact cag pathogenicity island of Helicobacter pylori without disease association in Kolkata, India. Int J Med Microbiol 2011; 301:293-302. [PMID: 21195664 PMCID: PMC3062673 DOI: 10.1016/j.ijmm.2010.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 08/20/2010] [Accepted: 10/17/2010] [Indexed: 01/06/2023] Open
Abstract
Several genes including the cagA in the cag pathogenicity island (cag PAI) of Helicobacter pylori are thought to be associated with the gastroduodenal diseases and hence variation in the genetic structure of the cag PAI might be responsible for different clinical outcomes. Our study was undertaken to characterize the cag PAI of H. pylori strains from duodenal ulcer (DU) patients and asymptomatic or non-ulcer dyspepsia (NUD/AV) subjects from Kolkata, India. Strains isolated from 52 individuals (30DU and 22NUD/AV) were analyzed by PCR using 83 different primers for the entire cag PAI and also by dot-blot hybridization. Unlike H. pylori strains isolated from other parts of India, 82.6% of the strains used in this study had intact cag PAI, 9.6% had partially deleted cag PAI, and 7.7% of the strains lacked the entire cag PAI. Dot-blot hybridization yielded positive signals in 100% and 93.8% of PCR-negative strains for HP0522-523 and HP0532-HP0534 genes, respectively. An intact cagA promoter region was also detected in all cagA-positive strains. Furthermore, the expression of cagA mRNA was confirmed by RT-PCR for the representative strains from both DU and NUD/AV subjects indicating the active cagA promoter regions of these strains. A total of 66.7% of Kolkata strains produced a ∼390-bp shorter amplicon than the standard strain 26695 for the HP0527 gene, homologue of virB10. However, sequence analyses confirmed that the deletion did not alter the reading frame of the gene, and mRNA transcripts were detected by RT-PCR analysis. The strains isolated from DU and NUD/AV express CagA protein and possess a functional type IV secretion system, as revealed by Western blot analyses. Interestingly, no significant differences in cag PAI genetic structure were found between DU and NUD/AV individuals suggesting that other bacterial virulence factors, host susceptibility, and environmental determinants also influence the disease outcome at least in certain geographical locations.
Collapse
Affiliation(s)
- Rajashree Patra
- National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | | | - Ronita De
- National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Simanti Datta
- National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - Abhijit Chowdhury
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - T. Ramamurthy
- National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - G. Balakrish Nair
- National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | | | | |
Collapse
|
28
|
Pulsed-Field Gel Electrophoresis: Laboratory and Epidemiologic Considerations for Interpretation of Data. Mol Microbiol 2011. [DOI: 10.1128/9781555816834.ch10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
29
|
Mutagenic potency of Helicobacter pylori in the gastric mucosa of mice is determined by sex and duration of infection. Proc Natl Acad Sci U S A 2010; 107:15217-22. [PMID: 20699385 DOI: 10.1073/pnas.1009017107] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Helicobacter pylori is a human carcinogen, but the mechanisms evoked in carcinogenesis during this chronic inflammatory disease remain incompletely characterized. We determined whether chronic H. pylori infection induced mutations in the gastric mucosa of male and female gpt delta C57BL/6 mice infected for 6 or 12 mo. Point mutations were increased in females infected for 12 mo. The mutation frequency in this group was 1.6-fold higher than in uninfected mice of both sexes (P < 0.05). A:T-to-G:C transitions and G:C-to-T:A transversions were 3.8 and 2.0 times, respectively, more frequent in this group than in controls. Both mutations are consistent with DNA damage induced by oxidative stress. No increase in the frequency of deletions was observed. Females had more severe gastric lesions than males at 6 mo postinfection (MPI; P < 0.05), but this difference was absent at 12 MPI. In all mice, infection significantly increased expression of IFNgamma, IL-17, TNFalpha, and iNOS at 6 and 12 mo, as well as H. pylori-specific IgG1 levels at 12 MPI (P < 0.05) and IgG2c levels at 6 and 12 MPI (P < 0.01 and P < 0.001). At 12 MPI, IgG2c levels in infected females were higher than at 6 MPI (P < 0.05) and also than those in infected males at 12 MPI (P < 0.05). Intensity of responses was mediated by sex and duration of infection. Lower H. pylori colonization indicated a more robust host response in females than in males. Earlier onset of severe gastric lesions and proinflammatory, Th1-biased responses in female C57BL/6 mice may have promoted mutagenesis by exposing the stomach to prolonged oxidative stress.
