1
|
Diwaker D, Kim D, Cordova-Martinez D, Pujari N, Jordan BA, Smith GA, Wilson DW. The gE/gI complex is necessary for kinesin-1 recruitment during alphaherpesvirus egress from neurons. J Virol 2025; 99:e0165024. [PMID: 39651860 PMCID: PMC11784224 DOI: 10.1128/jvi.01650-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/13/2024] [Indexed: 02/01/2025] Open
Abstract
Following reactivation of a latent alphaherpesvirus infection, viral particles are assembled in neuronal cell bodies, trafficked anterogradely within axons to nerve termini, and spread to adjacent epithelial cells. The virally encoded membrane proteins US9p and the glycoprotein heterodimer gE/gI of pseudorabies virus (PRV) and herpes simplex virus type 1 (HSV-1) play critical roles in anterograde spread, likely as a tripartite gE/gI-US9p complex. Two kinesin motors, kinesin-1 and kinesin-3, are implicated in the egress of these viruses, but how gE/gI-US9p coordinates their activities is poorly understood. Here, we report that PRV, in addition to associating with the kinesin-3 motor KIF1A, recruits the neuronal kinesin-1 isoforms KIF5A and KIF5C, but not the broadly expressed isoform KIF5B, during egress from differentiated CAD neurons. Similarly, in the axons of dorsal root ganglia (DRG)-derived sensory neurons, PRV colocalized with KIF5C but not KIF5B. In differentiated CAD cells, the association of KIF1A with egressing PRV was dependent upon US9p, whereas the recruitment of KIF5 isoforms required gE/gI. Consistent with these findings, the number of PRV particles trafficking within CAD neurites and the axons of DRG neurons increased when kinesin-1 motor activity was upregulated by hyperacetylating microtubules using trichostatin A (TSA) or tubacin, and this enhanced trafficking depended upon the presence of gE/gI. We propose that, following its recruitment by US9p, KIF1A delivers PRV particles to a location where KIF5 motors are subsequently added by a gE/gI-dependent mechanism. KIF5A/C isoforms then serve to traffic viral particles along axons, resulting in characteristic recrudescent infection. IMPORTANCE Alphaherpesviruses include important human and veterinary pathogens that share a unique propensity to establish life-long latent infections in the peripheral nervous system. Upon reactivation, these viruses navigate back to body surfaces and transmit to new hosts. In this study, we demonstrate that the virus gE/gI-US9p membrane complex routes virus particles down this complex neuronal egress pathway by coordinating their association with multiple kinesin microtubule motors.
Collapse
Affiliation(s)
- Drishya Diwaker
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - DongHo Kim
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Dylann Cordova-Martinez
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, USA
| | - Nivedita Pujari
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Bryen A. Jordan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, USA
| | - Gregory A. Smith
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Duncan W. Wilson
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, New York, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
2
|
Bergeman MH, Hernandez MQ, Diefenderfer J, Drewes JA, Velarde K, Tierney WM, Enow JA, Glenn HL, Rahman MM, Hogue IB. Individual herpes simplex virus 1 (HSV-1) particles exit by exocytosis and accumulate at preferential egress sites. J Virol 2024; 98:e0178523. [PMID: 38193690 PMCID: PMC10883806 DOI: 10.1128/jvi.01785-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 01/10/2024] Open
Abstract
The human pathogen herpes simplex virus 1 (HSV-1) produces a lifelong infection in the majority of the world's population. While the generalities of alpha herpesvirus assembly and egress pathways are known, the precise molecular and spatiotemporal details remain unclear. In order to study this aspect of HSV-1 infection, we engineered a recombinant HSV-1 strain expressing a pH-sensitive reporter, gM-pHluorin. Using a variety of fluorescent microscopy modalities, we can detect individual virus particles undergoing intracellular transport and exocytosis at the plasma membrane. We show that particles exit from epithelial cells individually, not bulk release of many particles at once, as has been reported for other viruses. In multiple cell types, HSV-1 particles accumulate over time at the cell periphery and cell-cell contacts. We show that this accumulation effect is the result of individual particles undergoing exocytosis at preferential sites and that these egress sites can contribute to cell-cell spread. We also show that the viral membrane proteins gE, gI, and US9, which have important functions in intracellular transport in neurons, are not required for preferential egress and clustering in non-neuronal cells. Importantly, by comparing HSV-1 to a related alpha herpesvirus, pseudorabies virus, we show that this preferential exocytosis and clustering effect are cell type dependent, not virus dependent. This preferential egress and clustering appear to be the result of the arrangement of the microtubule cytoskeleton, as virus particles co-accumulate at the same cell protrusions as an exogenous plus end-directed kinesin motor.IMPORTANCEAlpha herpesviruses produce lifelong infections in their human and animal hosts. The majority of people in the world are infected with herpes simplex virus 1 (HSV-1), which typically causes recurrent oral or genital lesions. However, HSV-1 can also spread to the central nervous system, causing severe encephalitis, and might also contribute to the development of neurodegenerative diseases. Many of the steps of how these viruses infect and replicate inside host cells are known in depth, but the final step, exiting from the infected cell, is not fully understood. In this study, we engineered a novel variant of HSV-1 that allows us to visualize how individual virus particles exit from infected cells. With this imaging assay, we investigated preferential egress site formation in certain cell types and their contribution to the cell-cell spread of HSV-1.
