1
|
Westcott MM, Blevins M, Wierzba TF, Morse AE, White KR, Sanders LA, Sanders JW. The Immunogenicity and Properties of a Whole-Cell ETEC Vaccine Inactivated with Psoralen and UVA Light in Comparison to Formalin. Microorganisms 2023; 11:2040. [PMID: 37630600 PMCID: PMC10458022 DOI: 10.3390/microorganisms11082040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Inactivated whole-cell vaccines present a full repertoire of antigens to the immune system. Formalin treatment, a standard method for microbial inactivation, can modify or destroy protein antigenic epitopes. We tested the hypothesis that photochemical inactivation with psoralen and UVA light (PUVA), which targets nucleic acid, would improve the immunogenicity of an Enterotoxigenic E. coli (ETEC) vaccine relative to a formalin-inactivated counterpart. Exposure of ETEC H10407 to PUVA using the psoralen drug 4'-Aminomethyltrioxsalen hydrochloride (AMT) yielded replication-incompetent bacteria that retained their metabolic activity. CFA/I-mediated mannose-resistant hemagglutination (MRHA) was equivalent for PUVA-inactivated and live ETEC, but was severely reduced for formalin-ETEC, indicating that PUVA preserved fimbrial protein functional integrity. The immunogenicity of PUVA-ETEC and formalin-ETEC was compared in mice ± double mutant heat-labile enterotoxin (dmLT) adjuvant. Two weeks after an intramuscular prime/boost, serum anti-ETEC IgG titers were similar for the two vaccines and were increased by dmLT. However, the IgG responses raised against several conserved ETEC proteins were greater after vaccination with PUVA-ETEC. In addition, PUVA-ETEC generated IgG specific for heat-labile toxin (LT) in the absence of dmLT, which was not a property of formalin-ETEC. These data are consistent with PUVA preserving ETEC protein antigens in their native-like form and justify the further testing of PUVA as a vaccine platform for ETEC using murine challenge models.
Collapse
Affiliation(s)
- Marlena M. Westcott
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, 575 Patterson Ave, Winston Salem, NC 27101, USA; (A.E.M.); (K.R.W.)
| | - Maria Blevins
- Infectious Diseases Section, Wake Forest University School of Medicine, Medical Center Blvd, Winston Salem, NC 27157, USA; (M.B.); (T.F.W.); (L.A.S.); (J.W.S.)
| | - Thomas F. Wierzba
- Infectious Diseases Section, Wake Forest University School of Medicine, Medical Center Blvd, Winston Salem, NC 27157, USA; (M.B.); (T.F.W.); (L.A.S.); (J.W.S.)
| | - Alexis E. Morse
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, 575 Patterson Ave, Winston Salem, NC 27101, USA; (A.E.M.); (K.R.W.)
| | - Kinnede R. White
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, 575 Patterson Ave, Winston Salem, NC 27101, USA; (A.E.M.); (K.R.W.)
| | - Leigh Ann Sanders
- Infectious Diseases Section, Wake Forest University School of Medicine, Medical Center Blvd, Winston Salem, NC 27157, USA; (M.B.); (T.F.W.); (L.A.S.); (J.W.S.)
| | - John W. Sanders
- Infectious Diseases Section, Wake Forest University School of Medicine, Medical Center Blvd, Winston Salem, NC 27157, USA; (M.B.); (T.F.W.); (L.A.S.); (J.W.S.)