Collapse
|
30
|
Goering RV. Pulsed field gel electrophoresis: a review of application and interpretation in the molecular epidemiology of infectious disease. INFECTION GENETICS AND EVOLUTION 2010; 10:866-75. [PMID: 20692376 DOI: 10.1016/j.meegid.2010.07.023] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 07/27/2010] [Accepted: 07/29/2010] [Indexed: 11/27/2022]
Abstract
Over the years, approaches to the epidemiological analysis of infectious disease have undergone a remarkable evolutionary transition moving from phenotypic to molecular in nature. As discussed here, the quest for a clearer comparison of genomic relatedness between bacterial clinical isolates has involved four generations of molecular iteration. First generation plasmid analysis gave way to a second generation use of restriction enzymes and probes. This was followed by third generation pulsed field gel electrophoresis (PFGE) and PCR-based methods with movement now to fourth-generation DNA sequence-based approaches. Remarkably, despite (or perhaps because of) its more than 20-year history as a typing method, PFGE has demonstrated exceptional staying power. The reasons for this endurance as well as the pros and cons of PFGE use are examined in this review. In broad context the history and technology behind PFGE are considered. Issues commonly influencing the quality of PFGE data and its analysis are discussed. Specifics regarding the mechanics of DNA preparation, restriction-enzyme digestion, and proper conditions for electrophoresis are detailed and, most importantly for any approach to epidemiological assessment, issues regarding the analysis and interpretation of PFGE data are explored.
Collapse
Affiliation(s)
- Richard V Goering
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA.
| |
Collapse
|
31
|
DNA damage triggers genetic exchange in Helicobacter pylori. PLoS Pathog 2010; 6:e1001026. [PMID: 20686662 PMCID: PMC2912397 DOI: 10.1371/journal.ppat.1001026] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 06/30/2010] [Indexed: 12/11/2022] Open
Abstract
Many organisms respond to DNA damage by inducing expression of DNA repair genes. We find that the human stomach pathogen Helicobacter pylori instead induces transcription and translation of natural competence genes, thus increasing transformation frequency. Transcription of a lysozyme-like protein that promotes DNA donation from intact cells is also induced. Exogenous DNA modulates the DNA damage response, as both recA and the ability to take up DNA are required for full induction of the response. This feedback loop is active during stomach colonization, indicating a role in the pathogenesis of the bacterium. As patients can be infected with multiple genetically distinct clones of H. pylori, DNA damage induced genetic exchange may facilitate spread of antibiotic resistance and selection of fitter variants through re-assortment of preexisting alleles in this important human pathogen. All organisms have genetic programs to respond to stressful conditions. The human stomach pathogen, Helicobacter pylori, survives on the surface of the stomach lining for the lifetime of its host and causes a chronic inflammatory response. In this niche, H. pylori is likely exposed to constant DNA damage and requires DNA repair systems to survive in the host. Many bacteria encode a genetic program for a coordinated response to DNA damage called the SOS response, which typically includes transcriptional induction of DNA repair systems and mutagenic DNA polymerases and a temporary halt to cell division. This study demonstrates that H. pylori has a distinct DNA damage response: instead of activating DNA repair systems, it induces both DNA uptake machinery and an enzyme that liberates DNA from neighboring cells. This capacity for genetic exchange enhances recombination of exogenous DNA into the genome, thus contributing to both the high genetic diversity observed between H. pylori clinical isolates and the spread of antibiotic resistance.
Collapse
|
32
|
Microevolution of Helicobacter pylori during prolonged infection of single hosts and within families. PLoS Genet 2010; 6:e1001036. [PMID: 20661309 PMCID: PMC2908706 DOI: 10.1371/journal.pgen.1001036] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 06/21/2010] [Indexed: 12/30/2022] Open
Abstract
Our understanding of basic evolutionary processes in bacteria is still very limited. For example, multiple recent dating estimates are based on a universal inter-species molecular clock rate, but that rate was calibrated using estimates of geological dates that are no longer accepted. We therefore estimated the short-term rates of mutation and recombination in Helicobacter pylori by sequencing an average of 39,300 bp in 78 gene fragments from 97 isolates. These isolates included 34 pairs of sequential samples, which were sampled at intervals of 0.25 to 10.2 years. They also included single isolates from 29 individuals (average age: 45 years) from 10 families. The accumulation of sequence diversity increased with time of separation in a clock-like manner in the sequential isolates. We used Approximate Bayesian Computation to estimate the rates of mutation, recombination, mean length of recombination tracts, and average diversity in those tracts. The estimates indicate that the short-term mutation rate is 1.4×10−6 (serial isolates) to 4.5×10−6 (family isolates) per nucleotide per year and that three times as many substitutions are introduced by recombination as by mutation. The long-term mutation rate over millennia is 5–17-fold lower, partly due to the removal of non-synonymous mutations due to purifying selection. Comparisons with the recent literature show that short-term mutation rates vary dramatically in different bacterial species and can span a range of several orders of magnitude. Mutation rates in bacteria have generally been considered to be much slower than in viruses. This is partly because estimates of long-term mutation rates for the evolution of distinct species have been inappropriately used for dating divergence within species. Furthermore, the most commonly used long-term mutation rate is based on geological dates that are no longer accepted. In addition, only few short-term mutation rates have been calculated within bacterial species, and these differ with the species by several orders of magnitude. Here, we provide robust estimates for short-term mutation and recombination rates within Helicobacter pylori, a bacterium that commonly infects the human gastric mucosa, based on serial isolates from long-term infections and on differences between isolates from multiple family members. These short-term mutation rates are 5–17-fold faster than long-term mutation rates in H. pylori that have been calibrated by parallel ancient migrations of humans. Short-term mutation rates in bacteria, including those for H. pylori, can be quite fast, partially overlapping with those for viruses. Future calculations of ages of bacterial species will need to account for dramatic differences in mutation rate between species and for dramatic differences between short- and long-term mutation rates.