Collapse
Affiliation(s)
- Melissa H. Bergeman
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Michaella Q. Hernandez
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | | | - Jake A. Drewes
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Kimberly Velarde
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Wesley M. Tierney
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Junior A. Enow
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Honor L. Glenn
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Masmudur M. Rahman
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Ian B. Hogue
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
3
|
Twigg CAI, Haugo-Crooks A, Roller RJ. Extragenic suppression of an HSV-1 UL34 nuclear egress mutant reveals role for pUS9 as an inhibitor of epithelial cell-to-cell spread. J Virol 2023; 97:e0083623. [PMID: 37787529 PMCID: PMC10617574 DOI: 10.1128/jvi.00836-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/16/2023] [Indexed: 10/04/2023] Open
Abstract
IMPORTANCE Herpesviruses are able to disseminate in infected hosts despite development of a strong immune response. Their ability to do this relies on a specialized process called cell-to-cell spread in which newly assembled virus particles are trafficked to plasma membrane surfaces that abut adjacent uninfected cells. The mechanism of cell-to-cell spread is obscure, and little is known about whether or how it is regulated in different cells. We show here that a viral protein with a well-characterized role in promoting spread from neurons has an opposite, inhibitory role in other cells.
Collapse
Affiliation(s)
- Carly A. I. Twigg
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Alison Haugo-Crooks
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Richard J. Roller
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
4
|
Adamou S, Vanarsdall A, Johnson DC. Pseudorabies Virus Mutants Lacking US9 Are Defective in Cytoplasmic Assembly and Sorting of Virus Particles into Axons and Not in Axonal Transport. Viruses 2023; 15:153. [PMID: 36680194 PMCID: PMC9866217 DOI: 10.3390/v15010153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023] Open
Abstract
Herpes simplex virus (HSV) and varicella zoster virus (VZV) rely on transport of virus particles in neuronal axons to spread from sites of viral latency in sensory ganglia to peripheral tissues then on to other hosts. This process of anterograde axonal transport involves kinesin motors that move virus particles rapidly along microtubules. α-herpesvirus anterograde transport has been extensively studied by characterizing the porcine pseudorabies virus (PRV) and HSV, with most studies focused on two membrane proteins: gE/gI and US9. It was reported that PRV and HSV US9 proteins bind to kinesin motors, promoting tethering of virus particles on the motors, and furthering anterograde transport within axons. Alternatively, other models have argued that HSV and PRV US9 and gE/gI function in the cytoplasm and not in neuronal axons. Specifically, HSV gE/gI and US9 mutants are defective in the assembly of virus particles in the cytoplasm of neurons and the subsequent sorting of virus particles to cell surfaces and into axons. However, PRV US9 and gE/gI mutants have not been characterized for these cytoplasmic defects. We examined neurons infected with PRV mutants, one lacking both gE/gI and US9 and the other lacking just US9, by electron microscopy. Both PRV mutants exhibited similar defects in virus assembly and cytoplasmic sorting of virus particles to cell surfaces. As well, the mutants exhibited reduced quantities of infectious virus in neurons and in cell culture supernatants. We concluded that PRV US9 primarily functions in neurons to promote cytoplasmic steps in anterograde transport.
Collapse
Affiliation(s)
- Steven Adamou
- Multiscale Microscopy Core, Oregon Health & Science University, Portland, OR 97239, USA
| | - Adam Vanarsdall
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - David C. Johnson
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
5
|
Singh P, Collins MF, Johns RN, Manuel KA, Ye ZA, Bloom DC, Neumann DM. Deletion of the CTRL2 Insulator in HSV-1 Results in the Decreased Expression of Genes Involved in Axonal Transport and Attenuates Reactivation In Vivo. Viruses 2022; 14:v14050909. [PMID: 35632655 PMCID: PMC9144644 DOI: 10.3390/v14050909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
HSV-1 is a human pathogen that establishes a lifelong infection in the host. HSV-1 is transported by retrograde axonal transport to sensory neurons in the peripheral nervous system where latent viral genomes can reactivate. The resulting virus travels via anterograde axonal transport to the periphery and can cause clinical disease. CTCF insulators flank the LAT and IE regions of HSV-1 and during latency and maintain the integrity of transcriptional domains through a myriad of functions, including enhancer-blocking or barrier-insulator functions. Importantly, during reactivation, CTCF protein is evicted from the HSV-1 genome, especially from the CTRL2 insulator. CTRL2 is a functional insulator downstream of the 5′exon region of the LAT, so these results suggest that the disruption of this insulator may be required for efficient HSV-1 reactivation. To further explore this, we used a recombinant virus containing a deletion of the CTRL2 insulator (ΔCTRL2) in a rabbit ocular model of HSV-1 infection and induced reactivation. We show that, in the absence of the CTRL2 insulator, HSV-1 established an equivalent latent infection in rabbits, but those rabbits failed to efficiently reactivate from latency. Furthermore, we found a significant decrease in the expression of the gene Us9-, a gene that codes for a type II membrane protein that has been shown to be required for anterograde transport in neurons. Taken together, these results suggest that the functions of the CTRL2 insulator and Us9 activation in reactivating neurons are intrinsically linked through the regulation of a gene responsible for the axonal transport of HSV-1 to the periphery.
Collapse
Affiliation(s)
- Pankaj Singh
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53716, USA; (P.S.); (M.F.C.); (K.A.M.); (Z.A.Y.)
| | - Matthew F. Collins
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53716, USA; (P.S.); (M.F.C.); (K.A.M.); (Z.A.Y.)
| | - Richard N. Johns
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA; (R.N.J.); (D.C.B.)
| | - Kayley A. Manuel
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53716, USA; (P.S.); (M.F.C.); (K.A.M.); (Z.A.Y.)
| | - Ziyun A. Ye
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53716, USA; (P.S.); (M.F.C.); (K.A.M.); (Z.A.Y.)
| | - David C. Bloom
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA; (R.N.J.); (D.C.B.)
| | - Donna M. Neumann
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53716, USA; (P.S.); (M.F.C.); (K.A.M.); (Z.A.Y.)