| |
Collapse
|
2
|
Surface expression of Helicobacter pylori HpaA adhesion antigen on Vibrio cholerae, enhanced by co-expressed enterotoxigenic Escherichia coli fimbrial antigens. Microb Pathog 2017; 105:177-184. [PMID: 28215587 DOI: 10.1016/j.micpath.2017.02.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 02/11/2017] [Accepted: 02/13/2017] [Indexed: 12/23/2022]
Abstract
Helicobacter pylori infection can cause peptic ulceration and is associated with gastric adenocarcinoma. This study aimed to construct and characterize a non-virulent Vibrio cholerae O1 strain, which grows more rapidly than H. pylori, as vector for H. pylori antigens for possible use as a vaccine strain against H. pylori. This was done by recombinant expression of the H. pylori adhesion antigen HpaA alone or, as a proof of principle, together with different colonization factor (CF) antigens of enterotoxigenic Escherichia coli (ETEC) which may enhance immune responses against HpaA. A recombinant V. cholerae strain co-expressing HpaA and a fimbrial CF antigens CFA/I or CS5, but not the non-fimbrial CF protein CS6, was shown to express larger amounts of HpaA on the surface when compared with the same V. cholerae strain expressing HpaA alone. Mutations in the CFA/I operon showed that the chaperon, possibly together with the usher, was involved in enhancing the surface expression of HpaA. Oral immunization of mice with formaldehyde-inactivated recombinant V. cholerae expressing HpaA alone or together with CFA/I induced significantly higher serum antibody responses against HpaA than mice similarly immunized with inactivated HpaA-expressing H. pylori bacteria. Our results demonstrate that a non-virulent V. cholerae strain can be engineered to allow strong surface expression of HpaA, and that the expression can be further increased by co-expressing it with ETEC fimbrial antigens. Such recombinant V. cholerae strains expressing HpaA, and possibly also other H. pylori antigens, may have the potential as oral inactivated vaccine candidates against H. pylori.
Collapse
|
3
|
Tobias J, Von Mentzer A, Loayza Frykberg P, Aslett M, Page AJ, Sjöling Å, Svennerholm AM. Stability of the Encoding Plasmids and Surface Expression of CS6 Differs in Enterotoxigenic Escherichia coli (ETEC) Encoding Different Heat-Stable (ST) Enterotoxins (STh and STp). PLoS One 2016; 11:e0152899. [PMID: 27054573 PMCID: PMC4824445 DOI: 10.1371/journal.pone.0152899] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/21/2016] [Indexed: 12/01/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC), one of the most common reasons of diarrhea among infants and children in developing countries, causes disease by expression of either or both of the enterotoxins heat-labile (LT) and heat-stable (ST; divided into human-type [STh] and porcine-type [STp] variants), and colonization factors (CFs) among which CS6 is one of the most prevalent ETEC CFs. In this study we show that ETEC isolates expressing CS6+STh have higher copy numbers of the cssABCD operon encoding CS6 than those expressing CS6+STp. Long term cultivation of up to ten over-night passages of ETEC isolates harboring CS6+STh (n = 10) or CS6+STp (n = 15) showed instability of phenotypic expression of CS6 in a majority of the CS6+STp isolates, whereas most of the CS6+STh isolates retained CS6 expression. The observed instability was a correlated with loss of genes cssA and cssD as examined by PCR. Mobilization of the CS6 plasmid from an unstable CS6+STp isolate into a laboratory E. coli strain resulted in loss of the plasmid after a single over-night passage whereas the plasmid from an CS6+STh strain was retained in the laboratory strain during 10 passages. A sequence comparison between the CS6 plasmids from a stable and an unstable ETEC isolate revealed that genes necessary for plasmid stabilization, for example pemI, pemK, stbA, stbB and parM, were not present in the unstable ETEC isolate. Our results indicate that stable retention of CS6 may in part be affected by the stability of the plasmid on which both CS6 and STp or STh are located.