Collapse
|
33
|
Andres S, Skoglund A, Nilsson C, Krabbe M, Björkholm B, Engstrand L. Type I restriction-modification loci reveal high allelic diversity in clinical Helicobacter pylori isolates. Helicobacter 2010; 15:114-25. [PMID: 20402814 DOI: 10.1111/j.1523-5378.2010.00745.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND A remarkable variety of restriction-modification (R-M) systems is found in Helicobacter pylori. Since they encompass a large portion of the strain-specific H. pylori genes and therefore contribute to genetic variability, they are suggested to have an impact on disease outcome. Type I R-M systems comprise three different subunits and are the most complex of the three types of R-M systems. AIMS We investigated the genetic diversity and distribution of type I R-M systems in clinical isolates of H. pylori. MATERIAL AND METHODS Sixty-one H. pylori isolates from a Swedish hospital based case-control study and 6 H. pylori isolates of a Swedish population-based study were analyzed using polymerase chain reaction for the presence of the three R-M systems' subunits. Representative gene variants were sequenced. RESULTS Although the hsdM and hsdR genes appeared conserved in our clinical H. pylori isolates, the sequences of the hsdS loci were highly variable. Despite their sequence diversity, the genes per se were present at high frequencies. We identified a number of novel allelic hsdS variants, which are distinct from corresponding hsdS loci in the sequenced H. pylori strains 26695, J99 and HPAG1. In analyses of paired H. pylori isolates, obtained from the same individuals with a 4-year interval, we observed genetic modifications of hsdS genes in patients with atrophic gastric mucosa. DISCUSSION We propose that the genetic variability of hsdS genes in a bacterial population will give rise to new specificities of these enzymes, which might lead to adaptation to an ever-changing gastric environment.
Collapse
Affiliation(s)
- Sönke Andres
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
34
|
Xin Wang, Roger Willén, Torkel Wads. RAPD-PCR, Histopathological and Serological Analysis of Four Mouse Strains Infected with Multiple Strains ofHelicobacter pylori. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.1080/089106098435232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
35
|
Oshio I, Osaki T, Hanawa T, Yonezawa H, Zaman C, Kurata S, Kamiya S. Vertical Helicobacter pylori transmission from Mongolian gerbil mothers to pups. J Med Microbiol 2009; 58:656-662. [DOI: 10.1099/jmm.0.008185-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To identify the time frame and route of mother-to-child Helicobacter pylori infection, a Mongolian gerbil model was used. Four-week-old female Mongolian gerbils were infected with H. pylori, and then mated with uninfected males 2 months after infection. The offspring were sacrificed weekly after birth, and then serum, mother's milk from the stomach and gastric tissues were obtained from pups. Anti-H. pylori antibody titres were measured in sera and maternal milk using an ELISA. The stomach was cut in two in the sagittal plane, and then H. pylori colonization in mucosa was confirmed by culture and real-time RT-PCR in one specimen and by immunochemical staining in the other. Faeces and oral swabs were obtained from infected mothers, and H. pylori 16S rRNA was measured using real-time RT-PCR. H. pylori was not identified in cultures from the gastric mucosa of pups delivered by infected mothers, but H. pylori 16S rRNA was detected from 4 weeks after birth, suggesting that Mongolian gerbil pups become infected via maternal H. pylori transmission from 4 weeks of age. The anti-H. pylori antibody titre in sera of pups from infected mothers was maximum at 3 weeks of age and then rapidly decreased from 4 weeks of age. High antibody titres in mother's milk were detected during the suckling period, and GlcNAcα was detectable at 2–4 weeks of age, but disappeared as the offspring aged. Thus H. pylori seems to infect Mongolian gerbil pups from 4 weeks of age, in parallel with decreasing GlcNAcα expression in the gastric mucosa. These results suggested that H. pylori infection of Mongolian gerbil pups occurs via faecal–oral transmission from an infected mother.