- Correspondence:
| |
Collapse
|
6
|
Liu CY, Jin M, Guo H, Zhao HZ, Hou LN, Yang Y, Wen YJ, Wang FX. Concurrent Gene Insertion, Deletion, and Inversion during the Construction of a Novel Attenuated BoHV-1 Using CRISPR/Cas9 Genome Editing. Vet Sci 2022; 9:vetsci9040166. [PMID: 35448664 PMCID: PMC9029512 DOI: 10.3390/vetsci9040166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/12/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
Bovine herpesvirus type I (BoHV-1) is an important pathogen that causes respiratory disease in bovines. The disease is prevalent worldwide, causing huge economic losses to the cattle industry. Gene-deficient vaccines with immunological markers to distinguish them from wild-type infections have become a mainstream in vaccine research and development. In order to knock out the gE gene BoHV-1, we employed the CRISPR/Cas9 system. Interesting phenomena were observed at the single guide RNA (sgRNA) splicing site, including gene insertion, gene deletion, and the inversion of 5′ and 3′ ends of the sgRNA splicing site. In addition to the deletion of the gE gene, the US9 gene, and the non-coding regions of gE and US9, it was found that the US4 sequence, US6 sequence, and part of the US7 sequence were inserted into the EGFP sgRNA splicing site and the 3′ end of the EGFP sequence was deleted. Similar to the BoHV-1 parent, the BoHV-1 mutants induced high neutralizing antibodies titer levels in mice. In summary, we developed a series of recombinant gE-deletion BoHV-1 samples using the CRISPR/Cas9 gene editing system. The mutant viruses with EGFP+ or EGFP− will lay the foundation for research on BoHV-1 and vaccine development in the future.
Collapse
Affiliation(s)
- Chun-Yu Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.-Y.L.); (M.J.); (H.G.); (H.-Z.Z.); (L.-N.H.)
| | - Ming Jin
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.-Y.L.); (M.J.); (H.G.); (H.-Z.Z.); (L.-N.H.)
| | - Hao Guo
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.-Y.L.); (M.J.); (H.G.); (H.-Z.Z.); (L.-N.H.)
| | - Hong-Zhe Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.-Y.L.); (M.J.); (H.G.); (H.-Z.Z.); (L.-N.H.)
| | - Li-Na Hou
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.-Y.L.); (M.J.); (H.G.); (H.-Z.Z.); (L.-N.H.)
| | - Yang Yang
- School of Life Sciences, Inner Mongolia University, Hohhot 010018, China;
| | - Yong-Jun Wen
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.-Y.L.); (M.J.); (H.G.); (H.-Z.Z.); (L.-N.H.)
- Correspondence: (Y.-J.W.); (F.-X.W.)
| | - Feng-Xue Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.-Y.L.); (M.J.); (H.G.); (H.-Z.Z.); (L.-N.H.)
- Correspondence: (Y.-J.W.); (F.-X.W.)
| |
Collapse
|
7
|
An ESCRT/VPS4 envelopment trap to examine the mechanism of alphaherpesvirus assembly and transport in neurons. J Virol 2022; 96:e0217821. [PMID: 35045266 DOI: 10.1128/jvi.02178-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The assembly and egress of alphaherpesviruses, including Herpes simplex virus type 1 (HSV-1) and Pseudorabies virus (PRV), within neurons is poorly understood. A key unresolved question is the structure of the viral particle that moves by anterograde transport along the axon, and two alternative mechanisms have been described. In the "Married" model capsids acquire their envelopes in the cell body, then traffic along axons as enveloped virions within a bounding organelle. In the "Separate" model non-enveloped capsids travel from the cell body into and along the axon, eventually encountering their envelopment organelles at a distal site such as the nerve cell terminal. Here we describe an "envelopment trap" to test these models using the dominant negative terminal ESCRT component VPS4-EQ. GFP-tagged VPS4-EQ was used to arrest HSV-1 or PRV capsid envelopment, inhibit downstream trafficking and GFP-label envelopment intermediates. We found that GFP-VPS4-EQ inhibited trafficking of HSV-1 capsids into and along the neurites and axons of mouse CAD cells and rat embryonic primary cortical neurons, consistent with egress via the married pathway. In contrast, transport of HSV-1 capsids was unaffected in the neurites of human SK-N-SH neuroblastoma cells, consistent with the separate mechanism. Unexpectedly, PRV (generally thought to utilize the married pathway) also appeared to employ the separate mechanism in SK-N-SH cells. We propose that apparent differences in the methods of HSV-1 and PRV egress are more likely a reflection of the host neuron in which transport is studied, rather than true biological differences between the viruses themselves. IMPORTANCE Alphaherpesviruses, including Herpes simplex virus type 1 (HSV-1) and Pseudorabies virus (PRV), are pathogens of the nervous system. They replicate in the nerve cell body then travel great distances along axons to reach nerve termini and spread to adjacent epithelial cells, however key aspects of how these viruses travel along axons remain controversial. Here we test two alternative mechanisms for transport, the married and separate models, by blocking envelope assembly, a critical step in viral egress. When we arrest formation of the viral envelope using a mutated component of the cellular ESCRT apparatus we find that entry of viral particles into axons is blocked in some types of neuron, but not others. This approach allows us to determine whether envelope assembly occurs prior to entry of viruses into axons, or afterwards, and thus to distinguish between the alternative models for viral transport.
