1
|
Yang AX, Norbrun C, Sorkhdini P, Zhou Y. Phospholipid scramblase 1: a frontline defense against viral infections. Front Cell Infect Microbiol 2025; 15:1573373. [PMID: 40248364 PMCID: PMC12003403 DOI: 10.3389/fcimb.2025.1573373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 03/17/2025] [Indexed: 04/19/2025] Open
Abstract
Phospholipid scramblase 1 (PLSCR1) is the most studied member of the phospholipid scramblase protein family. Its main function is to catalyze calcium (Ca2+)-dependent, ATP-independent, bidirectional and non-specific translocation of phospholipids between inner and outer leaflets of plasma membrane. Additionally, PLSCR1 is identified as an interferon-stimulated gene (ISG) with antiviral activities, and its expression can be highly induced by all types of interferons in various viral infections. Indeed, numerous studies have reported the direct antiviral activities of PLSCR1 through interrupting the replication processes of a variety of viruses, including entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), nuclear localization of influenza A virus (IAV), and transactivation of human immunodeficiency virus (HIV), Epstein-Barr virus (EBV), human T-cell leukemia virus type-1 (HTLV1), human cytomegalovirus (HCMV) and hepatitis B virus (HBV). In addition to these direct antiviral activities, PLSCR1 also regulates endogenous immune components to defend against viruses in both nonimmune and immune cells. Such activities include potentiation of ISG transcription, activation of JAK/STAT pathway, upregulation of type 3 interferon receptor (IFN-λR1) and recruitment of Toll-like receptor 9 (TLR9). This review aims to summarize the current understanding of PLSCR1's multiple roles as a frontline defense against viral infections.
Collapse
Affiliation(s)
| | | | | | - Yang Zhou
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| |
Collapse
|
2
|
Mahdifar M, Boostani R, Taylor GP, Rezaee SA, Rafatpanah H. Comprehensive Insight into the Functional Roles of NK and NKT Cells in HTLV-1-Associated Diseases and Asymptomatic Carriers. Mol Neurobiol 2024; 61:7877-7889. [PMID: 38436833 DOI: 10.1007/s12035-024-03999-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is the first human oncogenic retrovirus to be discovered and causes two major diseases: a progressive neuro-inflammatory disease, termed HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP), and an aggressive malignancy of T lymphocytes known as adult T cell leukemia (ATL). Innate and acquired immune responses play pivotal roles in controlling the status of HTLV-1-infected cells and such, the outcome of HTLV-1 infection. Natural killer cells (NKCs) are the effector cells of the innate immune system and are involved in controlling viral infections and several types of cancers. The ability of NKCs to trigger cytotoxicity to provide surveillance against viruses and cancer depends on the balance between the inhibitory and activating signals. In this review, we will discuss NKC function and the alterations in the frequency of these cells in HTLV-1 infection.
Collapse
Affiliation(s)
- Maryam Mahdifar
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Boostani
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Graham P Taylor
- Section of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - Seyed Abdolrahim Rezaee
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Mohanty S, Harhaj EW. Mechanisms of Innate Immune Sensing of HTLV-1 and Viral Immune Evasion. Pathogens 2023; 12:735. [PMID: 37242405 PMCID: PMC10221045 DOI: 10.3390/pathogens12050735] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Human T lymphotropic virus-1 (HTLV-1) was the first identified oncoretrovirus, which infects and establishes a persistent infection in approximately 10-20 million people worldwide. Although only ~5% of infected individuals develop pathologies such as adult T-cell leukemia/lymphoma (ATLL) or a neuroinflammatory disorder termed HTLV-1-asssociated myelopathy/tropical spastic paraparesis (HAM/TSP), asymptomatic carriers are more susceptible to opportunistic infections. Furthermore, ATLL patients are severely immunosuppressed and prone to other malignancies and other infections. The HTLV-1 replication cycle provides ligands, mainly nucleic acids (RNA, RNA/DNA intermediates, ssDNA intermediates, and dsDNA), that are sensed by different pattern recognition receptors (PRRs) to trigger immune responses. However, the mechanisms of innate immune detection and immune responses to HTLV-1 infection are not well understood. In this review, we highlight the functional roles of different immune sensors in recognizing HTLV-1 infection in multiple cell types and the antiviral roles of host restriction factors in limiting persistent infection of HTLV-1. We also provide a comprehensive overview of intricate strategies employed by HTLV-1 to subvert the host innate immune response that may contribute to the development of HTLV-1-associated diseases. A more detailed understanding of HTLV-1-host pathogen interactions may inform novel strategies for HTLV-1 antivirals, vaccines, and treatments for ATLL or HAM/TSP.
Collapse
Affiliation(s)
- Suchitra Mohanty
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA;
| | | |
Collapse
|
4
|
Pise-Masison CA, Franchini G. Hijacking Host Immunity by the Human T-Cell Leukemia Virus Type-1: Implications for Therapeutic and Preventive Vaccines. Viruses 2022; 14:2084. [PMID: 36298639 PMCID: PMC9609126 DOI: 10.3390/v14102084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2024] Open
Abstract
Human T-cell Leukemia virus type-1 (HTLV-1) causes adult T-cell leukemia/lymphoma (ATLL), HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and other inflammatory diseases. High viral DNA burden (VL) in peripheral blood mononuclear cells is a documented risk factor for ATLL and HAM/TSP, and patients with HAM/TSP have a higher VL in cerebrospinal fluid than in peripheral blood. VL alone is not sufficient to differentiate symptomatic patients from healthy carriers, suggesting the importance of other factors, including host immune response. HTLV-1 infection is life-long; CD4+-infected cells are not eradicated by the immune response because HTLV-1 inhibits the function of dendritic cells, monocytes, Natural Killer cells, and adaptive cytotoxic CD8+ responses. Although the majority of infected CD4+ T-cells adopt a resting phenotype, antigen stimulation may result in bursts of viral expression. The antigen-dependent "on-off" viral expression creates "conditional latency" that when combined with ineffective host responses precludes virus eradication. Epidemiological and clinical data suggest that the continuous attempt of the host immunity to eliminate infected cells results in chronic immune activation that can be further exacerbated by co-morbidities, resulting in the development of severe disease. We review cell and animal model studies that uncovered mechanisms used by HTLV-1 to usurp and/or counteract host immunity.
Collapse
Affiliation(s)
- Cynthia A. Pise-Masison
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | |
Collapse
|
5
|
El Hajj H, Bazarbachi A. Interplay between innate immunity and the viral oncoproteins Tax and HBZ in the pathogenesis and therapeutic response of HTLV-1 associated adult T cell leukemia. Front Immunol 2022; 13:957535. [PMID: 35935975 PMCID: PMC9352851 DOI: 10.3389/fimmu.2022.957535] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
The Human T-cell Leukemia virus type 1 (HTLV-1) causes an array of pathologies, the most aggressive of which is adult T-cell leukemia (ATL), a fatal blood malignancy with dismal prognosis. The progression of these diseases is partly ascribed to the failure of the immune system in controlling the spread of virally infected cells. HTLV-1 infected subjects, whether asymptomatic carriers or symptomatic patients are prone to opportunistic infections. An increasing body of literature emphasizes the interplay between HTLV-1, its associated pathologies, and the pivotal role of the host innate and adoptive immune system, in shaping the progression of HTLV-1 associated diseases and their response to therapy. In this review, we will describe the modalities adopted by the malignant ATL cells to subvert the host innate immune response with emphasis on the role of the two viral oncoproteins Tax and HBZ in this process. We will also provide a comprehensive overview on the function of innate immunity in the therapeutic response to chemotherapy, anti-viral or targeted therapies in the pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Hiba El Hajj
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali Bazarbachi
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- *Correspondence: Ali Bazarbachi,
| |
Collapse
|
6
|
Virus-Induced Tumorigenesis and IFN System. BIOLOGY 2021; 10:biology10100994. [PMID: 34681093 PMCID: PMC8533565 DOI: 10.3390/biology10100994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Accepted: 09/27/2021] [Indexed: 01/11/2023]
Abstract
Oncogenic viruses favor the development of tumors in mammals by persistent infection and specific cellular pathways modifications by deregulating cell proliferation and inhibiting apoptosis. They counteract the cellular antiviral defense through viral proteins as well as specific cellular effectors involved in virus-induced tumorigenesis. Type I interferons (IFNs) are a family of cytokines critical not only for viral interference but also for their broad range of properties that go beyond the antiviral action. In fact, they can inhibit cell proliferation and modulate differentiation, apoptosis, and migration. However, their principal role is to regulate the development and activity of most effector cells of the innate and adaptive immune responses. Various are the mechanisms by which IFNs exert their effects on immune cells. They can act directly, through IFN receptor triggering, or indirectly by the induction of chemokines, the secretion of further cytokines, or by the stimulation of cells useful for the activation of particular immune cells. All the properties of IFNs are crucial in the host defense against viruses and bacteria, as well as in the immune surveillance against tumors. IFNs may be affected by and, in turn, affect signaling pathways to mediate anti-proliferative and antiviral responses in virus-induced tumorigenic context. New data on cellular and viral microRNAs (miRNAs) machinery, as well as cellular communication and microenvironment modification via classical secretion mechanisms and extracellular vesicles-mediated delivery are reported. Recent research is reviewed on the tumorigenesis induced by specific viruses with RNA or DNA genome, belonging to different families (i.e., HPV, HTLV-1, MCPyV, JCPyV, Herpesviruses, HBV, HCV) and the IFN system involvement.
Collapse
|
7
|
Ruan Z, Chen G, Xie T, Mo G, Wang G, Luo W, Li H, Shi M, Liu WS, Zhang X. Cytokine inducible SH2-containing protein potentiate J subgroup avian leukosis virus replication and suppress antiviral responses in DF-1 chicken fibroblast cells. Virus Res 2021; 296:198344. [PMID: 33636239 DOI: 10.1016/j.virusres.2021.198344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/26/2022]
Abstract
Cytokine-inducible Srchomology2 (SH2)-containing protein (CIS) belongs to the suppressors of cytokine signaling (SOCS) protein family function as a negative feedback loop inhibiting cytokine signal transduction. J subgroup avian leukosis virus (ALV-J), a commonly-seen avian virus with a feature of immunosuppression, poses an unmeasurable threat to the poultry industry across the world. However, commercial medicines or vaccines are still no available for this virus. This study aims to evaluate the potential effect of chicken CIS in antiviral response and its role on ALV-J replication. The results showed that ALV-J strain SCAU-HN06 infection induced CIS expression in DF-1 cells, which was derived from chicken embryo free of endogenous avian sarcoma-leukosis virus (ASLV) like sequences. By overexpressing CIS, the expression of chicken type I interferon (IFN-I) and interferon-stimulated genes (ISGs; PKR, ZAP, CH25H, CCL4, IFIT5, and ISG12) were both suppressed. Meanwhile, data showed that CIS overexpression also increased viral yield. Interestingly, knockdown of CIS enhanced induction of IFN-I and ISGs and inhibited viral replication. Collectively, we proved that modulation of CIS expression not only affected SCAU-HN06 replication in vitro but also altered the expression of IFN-I and ISGs that act as an essential part of antiviral innate immune system. Our data provide a potential target for developing antiviral agents for ALV-J.