Collapse
Affiliation(s)
- Ichiro Oshio
- Group of Metabolism and Chemistry, Department of Environmental Science and Toxicology, Odawara Research Center, Nippon Soda Co. Ltd, Tokyo, Japan
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan
| | - Takako Osaki
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan
| | - Tomoko Hanawa
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan
| | - Hideo Yonezawa
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan
| | - Cynthia Zaman
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan
| | - Satoshi Kurata
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan
| | - Shigeru Kamiya
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan
| |
Collapse
|
36
|
Differences in genome content among Helicobacter pylori isolates from patients with gastritis, duodenal ulcer, or gastric cancer reveal novel disease-associated genes. Infect Immun 2009; 77:2201-11. [PMID: 19237517 DOI: 10.1128/iai.01284-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori establishes a chronic infection in the human stomach, causing gastritis, peptic ulcer, or gastric cancer, and more severe diseases are associated with virulence genes such as the cag pathogenicity island (PAI). The aim of this work was to study gene content differences among H. pylori strains isolated from patients with different gastroduodenal diseases in a Mexican-Mestizo patient population. H. pylori isolates from 10 patients with nonatrophic gastritis, 10 patients with duodenal ulcer, and 9 patients with gastric cancer were studied. Multiple isolates from the same patient were analyzed by randomly amplified polymorphic DNA analysis, and strains with unique patterns were tested using whole-genome microarray-based comparative genomic hybridization (aCGH). We studied 42 isolates and found 1,319 genes present in all isolates, while 341 (20.5%) were variable genes. Among the variable genes, 127 (37%) were distributed within plasticity zones (PZs). The overall number of variable genes present in a given isolate was significantly lower for gastric cancer isolates. Thirty genes were significantly associated with nonatrophic gastritis, duodenal ulcer, or gastric cancer, 14 (46.6%) of which were within PZs and the cag PAI. Two genes (HP0674 and JHP0940) were absent in all gastric cancer isolates. Many of the disease-associated genes outside the PZs formed clusters, and some of these genes are regulated in response to acid or other environmental conditions. Validation of candidate genes identified by aCGH in a second patient cohort allowed the identification of novel H. pylori genes associated with gastric cancer or duodenal ulcer. These disease-associated genes may serve as biomarkers of the risk for severe gastroduodenal diseases.
Collapse
|
37
|
Zhang YY, Xia HHX, Zhuang ZH, Zhong J. Review article: 'true' re-infection of Helicobacter pylori after successful eradication--worldwide annual rates, risk factors and clinical implications. Aliment Pharmacol Ther 2009; 29:145-160. [PMID: 18945250 DOI: 10.1111/j.1365-2036.2008.03873.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The incidence of 'true' re-infection with Helicobacter pylori after successful eradication remains uncertain. AIM To determine the worldwide rates, risk factors and clinical implications of 'true' re-infection of Helicobacter pylori. 'True' re-infection of H. pylori is defined as the situation where tests for H. pylori infection, which were negative for 12 months after eradication, become positive again at a later stage. RESULTS Thirty six studies were identified through a literature search to be able to produce annual rates of 'true' re-infection, and data from 33 original articles were considered reliable and adequate in the further review. Generally, the reported rates varied from 0% to 23.4% in adults and from 1.9% to 9.6% in children. Most studies from developed countries reported rates of less than 1%, whereas relatively higher rates were reported in most of the developing countries. Small sample sizes included in the studies appeared to be associated with increased re-infection rates. Interfamilial transmission is the major cause of re-infection, although iatrogenic re-infection through contaminated endoscopic equipment has been reported. CONCLUSION Helicobacter pylori re-infection is not a concern in a clinical setting, especially in the developed world; however, caution must be exercised in most developing countries.
Collapse
Affiliation(s)
- Y-Y Zhang
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | | | | | | |
Collapse
|
38
|
Nilsson C, Skoglund A, Moran AP, Annuk H, Engstrand L, Normark S. Lipopolysaccharide diversity evolving in Helicobacter pylori communities through genetic modifications in fucosyltransferases. PLoS One 2008; 3:e3811. [PMID: 19043574 PMCID: PMC2583950 DOI: 10.1371/journal.pone.0003811] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 11/04/2008] [Indexed: 01/16/2023] Open
Abstract
Helicobacter pylori persistently colonizes the gastric mucosa of half the human population. It is one of the most genetically diverse bacterial organisms and subvariants are continuously emerging within an H. pylori population. In this study we characterized a number of single-colony isolates from H. pylori communities in various environmental settings, namely persistent human gastric infection, in vitro bacterial subcultures on agar medium, and experimental in vivo infection in mice. The lipopolysaccharide (LPS) O-antigen chain revealed considerable phenotypic diversity between individual cells in the studied bacterial communities, as demonstrated by size variable O-antigen chains and different levels of Lewis glycosylation. Absence of high-molecular-weight O-antigen chains was notable in a number of experimentally passaged isolates in vitro and in vivo. This phenotype was not evident in bacteria obtained from a human gastric biopsy, where all cells expressed high-molecular-weight O-antigen chains, which thus may be the preferred phenotype for H. pylori colonizing human gastric mucosa. Genotypic variability was monitored in the two genes encoding α1,3-fucosyltransferases, futA and futB, that are involved in Lewis antigen expression. Genetic modifications that could be attributable to recombination events within and between the two genes were commonly detected and created a diversity, which together with phase variation, contributed to divergent LPS expression. Our data suggest that the surrounding environment imposes a selective pressure on H. pylori to express certain LPS phenotypes. Thus, the milieu in a host will select for bacterial variants with particular characteristics that facilitate adaptation and survival in the gastric mucosa of that individual, and will shape the bacterial community structure.