Collapse
|
8
|
Pegg CE, Zaichick SV, Bomba-Warczak E, Jovasevic V, Kim D, Kharkwal H, Wilson DW, Walsh D, Sollars PJ, Pickard GE, Savas JN, Smith GA. Herpesviruses assimilate kinesin to produce motorized viral particles. Nature 2021; 599:662-666. [PMID: 34789877 DOI: 10.1038/s41586-021-04106-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 10/07/2021] [Indexed: 01/05/2023]
Abstract
Neurotropic alphaherpesviruses initiate infection in exposed mucosal tissues and, unlike most viruses, spread rapidly to sensory and autonomic nerves where life-long latency is established1. Recurrent infections arise sporadically from the peripheral nervous system throughout the life of the host, and invasion of the central nervous system may occur, with severe outcomes2. These viruses directly recruit cellular motors for transport along microtubules in nerve axons, but how the motors are manipulated to deliver the virus to neuronal nuclei is not understood. Here, using herpes simplex virus type I and pseudorabies virus as model alphaherpesviruses, we show that a cellular kinesin motor is captured by virions in epithelial cells, carried between cells, and subsequently used in neurons to traffic to nuclei. Viruses assembled in the absence of kinesin are not neuroinvasive. The findings explain a critical component of the alphaherpesvirus neuroinvasive mechanism and demonstrate that these viruses assimilate a cellular protein as an essential proviral structural component. This principle of viral assimilation may prove relevant to other virus families and offers new strategies to combat infection.
Collapse
Affiliation(s)
- Caitlin E Pegg
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sofia V Zaichick
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ewa Bomba-Warczak
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Vladimir Jovasevic
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - DongHo Kim
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Himanshu Kharkwal
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA.,Agenus, Lexington, MA, USA
| | - Duncan W Wilson
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA.,Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Derek Walsh
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Patricia J Sollars
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Gary E Pickard
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.,Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jeffrey N Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Gregory A Smith
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
9
|
Kite J, Russell T, Jones J, Elliott G. Cell-to-cell transmission of HSV1 in human keratinocytes in the absence of the major entry receptor, nectin1. PLoS Pathog 2021; 17:e1009631. [PMID: 34587223 PMCID: PMC8505007 DOI: 10.1371/journal.ppat.1009631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/11/2021] [Accepted: 09/16/2021] [Indexed: 11/23/2022] Open
Abstract
Herpes simplex virus 1 (HSV1) infects the stratified epithelia of the epidermis, oral or genital mucosa, where the main cell type is the keratinocyte. Here we have used nTERT human keratinocytes to generate a CRISPR-Cas9 knockout (KO) of the primary candidate HSV1 receptor, nectin1, resulting in a cell line that is refractory to HSV1 entry. Nonetheless, a small population of KO cells was able to support infection which was not blocked by a nectin1 antibody and hence was not a consequence of residual nectin1 expression. Strikingly at later times, the population of cells originally resistant to HSV1 infection had also become infected. Appearance of this later population was blocked by inhibition of virus genome replication, or infection with a ΔUL34 virus defective in capsid export to the cytoplasm. Moreover, newly formed GFP-tagged capsids were detected in cells surrounding the initial infected cell, suggesting that virus was spreading following replication in the original susceptible cells. Additional siRNA depletion of the second major HSV1 receptor HVEM, or PTP1B, a cellular factor shown elsewhere to be involved in cell-to-cell transmission, had no effect on virus spread in the absence of nectin1. Neutralizing human serum also failed to block virus transmission in nectin1 KO cells, which was dependent on the receptor binding protein glycoprotein D and the cell-to-cell spread glycoproteins gI and gE, indicating that virus was spreading by direct cell-to-cell transmission. In line with these results, both HSV1 and HSV2 formed plaques on nectin1 KO cells, albeit at a reduced titre, confirming that once the original cell population was infected, the virus could spread into all other cells in the monolayer. We conclude that although nectin1 is required for extracellular entry in to the majority of human keratinocytes, it is dispensable for direct cell-to-cell transmission. Herpes simplex virus 1 (HSV1) infects the epithelia of the epidermis, oral or genital mucosa to cause cold sores, genital herpes, or more serious outcomes such as keratitis and neonatal herpes. Like many viruses, HSV1 can spread through the extracellular environment or by direct cell-to-cell transmission, with the latter mechanism being important for avoiding antibody responses in the host. Here we have studied HSV1 entry and transmission in the human keratinocyte, the main cell type in the target epithelia, by generating a CRISPR-Cas9 knockout of the primary candidate virus receptor, nectin1. While HSV1 was unable to infect the majority of nectin1 knockout keratinocytes, a small population of these nectin1 KO cells remained susceptible to virus entry, and once infected, the virus was able to spread into the rest of the monolayer. This spread continued in the presence of neutralising serum which blocks extracellular virus, and required glycoprotein D, the main virus receptor-binding protein, and glycoproteins gE and gI which are known to be involved in cell-to-cell spread. Hence, while nectin1 is required for virus entry into the majority of human keratinocyte cells, it is dispensable for cell-to-cell transmission of the virus. These data have implications for the mechanism of HSV1 epithelial spread and pathogenesis.
Collapse
Affiliation(s)
- Joanne Kite
- Section of Virology, Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Tiffany Russell
- Section of Virology, Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Juliet Jones
- Section of Virology, Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Gillian Elliott
- Section of Virology, Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Wilson DW. Motor Skills: Recruitment of Kinesins, Myosins and Dynein during Assembly and Egress of Alphaherpesviruses. Viruses 2021; 13:v13081622. [PMID: 34452486 PMCID: PMC8402756 DOI: 10.3390/v13081622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022] Open
Abstract
The alphaherpesviruses are pathogens of the mammalian nervous system. Initial infection is commonly at mucosal epithelia, followed by spread to, and establishment of latency in, the peripheral nervous system. During productive infection, viral gene expression, replication of the dsDNA genome, capsid assembly and genome packaging take place in the infected cell nucleus, after which mature nucleocapsids emerge into the cytoplasm. Capsids must then travel to their site of envelopment at cytoplasmic organelles, and enveloped virions need to reach the cell surface for release and spread. Transport at each of these steps requires movement of alphaherpesvirus particles through a crowded and viscous cytoplasm, and for distances ranging from several microns in epithelial cells, to millimeters or even meters during egress from neurons. To solve this challenging problem alphaherpesviruses, and their assembly intermediates, exploit microtubule- and actin-dependent cellular motors. This review focuses upon the mechanisms used by alphaherpesviruses to recruit kinesin, myosin and dynein motors during assembly and egress.