Collapse
Affiliation(s)
- Zhuohao Ruan
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, China; College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| | - Genghua Chen
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, China.
| | - Tingting Xie
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, China.
| | - Guodong Mo
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, China.
| | - Guiyan Wang
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, China.
| | - Wen Luo
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, China.
| | - Hongmei Li
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, China.
| | - Meiqing Shi
- Division of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MA, 20742, USA.
| | - Wen-Sheng Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China; Guangdong Province Engineering Research Centre of Aquatic Immunization and Aquaculture Health Techniques, South China Agricultural University, Guangzhou, China.
| | - Xiquan Zhang
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
8
|
Mohanty S, Han T, Choi YB, Lavorgna A, Zhang J, Harhaj EW. The E3/E4 ubiquitin conjugation factor UBE4B interacts with and ubiquitinates the HTLV-1 Tax oncoprotein to promote NF-κB activation. PLoS Pathog 2020; 16:e1008504. [PMID: 33362245 PMCID: PMC7790423 DOI: 10.1371/journal.ppat.1008504] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 01/07/2021] [Accepted: 11/13/2020] [Indexed: 11/18/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia/lymphoma (ATLL), and the neurological disease HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The HTLV-1 Tax protein persistently activates the NF-κB pathway to enhance the proliferation and survival of HTLV-1 infected T cells. Lysine 63 (K63)-linked polyubiquitination of Tax provides an important regulatory mechanism that promotes Tax-mediated interaction with the IKK complex and activation of NF-κB; however, the host proteins regulating Tax ubiquitination are largely unknown. To identify new Tax interacting proteins that may regulate its ubiquitination we conducted a yeast two-hybrid screen using Tax as bait. This screen yielded the E3/E4 ubiquitin conjugation factor UBE4B as a novel binding partner for Tax. Here, we confirmed the interaction between Tax and UBE4B in mammalian cells by co-immunoprecipitation assays and demonstrated colocalization by proximity ligation assay and confocal microscopy. Overexpression of UBE4B specifically enhanced Tax-induced NF-κB activation, whereas knockdown of UBE4B impaired Tax-induced NF-κB activation and the induction of NF-κB target genes in T cells and ATLL cell lines. Furthermore, depletion of UBE4B with shRNA resulted in apoptotic cell death and diminished the proliferation of ATLL cell lines. Finally, overexpression of UBE4B enhanced Tax polyubiquitination, and knockdown or CRISPR/Cas9-mediated knockout of UBE4B attenuated both K48- and K63-linked polyubiquitination of Tax. Collectively, these results implicate UBE4B in HTLV-1 Tax polyubiquitination and downstream NF-κB activation. Infection with the retrovirus HTLV-1 leads to the development of either CD4+CD25+ leukemia/lymphoma (ATLL) or a demyelinating neuroinflammatory disease (HAM/TSP) in a subset of infected individuals. The HTLV-1 Tax protein is a regulatory protein which regulates viral gene expression and persistently activates cellular signaling pathways such as NF-κB to drive the clonal expansion and longevity of HTLV-1 infected CD4+ T cells. Polyubiquitination of Tax is a key mechanism of NF-κB activation by assembling and activating IκB kinase (IKK) signaling complexes; however, the host factors regulating Tax ubiquitination have remained elusive. Here, we have identified the E3/E4 ubiquitin conjugation factor UBE4B as a novel Tax binding protein that promotes both K48- and K63-linked polyubiquitination of Tax. Knockdown or knockout of UBE4B impairs Tax-induced NF-κB activation and triggers apoptosis of HTLV-1-transformed cells. Therefore, UBE4B is an integral host factor that supports HTLV-1 Tax polyubiquitination, NF-κB activation and cell survival.
Collapse
Affiliation(s)
- Suchitra Mohanty
- Department of Microbiology and Immunology, Penn State College School of Medicine, Hershey, Pennsylvania, United States of America
| | - Teng Han
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Young Bong Choi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Alfonso Lavorgna
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Jiawen Zhang
- Department of Microbiology and Immunology, Penn State College School of Medicine, Hershey, Pennsylvania, United States of America
| | - Edward William Harhaj
- Department of Microbiology and Immunology, Penn State College School of Medicine, Hershey, Pennsylvania, United States of America
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
9
|
Lymphotropic Viruses: Chronic Inflammation and Induction of Cancers. BIOLOGY 2020; 9:biology9110390. [PMID: 33182552 PMCID: PMC7697807 DOI: 10.3390/biology9110390] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/18/2022]
Abstract
Inflammation induced by transcription factors, including Signal Transducers and Activators of Transcription (STATs) and NF-κB, in response to microbial pathogenic infections and ligand dependent receptors stimulation are critical for controlling infections. However, uncontrolled inflammation induced by these transcription factors could lead to immune dysfunction, persistent infection, inflammatory related diseases and the development of cancers. Although the induction of innate immunity and inflammation in response to viral infection is important to control virus replication, its effects can be modulated by lymphotropic viruses including human T-cell leukemia virus type 1 (HTLV-1), Κaposi's sarcoma herpesvirus (KSHV), and Epstein Barr virus (EBV) during de novo infection as well as latent infection. These lymphotropic viruses persistently activate JAK-STAT and NF-κB pathways. Long-term STAT and NF-κB activation by these viruses leads to the induction of chronic inflammation, which can support the persistence of these viruses and promote virus-mediated cancers. Here, we review how HTLV-1, KSHV and EBV hijack the function of host cell surface molecules (CSMs), which are involved in the regulation of chronic inflammation, innate and adaptive immune responses, cell death and the restoration of tissue homeostasis. Thus, better understanding of CSMs-mediated chronic activation of STATs and NF-κB pathways in lymphotropic virus-infected cells may pave the way for therapeutic intervention in malignancies caused by lymphotropic viruses.
Collapse
|
10
|
Keikha M, Ghazvini K, Eslami M, Yousefi B, Casseb J, Yousefi M, Karbalaei M. Molecular targeting of PD-1 signaling pathway as a novel therapeutic approach in HTLV-1 infection. Microb Pathog 2020; 144:104198. [PMID: 32283259 DOI: 10.1016/j.micpath.2020.104198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 02/08/2023]
Abstract
HTLV-1, the first human oncogenic retrovirus, is a type C retrovirus that belongs to the Deltaretrovirus genus. The HTLV-1 genome has 8.5 kbp length, and consists of major genes such as gag, pol, pro, env, and pX region. This retrovirus is considered as one of the most deadly infectious agent for peripheral-blood mononuclear cells (PBMC). The infection of HTLV-1 can lead to dangerous complications, such as infective dermatitis (ID), uveitis, arthritis, lymphadenitis, arthropathies, Sjögren's Syndrome (SS), and particularly HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) or Adult T-Cell Leukemia Lymphoma (ATLL). At the moment, Zidovudine (AZT) plus IFN-α is the only treatment available for HTLV-1 infections. Based on scientific studies, alongside the therapeutic regimens, intrinsic mechanisms also play a determinant role in reducing the signs of disease. Programmed cell death-1 (PD-1) signaling pathway, one of the most important checkpoints, has recently received interest, such as the development of a novel generation of anti-tumors. In the present study, we discuss the role of PD-1 signaling pathway in HTLV-1 infection as well as its application as a novel approach for treatment of HTLV-1 infections.
Collapse
Affiliation(s)
- Masoud Keikha
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Jorge Casseb
- Institute of Tropical Medicine of São Paulo/Laboratory of Dermatology and Immunodeficiencies, Department of Dermatology, University of São Paulo Medical School, São Paulo, SP, 01246-100, Brazil
| | - Masoud Yousefi
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohsen Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran.
| |
Collapse
|
11
|
|
12
|
Yan B, Ma H, Jiang S, Shi J, Yang Z, Zhu W, Kong C, Chen L, Yan H, Ma C. microRNA-221 restricts human cytomegalovirus replication via promoting type I IFN production by targeting SOCS1/NF-κB pathway. Cell Cycle 2019; 18:3072-3084. [PMID: 31550968 DOI: 10.1080/15384101.2019.1667706] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
HCMV is a common pathogen for human with relatively high prevalence, which could be life-threatened in immunodeficient patients and lead to significant birth defects in newborns. In this study, we firstly report that HCMV infection significantly enhances the expression of microRNA-221 (miR-221) in Neural Precursor Cells (NPCs). We found that miR-221 directly targets at the 3'-UTR of suppressor of cytokine signaling 1 (SOCS1) and suppresses SOCS1 expression at the both mRNA and protein levels. MiR-221 overexpression restrained HCMV replication by promoting type I interferon (IFN) and interferon stimulating genes (ISGs) production, whereas reintroduction of SOCS1 abrogated the miR-221-induced effects on HCMV replication. Importantly, miR-221 positively regulated the phosphorylation and activation of NF-κB by suppressing SOCS1. What's more, miR-221 agomir alleviated MCMV-induced tissue injury by promoting type I IFN antiviral activities in vivo. Thus, miR-221 modulates the infection and replication of HCMV as an intrinsic antiviral factor, and could be developed as a treatment target for anti-HCMV treatment.
Collapse
Affiliation(s)
- Beizhan Yan
- Blood Transfusion Department, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University , Zhengzhou , Henan , China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Feng K, Deng F, Hu Z, Wang H, Ning YJ. Heartland virus antagonizes type I and III interferon antiviral signaling by inhibiting phosphorylation and nuclear translocation of STAT2 and STAT1. J Biol Chem 2019; 294:9503-9517. [PMID: 31040183 DOI: 10.1074/jbc.ra118.006563] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 04/17/2019] [Indexed: 01/30/2023] Open
Abstract
Heartland virus (HRTV) is a pathogenic phlebovirus recently identified in the United States and related to severe fever with thrombocytopenia syndrome virus (SFTSV) emerging in Asia. We previously reported that SFTSV disrupts host antiviral responses directed by interferons (IFNs) and their downstream regulators, signal transducer and activator of transcription (STAT) proteins. However, whether HRTV infection antagonizes the IFN-STAT signaling axis remains unclear. Here, we show that, similar to SFTSV, HRTV also inhibits IFN-α- and IFN-λ-mediated antiviral responses. As expected, the nonstructural protein (NSs) of HRTV (HNSs) robustly antagonized both type I and III IFN signaling. Protein interaction analyses revealed that a common component downstream of type I and III IFN signaling, STAT2, is the target of HNSs. Of note, the DNA-binding and linker domains of STAT2 were required for an efficient HNSs-STAT2 interaction. Unlike the NSs of SFTSV (SNSs), which blocks both STAT2 and STAT1 nuclear accumulation, HNSs specifically blocked IFN-triggered nuclear translocation only of STAT2. However, upon HRTV infection, IFN-induced nuclear translocation of both STAT2 and STAT1 was suppressed, suggesting that STAT1 is an additional HRTV target for IFN antagonism. Consistently, despite HNSs inhibiting phosphorylation only of STAT2 and not STAT1, HRTV infection diminished both STAT2 and STAT1 phosphorylation. These results suggest that HRTV antagonizes IFN antiviral signaling by dampening both STAT2 and STAT1 activities. We propose that HNSs-specific targeting of STAT2 likely plays an important role but is not all of the "tactics" of HRTV in its immune evasion.
Collapse
Affiliation(s)
- Kuan Feng
- From the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China and.,the University of Chinese Academy of Sciences, Beijing 101408, China
| | - Fei Deng
- From the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China and
| | - Zhihong Hu
- From the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China and
| | - Hualin Wang
- From the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China and
| | - Yun-Jia Ning
- From the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China and
| |
Collapse
|
14
|
Futsch N, Prates G, Mahieux R, Casseb J, Dutartre H. Cytokine Networks Dysregulation during HTLV-1 Infection and Associated Diseases. Viruses 2018; 10:v10120691. [PMID: 30563084 PMCID: PMC6315340 DOI: 10.3390/v10120691] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/19/2018] [Accepted: 11/30/2018] [Indexed: 12/22/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of a neural chronic inflammation, called HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and of a malignant lymphoproliferation, called the adult T-cell leukemia/lymphoma (ATLL). The mechanisms through which the HTLV-1 induces these diseases are still unclear, but they might rely on immune alterations. HAM/TSP is associated with an impaired production of pro-inflammatory cytokines and chemokines, such as IFN-γ, TNF-α, CXCL9, or CXCL10. ATLL is associated with high levels of IL-10 and TGF-β. These immunosuppressive cytokines could promote a protumoral micro-environment. Moreover, HTLV-1 infection impairs the IFN-I production and signaling, and favors the IL-2, IL-4, and IL-6 expression. This contributes both to immune escape and to infected cells proliferation. Here, we review the landscape of cytokine dysregulations induced by HTLV-1 infection and the role of these cytokines in the HTLV-1-associated diseases progression.