Collapse
Affiliation(s)
- Christina Nilsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
39
|
Meinersmann RJ, Romero-Gallo J, Blaser MJ. Rate heterogeneity in the evolution of Helicobacter pylori and the behavior of homoplastic sites. INFECTION GENETICS AND EVOLUTION 2008; 8:593-602. [PMID: 18571992 DOI: 10.1016/j.meegid.2008.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 04/09/2008] [Accepted: 04/11/2008] [Indexed: 10/22/2022]
Abstract
Helicobacter pylori are bacteria with substantial inter-strain variability and phylogenetic reconstructions of sequence data from the organism have common homoplastic sites. Although frequent recombination events have been proposed to contribute to the variation, the effects of nucleotide substitution rate heterogeneities on the reconstruction of H. pylori genealogies have not been studied. We analyzed the substitution pattern of a housekeeping gene, a homologue of the ribonuclease reductase gene (rnr), to characterize rate heterogeneities between 11 H. pylori isolates. Evidence of limited recombination was demonstrated by the Sawyer's runs test, but the homoplasy test and site-by-site compatibility tests indicated frequent recombination events. Within the 1935 nucleotide gene, 292 sites were polymorphic with an average pair-wise difference of 5.01%. Xia's distances for amino acids at non-synonymous codon substitution sites were smaller at homoplastic sites than at sites that were not homoplastic. Transitions were significantly more common among homoplastic than among non-homoplastic nucleotide substitutions. Simulations of evolution with or without recombination indicated the transition/transversion ratio is expected to be higher in homoplastic sites with no recombination. Despite evidence of recombination, analyses of the rnr genealogy does not show a random tree but rather base substitution behaviors characteristic of both recombination and substitution saturation at some sites. Analyses of sequences in the H. pylori multilocus sequence-typing database provided similar evidence for substitution saturation in multiple housekeeping genes.
Collapse
|
40
|
Suerbaum S, Josenhans C. Helicobacter pylori evolution and phenotypic diversification in a changing host. Nat Rev Microbiol 2007; 5:441-52. [PMID: 17505524 DOI: 10.1038/nrmicro1658] [Citation(s) in RCA: 282] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Helicobacter pylori colonizes the stomachs of more than 50% of the world's population, making it one of the most successful of all human pathogens. One striking characteristic of H. pylori biology is its remarkable allelic diversity and genetic variability. Not only does almost every infected person harbour their own individual H. pylori strain, but strains can undergo genetic alteration in vivo, driven by an elevated mutation rate and frequent intraspecific recombination. This genetic variability, which affects both housekeeping and virulence genes, has long been thought to contribute to host adaptation, and several recently published studies support this concept. We review the available knowledge relating to the genetic variation of H. pylori, with special emphasis on the changes that occur during chronic colonization, and argue that H. pylori uses mutation and recombination processes to adapt to its individual host by modifying molecules that interact with the host. Finally, we put forward the hypothesis that the lack of opportunity for intraspecies recombination as a result of the decreasing prevalence of H. pylori could accelerate its disappearance from Western populations.
Collapse
Affiliation(s)
- Sebastian Suerbaum
- Medizinische Hochschule Hannover, Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| | | |
Collapse
|
41
|
Josenhans C, Beier D, Linz B, Meyer TF, Suerbaum S. Pathogenomics of helicobacter. Int J Med Microbiol 2007; 297:589-600. [PMID: 17416549 DOI: 10.1016/j.ijmm.2007.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 02/05/2007] [Accepted: 02/05/2007] [Indexed: 02/07/2023] Open
Abstract
The pathogenic bacterium Helicobacter pylori infects half of the human population and is one of the genetically most diverse bacterial species known. H. pylori was one of the first bacterial species whose genome was sequenced in 1997, and the first species for which two complete sequences from independent isolates were available for within-species comparisons. For almost 10 years, genomic and post-genomic analysis has contributed enormously to our understanding of the pathogenesis of H. pylori infection. This review summarizes the available information, emphasizing work performed in the framework of the PathoGenoMik funding initiative (2001-2006) of the German Ministry of Education and Research.