Collapse
Affiliation(s)
- Joshua Tobias
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, S-40530, Göteborg, Sweden
- * E-mail:
| | - Astrid Von Mentzer
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, S-40530, Göteborg, Sweden
| | - Patricia Loayza Frykberg
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, S-40530, Göteborg, Sweden
| | - Martin Aslett
- Pathogen Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Andrew J. Page
- Pathogen Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Åsa Sjöling
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, S-40530, Göteborg, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77, Stockholm, Sweden
| | - Ann-Mari Svennerholm
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, S-40530, Göteborg, Sweden
| |
Collapse
|
4
|
Development and preclinical evaluation of safety and immunogenicity of an oral ETEC vaccine containing inactivated E. coli bacteria overexpressing colonization factors CFA/I, CS3, CS5 and CS6 combined with a hybrid LT/CT B subunit antigen, administered alone and together with dmLT adjuvant. Vaccine 2013; 31:2457-64. [PMID: 23541621 DOI: 10.1016/j.vaccine.2013.03.027] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 02/07/2013] [Accepted: 03/14/2013] [Indexed: 01/28/2023]
Abstract
A first-generation oral inactivated whole-cell enterotoxigenic Escherichia coli (ETEC) vaccine, comprising formalin-killed ETEC bacteria expressing different colonization factor (CF) antigens combined with cholera toxin B subunit (CTB), when tested in phase III studies did not significantly reduce overall (generally mild) ETEC diarrhea in travelers or children although it reduced more severe ETEC diarrhea in travelers by almost 80%. We have now developed a novel more immunogenic ETEC vaccine based on recombinant non-toxigenic E. coli strains engineered to express increased amounts of CF antigens, including CS6 as well as an ETEC-based B subunit protein (LCTBA), and the optional combination with a nontoxic double-mutant heat-labile toxin (LT) molecule (dmLT) as an adjuvant. Two test vaccines were prepared under GMP: (1) A prototype E. coli CFA/I-only formalin-killed whole-cell+LCTBA vaccine, and (2) A "complete" inactivated multivalent ETEC-CF (CFA/I, CS3, CS5 and CS6 antigens) whole-cell+LCTBA vaccine. These vaccines, when given intragastrically alone or together with dmLT in mice, were well tolerated and induced strong intestinal-mucosal IgA antibody responses as well as serum IgG and IgA responses to each of the vaccine CF antigens as well as to LT B subunit (LTB). Both mucosal and serum responses were further enhanced (adjuvanted) when the vaccines were co-administered with dmLT. We conclude that the new multivalent oral ETEC vaccine, both alone and especially in combination with the dmLT adjuvant, shows great promise for further testing in humans.
Collapse
|
5
|
Roy SP, Rahman MM, Yu XD, Tuittila M, Knight SD, Zavialov AV. Crystal structure of enterotoxigenic Escherichia coli colonization factor CS6 reveals a novel type of functional assembly. Mol Microbiol 2012; 86:1100-15. [PMID: 23046340 DOI: 10.1111/mmi.12044] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2012] [Indexed: 11/28/2022]
Abstract
Coli surface antigen 6 (CS6) is a widely expressed enterotoxigenic Escherichia coli (ETEC) colonization factor that mediates bacterial attachment to the small intestinal epithelium. CS6 is a polymer of two protein subunits CssA and CssB, which are secreted and assembled on the cell surface via the CssC/CssD chaperone usher (CU) pathway. Here, we present an atomic resolution model for the structure of CS6 based on the results of X-ray crystallographic, spectroscopic and biochemical studies, and suggest a mechanism for CS6-mediated adhesion. We show that the CssA and CssB subunits are assembled alternately in linear fibres by the principle of donor strand complementation. This type of fibre assembly is novel for CU assembled adhesins. We also show that both subunits in the fibre bind to receptors on epithelial cells, and that CssB, but not CssA, specifically recognizes the extracellular matrix protein fibronectin. Taken together, structural and functional results suggest that CS6 is an adhesive organelle of a novel type, a hetero-polyadhesin that is capable of polyvalent attachment to different receptors.
Collapse
Affiliation(s)
- Saumendra P Roy
- Department of Molecular Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, SE-753 24 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
6
|
Tobias J, Svennerholm AM, Carlin NIA, Lebens M, Holmgren J. Construction of a non-toxigenic Escherichia coli oral vaccine strain expressing large amounts of CS6 and inducing strong intestinal and serum anti-CS6 antibody responses in mice. Vaccine 2011; 29:8863-9. [PMID: 21983363 DOI: 10.1016/j.vaccine.2011.09.096] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 09/12/2011] [Accepted: 09/25/2011] [Indexed: 10/16/2022]
Abstract
Coli surface antigen 6 (CS6) is one of the most prevalent non-fimbrial colonization factors (CFs) of enterotoxigenic Escherichia coli (ETEC) bacteria, which are the most common cause of diarrhea among infants and children in developing countries. Since immune protection against ETEC is mainly mediated by locally produced IgA antibodies in the gut, much effort is focused on the development of an oral CF-based vaccine. Previous work has described the preparation of candidate E. coli vaccine strains expressing immunogenic amounts of fimbrial CF antigens such as CFA/I and CS2, which are retained after formalin treatment. However, attempts to generate E. coli expressing immunogenic amounts of CS6 and to preserve the immunological activity of the CS6 protein in a killed whole-cell vaccine have failed until now. Here we describe the construction of a recombinant non-toxigenic E. coli strain, with thyA as a non-antibiotic-based selection, which expresses large amounts of CS6 antigen on the bacterial surface, and show that phenol inactivation of the bacteria does not destroy the CS6 antigen properties. Oral immunization of mice with such phenol-killed CS6 over-expressing E. coli bacteria induced strong fecal and intestinal IgA and serum IgG+IgM antibody responses to CS6 that exceeded the responses induced by an ETEC reference strain naturally expressing CS6 and previously used as a vaccine strain. Our data indicate that the described phenol-inactivated non-toxigenic and CS6 over-expressing E. coli strain may be a useful component in an oral ETEC vaccine.