Collapse
Affiliation(s)
- Nicolas Futsch
- Équipe Oncogenèse Rétrovirale, Equipe Labellisée «FRM», CIRI-Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, Inserm U1111, CNRS UMR5308, Labex Ecofect, ENS Lyon, F-69007 Lyon, France.
| | - Gabriela Prates
- Institute of Tropical Medicine of São Paulo, São Paulo, SP 05403-000, Brazil.
- Laboratory of Dermatology and Immunodeficiencies, Department of Dermatology, University of São Paulo Medical School, São Paulo, SP 01246-100, Brazil.
| | - Renaud Mahieux
- Équipe Oncogenèse Rétrovirale, Equipe Labellisée «FRM», CIRI-Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, Inserm U1111, CNRS UMR5308, Labex Ecofect, ENS Lyon, F-69007 Lyon, France.
| | - Jorge Casseb
- Institute of Tropical Medicine of São Paulo, São Paulo, SP 05403-000, Brazil.
- Laboratory of Dermatology and Immunodeficiencies, Department of Dermatology, University of São Paulo Medical School, São Paulo, SP 01246-100, Brazil.
| | - Hélène Dutartre
- Équipe Oncogenèse Rétrovirale, Equipe Labellisée «FRM», CIRI-Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, Inserm U1111, CNRS UMR5308, Labex Ecofect, ENS Lyon, F-69007 Lyon, France.
| |
Collapse
|
15
|
Bussey KA, Brinkmann MM. Strategies for immune evasion by human tumor viruses. Curr Opin Virol 2018; 32:30-39. [PMID: 30241043 DOI: 10.1016/j.coviro.2018.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 08/24/2018] [Indexed: 12/14/2022]
Abstract
Immune evasion is a hallmark of viral persistence. For the seven human tumor viruses to establish lifelong infection in their hosts, they must successfully control the host response to them. Viral inhibition of immune responses occurs at many levels. While some viruses directly target the pattern recognition receptors (PRR) of the innate immune system, they may also antagonize downstream effectors of PRR signaling cascades or activation of transcription, which would otherwise induce a type I interferon (IFN) and/or pro-inflammatory cytokine response. Secretion of IFN activates the type I interferon receptor (IFNAR) signaling pathway, which is also prone to viral inhibition. To evade the adaptive host response, viruses also target various mechanisms including antigen processing and presentation.
Collapse
Affiliation(s)
- Kendra A Bussey
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany; Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| | - Melanie M Brinkmann
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany; Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| |
Collapse
|
16
|
Shen Y, Wang S, Sun F, Zheng G, Wu T, Du Y, Zhang S, Qian J, Sun R. Inhibition of murine herpesvirus-68 replication by IFN-gamma in macrophages is counteracted by the induction of SOCS1 expression. PLoS Pathog 2018; 14:e1007202. [PMID: 30075008 PMCID: PMC6093694 DOI: 10.1371/journal.ppat.1007202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/15/2018] [Accepted: 07/08/2018] [Indexed: 01/20/2023] Open
Abstract
Gamma interferon (IFN-γ) is known to negatively regulate murine gammaherpesvirus-68 (MHV-68 or γHV-68) replication. This process involves the suppression of the viral gene replication and transcription activator (RTA) promoter, as well as activation of signal transducers and activators of transcription (STAT1). Notably, this effect is gradually attenuated during MHV-68 infection of bone marrow-derived macrophages (BMMs), which raised the possibility that the virus may utilize a mechanism that counteracts the antiviral effect of IFN-γ. By identifying the cellular factors that negatively regulate JAK-STAT1 signaling, we revealed that the infection of BMMs by MHV-68 induces the expression of suppressor of cytokine signaling 1 (SOCS1) and that depletion of SOCS1 restores the inhibitory effect of IFN-γ on virus replication. Moreover, we demonstrated that the expression of SOCS1 was induced as a result of the Toll-like receptor 3 (TLR3) mediated activation of the NF-κB signaling cascade. In conclusion, we report that TLR3-TRAF-NF-κB signaling pathway play a role in the induction of SOCS1 that counteracts the antiviral effect of IFN-γ during MHV-68 infection. This process is cell type-specific: it is functional in macrophages, but not in epithelial cells or fibroblasts. Our study reveals a mechanism that balances the immune responses and the escape of a gamma-herpesvirus in some antigen-presenting cells.
Collapse
Affiliation(s)
- Yong Shen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P. R. China
- Research Center of Infection and Immunity, ZJU-UCLA Joint Center for Medical Education and Research, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Saisai Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P. R. China
- Research Center of Infection and Immunity, ZJU-UCLA Joint Center for Medical Education and Research, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Fangfang Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P. R. China
- Research Center of Infection and Immunity, ZJU-UCLA Joint Center for Medical Education and Research, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Gang Zheng
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Tingting Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P. R. China
- Research Center of Infection and Immunity, ZJU-UCLA Joint Center for Medical Education and Research, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, P. R. China
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Yushen Du
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P. R. China
- Research Center of Infection and Immunity, ZJU-UCLA Joint Center for Medical Education and Research, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Suzhan Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P. R. China
| | - Jing Qian
- Research Center of Infection and Immunity, ZJU-UCLA Joint Center for Medical Education and Research, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, P. R. China
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P. R. China
| | - Ren Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P. R. China
- Research Center of Infection and Immunity, ZJU-UCLA Joint Center for Medical Education and Research, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, P. R. China
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
17
|
Hopcraft SE, Damania B. Tumour viruses and innate immunity. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0267. [PMID: 28893934 DOI: 10.1098/rstb.2016.0267] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2017] [Indexed: 12/13/2022] Open
Abstract
Host cells sense viral infection through pattern recognition receptors (PRRs), which detect pathogen-associated molecular patterns (PAMPs) and stimulate an innate immune response. PRRs are localized to several different cellular compartments and are stimulated by viral proteins and nucleic acids. PRR activation initiates signal transduction events that ultimately result in an inflammatory response. Human tumour viruses, which include Kaposi's sarcoma-associated herpesvirus, Epstein-Barr virus, human papillomavirus, hepatitis C virus, hepatitis B virus, human T-cell lymphotropic virus type 1 and Merkel cell polyomavirus, are detected by several different PRRs. These viruses engage in a variety of mechanisms to evade the innate immune response, including downregulating PRRs, inhibiting PRR signalling, and disrupting the activation of transcription factors critical for mediating the inflammatory response, among others. This review will describe tumour virus PAMPs and the PRRs responsible for detecting viral infection, PRR signalling pathways, and the mechanisms by which tumour viruses evade the host innate immune system.This article is part of the themed issue 'Human oncogenic viruses'.
Collapse
Affiliation(s)
- Sharon E Hopcraft
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Blossom Damania
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA .,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
18
|
Abstract
Human T cell leukemia virus type 1 (HTLV-1), also known as human T lymphotropic virus type 1, was the first exogenous human retrovirus discovered. Unlike the distantly related lentivirus HIV-1, HTLV-1 causes disease in only 5-10% of infected people, depending on their ethnic origin. But whereas HIV-1 infection and the consequent diseases can be efficiently contained in most cases by antiretroviral drug treatment, there is no satisfactory treatment for the malignant or inflammatory diseases caused by HTLV-1. The purpose of the present article is to review recent advances in the understanding of the mechanisms by which the virus persists in vivo and causes disabling or fatal diseases.
Collapse
Affiliation(s)
- Charles R M Bangham
- Division of Infectious Diseases, Faculty of Medicine, Imperial College, London W2 1PG, United Kingdom;
| |
Collapse
|
19
|
Darrah EJ, Stoltz KP, Ledwith M, Tarakanova VL. ATM supports gammaherpesvirus replication by attenuating type I interferon pathway. Virology 2017; 510:137-146. [PMID: 28732227 DOI: 10.1016/j.virol.2017.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/21/2017] [Accepted: 07/10/2017] [Indexed: 12/17/2022]
Abstract
Ataxia-Telangiectasia mutated (ATM) kinase participates in multiple networks, including DNA damage response, oxidative stress, and mitophagy. ATM also supports replication of diverse DNA and RNA viruses. Gammaherpesviruses are prevalent cancer-associated viruses that benefit from ATM expression during replication. This proviral role of ATM had been ascribed to its signaling within the DNA damage response network; other functions of ATM have not been considered. In this study increased type I interferon (IFN) responses were observed in ATM deficient gammaherpesvirus-infected macrophages. Using a mouse model that combines ATM and type I IFN receptor deficiencies we show that increased type I IFN response in the absence of ATM fully accounts for the proviral role of ATM during gammaherpesvirus replication. Further, increased type I IFN response rendered ATM deficient macrophages more susceptible to antiviral effects of type II IFN. This study identifies attenuation of type I IFN responses as the primary mechanism underlying proviral function of ATM during gammaherpesvirus infection.
Collapse
Affiliation(s)
- Eric J Darrah
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Kyle P Stoltz
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Mitchell Ledwith
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Vera L Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States.
| |
Collapse
|
20
|
Generation of a Tet-On Expression System to Study Transactivation Ability of Tax-2. Methods Mol Biol 2017. [PMID: 28357664 DOI: 10.1007/978-1-4939-6872-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
HTLV Tax proteins (Tax-1 and Tax-2) are known to be able to transactivate several host cellular genes involved in complex molecular pathways. Here, we describe a stable and regulated high-level expression model based on Tet-On system, to study the capacity of Tax-2 to transactivate host genes. In particular, the Jurkat Tet-On cell line suitable for evaluating the ability of Tax-2 to stimulate transactivation of a specific host gene, CCL3L1 (C-C motif chemokine ligand 3 like 1 gene), was selected. Then, a plasmid expressing tax-2 gene under control of a tetracycline-response element was constructed. To avoid the production of a fusion protein between the report gene and the inserted gene, a bidirectional plasmid was designed. Maximum expression and fast response time were achieved by using nucleofection technology as transfection method. After developing an optimized protocol for efficiently transferring tax-2 gene in Jurkat Tet-On cellular model and exposing transfected cells to Dox (doxycycline, a tetracycline derivate), a kinetics of tax-2 expression through TaqMan Real-time PCR assay was determined.
Collapse
|
21
|
Suppression of Type I Interferon Production by Human T-Cell Leukemia Virus Type 1 Oncoprotein Tax through Inhibition of IRF3 Phosphorylation. J Virol 2016; 90:3902-3912. [PMID: 26819312 DOI: 10.1128/jvi.00129-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 01/24/2016] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Infection with human T-cell leukemia virus type 1 (HTLV-1) is associated with adult T-cell leukemia (ATL) and tropical spastic paraparesis. Type I interferons (IFNs) are key effectors of the innate antiviral response, and IFN-α combined with the nucleoside reverse transcriptase inhibitor zidovudine is considered the standard first-line therapy for ATL. HTLV-1 oncoprotein Tax is known to suppress innate IFN production and response but the underlying mechanisms remain to be fully established. In this study, we report on the suppression of type I IFN production by HTLV-1 Tax through interaction with and inhibition of TBK1 kinase that phosphorylates IRF3. Induced transcription of IFN-β was severely impaired in HTLV-1-transformed ATL cells and freshly infected T lymphocytes. The ability to suppress IRF3 activation was ascribed to Tax. The expression of Tax alone sufficiently repressed the induction of IFN production by RIG-I plus PACT, cGAMP synthase plus STING, TBK1, IKKε, IRF3, and IRF7, but not by IRF3-5D, a dominant-active phosphomimetic mutant. This suggests that Tax perturbs IFN production at the step of IRF3 phosphorylation. Tax mutants deficient for CREB or NF-κB activation were fully competent in the suppression of IFN production. Coimmunoprecipitation experiments confirmed the association of Tax with TBK1, IKKε, STING, and IRF3.In vitrokinase assay indicated an inhibitory effect of Tax on TBK1-mediated phosphorylation of IRF3. Taken together, our findings suggested a new mechanism by which HTLV-1 oncoprotein Tax circumvents the production of type I IFNs in infected cells. Our findings have implications in therapeutic intervention of ATL. IMPORTANCE Human T-cell leukemia virus type 1 (HTLV-1) is the cause of adult T-cell leukemia (ATL), an aggressive and fatal blood cancer, as well as another chronic disabling disease of the spinal cord. Treatments are unsatisfactory, and options are limited. A combination of antiviral cellular protein alpha interferon and zidovudine, which is an inhibitor of a viral enzyme called reverse transcriptase, has been recommended as the standard first-line therapy for ATL. Exactly how HTLV-1 interacts with the cellular machinery for interferon production and action is not well understood. Our work sheds light on the mechanism of action for the inhibition of interferon production by an HTLV-1 oncogenic protein called Tax. Our findings might help to improve interferon-based anti-HTLV-1 and anti-ATL therapy.