Collapse
Affiliation(s)
- Christine Josenhans
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Street 1, D-30625 Hannover, Germany
| | | | | | | | | |
Collapse
|
42
|
Salama NR, Gonzalez-Valencia G, Deatherage B, Aviles-Jimenez F, Atherton JC, Graham DY, Torres J. Genetic analysis of Helicobacter pylori strain populations colonizing the stomach at different times postinfection. J Bacteriol 2007; 189:3834-45. [PMID: 17337568 PMCID: PMC1913316 DOI: 10.1128/jb.01696-06] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Genetic diversity of the human gastric pathogen Helicobacter pylori in an individual host has been observed; whether this diversity represents diversification of a founding strain or a mixed infection with distinct strain populations is not clear. To examine this issue, we analyzed multiple single-colony isolates from two to four separate stomach biopsies of eight adult and four pediatric patients from a high-incidence Mexican population. Eleven of the 12 patients contained isolates with identical random amplified polymorphic DNA, amplified fragment length polymorphism, and vacA allele molecular footprints, whereas a single adult patient had two distinct profiles. Comparative genomic hybridization using whole-genome microarrays (array CGH) revealed variation in 24 to 67 genes in isolates from patients with similar molecular footprints. The one patient with distinct profiles contained two strain populations differing at 113 gene loci, including the cag pathogenicity island virulence genes. The two strain populations in this single host had different spatial distributions in the stomach and exhibited very limited genetic exchange. The total genetic divergence and pairwise genetic divergence between isolates from adults and isolates from children were not statistically different. We also analyzed isolates obtained 15 and 90 days after experimental infection of humans and found no evidence of genetic divergence, indicating that transmission to a new host does not induce rapid genetic changes in the bacterial population in the human stomach. Our data suggest that humans are infected with a population of closely related strains that vary at a small number of gene loci, that this population of strains may already be present when an infection is acquired, and that even during superinfection genetic exchange among distinct strains is rare.
Collapse
Affiliation(s)
- Nina R Salama
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Bhat N, Gaensbauer J, Peek RM, Bloch K, Tham KT, Blaser MJ, Perez-Perez G. Local and systemic immune and inflammatory responses to Helicobacter pylori strains. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2006; 12:1393-400. [PMID: 16339062 PMCID: PMC1317075 DOI: 10.1128/cdli.12.12.1393-1400.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Colonization with Helicobacter pylori eventuates in varied clinical outcomes, which relate to both bacterial and host factors. Here we examine the relationships between cagA status, serum and gastric juice antibody responses, and gastric inflammation in dyspeptic patients. Serum, gastric juice, and gastric biopsy specimens were obtained from 89 patients undergoing endoscopy. H. pylori colonization and cagA status were determined by histology, culture, and PCR methods, and acute inflammation and chronic inflammation in the gastric mucosa were scored by a single pathologist. Serum and gastric juice antibodies to H. pylori whole-cell and CagA antigens were determined by enzyme-linked immunosorbent assay. Relationships between variables were sequentially analyzed using univariate and multivariate statistical methods. Of the 89 subjects, 62 were colonized by H. pylori. By univariate analyses, levels of serum immunoglobulin G (IgG) and IgA and gastric juice IgA antibodies against whole-cell and CagA antigens each were significantly higher in the H. pylori-positive group than in the H. pylori-negative group (P<0.001). H. pylori and CagA sero-positivities were both significantly associated with enhanced inflammation in gastric antrum and body (P<0.02). The presence of gastric juice antibodies to H. pylori antigens was associated with more severe gastric inflammation. However, in multivariate analyses, only the presence of serum antibodies against CagA and, to a lesser extent, whole-cell antigens remained significantly associated with acute and chronic inflammation in antrum and body (P<0.05). Thus, serum antibody response to CagA correlates with severity of gastric inflammation. Furthermore, given the relationships demonstrated by multivariate analysis, determination of gastric juice antibodies may provide a better representation of serum, rather than secretory, immune response.
Collapse
Affiliation(s)
- Niranjan Bhat
- Division of Infectious Diseases, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Kraft C, Stack A, Josenhans C, Niehus E, Dietrich G, Correa P, Fox JG, Falush D, Suerbaum S. Genomic changes during chronic Helicobacter pylori infection. J Bacteriol 2006; 188:249-54. [PMID: 16352841 PMCID: PMC1317581 DOI: 10.1128/jb.188.1.249-254.2006] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The gastric pathogen Helicobacter pylori shows tremendous genetic variability within human populations, both in gene content and at the sequence level. We investigated how this variability arises by comparing the genome content of 21 closely related pairs of isolates taken from the same patient at different time points. The comparisons were performed by hybridization with whole-genome DNA microarrays. All loci where microarrays indicated a genomic change were sequenced to confirm the events. The number of genomic changes was compared to the number of homologous replacement events without loss or gain of genes that we had previously determined by multilocus sequence analysis and mathematical modeling based on the sequence data. Our analysis showed that the great majority of genetic changes were due to homologous recombination, with 1/650 events leading to a net gain or loss of genes. These results suggest that adaptation of H. pylori to the host individual may principally occur through sequence changes rather than loss or gain of genes.