Collapse
Affiliation(s)
- Duncan W. Wilson
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; ; Tel.: +1-718-430-2305
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
11
|
Nash B, Irollo E, Brandimarti R, Meucci O. Opioid Modulation of Neuronal Iron and Potential Contributions to NeuroHIV. Methods Mol Biol 2021; 2201:139-162. [PMID: 32975796 DOI: 10.1007/978-1-0716-0884-5_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Opioid use has substantially increased over recent years and remains a major driver of new HIV infections worldwide. Clinical studies indicate that opioids may exacerbate the symptoms of HIV-associated neurocognitive disorders (HAND), but the mechanisms underlying opioid-induced cognitive decline remain obscure. We recently reported that the μ-opioid agonist morphine increased neuronal iron levels and levels of ferritin proteins that store iron, suggesting that opioids modulate neuronal iron homeostasis. Additionally, increased iron and ferritin heavy chain protein were necessary for morphine's ability to reduce the density of thin and mushroom dendritic spines in cortical neurons, which are considered critical mediators of learning and memory, respectively. As altered iron homeostasis has been reported in HAND and related neurocognitive disorders like Alzheimer's, Parkinson's, and Huntington's disease, understanding how opioids regulate neuronal iron metabolism may help identify novel drug targets in HAND with potential relevance to these other neurocognitive disorders. Here, we review the known mechanisms of opioid-mediated regulation of neuronal iron and corresponding cellular responses and discuss the implications of these findings for patients with HAND. Furthermore, we discuss a new molecular approach that can be used to understand if opioid modulation of iron affects the expression and processing of amyloid precursor protein and the contributions of this pathway to HAND.
Collapse
Affiliation(s)
- Bradley Nash
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Elena Irollo
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Renato Brandimarti
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Olimpia Meucci
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, USA.
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA, USA.
- Center for Neuroimmunology and CNS Therapeutics, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
12
|
DuRaine G, Johnson DC. Anterograde transport of α-herpesviruses in neuronal axons. Virology 2021; 559:65-73. [PMID: 33836340 DOI: 10.1016/j.virol.2021.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/08/2021] [Accepted: 02/19/2021] [Indexed: 02/04/2023]
Abstract
α-herpesviruses have been very successful, principally because they establish lifelong latency in sensory ganglia. An essential piece of the lifecycle of α-herpesviruses involves the capacity to travel from sensory neurons to epithelial tissues following virus reactivation from latency, a process known as anterograde transport. Virus particles formed in neuron cell bodies hitchhike on kinesin motors that run along microtubules, the length of axons. Herpes simplex virus (HSV) and pseudorabies virus (PRV) have been intensely studied to elucidate anterograde axonal transport. Both viruses use similar strategies for anterograde transport, although there are significant differences in the form of virus particles transported in axons, the identity of the kinesins that transport viruses, and how certain viral membrane proteins, gE/gI and US9, participate in this process. This review compares the older models for HSV and PRV anterograde transport with recent results, which are casting a new light on several aspects of this process.
Collapse
Affiliation(s)
- Grayson DuRaine
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - David C Johnson
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
13
|
Mangold CA, Rathbun MM, Renner DW, Kuny CV, Szpara ML. Viral infection of human neurons triggers strain-specific differences in host neuronal and viral transcriptomes. PLoS Pathog 2021; 17:e1009441. [PMID: 33750985 PMCID: PMC8016332 DOI: 10.1371/journal.ppat.1009441] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/01/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022] Open
Abstract
Infection with herpes simplex virus 1 (HSV-1) occurs in over half the global population, causing recurrent orofacial and/or genital lesions. Individual strains of HSV-1 demonstrate differences in neurovirulence in vivo, suggesting that viral genetic differences may impact phenotype. Here differentiated SH-SY5Y human neuronal cells were infected with one of three HSV-1 strains known to differ in neurovirulence in vivo. Host and viral RNA were sequenced simultaneously, revealing strain-specific differences in both viral and host transcription in infected neurons. Neuronal morphology and immunofluorescence data highlight the pathological changes in neuronal cytoarchitecture induced by HSV-1 infection, which may reflect host transcriptional changes in pathways associated with adherens junctions, integrin signaling, and others. Comparison of viral protein levels in neurons and epithelial cells demonstrated that a number of differences were neuron-specific, suggesting that strain-to-strain variations in host and virus transcription are cell type-dependent. Together, these data demonstrate the importance of studying virus strain- and cell-type-specific factors that may contribute to neurovirulence in vivo, and highlight the specificity of HSV-1-host interactions.