Collapse
|
22
|
Moles R, Bellon M, Nicot C. STAT1: A Novel Target of miR-150 and miR-223 Is Involved in the Proliferation of HTLV-I-Transformed and ATL Cells. Neoplasia 2016; 17:449-62. [PMID: 26025667 PMCID: PMC4468372 DOI: 10.1016/j.neo.2015.04.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/13/2015] [Accepted: 04/24/2015] [Indexed: 12/20/2022] Open
Abstract
We have previously reported on the deregulation of cellular microRNAs involved in hematopoiesis and inflammation in human T-cell lymphotropic virus type 1 (HTLV-I)–transformed cells. In this study, we demonstrate that miR-150 and miR-223 specifically target the signal transducer and activator of transcription 1 (STAT1) 3′ untranslated region, reducing STAT1 expression and dampening STAT1-dependent signaling in human T cells. The effects of miR-150 and miR-223 on endogenous STAT1 were confirmed using inducible cell lines. Our studies also showed that miR-150 expression is upregulated by interleukin-2 signaling in adult T cell leukemia/lymphoma (ATL) cells. HTLV-I–transformed and ATL-derived cells have reduced levels of miR150 and miR223 expression, which coincide with increased STAT1 expression and STAT1-dependent signaling. Knockdown of STAT1 by short hairpin RNA demonstrated that the constitutive activation of STAT1 is required for the continuous proliferation of HTLV-I–transformed cells. Our studies further demonstrate that increased expression of STAT1 in ATL cells is associated with higher levels of major histocompatibility complex class I expression. Previous studies have demonstrated that the pressure exerted by natural killer (NK) cells in vivo can edit leukemic tumor cells by forcing an increased expression of major histocompatibility complex class I to escape immune clearance. STAT1-expressing tumor cells produce more aggressive tumors because they cannot be eliminated by NK cells. Our results suggest that therapeutic approaches using combined targeting of STAT1 and MHC class I may be an effective approach to activate NK cell–mediated clearance of ATL tumor cells.
Collapse
Affiliation(s)
- Ramona Moles
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Marcia Bellon
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
23
|
Panfil AR, Dissinger NJ, Howard CM, Murphy BM, Landes K, Fernandez SA, Green PL. Functional Comparison of HBZ and the Related APH-2 Protein Provides Insight into Human T-Cell Leukemia Virus Type 1 Pathogenesis. J Virol 2016; 90:3760-72. [PMID: 26819304 PMCID: PMC4794683 DOI: 10.1128/jvi.03113-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/18/2016] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Human T-cell leukemia virus type 1 (HTLV-1) and type 2 (HTLV-2) are highly related retroviruses that transform T cells in vitro but have distinct pathological outcomes in vivo. HTLV-1 encodes a protein from the antisense strand of its proviral genome, the HTLV-1 basic leucine zipper factor (HBZ), which inhibits Tax-1-mediated viral transcription and promotes cell proliferation, a high proviral load, and persistence in vivo. In adult T-cell leukemia/lymphoma (ATL) cell lines and patient T cells, hbz is often the only viral gene expressed. The antisense strand of the HTLV-2 proviral genome also encodes a protein termed APH-2. Like HBZ, APH-2 is able to inhibit Tax-2-mediated viral transcription and is detectable in most primary lymphocytes from HTLV-2-infected patients. However, unlike HBZ, the loss of APH-2 in vivo results in increased viral replication and proviral loads, suggesting that HBZ and APH-2 modulate the virus and cellular pathways differently. Herein, we examined the effect of APH-2 on several known HBZ-modulated pathways: NF-κB (p65) transactivation, transforming growth factor β (TGF-β) signaling, and interferon regulatory factor 1 (IRF-1) transactivation. Like HBZ, APH-2 has the ability to inhibit p65 transactivation. Conversely, HBZ and APH-2 have divergent effects on TGF-β signaling and IRF-1 transactivation. Quantitative PCR and protein half-life experiments revealed a substantial disparity between HBZ and APH-2 transcript levels and protein stability, respectively. Taken together, our data further elucidate the functional differences between HBZ and APH-2 and how these differences can have profound effects on the survival of infected cells and, ultimately, pathogenesis. IMPORTANCE Human T-cell leukemia virus type 1 (HTLV-1) and type 2 (HTLV-2) are highly related retroviruses that have distinct pathological outcomes in infected hosts. Functional comparisons of HTLV-1 and HTLV-2 proteins provide a better understanding about how HTLV-1 infection is associated with disease and HTLV-2 infection is not. The HTLV genome antisense-strand genes hbz and aph-2 are often the only viral genes expressed in HTLV-infected T cells. Previously, our group found that HTLV-1 HBZ and HTLV-2 APH-2 had distinct effects in vivo and hypothesized that the differences in the interactions of HBZ and APH-2 with important cell signaling pathways dictate whether cells undergo proliferation, apoptosis, or senescence. Ultimately, these functional differences may affect how HTLV-1 causes disease but HTLV-2 generally does not. In the current study, we compared the effects of HBZ and APH-2 on several HTLV-relevant cellular pathways, including the TGF-β signaling, NF-κB activation, and IRF-1 transactivation pathways.
Collapse
Affiliation(s)
- Amanda R Panfil
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Nathan J Dissinger
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Cory M Howard
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Brandon M Murphy
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Kristina Landes
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Soledad A Fernandez
- Center for Biostatistics, The Ohio State University, Columbus, Ohio, USA Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | - Patrick L Green
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, Ohio, USA Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
24
|
Abstract
Our knowledge of the variety and abundances of RNA base modifications is rapidly increasing. Modified bases have critical roles in tRNAs, rRNAs, translation, splicing, RNA interference, and other RNA processes, and are now increasingly detected in all types of transcripts. Can new biological principles associated with this diversity of RNA modifications, particularly in mRNAs and long non-coding RNAs, be identified? This review will explore this question by focusing primarily on adenosine to inosine (A-to-I) RNA editing by the adenine deaminase acting on RNA (ADAR) enzymes that have been intensively studied for the past 20 years and have a wide range of effects. Over 100 million adenosine to inosine editing sites have been identified in the human transcriptome, mostly in embedded Alu sequences that form potentially innate immune-stimulating dsRNA hairpins in transcripts. Recent research has demonstrated that inosine in the epitranscriptome and ADAR1 protein establish innate immune tolerance for host dsRNA formed by endogenous sequences. Innate immune sensors that detect viral nucleic acids are among the readers of epitranscriptome RNA modifications, though this does preclude a wide range of other modification effects.
Collapse
Affiliation(s)
- Mary A. O’Connell
- CEITEC Masaryk University, Brno, Czech Republic
- * E-mail: (MAO); (LPK)
| | - Niamh M. Mannion
- Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Liam P. Keegan
- CEITEC Masaryk University, Brno, Czech Republic
- * E-mail: (MAO); (LPK)
| |
Collapse
|
25
|
Modulation of Mitochondrial Antiviral Signaling by Human Herpesvirus 8 Interferon Regulatory Factor 1. J Virol 2015; 90:506-20. [PMID: 26512076 DOI: 10.1128/jvi.01903-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/14/2015] [Indexed: 02/04/2023] Open
Abstract
UNLABELLED Mitochondrial lipid raft-like microdomains, experimentally also termed mitochondrial detergent-resistant membrane fractions (mDRM), play a role as platforms for recruiting signaling molecules involved in antiviral responses such as apoptosis and innate immunity. Viruses can modulate mitochondrial functions for their own survival and replication. However, viral regulation of the antiviral responses via mDRM remains incompletely understood. Here, we report that human herpesvirus 8 (HHV-8) gene product viral interferon regulatory factor 1 (vIRF-1) is targeted to mDRM during virus replication and negatively regulates the mitochondrial antiviral signaling protein (MAVS)-mediated antiviral responses. The N-terminal region of vIRF-1 interacts directly with membrane lipids, including cardiolipin. In addition, a GxRP motif within the N terminus of vIRF-1, conserved in the mDRM-targeting region of mitochondrial proteins, including PTEN-induced putative kinase 1 (PINK1) and MAVS, was found to be important for vIRF-1 association with mitochondria. Furthermore, MAVS, which has the potential to promote vIRF-1 targeting to mDRM possibly by inducing cardiolipin exposure on the outer membrane of mitochondria, interacts with vIRF-1, which, in turn, inhibits MAVS-mediated antiviral signaling. Consistent with these results, vIRF-1 targeting to mDRM contributes to promotion of HHV-8 productive replication and inhibition of associated apoptosis. Combined, our results suggest novel molecular mechanisms for negative-feedback regulation of MAVS by vIRF-1 during virus replication. IMPORTANCE Successful virus replication is in large part achieved by the ability of viruses to counteract apoptosis and innate immune responses elicited by infection of host cells. Recently, mitochondria have emerged to play a central role in antiviral signaling. In particular, mitochondrial lipid raft-like microdomains appear to function as platforms in cell apoptosis signaling. However, viral regulation of antiviral signaling through the mitochondrial microdomains remains incompletely understood. The present study demonstrates that HHV-8-encoded vIRF-1 targets to the mitochondrial detergent-resistant microdomains via direct interaction with cardiolipin and inhibits MAVS protein-mediated apoptosis and type I interferon gene expression in a negative-feedback manner, thus promoting HHV-8 productive replication. These results suggest that vIRF-1 is the first example of a viral protein to inhibit mitochondrial antiviral signaling through lipid raft-like microdomains.
Collapse
|
26
|
Baydoun HH, Cherian MA, Green P, Ratner L. Inducible nitric oxide synthase mediates DNA double strand breaks in Human T-Cell Leukemia Virus Type 1-induced leukemia/lymphoma. Retrovirology 2015; 12:71. [PMID: 26265053 PMCID: PMC4534112 DOI: 10.1186/s12977-015-0196-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/30/2015] [Indexed: 01/23/2023] Open
Abstract
Background Adult T-cell leukemia/lymphoma (ATLL) is an aggressive and fatal malignancy of CD4+ T-lymphocytes infected by the Human T-Cell Virus Type 1 (HTLV-1). The molecular mechanisms of transformation in ATLL have not been fully elucidated. However, genomic instability and cumulative DNA damage during the long period of latency is believed to be essential for HTLV-1 induced leukemogenesis. In addition, constitutive activation of the NF-κB pathway was found to be a critical determinant for transformation. Whether a connection exists between NF-κB activation and accumulation of DNA damage is not clear. We recently found that the HTLV-1 viral oncoprotein, Tax, the activator of the NF-κB pathway, induces DNA double strand breaks (DSBs). Results Here, we investigated whether any of the NF-κB target genes are critical in inducing DSBs. Of note, we found that inducible nitric oxide synthase (iNOS) that catalyzes the production of nitric oxide (NO) in macrophages, neutrophils and T-cells is over expressed in HTLV-1 infected and Tax-expressing cells. Interestingly, we show that in HTLV-1 infected cells, iNOS expression is Tax-dependent and specifically requires the activation of the classical NF-κB and JAK/STAT pathways. A dramatic reduction of DSBs was observed when NO production was inhibited, indicating that Tax induces DSBs through the activation of NO synthesis. Conclusions Determination of the impact of NO on HTLV-1-induced leukemogenesis opens a new area for treatment or prevention of ATLL and perhaps other cancers in which NO is produced.