Collapse
Affiliation(s)
- Christian Kraft
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Barrett TJ, Gerner-Smidt P, Swaminathan B. Interpretation of Pulsed-Field Gel Electrophoresis Patterns in Foodborne Disease Investigations and Surveillance. Foodborne Pathog Dis 2006; 3:20-31. [PMID: 16602976 DOI: 10.1089/fpd.2006.3.20] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Since the establishment of the well-known Tenover criteria in 1995 (Tenover et al., 1995), relatively few papers have been published about the interpretation of subtyping data generated by pulsed-field gel electrophoresis (PFGE). This paper describes the approach that has been used in the PulseNet network during the past 10 years. PFGE data must always be interpreted in the proper epidemiological context and PFGE data can not alone prove an epidemiological connection. The Tenover criteria are not generally applicable to the interpretation of PFGE subtyping data of foodborne pathogens. The reproducibility of the method with a particular organism, the quality of the PFGE gel, the variability of the organism being subtyped, and the prevalence of the pattern in question must always be considered. Only isolates displaying indistinguishable patterns should be included in the detection of clusters of infections or the initial case definition in a point-source outbreak. More variability (patterns differing from each other in two to three band positions) may be accepted if the outbreak has been going on for some time or if person-person spread is a prominent feature. If epidemiological information is sufficiently strong, isolates with markedly different PFGE patterns may be included in an outbreak.
Collapse
Affiliation(s)
- Timothy J Barrett
- Foodborne and Diarrheal Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia 30033, USA.
| | | | | |
Collapse
|
46
|
Sozzi M, Tomasini ML, Vindigni C, Zanussi S, Tedeschi R, Basaglia G, Figura N, De Paoli P. Heterogeneity of cag genotypes and clinical outcome of Helicobacter pylori infection. ACTA ACUST UNITED AC 2005; 146:262-70. [PMID: 16242525 DOI: 10.1016/j.lab.2005.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 06/25/2005] [Accepted: 06/30/2005] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori infecting strains may include colony subtypes with different cytotoxin-associated gene (cag) genotypes. We sought to determine whether the cag heterogeneity of infecting strains is related to the clinical outcome of infection. Gastric biopsies for culture and histologic study were taken from 19 patients infected with cagA-positive strains (6 with duodenal ulcer, 8 with atrophic gastritis, and 5 with nonatrophic gastritis). For each biopsy, DNA was extracted from 10 single colonies and from a sweep of colonies. Polymerase chain reaction (PCR) for cagA and cagE (both located in the right half of cag) and virB11 (located in the left half of cag) was performed. Random amplified polymorphic DNA PCR (RAPD-PCR) and sequencing of glmM PCR product were performed to verify strain identity of colonies with different cag genotypes. In all patients, PCR from sweeps were positive for cagA, showing that all specimens contained cagA-positive H. pylori subtypes. In 11 patients, PCR products from all colonies were positive for cagA, cagE, and virB11, but in 8 patients, PCR products from varying numbers of colonies were negative for 1 or more cag genes. RAPD-PCR and sequencing of glmM PCR product confirmed the strain identities of colonies with different cag genotypes. We detected cag deletions in 6 of 8, 2 of 5, and 0 of 6 patients with atrophic gastritis, nonatrophic gastritis, and duodenal ulcer, respectively (P = .02). In conclusion, changes in cag genotype in single colony isolates from subjects infected with cagA-positive H. pylori strains are more common in atrophic than in nonatrophic gastritis or duodenal ulcer. These findings are consistent with host-induced (acid secretion?) adaptive changes in cag genotype during infection.
Collapse
Affiliation(s)
- Michele Sozzi
- Unit of Gastroenterology and Digestive Endoscopy, General Hospital, Trieste, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Lundin A, Björkholm B, Kupershmidt I, Unemo M, Nilsson P, Andersson DI, Engstrand L. Slow genetic divergence of Helicobacter pylori strains during long-term colonization. Infect Immun 2005; 73:4818-22. [PMID: 16040995 PMCID: PMC1201226 DOI: 10.1128/iai.73.8.4818-4822.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The genetic variability of Helicobacter pylori is known to be high compared to that of many other bacterial species. H. pylori is adapted to the human stomach, where it persists for decades, and adaptation to each host results in every individual harboring a distinctive bacterial population. Although clonal variants may exist within such a population, all isolates are generally genetically related and thus derived from a common ancestor. We sought to determine the rate of genetic change of H. pylori over 9 years in two asymptomatic adult patients. Arbitrary primed PCR confirmed the relatedness of individual subclones within a patient. Furthermore, sequencing of 10 loci ( approximately 6,000 bp) in three subclones per time and patient revealed only two base pair changes among the subclones from patient I. All sequences were identical among the patient II subclones. However, PCR amplification of the highly divergent gene amiA revealed great variation in the size of the gene between the subclones within each patient. Thus, both patients harbored a single strain with clonal variants at both times. We also studied genetic changes in culture- and mouse-passaged strains, and under both conditions no genetic divergence was found. These results suggest that previous estimates of the rate of genetic change in H. pylori within an individual might be overestimates.