Collapse
Affiliation(s)
- Joshua Tobias
- University of Gothenburg Vaccine Research Institute, and WHO Collaborating Center for Research on Enterotoxigenic Escherichia coli, Department of Microbiology and Immunology, The Sahlgrenska Academy of University of Gothenburg, S-40530 Gothenburg, Sweden.
| | | | | | | | | |
Collapse
|
7
|
Allelic variation in colonization factor CS6 of enterotoxigenic Escherichia coli isolated from patients with acute diarrhoea and controls. J Med Microbiol 2010; 59:770-779. [DOI: 10.1099/jmm.0.017582-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Colonization factor antigens (CFAs) are important virulence factors in enterotoxigenic Escherichia coli (ETEC). Using a multiplex PCR and RT-PCR, this study tested the presence of common colonization factor-encoding genes and their expression in 50 ETEC strains isolated from stool specimens. The samples were from patients (children) with acute diarrhoea (cases) admitted to the Infectious Disease Hospital (Kolkata, India) and from normal children (controls) under 5 years of age from the community. The results indicated that coli surface antigen 6 (CS6) was the most prevalent CFA (78 %) expressed by these ETEC strains. Sequence analysis of both of the CS6 structural genes, i.e. cssA and cssB, in different ETEC isolates revealed the presence of point mutations in a systematic fashion. Based on the analysis of these variations, it was found that CssA had three alleles and CssB had two. Based on the allelic variations, subtyping of CS6 into AIBI, AIIBII, AIIIBI, AIBII and AIIIBII is proposed. The point mutations in the different alleles were reflected in a partial alteration in the secondary structure of both subunits, as determined by computational analysis. The functional significance of these changes was confirmed with cellular binding studies in Caco-2 cells with representative ETEC isolates. CS6 with AI or AIII allelic subtypes showed a higher binding capacity than AII, whereas BI showed stronger binding than BII. The AII and BII alleles were mostly detected in controls rather than in cases. The antibody specificity of BI and BII also varied due to alteration of the amino acids. Thus, CS6 variants are formed as a result of different allelic combinations of CssA and CssB, and these changes at the functional level might be important in the development of an effective ETEC vaccine.
Collapse
|
8
|
Tobias J, Lebens M, Källgård S, Nicklasson M, Svennerholm AM. Role of different genes in the CS6 operon for surface expression of Enterotoxigenic Escherichia coli colonization factor CS6. Vaccine 2008; 26:5373-80. [DOI: 10.1016/j.vaccine.2008.07.091] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Accepted: 07/30/2008] [Indexed: 11/15/2022]
|
9
|
Randomized clinical trial assessing the safety and immunogenicity of oral microencapsulated enterotoxigenic Escherichia coli surface antigen 6 with or without heat-labile enterotoxin with mutation R192G. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:1222-8. [PMID: 18579693 DOI: 10.1128/cvi.00491-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An oral, microencapsulated anti-colonization factor 6 antigen (meCS6) vaccine, with or without heat-labile enterotoxin with mutation R192G (LT(R192G)) (mucosal adjuvant), against enterotoxigenic Escherichia coli (ETEC) was evaluated for regimen and adjuvant effects on safety and immunogenicity. Sixty subjects were enrolled into a three-dose, 2-week interval or four-dose, 2-day interval regimen. Each regimen was randomized into two equal groups of meCS6 alone (1 mg) or meCS6 with adjuvant (2 microg of LT(R192G)). The vaccine was well tolerated and no serious adverse events were reported. Serologic response to CS6 was low in all regimens (0 to 27%). CS6-immunoglobulin A (IgA) antibody-secreting cell (ASC) responses ranged from 36 to 86%, with the highest level in the three-dose adjuvanted regimen; however, the magnitude was low. As expected, serologic and ASC LT responses were limited to adjuvanted regimens, with the exception of fecal IgA, which appeared to be nonspecific to LT administration. Further modifications to the delivery strategy and CS6 and adjuvant dose optimization will be needed before conducting further clinical trials with this epidemiologically important class of ETEC.