Collapse
Affiliation(s)
- Hicham H Baydoun
- Division of Molecular Oncology, Department of Medicine Campus, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA.
| | - Mathew A Cherian
- Division of Molecular Oncology, Department of Medicine Campus, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA.
| | - Patrick Green
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA.
| | - Lee Ratner
- Division of Molecular Oncology, Department of Medicine Campus, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA. .,Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
27
|
Zhou Q, Lavorgna A, Bowman M, Hiscott J, Harhaj EW. Aryl Hydrocarbon Receptor Interacting Protein Targets IRF7 to Suppress Antiviral Signaling and the Induction of Type I Interferon. J Biol Chem 2015; 290:14729-39. [PMID: 25911105 DOI: 10.1074/jbc.m114.633065] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Indexed: 12/25/2022] Open
Abstract
The transcription factor IRF7 (interferon regulatory factor 7) is a key regulator of type I interferon and plays essential roles in restricting virus infection and spread. IRF7 activation is tightly regulated to prevent excessive inflammation and autoimmunity; however, how IRF7 is suppressed by negative regulators remains poorly understood. Here, we have identified AIP (aryl hydrocarbon receptor interacting protein) as a new binding partner of IRF7. The interaction between AIP and IRF7 is enhanced upon virus infection, and AIP potently inhibits IRF7-induced type I IFN (IFNα/β) production. Overexpression of AIP blocks virus-induced activation of IFN, whereas knockdown of AIP by siRNA potentiates virally activated IFN production. Consistently, AIP-deficient murine embryonic fibroblasts are highly resistant to virus infection because of increased production of IFNα/β. AIP inhibits IRF7 function by antagonizing the nuclear localization of IRF7. Together, our study identifies AIP as a novel inhibitor of IRF7 and a negative regulator of innate antiviral signaling.
Collapse
Affiliation(s)
- Qinjie Zhou
- From the Department of Microbiology and Immunology, The University of Miami, Miller School of Medicine, Miami, Florida 33136
| | - Alfonso Lavorgna
- the Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland 21287
| | - Melissa Bowman
- the Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland 21287, the Graduate Program in Cellular and Molecular Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, and
| | - John Hiscott
- the Division of Infectious Diseases, Vaccine & Gene Therapy Institute of Florida, Port Saint Lucie, Florida 34987
| | - Edward W Harhaj
- the Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland 21287,
| |
Collapse
|
28
|
Human T-cell leukemia virus type 1 (HTLV-1) tax requires CADM1/TSLC1 for inactivation of the NF-κB inhibitor A20 and constitutive NF-κB signaling. PLoS Pathog 2015; 11:e1004721. [PMID: 25774694 PMCID: PMC4361615 DOI: 10.1371/journal.ppat.1004721] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 01/31/2015] [Indexed: 02/07/2023] Open
Abstract
Persistent activation of NF-κB by the Human T-cell leukemia virus type 1 (HTLV-1) oncoprotein, Tax, is vital for the development and pathogenesis of adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). K63-linked polyubiquitinated Tax activates the IKK complex in the plasma membrane-associated lipid raft microdomain. Tax also interacts with TAX1BP1 to inactivate the NF-κB negative regulatory ubiquitin-editing A20 enzyme complex. However, the molecular mechanisms of Tax-mediated IKK activation and A20 protein complex inactivation are poorly understood. Here, we demonstrated that membrane associated CADM1 (Cell adhesion molecule1) recruits Ubc13 to Tax, causing K63-linked polyubiquitination of Tax, and IKK complex activation in the membrane lipid raft. The c-terminal cytoplasmic tail containing PDZ binding motif of CADM1 is critical for Tax to maintain persistent NF-κB activation. Finally, Tax failed to inactivate the NF-κB negative regulator ubiquitin-editing enzyme A20 complex, and activate the IKK complex in the lipid raft in absence of CADM1. Our results thus indicate that CADM1 functions as a critical scaffold molecule for Tax and Ubc13 to form a cellular complex with NEMO, TAX1BP1 and NRP, to activate the IKK complex in the plasma membrane-associated lipid rafts, to inactivate NF-κB negative regulators, and maintain persistent NF-κB activation in HTLV-1 infected cells. HTLV-1 infection leads to the development of Adult T-cell Leukemia (ATL) or HTLV-1 associated myelopathy/ tropical spastic paraparesis (HAM/TSP). One of the major causes responsible for the development of HTLV-1 associated diseases is chronic inflammation directed by NF-kappaB (NF-κB). NF-κB activation in response to a wide variety of signals is transient and tightly controlled by ubiquitin-editing enzyme A20. One of the mechanisms of persistent NF-κB activation in HTLV-1 infected cells is inactivation of NF-κB negative regulators; however, the precise mechanism is unknown. Here, we focused on host tumor suppressor Cell adhesion molecule 1 (CADM1) that is robustly upregulated in HTLV-1 infected cells. The expression of CADM1 is frequently silenced in several cancers; however, it is critical for HTLV-1 associated ATL tumor cell survival. We characterized the role of CADM1 in persistent NF-κB activation in HTLV-1 infected cells. We found that CADM1 is required for the HTLV-1 oncoprotein, Tax, to form a cellular complex with Ubc13, TAX1BP1, NRP and NEMO in the membrane lipid rafts micorodomain. We further demonstrated that Tax requires CADM1 to inactivate NF-κB negative regulator and maintain persistent NF-κB activation. Our study reveals a novel mechanism of chronic NF-κB activation by CADM1 in HTLV-1 infected cells.
Collapse
|
29
|
Jain P, Lavorgna A, Sehgal M, Gao L, Ginwala R, Sagar D, Harhaj EW, Khan ZK. Myocyte enhancer factor (MEF)-2 plays essential roles in T-cell transformation associated with HTLV-1 infection by stabilizing complex between Tax and CREB. Retrovirology 2015; 12:23. [PMID: 25809782 PMCID: PMC4374383 DOI: 10.1186/s12977-015-0140-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 01/15/2015] [Indexed: 12/17/2022] Open
Abstract
Background The exact molecular mechanisms regarding HTLV-1 Tax-mediated viral gene expression and CD4 T-cell transformation have yet to be fully delineated. Herein, utilizing virus-infected primary CD4+ T cells and the virus-producing cell line, MT-2, we describe the involvement and regulation of Myocyte enhancer factor-2 (specifically MEF-2A) during the course of HTLV-1 infection and associated disease syndrome. Results Inhibition of MEF-2 expression by shRNA and its activity by HDAC9 led to reduced viral replication and T-cell transformation in correlation with a heightened expression of MEF-2 in ATL patients. Mechanistically, MEF-2 was recruited to the viral promoter (LTR, long terminal repeat) in the context of chromatin, and constituted Tax/CREB transcriptional complex via direct binding to the HTLV-1 LTR. Furthermore, an increase in MEF-2 expression was observed upon infection in an extent similar to CREB (known Tax-interacting transcription factor), and HATs (p300, CBP, and p/CAF). Confocal imaging confirmed MEF-2 co-localization with Tax and these proteins were also shown to interact by co-immunoprecipitation. MEF-2 stabilization of Tax/CREB complex was confirmed by a novel promoter-binding assay that highlighted the involvement of NFAT (nuclear factor of activated T cells) in this process via Tax-mediated activation of calcineurin (a calcium-dependent serine-threonine phosphatase). MEF-2-integrated signaling pathways (PI3K/Akt, NF-κB, MAPK, JAK/STAT, and TGF-β) were also activated during HTLV-1 infection of primary CD4+ T cells, possibly regulating MEF-2 activity. Conclusions We demonstrate the involvement of MEF-2 in Tax-mediated LTR activation, viral replication, and T-cell transformation in correlation with its heightened expression in ATL patients through direct binding to DNA within the HTLV-1 LTR. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0140-1) contains supplementary material, which is available to authorized users.
Collapse
|
30
|
Diani E, Avesani F, Bergamo E, Cremonese G, Bertazzoni U, Romanelli MG. HTLV-1 Tax protein recruitment into IKKε and TBK1 kinase complexes enhances IFN-I expression. Virology 2014; 476:92-99. [PMID: 25531185 DOI: 10.1016/j.virol.2014.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/30/2014] [Accepted: 12/02/2014] [Indexed: 12/24/2022]
Abstract
The Tax protein expressed by human T-cell leukemia virus type 1 (HTLV-1) plays a pivotal role in the deregulation of cellular pathways involved in the immune response, inflammation, cell survival, and cancer. Many of these effects derive from Tax multiple interactions with host factors, including the subunits of the IKK-complex that are required for NF-κB activation. IKKɛ and TBK1 are two IKK-related kinases that allow the phosphorylation of interferon regulatory factors that trigger IFN type I gene expression. We observed that IKKɛ and TBK1 recruit Tax into cellular immunocomplexes. We also found that TRAF3, which regulates cell receptor signaling effectors, forms complexes with Tax. Transactivation analyses revealed that expression of Tax, in presence of IKKɛ and TBK1, enhances IFN-β promoter activity, whereas the activation of NF-κB promoter is not modified. We propose that Tax may be recruited into the TBK1/IKKɛ complexes as a scaffolding-adaptor protein that enhances IFN-I gene expression.
Collapse
Affiliation(s)
- Erica Diani
- Department of Life and Reproduction Sciences, Section of Biology and Genetics, University of Verona, Strada le Grazie 8, 37134 Verona, Italy.
| | - Francesca Avesani
- Department of Life and Reproduction Sciences, Section of Biology and Genetics, University of Verona, Strada le Grazie 8, 37134 Verona, Italy.
| | - Elisa Bergamo
- Department of Life and Reproduction Sciences, Section of Biology and Genetics, University of Verona, Strada le Grazie 8, 37134 Verona, Italy.
| | - Giorgia Cremonese
- Department of Life and Reproduction Sciences, Section of Biology and Genetics, University of Verona, Strada le Grazie 8, 37134 Verona, Italy.
| | - Umberto Bertazzoni
- Department of Life and Reproduction Sciences, Section of Biology and Genetics, University of Verona, Strada le Grazie 8, 37134 Verona, Italy.
| | - Maria Grazia Romanelli
- Department of Life and Reproduction Sciences, Section of Biology and Genetics, University of Verona, Strada le Grazie 8, 37134 Verona, Italy.
| |
Collapse
|
31
|
Olagnier D, Sze A, Bel Hadj S, Chiang C, Steel C, Han X, Routy JP, Lin R, Hiscott J, van Grevenynghe J. HTLV-1 Tax-mediated inhibition of FOXO3a activity is critical for the persistence of terminally differentiated CD4+ T cells. PLoS Pathog 2014; 10:e1004575. [PMID: 25521510 PMCID: PMC4270795 DOI: 10.1371/journal.ppat.1004575] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 11/13/2014] [Indexed: 11/18/2022] Open
Abstract
The mechanisms involved in the persistence of activated CD4+ T lymphocytes following primary human T leukemia/lymphoma virus type 1 (HTLV-1) infection remain unclear. Here, we demonstrate that the HTLV-1 Tax oncoprotein modulates phosphorylation and transcriptional activity of the FOXO3a transcription factor, via upstream activation of the AKT pathway. De novo HTLV-1 infection of CD4+ T cells or direct lentiviral-mediated introduction of Tax led to AKT activation and AKT-dependent inactivation of FOXO3a, via phosphorylation of residues Ser253 and Thr32. Inhibition of FOXO3a signalling led to the long-term survival of a population of highly activated, terminally differentiated CD4+Tax+CD27negCCR7neg T cells that maintained the capacity to disseminate infectious HTLV-1. CD4+ T cell persistence was reversed by chemical inhibition of AKT activity, lentiviral-mediated expression of a dominant-negative form of FOXO3a or by specific small interfering RNA (siRNA)-mediated silencing of FOXO3a. Overall this study provides new mechanistic insight into the strategies used by HTLV-1 to increase long-term maintenance of Tax+CD4+ T lymphocytes during the early stages of HTLV-1 pathogenesis.