Collapse
Affiliation(s)
- Colleen A. Mangold
- Departments of Biology, Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Entomology, College of Agricultural Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Molly M. Rathbun
- Departments of Biology, Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Daniel W. Renner
- Departments of Biology, Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Chad V. Kuny
- Departments of Biology, Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Moriah L. Szpara
- Departments of Biology, Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
14
|
Characterization of the Herpes Simplex Virus (HSV) Tegument Proteins That Bind to gE/gI and US9, Which Promote Assembly of HSV and Transport into Neuronal Axons. J Virol 2020; 94:JVI.01113-20. [PMID: 32938770 DOI: 10.1128/jvi.01113-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/11/2020] [Indexed: 01/14/2023] Open
Abstract
The herpes simplex virus (HSV) heterodimer gE/gI and another membrane protein, US9, which has neuron-specific effects, promote the anterograde transport of virus particles in neuronal axons. Deletion of both HSV gE and US9 blocks the assembly of enveloped particles in the neuronal cytoplasm, which explains why HSV virions do not enter axons. Cytoplasmic envelopment depends upon interactions between viral membrane proteins and tegument proteins that encrust capsids. We report that tegument protein UL16 is unstable, i.e., rapidly degraded, in neurons infected with a gE-/US9- double mutant. Immunoprecipitation experiments with lysates of HSV-infected neurons showed that UL16 and three other tegument proteins, namely, VP22, UL11, and UL21, bound either to gE or gI. All four of these tegument proteins were also pulled down with US9. In neurons transfected with tegument proteins and gE/gI or US9, there was good evidence that VP22 and UL16 bound directly to US9 and gE/gI. However, there were lower quantities of these tegument proteins that coprecipitated with gE/gI and US9 from transfected cells than those of infected cells. This apparently relates to a matrix of several different tegument proteins formed in infected cells that bind to gE/gI and US9. In cells transfected with individual tegument proteins, this matrix is less prevalent. Similarly, coprecipitation of gE/gI and US9 was observed in HSV-infected cells but not in transfected cells, which argued against direct US9-gE/gI interactions. These studies suggest that gE/gI and US9 binding to these tegument proteins has neuron-specific effects on virus HSV assembly, a process required for axonal transport of enveloped particles.IMPORTANCE Herpes simplex viruses 1 and 2 and varicella-zoster virus cause significant morbidity and mortality. One basic property of these viruses is the capacity to establish latency in the sensory neurons and to reactivate from latency and then cause disease in peripheral tissues, such as skin and mucosal epithelia. The transport of nascent HSV particles from neuron cell bodies into axons and along axons to axon tips in the periphery is an important component of this reactivation and reinfection. Two HSV membrane proteins, gE/gI and US9, play an essential role in these processes. Our studies help elucidate how HSV gE/gI and US9 promote the assembly of virus particles and sorting of these virions into neuronal axons.
Collapse
|
15
|
Ahmad I, Wilson DW. HSV-1 Cytoplasmic Envelopment and Egress. Int J Mol Sci 2020; 21:ijms21175969. [PMID: 32825127 PMCID: PMC7503644 DOI: 10.3390/ijms21175969] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 12/25/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a structurally complex enveloped dsDNA virus that has evolved to replicate in human neurons and epithelia. Viral gene expression, DNA replication, capsid assembly, and genome packaging take place in the infected cell nucleus, which mature nucleocapsids exit by envelopment at the inner nuclear membrane then de-envelopment into the cytoplasm. Once in the cytoplasm, capsids travel along microtubules to reach, dock, and envelope at cytoplasmic organelles. This generates mature infectious HSV-1 particles that must then be sorted to the termini of sensory neurons, or to epithelial cell junctions, for spread to uninfected cells. The focus of this review is upon our current understanding of the viral and cellular molecular machinery that enables HSV-1 to travel within infected cells during egress and to manipulate cellular organelles to construct its envelope.
Collapse
Affiliation(s)
- Imran Ahmad
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA;
| | - Duncan W. Wilson
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA;
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
- Correspondence:
| |
Collapse
|
16
|
Li D, Yang H, Xiong F, Xu X, Zeng WB, Zhao F, Luo MH. Anterograde Neuronal Circuit Tracers Derived from Herpes Simplex Virus 1: Development, Application, and Perspectives. Int J Mol Sci 2020; 21:E5937. [PMID: 32824837 PMCID: PMC7460661 DOI: 10.3390/ijms21165937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 12/19/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) has great potential to be applied as a viral tool for gene delivery or oncolysis. The broad infection tropism of HSV-1 makes it a suitable tool for targeting many different cell types, and its 150 kb double-stranded DNA genome provides great capacity for exogenous genes. Moreover, the features of neuron infection and neuron-to-neuron spread also offer special value to neuroscience. HSV-1 strain H129, with its predominant anterograde transneuronal transmission, represents one of the most promising anterograde neuronal circuit tracers to map output neuronal pathways. Decades of development have greatly expanded the H129-derived anterograde tracing toolbox, including polysynaptic and monosynaptic tracers with various fluorescent protein labeling. These tracers have been applied to neuroanatomical studies, and have contributed to revealing multiple important neuronal circuits. However, current H129-derived tracers retain intrinsic drawbacks that limit their broad application, such as yet-to-be improved labeling intensity, potential nonspecific retrograde labeling, and high toxicity. The biological complexity of HSV-1 and its insufficiently characterized virological properties have caused difficulties in its improvement and optimization as a viral tool. In this review, we focus on the current H129-derived viral tracers and highlight strategies in which future technological development can advance its use as a tool.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.L.); (H.Y.); (F.X.); (W.-B.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Yang
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.L.); (H.Y.); (F.X.); (W.-B.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Xiong
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.L.); (H.Y.); (F.X.); (W.-B.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697-1275, USA;
| | - Wen-Bo Zeng
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.L.); (H.Y.); (F.X.); (W.-B.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Zhao
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Min-Hua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.L.); (H.Y.); (F.X.); (W.-B.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Induction of Rod-Shaped Structures by Herpes Simplex Virus Glycoprotein I. J Virol 2020; 94:JVI.00231-20. [PMID: 32581097 DOI: 10.1128/jvi.00231-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/15/2020] [Indexed: 02/05/2023] Open
Abstract
The envelope glycoprotein I (gI) of herpes simplex virus 1 (HSV-1) is a critical mediator of virus-induced cell-to-cell spread and cell-cell fusion. Here, we report a previously unrecognized property of this molecule. In transfected cells, the HSV-1 gI was discovered to induce rod-shaped structures that were uniform in width but variable in length. Moreover, the gI within these structures was conformationally different from the typical form of gI, as a previously used monoclonal antibody mAb3104 and a newly made peptide antibody to the gI extracellular domain (ECD) (amino acids [aa] 110 to 202) both failed to stain the long rod-shaped structures, suggesting the formation of a higher-order form. Consistent with this observation, we found that gI could self-interact and that the rod-shaped structures failed to recognize glycoprotein E, the well-known binding partner of gI. Further analyses by deletion mutagenesis and construction of chimeric mutants between gI and gD revealed that the gI ECD is the critical determinant, whereas the transmembrane domain served merely as an anchor. The critical amino acids were subsequently mapped to proline residues 184 and 188 within a conserved PXXXP motif. Reverse genetics analyses showed that the ability to induce a rod-shaped structure was not required for viral replication and spread in cell culture but rather correlated positively with the capability of the virus to induce cell fusion in the UL24syn background. Together, this work discovered a novel feature of HSV-1 gI that may have important implications in understanding gI function in viral spread and pathogenesis.IMPORTANCE The HSV-1 gI is required for viral cell-to-cell spread within the host, but the molecular mechanisms of how gI exactly works have remained poorly understood. Here, we report a novel property of this molecule, namely, induction of rod-shaped structures, which appeared to represent a higher-order form of gI. We further mapped the critical residues and showed that the ability of gI to induce rod-shaped structures correlated well with the capability of HSV-1 to induce cell fusion in the UL24syn background, suggesting that the two events may have an intrinsic link. Our results shed light on the biological properties of HSV-1 gI and may have important implications in understanding viral pathogenesis.