Collapse
|
10
|
Nuccio SP, Bäumler AJ. Evolution of the chaperone/usher assembly pathway: fimbrial classification goes Greek. Microbiol Mol Biol Rev 2007; 71:551-75. [PMID: 18063717 PMCID: PMC2168650 DOI: 10.1128/mmbr.00014-07] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Many Proteobacteria use the chaperone/usher pathway to assemble proteinaceous filaments on the bacterial surface. These filaments can curl into fimbrial or nonfimbrial surface structures (e.g., a capsule or spore coat). This article reviews the phylogeny of operons belonging to the chaperone/usher assembly class to explore the utility of establishing a scheme for subdividing them into clades of phylogenetically related gene clusters. Based on usher amino acid sequence comparisons, our analysis shows that the chaperone/usher assembly class is subdivided into six major phylogenetic clades, which we have termed alpha-, beta-, gamma-, kappa-, pi-, and sigma-fimbriae. Members of each clade share related operon structures and encode fimbrial subunits with similar protein domains. The proposed classification system offers a simple and convenient method for assigning newly discovered chaperone/usher systems to one of the six major phylogenetic groups.
Collapse
Affiliation(s)
- Sean-Paul Nuccio
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave., Davis, CA 95616-8645, USA
| | | |
Collapse
|
11
|
Nicklasson M, Sjöling A, Lebens M, Tobias J, Janzon A, Brive L, Svennerholm AM. Mutations in the periplasmic chaperone leading to loss of surface expression of the colonization factor CS6 in enterotoxigenic Escherichia coli (ETEC) clinical isolates. Microb Pathog 2007; 44:246-54. [PMID: 18037262 DOI: 10.1016/j.micpath.2007.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 06/11/2007] [Indexed: 10/22/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) cause diarrhoea by adhesion to human enterocytes by one or more colonization factors (CFs) and secretion of heat-labile (LT) and/or heat-stable (ST) enterotoxins. Expression of coli surface antigen 6 (CS6) on the bacterial surface, usually associated with ETEC strains that produce ST alone or in combination with LT, is rarely found in strains expressing only LT. However, a number of LT-only strains which are genotypically positive but phenotypically negative for CS6 have been identified. In this study, eight such strains from India and Guinea-Bissau belonging to different clones were analysed. The CS6 operon cssABCD was transcribed but protein analyses suggested that the structural subunits CssA and CssB of CS6 were absent in the periplasm. Most strains contained truncating mutations within the periplasmic chaperone-encoding gene cssC and protein modelling indicated that this severely affected the substrate-binding capacity of the chaperone. A single-nucleotide polymorphism (SNP) (A-->T) in the 5'-untranslated region of cssC distinguished the eight strains from ETEC strains that do express CS6 on the surface and may be a potential marker for ETEC strains containing phenotypically silent cssABCD. The study emphasizes the importance of using both genotypic and phenotypic methods in epidemiological studies of ETEC, e.g. for vaccine development.
Collapse
Affiliation(s)
- Matilda Nicklasson
- Department of Microbiology and Immunology, Institute of Biomedicine, Göteborg University, P.O. Box 435, 405 30 Göteborg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
12
|
Ghosal A, Bhowmick R, Nandy RK, Ramamurthy T, Chatterjee NS. PCR-based identification of common colonization factor antigens of enterotoxigenic Escherichia coli. J Clin Microbiol 2007; 45:3068-71. [PMID: 17596357 PMCID: PMC2045266 DOI: 10.1128/jcm.00646-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colonization factor antigens (CFAs) of enterotoxigenic Escherichia coli (ETEC) have been classified into several groups based on their distinct antigenicity. We describe here a PCR-based method to detect common CFAs of ETEC, which were characterized using conventional serology. This PCR assay is simple and sensitive for the detection of expressed CFA genes.