Collapse
Affiliation(s)
- David Olagnier
- Lady Davis Institute-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
- VGTI Florida, Port St. Lucie, Florida, United States of America
| | - Alexandre Sze
- Lady Davis Institute-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Samar Bel Hadj
- Lady Davis Institute-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Cindy Chiang
- VGTI Florida, Port St. Lucie, Florida, United States of America
| | - Courtney Steel
- VGTI Florida, Port St. Lucie, Florida, United States of America
| | - Xiaoying Han
- Lady Davis Institute-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Jean-Pierre Routy
- Immunodeficiency Service and Division of Haematology, Royal Victoria Hospital, McGill University Health Center, McGill University, Montreal, Quebec, Canada
| | - Rongtuan Lin
- Lady Davis Institute-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - John Hiscott
- Lady Davis Institute-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
- VGTI Florida, Port St. Lucie, Florida, United States of America
| | - Julien van Grevenynghe
- Lady Davis Institute-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
- VGTI Florida, Port St. Lucie, Florida, United States of America
| |
Collapse
|
32
|
Lavorgna A, Matsuoka M, Harhaj EW. A critical role for IL-17RB signaling in HTLV-1 tax-induced NF-κB activation and T-cell transformation. PLoS Pathog 2014; 10:e1004418. [PMID: 25340344 PMCID: PMC4207800 DOI: 10.1371/journal.ppat.1004418] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/22/2014] [Indexed: 01/09/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) infection is linked to the development of adult T-cell leukemia (ATL) and the neuroinflammatory disease HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). The HTLV-1 Tax protein functions as a potent viral oncogene that constitutively activates the NF-κB transcription factor to transform T cells; however, the underlying mechanisms remain obscure. Here, using next-generation RNA sequencing we identified the IL-25 receptor subunit IL-17RB as an aberrantly overexpressed gene in HTLV-1 immortalized T cells. Tax induced the expression of IL-17RB in an IκB kinase (IKK) and NF-κB-dependent manner. Remarkably, Tax activation of the canonical NF-κB pathway in T cells was critically dependent on IL-17RB expression. IL-17RB and IL-25 were required for HTLV-1-induced immortalization of primary T cells, and the constitutive NF-κB activation and survival of HTLV-1 transformed T cells. IL-9 was identified as an important downstream target gene of the IL-17RB pathway that drives the proliferation of HTLV-1 transformed cells. Furthermore, IL-17RB was overexpressed in leukemic cells from a subset of ATL patients and also regulated NF-κB activation in some, but not all, Tax-negative ATL cell lines. Together, our results support a model whereby Tax instigates an IL-17RB-NF-κB feed-forward autocrine loop that is obligatory for HTLV-1 leukemogenesis.
Collapse
Affiliation(s)
- Alfonso Lavorgna
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Masao Matsuoka
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Edward William Harhaj
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
33
|
Abstract
Natural killer (NK) cells become activated during viral infections and can play roles in such infections by attacking virus-infected cells or by regulating adaptive immune responses. Experimental models suggest that NK cells may also have the capacity to restrain virus-induced cancers. Here, we discuss the seven viruses linked to human cancers and the evidence of NK cell involvement in these systems.
Collapse
Affiliation(s)
- Rabinarayan Mishra
- Department of Pathology, University of Massachusetts Medical School, 368 Plantation Street, AS9-2051, Worcester, MA 01605
| | - Raymond Welsh
- Department of Pathology, University of Massachusetts Medical School, 368 Plantation Street, AS9-2051, Worcester, MA 01605
| | - Eva Szomolanyi-Tsuda
- Department of Pathology, University of Massachusetts Medical School, 368 Plantation Street, AS9-2051, Worcester, MA 01605
| |
Collapse
|
34
|
Liu Y, Zhang Z, Zhao X, Yu R, Zhang X, Wu S, Liu J, Chi X, Song X, Fu L, Yu Y, Hou L, Chen W. Enterovirus 71 inhibits cellular type I interferon signaling by downregulating JAK1 protein expression. Viral Immunol 2014; 27:267-76. [PMID: 24905060 DOI: 10.1089/vim.2013.0127] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Enterovirus 71 (EV71) infection can cause severe disease and lead to death in children. Recurring outbreaks of EV71 have been reported in several countries. Interferons (IFNs) have been used for decades to treat several types of viral infection, but have a limited ability to inhibit EV71 replication. Herein, we intend to investigate the mechanisms by which EV71 inhibits the cellular type I IFN response. In this study, MRC-5 (human embryonic lung fibroblast) or RD (human rhabdomyosarcoma) cells were infected with EV71, and then treated with or without IFN-α2b. Cells were harvested and analyzed by flow cytometry to determine the level of IFNAR1. Cell lysis were prepared to detect the levels of STAT1, STAT2, phosphorylated STAT1, phosphorylated STAT2, IFNAR1, JAK1, and TYK2 by Western blotting. The phosphorylation of STAT1 and STAT2 induced by IFN were inhibited without significant downregulation of IFNAR1 in EV71-infected cells. The EV71-induced suppression of STAT1 and STAT2 phosphorylation was not rescued by the protein tyrosine phosphatases inhibitor, and was independent of suppressor of cytokine signaling protein 1/3 levels. The phosphorylation of JAK1 and TYK2 were inhibited accompanied by EV71-induced downregulation of JAK1, which occurred at a post-transcriptional level and was proteasome independent. JAK1 expression did not decrease, and IFN-α-stimulated STAT1 and STAT2 phosphorylation were not blocked in HEK293T cells overexpressing the EV71 viral protein 2A or 3C. This study demonstrates that EV71 inhibits the cellular type I IFN antiviral pathway by downregulating JAK1, while the expression of IFNAR1 does not significantly alter in EV71-infected cells. Additionally, the EV71 viral proteins 2A and 3C do not act as antagonists of cellular type I IFN signaling.
Collapse
|
35
|
Pilotti E, Bianchi MV, De Maria A, Bozzano F, Romanelli MG, Bertazzoni U, Casoli C. HTLV-1/-2 and HIV-1 co-infections: retroviral interference on host immune status. Front Microbiol 2013; 4:372. [PMID: 24391628 PMCID: PMC3870298 DOI: 10.3389/fmicb.2013.00372] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/20/2013] [Indexed: 01/03/2023] Open
Abstract
The human retroviruses HIV-1 and HTLV-1/HTLV-2 share similar routes of transmission but cause significantly different diseases. In this review we have outlined the immune mediated mechanisms by which HTLVs affect HIV-1 disease in co-infected hosts. During co-infection with HIV-1, HTLV-2 modulates the cellular microenvironment favoring its own viability and inhibiting HIV-1 progression. This is achieved when the HTLV-2 proviral load is higher than that of HIV-1, and thanks to the ability of HTLV-2 to: (i) up-regulate viral suppressive CCL3L1 chemokine expression; (ii) overcome HIV-1 capacity to activate the JAK/STAT pathway; (iii) reduce the activation of T and NK cells; (iv) modulate the host miRNA profiles. These alterations of immune functions have been mainly attributed to the effects of the HTLV-2 regulatory protein Tax and suggest that HTLV-2 exerts a protective role against HIV-1 infection. Contrary to HIV-1/HTLV-2, the effect of HIV-1/HTLV-1 co-infection on immunological and pathological conditions is still controversial. There is evidence that indicates a worsening of HIV-1 infection, while other evidence does not show clinically relevant effects in HIV-positive people. Possible differences on innate immune mechanisms and a particularly impact on NK cells are becoming evident. The differences between the two HIV-1/HTLV-1 and HIV-1/HTLV-2 co-infections are highlighted and further discussed.
Collapse
Affiliation(s)
- Elisabetta Pilotti
- GEMIB Laboratory, Center for Medical Research and Molecular Diagnostics Parma, Italy
| | - Maria V Bianchi
- GEMIB Laboratory, Center for Medical Research and Molecular Diagnostics Parma, Italy
| | - Andrea De Maria
- Department of Health Sciences, University of Genova Genova, Italy ; Center of Excellence for Biomedical Research, University of Genova Genova, Italy ; IRCCS AOU San Martino-IST Genova Genova, Italy
| | - Federica Bozzano
- Department of Health Sciences, University of Genova Genova, Italy ; Center of Excellence for Biomedical Research, University of Genova Genova, Italy
| | - Maria G Romanelli
- Department of Life and Reproduction Sciences, University of Verona Verona, Italy
| | - Umberto Bertazzoni
- Department of Life and Reproduction Sciences, University of Verona Verona, Italy
| | - Claudio Casoli
- GEMIB Laboratory, Center for Medical Research and Molecular Diagnostics Parma, Italy
| |
Collapse
|
36
|
Cachat A, Chevalier SA, Alais S, Ko NL, Ratner L, Journo C, Dutartre H, Mahieux R. Alpha interferon restricts human T-lymphotropic virus type 1 and 2 de novo infection through PKR activation. J Virol 2013; 87:13386-96. [PMID: 24089560 PMCID: PMC3838277 DOI: 10.1128/jvi.02758-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 09/25/2013] [Indexed: 01/24/2023] Open
Abstract
Type I interferon (IFN-I) inhibits the replication of different viruses. However, the effect of IFN-I on the human T-lymphotropic virus type 1 (HTLV-1) viral cycle is controversial. Here, we investigated the consequences of IFN-α addition for different steps of HTLV-1 and HTLV-2 infection. We first show that alpha interferon (IFN-α) efficiently impairs HTLV-1 and HTLV-2 de novo infection in a T cell line and in primary lymphocytes. Using pseudotyped viruses expressing HTLV-1 envelope, we then show that cell-free infection is insensitive to IFN-α, demonstrating that the cytokine does not affect the early stages of the viral cycle. In contrast, intracellular levels of Gag, Env, or Tax protein are affected by IFN-α treatment in T cells, primary lymphocytes, or 293T cells transfected with HTLV-1 or HTLV-2 molecular clones, demonstrating that IFN-α acts during the late stages of infection. We show that IFN-α does not affect Tax-mediated transcription and acts at a posttranscriptional level. Using either small interfering RNA (siRNA) directed against PKR or a PKR inhibitor, we demonstrate that PKR, whose expression is induced by interferon, plays a major role in IFN-α-induced HTLV-1/2 inhibition. These results indicate that IFN-α has a strong repressive effect on the HTLV-1 and HTLV-2 viral cycle during de novo infection of cells that are natural targets of the viruses.