Collapse
|
18
|
Diwaker D, Murray JW, Barnes J, Wolkoff AW, Wilson DW. Deletion of the Pseudorabies Virus gE/gI-US9p complex disrupts kinesin KIF1A and KIF5C recruitment during egress, and alters the properties of microtubule-dependent transport in vitro. PLoS Pathog 2020; 16:e1008597. [PMID: 32511265 PMCID: PMC7302734 DOI: 10.1371/journal.ppat.1008597] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/18/2020] [Accepted: 05/04/2020] [Indexed: 01/18/2023] Open
Abstract
During infection of neurons by alphaherpesviruses including Pseudorabies virus (PRV) and Herpes simplex virus type 1 (HSV-1) viral nucleocapsids assemble in the cell nucleus, become enveloped in the cell body then traffic into and down axons to nerve termini for spread to adjacent epithelia. The viral membrane protein US9p and the membrane glycoprotein heterodimer gE/gI play critical roles in anterograde spread of both HSV-1 and PRV, and several models exist to explain their function. Biochemical studies suggest that PRV US9p associates with the kinesin-3 motor KIF1A in a gE/gI-stimulated manner, and the gE/gI-US9p complex has been proposed to recruit KIF1A to PRV for microtubule-mediated anterograde trafficking into or along the axon. However, as loss of gE/gI-US9p essentially abolishes delivery of alphaherpesviruses to the axon it is difficult to determine the microtubule-dependent trafficking properties and motor-composition of Δ(gE/gI-US9p) particles. Alternatively, studies in HSV-1 have suggested that gE/gI and US9p are required for the appearance of virions in the axon because they act upstream, to help assemble enveloped virions in the cell body. We prepared Δ(gE/gI-US9p) mutant, and control parental PRV particles from differentiated cultured neuronal or porcine kidney epithelial cells and quantitated the efficiency of virion assembly, the properties of microtubule-dependent transport and the ability of viral particles to recruit kinesin motors. We find that loss of gE/gI-US9p has no significant effect upon PRV particle assembly but leads to greatly diminished plus end-directed traffic, and enhanced minus end-directed and bidirectional movement along microtubules. PRV particles prepared from infected differentiated mouse CAD neurons were found to be associated with either kinesin KIF1A or kinesin KIF5C, but not both. Loss of gE/gI-US9p resulted in failure to recruit KIF1A and KF5C, but did not affect dynein binding. Unexpectedly, while KIF5C was expressed in undifferentiated and differentiated CAD neurons it was only found associated with PRV particles prepared from differentiated cells.
Collapse
Affiliation(s)
- Drishya Diwaker
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - John W. Murray
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Jenna Barnes
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Allan W. Wolkoff
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Duncan W. Wilson
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
19
|
Liu X, Zhou Y, Luo Y, Chen Y. Effects of gE/gI deletions on the miRNA expression of PRV-infected PK-15 cells. Virus Genes 2020; 56:461-471. [PMID: 32385550 PMCID: PMC7329775 DOI: 10.1007/s11262-020-01760-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 04/21/2020] [Indexed: 12/26/2022]
Abstract
Pseudorabies virus (PRV) belongs to the Alphaherpesvirinae subfamily of Herpesviridae. PRV-induced pseudorabies is a highly contagious disease that has caused huge economic losses to the global swine industry. The PRV gE/gI gene deletion vaccine strain (Fa ΔgE/gI strain) constructed from the PRV Fa wild-type strain was shown to have a protective effect against infection. However, the interaction between PRV gE/gI genes and host miRNA needs further exploration, and little is known about the regulatory mechanisms of non-coding RNAs during PRV infection. miRNAs play a key regulatory role in viral infection and immune responses, so we analyzed the differential expression of miRNAs induced by the PRV Fa ΔgE/gI strain and Fa wild-type strain in the PK15 cell line. High-throughput sequencing reads were aligned to known Sus scrofa pre-miRNAs in the miRBase database. Target genes of differentially expressed miRNAs were predicted using the miRGen 3.0 database, then filtered miRNA target genes were subjected to Gene Ontology (GO) analysis and Search Tool for the Retrieval of Interacting Genes/ Proteins (STRING) analysis. Stem-loop quantitative real-time PCR was performed to confirm the accuracy of high-throughput sequencing data. In total, 387, 472, and 490 annotated and novel mature miRNAs were identified from PRV Fa ΔgE/gI strain-infected, Fa wild-type strain-infected, and non-infected PK-15 cells, respectively. Five PRV-encoded miRNAs were also identified. GO analysis showed that target genes of differentially expressed miRNAs in PRV Fa ΔgE/gI strain-infected and Fa wild-type strain-infected PK-15 cells were mainly involved in biological regulation and metabolic processes. STRING analysis showed that immune-related target genes of differentially expressed miRNAs in the Toll-like receptor signaling pathway, B cell receptor signaling pathway, T cell receptor signaling pathway, nuclear factor-κB signaling pathway, and transforming growth factor-β signaling pathway were interrelated. This is the first report of the small RNA transcriptome in PRV mutant wild-type strain-infected and Fa ΔgE/gI strain-infected porcine cell lines. Our findings will contribute to the prevention and treatment of PRV mutant strains.