Collapse
Affiliation(s)
- Annelie Lundin
- Department of Bacteriology, Swedish Institute for Infectious Disease Control, SE-171 82 Solna, Sweden
| | | | | | | | | | | | | |
Collapse
|
48
|
Ghose C, Perez-Perez GI, van Doorn LJ, Domínguez-Bello MG, Blaser MJ. High frequency of gastric colonization with multiple Helicobacter pylori strains in Venezuelan subjects. J Clin Microbiol 2005; 43:2635-41. [PMID: 15956377 PMCID: PMC1151950 DOI: 10.1128/jcm.43.6.2635-2641.2005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Multiple Helicobacter pylori strains may colonize an individual host. Using enzyme-linked immunosorbent assay and line probe assay (LiPA) techniques, we analyzed the prevalence of mixed H. pylori colonization in 127 subjects from Venezuela, a country of high H. pylori prevalence, from three regions representing different population groups: the Andes (Merida), where Caucasian mestizos predominate, a major city near the coast (Caracas), where Amerindian-Caucasian-African mestizos predominate, and an Amazonian community (Puerto Ayacucho), where Amerindians predominate and mestizos reflect Amerindian and Caucasian ancestry. Among 121 H. pylori-positive persons, the prevalence of cagA-positive strains varied from 50% (Merida) to 86% (Puerto Ayacucho) by LiPA. Rates of mixed colonization also varied, as assessed by LiPA of the vacA s (mean, 49%) and m (mean, 26%) regions. In total, 55% of the individuals had genotypic evidence of mixed colonization. vacA s1c, a marker of Amerindian (East Asian) origin, was present in all three populations, especially from Puerto Ayacucho (86%). These results demonstrate the high prevalence of mixed colonization and indicate that the H. pylori East Asian vacA genotype has survived in all three populations tested.
Collapse
Affiliation(s)
- C Ghose
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | | | | | | | | |
Collapse
|
49
|
Parimala N, Ishaq M. EFFICACY OF SONICATED AND ACID-EXTRACTABLE ANTIGENS IN THE SERODIAGNOSIS OF H. PYLORI INFECTION IN PEPTIC ULCER PATIENTS. Indian J Med Microbiol 2005. [DOI: 10.1016/s0255-0857(21)02651-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Nada T, Ando T, Nobata K, Tsuzuki T, Minami M, Ina K, Iinuma Y, Ichiyama S, Ohta M, El-Omar E, Kusugami K, Goto H. DNA typing for Helicobacter pylori isolates from eradication-failed patients: comparison of the isolates before and after therapy. Aliment Pharmacol Ther 2004; 20 Suppl 1:39-47. [PMID: 15298604 DOI: 10.1111/j.1365-2036.2004.01968.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Failure of Helicobacter pylori eradication occurs frequently despite use of multiple microbial agents. AIM We aimed to study differences between H. pylori strains isolated before and after eradication failure. METHODS We treated 87 patients with peptic ulcer using triple therapy consisting of omeprazole plus combinations of clarithromycin, amoxicillin, or metronidazole. We studied the status of cagA, vacA, and iceA by PCR, and examined the differences in H. pylori isolates by pulsed-field gel electrophoresis and arbitrary primer polymerase chain reaction. The minimum inhibitory concentration of clarithromycin, amoxicillin, or metronidazole was determined by an agar dilution method. RESULTS Eradication therapy failed in 12 patients (14%); H. pylori isolates were obtained from all of these both before and after therapy. After eradication therapy, 10 patients were colonized with the same strain as before therapy, while the other two patients were colonized with different strains from those before therapy. In the former group, one isolate changed from metronidazole-sensitive to -resistant, one changed from clarithromycin- and metronidazole-sensitive to -resistant, and four were resistant to clarithromycin or metronidazole both before and after therapy. The other four isolates remained sensitive to clarithromycin and metronidazole after therapy. In the two patients who yielded apparently different isolates after therapy, they changed from clarithromycin- and metronidazole-sensitive to -resistant. CONCLUSION Eradication of H. pylori by first-line therapy is an important goal in the treatment of H. pylori-positive peptic ulcer, and that appropriate antimicrobial sensitivity testing should be conducted in patients with eradication failure.
Collapse
Affiliation(s)
- T Nada
- Department of Clinical Laboratory, Nagoya University Hospital, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|