Collapse
Affiliation(s)
- Anne Cachat
- Equipe Oncogenèse Rétrovirale
- Equipe Labelisée Ligue Nationale Contre le Cancer
- International Center for Research in Infectiology, INSERM U1111-CNRS UMR5308
- Ecole Normale Supérieure de Lyon
- Université Lyon 1, LabEx ECOFECT-Eco-Evolutionary Dynamics of Infectious Diseases, Lyon, France
| | - Sébastien Alain Chevalier
- Equipe Oncogenèse Rétrovirale
- Equipe Labelisée Ligue Nationale Contre le Cancer
- International Center for Research in Infectiology, INSERM U1111-CNRS UMR5308
- Ecole Normale Supérieure de Lyon
- Université Lyon 1, LabEx ECOFECT-Eco-Evolutionary Dynamics of Infectious Diseases, Lyon, France
| | - Sandrine Alais
- Equipe Oncogenèse Rétrovirale
- Equipe Labelisée Ligue Nationale Contre le Cancer
- International Center for Research in Infectiology, INSERM U1111-CNRS UMR5308
- Ecole Normale Supérieure de Lyon
- Université Lyon 1, LabEx ECOFECT-Eco-Evolutionary Dynamics of Infectious Diseases, Lyon, France
| | - Nga Ling Ko
- Unité d'Épidémiologie et Physiopathoglogie des Virus Oncogenes, Institut Pasteur, Paris, France
| | - Lee Ratner
- Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chloé Journo
- Equipe Oncogenèse Rétrovirale
- Equipe Labelisée Ligue Nationale Contre le Cancer
- International Center for Research in Infectiology, INSERM U1111-CNRS UMR5308
- Ecole Normale Supérieure de Lyon
- Université Lyon 1, LabEx ECOFECT-Eco-Evolutionary Dynamics of Infectious Diseases, Lyon, France
| | - Hélène Dutartre
- Equipe Oncogenèse Rétrovirale
- Equipe Labelisée Ligue Nationale Contre le Cancer
- International Center for Research in Infectiology, INSERM U1111-CNRS UMR5308
- Ecole Normale Supérieure de Lyon
- Université Lyon 1, LabEx ECOFECT-Eco-Evolutionary Dynamics of Infectious Diseases, Lyon, France
| | - Renaud Mahieux
- Equipe Oncogenèse Rétrovirale
- Equipe Labelisée Ligue Nationale Contre le Cancer
- International Center for Research in Infectiology, INSERM U1111-CNRS UMR5308
- Ecole Normale Supérieure de Lyon
- Université Lyon 1, LabEx ECOFECT-Eco-Evolutionary Dynamics of Infectious Diseases, Lyon, France
| |
Collapse
|
37
|
HSP90 protects the human T-cell leukemia virus type 1 (HTLV-1) tax oncoprotein from proteasomal degradation to support NF-κB activation and HTLV-1 replication. J Virol 2013; 87:13640-54. [PMID: 24109220 DOI: 10.1128/jvi.02006-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The HTLV-1 genome encodes the Tax protein that plays essential regulatory roles in HTLV-1 replication and oncogenic transformation of T lymphocytes. Despite intensive study of Tax, how Tax interfaces with host signaling pathways to regulate virus replication and drive T-cell proliferation and immortalization remains poorly understood. To gain new insight into the mechanisms of Tax function and regulation, we used tandem affinity purification and mass spectrometry to identify novel cellular Tax-interacting proteins. This screen identified heat shock protein 90 (HSP90) as a new binding partner of Tax. The interaction between HSP90 and Tax was validated by coimmunoprecipitation assays, and colocalization between the two proteins was observed by confocal microscopy. Treatment of HTLV-1-transformed cells with the HSP90 inhibitor 17-DMAG elicited proteasomal degradation of Tax in the nuclear matrix with concomitant inhibition of NF-κB and HTLV-1 long terminal repeat (LTR) activation. Knockdown of HSP90 by lentiviral shRNAs similarly provoked a loss of Tax protein in HTLV-1-transformed cells. Finally, treatment of HTLV-1-transformed cell lines with 17-DMAG suppressed HTLV-1 replication and promoted apoptotic cell death. Taken together, our results reveal that Tax is a novel HSP90 client protein and HSP90 inhibitors may exert therapeutic benefits for ATL and HAM/TSP patients.
Collapse
|
38
|
Kinpara S, Kijiyama M, Takamori A, Hasegawa A, Sasada A, Masuda T, Tanaka Y, Utsunomiya A, Kannagi M. Interferon-α (IFN-α) suppresses HTLV-1 gene expression and cell cycling, while IFN-α combined with zidovudine induces p53 signaling and apoptosis in HTLV-1-infected cells. Retrovirology 2013; 10:52. [PMID: 23688327 PMCID: PMC3698133 DOI: 10.1186/1742-4690-10-52] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 05/09/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Human T-cell leukemia virus type-1 (HTLV-1) is the causative retrovirus of adult T-cell leukemia/lymphoma (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-1 gene expression is maintained at low levels in vivo by unknown mechanisms. A combination therapy of interferon-α (IFN-α) and zidovudin (AZT) shows therapeutic effects in ATL patients, although its mechanism is also obscure. We previously found that viral gene expression in IL-2-dependent HTLV-1-infected T-cells (ILTs) derived from ATL patients was markedly suppressed by stromal cells through a type I IFN response. Here, we investigated the effects of IFN-α with or without AZT on viral gene expression and cell growth in ILTs. RESULTS ILTs expressed variable but lower amounts of HTLV-1 Tax protein than HTLV-1-transformed HUT102 cells. Following the addition of IFN-α, the amounts of HTLV-1 p19 in the supernatants of these cells decreased in three days, while HTLV-1 gene expression decreased only in ILTs but not HUT102 cells. IFN-α also suppressed the spontaneous HTLV-1 induction in primary ATL cells cultured for 24 h. A time course study using ILTs revealed that the levels of intracellular Tax proteins decreased in the first 24 h after addition of IFN-α, before the reduction in HTLV-1 mRNA levels. The initial decreases of Tax protein following IFN-α treatment were observed in 6 of 7 ILT lines tested, although the reduction rates varied among ILT lines. An RNA-dependent protein kinase (PKR)-inhibitor reversed IFN-mediated suppression of Tax in ILTs. IFN-α also induced cell cycle arrest at the G0/G1 phase and suppressed NF-κB activities in these cells. AZT alone did not affect HTLV-1 gene expression, cell viability or NF-κB activities. AZT combined with IFN-α markedly induced cell apoptosis associated with phosphorylation of p53 and induction of p53-responsive genes in ILTs. CONCLUSIONS IFN-α suppressed HTLV-1 gene expression at least through a PKR-mediated mechanism, and also induced cell cycle arrest in ILTs. In combination with AZT, IFN-α further induced p53 signaling and cell apoptosis in these cells. These findings suggest that HTLV-1-infected cells at an IL-2-dependent stage retain susceptibility to type I IFN-mediated regulation of viral expression, and partly explain how AZT/IFN-α produces therapeutic effects in ATL.
Collapse
Affiliation(s)
- Shuichi Kinpara
- Department of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Identification of the activator-binding residues in the second cysteine-rich regulatory domain of protein kinase Cθ (PKCθ). Biochem J 2013; 451:33-44. [PMID: 23289588 DOI: 10.1042/bj20121307] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PKC (protein kinase C) θ is predominantly expressed in T-cells and is critically involved in immunity. Design of PKCθ-selective molecules to manage autoimmune disorders by targeting its activator-binding C1 domain requires the knowledge of its structure and the activator-binding residues. The C1 domain consists of twin C1 domains, C1A and C1B, of which C1B plays a critical role in the membrane translocation and activation of PKCθ. In the present study we determined the crystal structure of PKCθC1B to 1.63 Å (1 Å=0.1 nm) resolution, which showed that Trp(253) at the rim of the activator-binding pocket was orientated towards the membrane, whereas in PKCδC1B the homologous tryptophan residue was orientated away from the membrane. This particular orientation of Trp(253) affects the size of the activator-binding pocket and the membrane affinity. To further probe the structural constraints on activator-binding, five residues lining the activator-binding site were mutated (Y239A, T243A, W253G, L255G and Q258G) and the binding affinities of the PKCθC1B mutants were measured. These mutants showed reduced binding affinities for phorbol ester [PDBu (phorbol 12,13-dibutyrate)] and diacylglycerol [DOG (sn-1,2-dioctanoylglycerol), SAG (sn-1-stearoyl 2-arachidonyl glycerol)]. All five full-length PKCθ mutants exhibited reduced phorbol-ester-induced membrane translocation compared with the wild-type. These results provide insights into the PKCθ activator-binding domain, which will aid in future design of PKCθ-selective molecules.
Collapse
|
40
|
Taylor KE, Mossman KL. Recent advances in understanding viral evasion of type I interferon. Immunology 2013; 138:190-7. [PMID: 23173987 PMCID: PMC3573272 DOI: 10.1111/imm.12038] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 10/11/2012] [Accepted: 11/14/2012] [Indexed: 12/21/2022] Open
Abstract
The type I interferon (IFN) system mediates a wide variety of antiviral effects and represents an important first barrier to virus infection. Consequently, viruses have developed an impressive diversity of tactics to circumvent IFN responses. Evasion strategies can involve preventing initial virus detection, via the disruption of the Toll‐like receptors or the retinoic acid inducible gene I (RIG‐I) ‐like receptors, or by avoiding the initial production of the ligands recognized by these receptors. An alternative approach is to preclude IFN production by disarming or degrading the transcription factors involved in the expression of IFN, such as interferon regulatory factor 3 (IRF3)/IRF7, nuclear factor‐κB (NF‐κB), or ATF‐2/c‐jun, or by inducing a general block on host cell transcription. Viruses also oppose IFN signalling, both by disturbing the type I IFN receptor and by impeding JAK/STAT signal transduction upon IFN receptor engagement. In addition, the global expression of IFN‐stimulated genes (ISGs) can be obstructed via interference with epigenetic signalling, and specific ISGs can also be selectively targeted for inhibition. Finally, some viruses disrupt IFN responses by co‐opting negative regulatory systems, whereas others use antiviral mechanisms to their own advantage. Here, we review recent developments in this field.
Collapse
Affiliation(s)
- Kathryne E Taylor
- Department of Biochemistry and Biomedical Sciences, McMaster Immunology Research Centre, Michael DeGroote Centre for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
41
|
Charoenthongtrakul S, Gao L, Parvatiyar K, Lee D, Harhaj EW. RING finger protein 11 targets TBK1/IKKi kinases to inhibit antiviral signaling. PLoS One 2013; 8:e53717. [PMID: 23308279 PMCID: PMC3538746 DOI: 10.1371/journal.pone.0053717] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 12/04/2012] [Indexed: 12/22/2022] Open
Abstract
A key feature of the innate antiviral immune response is a rapid nonspecific response to virus infection largely mediated by the induction and extracellular secretion of type I interferons (IFNs) that restrict virus replication. Cytoplasmic sensors such as RIG-I recognize viral RNA and trigger antiviral signaling pathways that upregulate IFN transcription. However, it remains largely unknown how antiviral signaling is negatively regulated to maintain homeostasis after the elimination of virus. In this report, we have identified the RING domain-containing protein RING finger 11 (RNF11) as a novel negative regulator of innate antiviral signaling. Overexpression of RNF11 downregulated IFN-β expression and enhanced viral replication whereas siRNA-mediated knockdown of RNF11 suppressed viral replication. RNF11 interacted with the noncanonical IKK kinases TBK1/IKKi and attenuated their Lys63-linked polyubiquitination by blocking interactions with the E3 ligase TRAF3. The inhibitory function of RNF11 was dependent on the ubiquitin-binding adaptor molecule TAX1BP1 which was required for RNF11 to target TBK1/IKKi. Collectively, these results indicate that RNF11 functions together with TAX1BP1 to restrict antiviral signaling and IFN-β production.