Collapse
Affiliation(s)
- Abhisek Ghosal
- National Institute of Cholera and Enteric Diseases, P33 CIT Road, Scheme XM, Beliaghata, Kolkata 700 010, India
| | | | | | | | | |
Collapse
|
13
|
Qadri F, Ahmed T, Ahmed F, Bhuiyan MS, Mostofa MG, Cassels FJ, Helander A, Svennerholm AM. Mucosal and systemic immune responses in patients with diarrhea due to CS6-expressing enterotoxigenic Escherichia coli. Infect Immun 2007; 75:2269-74. [PMID: 17296752 PMCID: PMC1865745 DOI: 10.1128/iai.01856-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colonization factor CS6 expressed by enterotoxigenic Escherichia coli (ETEC) is a nonfimbrial polymeric protein. A substantial proportion of ETEC strains isolated from patients in endemic settings and in people who travel to regions where ETEC is endemic are ETEC strains expressing CS6, either alone or in combination with fimbrial colonization factor CS5 or CS4. However, relatively little is known about the natural immune responses elicited against CS6 expressed by ETEC strains causing disease. We studied patients who were hospitalized with diarrhea (n = 46) caused by CS6-expressing ETEC (ETEC expressing CS6 or CS5 plus CS6) and had a disease spectrum ranging from severe dehydration (27%) to moderate or mild dehydration (73%). Using recombinant CS6 antigen, we found that more than 90% of the patients had mucosal immune responses to CS6 expressed as immunoglobulin (IgA) antibody-secreting cells (ASC) or antibody in lymphocyte supernatant (ALS) and that about 57% responded with CS6-specific IgA antibodies in feces. More than 80% of the patients showed IgA seroconversion to CS6. Significant increases in the levels of anti-CS6 antibodies of the IgG isotype were also observed in assays for ASC (75%), ALS (100%), and serum (70%). These studies demonstrated that patients hospitalized with the noninvasive enteric pathogen CS6-expressing ETEC responded with both mucosal and systemic antibodies against CS6. Studies are needed to determine if the anti-CS6 responses protect against reinfection and if protective levels of CS6 immunity are induced by vaccination.
Collapse
MESH Headings
- Adolescent
- Adult
- Antibodies, Bacterial/analysis
- Antibodies, Bacterial/blood
- Antibodies, Bacterial/immunology
- Antibody Specificity
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Child, Preschool
- Diarrhea/immunology
- Diarrhea/microbiology
- Escherichia coli/immunology
- Escherichia coli/pathogenicity
- Escherichia coli Infections/immunology
- Escherichia coli Infections/microbiology
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/immunology
- Escherichia coli Proteins/metabolism
- Feces/chemistry
- Female
- Hospitalization
- Humans
- Immunity, Mucosal
- Immunoglobulin A, Secretory/analysis
- Immunoglobulin A, Secretory/blood
- Immunoglobulin A, Secretory/immunology
- Immunoglobulin G/blood
- Infant
- Male
- Middle Aged
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/metabolism
Collapse
Affiliation(s)
- Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh, GPO Box 128, Dhaka 1000, Bangladesh.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Wennerås C, Qadri F, Bardhan PK, Sack RB, Svennerholm AM. Intestinal immune responses in patients infected with enterotoxigenic Escherichia coli and in vaccinees. Infect Immun 1999; 67:6234-41. [PMID: 10569732 PMCID: PMC97024 DOI: 10.1128/iai.67.12.6234-6241.1999] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immune responses against enterotoxigenic Escherichia coli (ETEC) were examined in Bangladeshi adults with naturally acquired disease and compared to responses in age-matched Bangladeshi volunteers who had been orally immunized with a vaccine consisting of inactivated ETEC bacteria expressing different colonization factor antigens (CFs) and the B subunit of cholera toxin. B-cell responses in duodenal biopsy samples, feces, intestinal washings, and blood were determined. Because most of the patients included in the study were infected with ETEC expressing CS5, immune responses to this CF were studied most extensively. Vaccinees and patients had comparable B-cell responses against this antigen in the duodenum: the median numbers of antibody-secreting cells (ASC) were 3,300 immunoglobulin A (IgA) ASC/10(7) mononuclear cells (MNC) in the patient group (n = 8) and 1,200 IgA ASC/10(7) MNC in the vaccinees (n = 13) (not a significant difference). Similarly, no statistically significant differences were seen in the levels of duodenal B cells directed against enterotoxin among vaccinees and patients. A comparison of the capacities of the various methods used to assess mucosal immune responses revealed a correlation between numbers of circulating B cells and antibody levels in saponin extracts of duodenal biopsy samples (r = 0.58; n = 13; P = 0.04) after vaccination. However, no correlation was seen between blood IgA ASC and duodenal IgA ASC after two doses of vaccine. Still, a correlation between numbers of CF-specific B cells in blood sampled from patients early during infection and numbers of duodenal B cells collected 1 week later was apparent (r = 0.70; n = 10; P = 0.03).