Collapse
Affiliation(s)
- Soratree Charoenthongtrakul
- Department of Microbiology and Immunology, The University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - Linlin Gao
- Graduate Program in Cancer Biology, Sylvester Comprehensive Cancer Center, The University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - Kislay Parvatiyar
- Department of Microbiology and Immunology, The University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - David Lee
- Department of Microbiology and Immunology, The University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - Edward W. Harhaj
- Department of Oncology, Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
42
|
Ilinskaya A, Derse D, Hill S, Princler G, Heidecker G. Cell-cell transmission allows human T-lymphotropic virus 1 to circumvent tetherin restriction. Virology 2012; 436:201-9. [PMID: 23260108 DOI: 10.1016/j.virol.2012.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 09/19/2012] [Accepted: 11/19/2012] [Indexed: 11/16/2022]
Abstract
Tetherin is part of the cellular innate immunity and impedes cell-free transmission of viruses that bud from the plasma membrane by retaining them on the cell surface. Some viruses have evolved activities in different proteins such as Vpu (HIV-1), K-protein (KSHV), Nef (SIV) or Env (HIV-2) to downregulate tetherin and overcome its restriction. We found that chronically HTLV-1 infected T-cell lines express eightfold more tetherin than uninfected transformed T-cell lines suggesting that tetherin expression is not inhibited by the virus. We observed that even small amounts of exogenous tetherin caused the retention of HTLV-1 on the cell surface and severely reduced cell-free infectivity of HTLV-1, but that cell-cell transmission, which is more relevant for HTLV-1, was significantly less decreased. However, knock-down of tetherin expresssion resulted in a slight increase in cell-cell infection indicating that the protein does not enhance this route of transmission.
Collapse
Affiliation(s)
- Anna Ilinskaya
- HIV-Drug Resistance Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| | | | | | | | | |
Collapse
|
43
|
Kannagi M, Hasegawa A, Takamori A, Kinpara S, Utsunomiya A. The roles of acquired and innate immunity in human T-cell leukemia virus type 1-mediated diseases. Front Microbiol 2012; 3:323. [PMID: 22969761 PMCID: PMC3432515 DOI: 10.3389/fmicb.2012.00323] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 08/20/2012] [Indexed: 12/22/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis in small subsets of HTLV-1 carriers. HTLV-1-specific T-cell responses play critical roles in anti-viral and anti-tumor host defense during HTLV-1 infections. Some HTLV-1 carriers exhibit selective loss or anergy of HTLV-1-specific T-cells at an asymptomatic stage. This is also observed in ATL patients and may therefore be an underlying risk factor of ATL in combination with elevated proviral loads. HTLV-1-specific T-cells often recognize the viral oncoprotein Tax, indicating expression of Tax protein in vivo, although levels of HTLV-1 gene expression are known to be very low. A type-I interferon (IFN) response can be induced by HTLV-1-infected cells and suppresses HTLV-1 expression in vitro, suggesting a role of type-I IFN response in viral suppression and pathogenesis in vivo. Both acquired and innate immune responses control the status of HTLV-1-infected cells and could be the important determinants in the development of HTLV-1-mediated malignant and inflammatory diseases.
Collapse
Affiliation(s)
- Mari Kannagi
- Department of Immunotherapeutics, Graduate School, Tokyo Medical and Dental University Tokyo, Japan
| | | | | | | | | |
Collapse
|
44
|
Moens B, Pannecouque C, López G, Talledo M, Gotuzzo E, Khouri R, Bittencourt A, Farré L, Galvão-Castro B, Vandamme AM, Van Weyenbergh J. Simultaneous RNA quantification of human and retroviral genomes reveals intact interferon signaling in HTLV-1-infected CD4+ T cell lines. Virol J 2012; 9:171. [PMID: 22917064 PMCID: PMC3492208 DOI: 10.1186/1743-422x-9-171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 08/17/2012] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND IFN-α contributes extensively to host immune response upon viral infection through antiviral, pro-apoptotic, antiproliferative and immunomodulatory activities. Although extensively documented in various types of human cancers and viral infections, controversy exists in the exact mechanism of action of IFN-α in human immunodeficiency virus type 1 (HIV-1) and human T-lymphotropic virus type 1 (HTLV-1) retroviral infections. RESULTS IFN-α displayed strong anti-HIV-1 effects in HIV-1/HTLV-1 co-infected MT-4 cells in vitro, demonstrated by the dose-dependent inhibition of the HIV-1-induced cytopathic effect (IC50 = 83.5 IU/ml, p < 0.0001) and p24 levels in cell-free supernatant (IC50 = 1.2 IU/ml, p < 0.0001). In contrast, IFN-α treatment did not affect cell viability or HTLV-1 viral mRNA levels in HTLV-1 mono-infected cell lines, based on flow cytometry and nCounter analysis, respectively. However, we were able to confirm the previously described post-transcriptional inhibition of HTLV-1 p19 secretion by IFN-α in cell lines (p = 0.0045), and extend this finding to primary Adult T cell Leukemia patient samples (p = 0.031). In addition, through microarray and nCounter analysis, we performed the first genome-wide simultaneous quantification of complete human and retroviral transciptomes, demonstrating significant transcriptional activation of interferon-stimulated genes without concomitant decrease of HTLV-1 mRNA levels. CONCLUSIONS Taken together, our results indicate that both the absence of in vitro antiproliferative and pro-apoptotic activity as well as the modest post-transcriptional antiviral activity of IFN-α against HTLV-1, were not due to a cell-intrinsic defect in IFN-α signalisation, but rather represents a retrovirus-specific phenomenon, considering the strong HIV-1 inhibition in co-infected cells.
Collapse
Affiliation(s)
- Britta Moens
- Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, KULeuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Tattermusch S, Bangham CRM. HTLV-1 infection: what determines the risk of inflammatory disease? Trends Microbiol 2012; 20:494-500. [PMID: 22917680 DOI: 10.1016/j.tim.2012.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/11/2012] [Accepted: 07/11/2012] [Indexed: 12/24/2022]
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) is an exogenous retrovirus that persists lifelong in the infected host. Infection has been linked to a spectrum of diverse diseases: adult T cell leukemia, encephalomyelopathy, and predisposition to opportunistic bacterial and helminth infections. Applications of new technologies and biological concepts to the field have provided new insights into viral persistence and pathogenesis in HTLV-1 infection. Here, we summarize the emerging concepts of dynamic HTLV-1-host interactions and propose that chronic interferon (IFN) production causes tissue damage in HTLV-1-associated inflammatory diseases.
Collapse
Affiliation(s)
- Sonja Tattermusch
- Imperial College London, Department of Immunology, Norfolk Place, London W2 1PG, UK
| | | |
Collapse
|
46
|
The multifaceted oncoprotein Tax: subcellular localization, posttranslational modifications, and NF-κB activation. Adv Cancer Res 2012; 113:85-120. [PMID: 22429853 DOI: 10.1016/b978-0-12-394280-7.00003-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The human T-cell lymphotropic virus type-I (HTLV-I) is the etiologic agent of adult T-cell leukemia/lymphoma (ATL) and of tropical spastic paraparesis/HTLV-I-associated myelopathy. Constitutive NF-κB activation by the viral oncoprotein Tax plays a crucial role in the induction and maintenance of cellular proliferation, transformation, and inhibition of apoptosis. In an attempt to provide a general view of the molecular mechanisms of constitutive Tax-induced NF-κB activation, we summarize in this review the recent body of literature that supports a major role for Tax posttranslational modifications, chiefly ubiquitination, and SUMOylation, in the NF-κB activity of Tax. These modifications indeed participate in the control of Tax subcellular localization and modulate its protein-protein interaction potential. Tax posttranslational modifications, which highlight the ability of HTLV-I to optimize its limited viral genome size, might represent an attractive target for the design of new therapies for ATL.
Collapse
|
47
|
Kusano S, Eizuru Y. Human phospholipid scramblase 1 interacts with and regulates transactivation of HTLV-1 Tax. Virology 2012; 432:343-52. [PMID: 22789739 DOI: 10.1016/j.virol.2012.06.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 04/21/2012] [Accepted: 06/18/2012] [Indexed: 11/18/2022]
Abstract
Human phospholipid scramblase (PLSCR) 1 expression is strongly activated in response to interferon (IFN) treatment and viral infection, and PLSCR1 is necessary for the IFN-dependent induction of gene expression and antiviral activity. We show here that PLSCR1 directly interacts with human T-cell leukemia virus type-1 (HTLV-1) Tax in vitro and in vivo. This interaction reduced the cytoplasmic distribution of Tax. PLSCR1 efficiently repressed the Tax-mediated transactivation of the HTLV-1 long terminal repeat and the NF-κB binding site reporter constructs in an interaction-dependent manner in COS-1 and Tax-producing HTLV-1-infected T cell lines. Furthermore, we show that PLSCR1 repressed the homodimerization of Tax in vitro. These data reveal for the first time that PLSCR1 specifically interacts with HTLV-1 Tax and negatively regulates its transactivation activity by altering the subcellular distribution and the homodimerization of Tax. PLSCR1 may play an important role in the IFN-mediated repression of Tax-dependent transactivation during HTLV-1 infection.
Collapse
Affiliation(s)
- Shuichi Kusano
- Division of Persistent and Oncogenic Viruses, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan.
| | | |
Collapse
|
48
|
Chang JH, Xiao Y, Hu H, Jin J, Yu J, Zhou X, Wu X, Johnson HM, Akira S, Pasparakis M, Cheng X, Sun SC. Ubc13 maintains the suppressive function of regulatory T cells and prevents their conversion into effector-like T cells. Nat Immunol 2012; 13:481-90. [PMID: 22484734 PMCID: PMC3361639 DOI: 10.1038/ni.2267] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 02/18/2012] [Indexed: 12/14/2022]
Abstract
Maintenance of immune homeostasis requires regulatory T (Treg) cells. Here we show that Treg-specific ablation of Ubc13, a lysine 63-specific ubiquitin-conjugating enzyme, caused aberrant T cell activation and autoimmunity. Although Ubc13 deficiency did not affect Treg cell survival or Foxp3 expression, it impaired the in vivo suppressive function of Treg cells and rendered them sensitive for acquiring T helper (TH) 1- and TH17-like effector T cell phenotypes. This function of Ubc13 involved its downstream target, IκB kinase (IKK). The Ubc13-IKK signaling axis controlled the expression specific Treg effector molecules, including interleukin 10 (IL-10) and SOCS1. Collectively, these findings suggest that the Ubc13-IKK signaling axis regulates the molecular program that maintains Treg function and prevents Treg cells from acquiring inflammatory phenotypes.
Collapse
Affiliation(s)
- Jae-Hoon Chang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Eberle ME, Dalpke AH. Dectin-1 Stimulation Induces Suppressor of Cytokine Signaling 1, Thereby Modulating TLR Signaling and T Cell Responses. THE JOURNAL OF IMMUNOLOGY 2012; 188:5644-54. [DOI: 10.4049/jimmunol.1103068] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
Miyauchi K, Urano E, Takizawa M, Ichikawa R, Komano J. Therapeutic potential of HIV protease-activable CASP3. Sci Rep 2012; 2:359. [PMID: 22496955 PMCID: PMC3323887 DOI: 10.1038/srep00359] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 03/12/2012] [Indexed: 11/23/2022] Open
Abstract
Development of a therapeutic application of CASP3/caspase 3/CPP32, an executor of apoptosis, has been challenging because regulation of its activation is complicated. This study aimed to inhibit cancer cell growth and human immunodeficiency virus type 1 (HIV-1) propagation through a CASP3 mutant, CASP3*, activable by HIV-1-encoded aspartate protease. Active CASP3* was delivered to leukemic cells using a protein transduction vehicle, the lentivirus-like nanoparticle (LENA), which should contain thousands of CASP3*-Gag protein molecules and release the activated CASP3* into the target cell cytoplasm. CASP3*-LENA induced apoptosis in various types of leukemic cells. In addition to being effective against leukemic cells, constitutive expression of CASP3* restricted HIV-1 propagation in SUP-T1 cells. The attenuation of HIV-1 replication in SUP-T1/CASP3* cells was attributed to the elimination of HIV-1-infected cells by apoptosis. These data suggest that CASP3* has therapeutic potential against both lymphoid malignancies and HIV-1 infection.
Collapse
Affiliation(s)
- Kosuke Miyauchi
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | | | |
Collapse
|