Collapse
Affiliation(s)
- C Wennerås
- Department of Medical Microbiology and Immunology, Göteborg University, Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
15
|
Helander A, Wennerås C, Qadri F, Svennerholm AM. Antibody responses in humans against coli surface antigen 6 of enterotoxigenic Escherichia coli. Infect Immun 1998; 66:4507-10. [PMID: 9712809 PMCID: PMC108547 DOI: 10.1128/iai.66.9.4507-4510.1998] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) strains expressing only coli surface antigen 6 (CS6) have previously been isolated from patients with diarrhea, but the immunogenicity of CS6 has not been established in humans. We have detected CS6-specific immunoglobulin A responses in the feces and blood of patients convalescing from natural ETEC disease and of volunteers given an oral ETEC vaccine.
Collapse
Affiliation(s)
- A Helander
- Department of Medical Microbiology and Immunology, Göteborg University, Göteborg, Sweden.
| | | | | | | |
Collapse
|
16
|
Helander A, Hansson GC, Svennerholm AM. Binding of enterotoxigenic Escherichia coli to isolated enterocytes and intestinal mucus. Microb Pathog 1997; 23:335-46. [PMID: 9441860 DOI: 10.1006/mpat.1997.0163] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Binding of human enterotoxigenic Escherichia coli (ETEC) to the small intestine is a prerequisite for colonization and is mediated by colonization factor (CF) antigens. Coli surface antigen 6 (CS6) is considered a CF but binding to isolated enterocytes has not been established. In this study bacteria expressing CS6 were analysed for binding to enterocytes from human and rabbit small intestine, isolated using either an EDTA-containing buffer or a buffer devoid of EDTA. We found that the bacteria bound to enterocytes from rabbit ileum and human duodenum, but only when the cells had been isolated in the absence of EDTA. Pretreatment of rabbit enterocytes with meta-periodate resulted in a decreased proportion of cells with bound bacteria. Purified CS6, and for comparison other ETEC CFs, were also tested for binding to different human and rabbit mucus fractions. These analyses showed that purified CS6 bound to mucus from rabbit duodenum and ileum as well as from human duodenum, jejunum and ileum and that this binding was abolished by pretreatment of the mucus material with meta-periodate or Proteinase K. CFA/I, CS1 to CS5, CS7, CS17, putative CF (PCF) O159 (CS12), PCFO166 (CS14), and CFA/III (CS8) also bound to the rabbit mucus material although with different patterns; the binding of CS2 and CS5 was abolished by meta-periodate treatment. Thus, ETEC bacteria expressing CS6 might bind to carbohydrate-containing structure(s) in the apical membrane of isolated rabbit ileal and human duodenal enterocytes that could probably be released by EDTA treatment. In addition, CS6 and other ETEC CFs bind to component(s), in some instances protein-associated carbohydrate structures, in mucus fractions from small intestine.
Collapse
Affiliation(s)
- A Helander
- Department of Medical Microbiology and Immunology, Göteborg University, Guldhedsgatan 10A, Göteborg 413 46, Sweden
| | | | | |
Collapse
|