Collapse
Affiliation(s)
- Xiao Liu
- College of Animal Science and Technology, Southwest University, 2#Tiansheng Road, Beibei District, Chongqing, 400715, China. .,Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Huashen Veterinary Biological Products Co., LTD, Chengdu, 610200, China.
| | - Yuancheng Zhou
- College of Animal Science and Technology, Southwest University, 2#Tiansheng Road, Beibei District, Chongqing, 400715, China.,Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Huashen Veterinary Biological Products Co., LTD, Chengdu, 610200, China
| | - Yuan Luo
- College of Animal Science and Technology, Southwest University, 2#Tiansheng Road, Beibei District, Chongqing, 400715, China.,Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Huashen Veterinary Biological Products Co., LTD, Chengdu, 610200, China
| | - Yanxi Chen
- College of Animal Science and Technology, Southwest University, 2#Tiansheng Road, Beibei District, Chongqing, 400715, China.,Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Huashen Veterinary Biological Products Co., LTD, Chengdu, 610200, China
| |
Collapse
|
20
|
Abstract
Viruses manipulate cellular lipids and membranes at each stage of their life cycle. This includes lipid-receptor interactions, the fusion of viral envelopes with cellular membranes during endocytosis, the reorganization of cellular membranes to form replication compartments, and the envelopment and egress of virions. In addition to the physical interactions with cellular membranes, viruses have evolved to manipulate lipid signaling and metabolism to benefit their replication. This review summarizes the strategies that viruses use to manipulate lipids and membranes at each stage in the viral life cycle.
Collapse
Affiliation(s)
- Ellen Ketter
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, USA;
| | - Glenn Randall
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, USA;
| |
Collapse
|
21
|
Scherer J, Hogue IB, Yaffe ZA, Tanneti NS, Winer BY, Vershinin M, Enquist LW. A kinesin-3 recruitment complex facilitates axonal sorting of enveloped alpha herpesvirus capsids. PLoS Pathog 2020; 16:e1007985. [PMID: 31995633 PMCID: PMC7010296 DOI: 10.1371/journal.ppat.1007985] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/10/2020] [Accepted: 12/15/2019] [Indexed: 12/13/2022] Open
Abstract
Axonal sorting, the controlled passage of specific cargoes from the cell soma into the axon compartment, is critical for establishing and maintaining the polarity of mature neurons. To delineate axonal sorting events, we took advantage of two neuroinvasive alpha-herpesviruses. Human herpes simplex virus 1 (HSV-1) and pseudorabies virus of swine (PRV; suid herpesvirus 1) have evolved as robust cargo of axonal sorting and transport mechanisms. For efficient axonal sorting and subsequent egress from axons and presynaptic termini, progeny capsids depend on three viral membrane proteins (Us7 (gI), Us8 (gE), and Us9), which engage axon-directed kinesin motors. We present evidence that Us7-9 of the veterinary pathogen pseudorabies virus (PRV) form a tripartite complex to recruit Kif1a, a kinesin-3 motor. Based on multi-channel super-resolution and live TIRF microscopy, complex formation and motor recruitment occurs at the trans-Golgi network. Subsequently, progeny virus particles enter axons as enveloped capsids in a transport vesicle. Artificial recruitment of Kif1a using a drug-inducible heterodimerization system was sufficient to rescue axonal sorting and anterograde spread of PRV mutants devoid of Us7-9. Importantly, biophysical evidence suggests that Us9 is able to increase the velocity of Kif1a, a previously undescribed phenomenon. In addition to elucidating mechanisms governing axonal sorting, our results provide further insight into the composition of neuronal transport systems used by alpha-herpesviruses, which will be critical for both inhibiting the spread of infection and the safety of herpesvirus-based oncolytic therapies. Alpha-herpesviruses represent a group of large, enveloped DNA viruses that are capable to establish a quiescent (also called latent) but reactivatable form of infection in the peripheral nervous system of their hosts. Following reactivation of latent genomes, virus progeny is formed in the soma of neuronal cells and depend on sorting into the axon for anterograde spread of infection to mucosal sites and potentially new host. We studied two alpha-herpesviruses (the veterinary pathogen pseudorabies virus (PRV) and human herpes simplex virus 1 (HSV-1)) and found viral membrane proteins Us7, Us8, and Us9 form a complex, which is able to recruit kinsin-3 motors. Motor recruitment facilitates axonal sorting and subsequent transport to distal egress sites. Complex formation occurs at the trans-Golgi network and mediates efficiency of axonal sorting and motility characteristics of egressing capsids. We also used an artificial kinesin-3 recruitment system, which allows controlled induction of axonal sorting and transport of virus mutants lacking Us7, Us8, and Us9. Overall, these data contribute to our understanding of anterograde alpha-herpesvirus spread and kinesin-mediated sorting of vesicular axonal cargoes.
Collapse
Affiliation(s)
- Julian Scherer
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
| | - Ian B. Hogue
- Center for Immunotherapy, Vaccines, and Virotherapy, Biodesign Institute & School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Zachary A. Yaffe
- University of Washington, Seattle, Washington, United States of America
| | - Nikhila S. Tanneti
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
| | - Benjamin Y. Winer
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
| | - Michael Vershinin
- Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, United States of America
| | - Lynn W. Enquist
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
22
|
Diwaker D, Wilson DW. Microtubule-Dependent Trafficking of Alphaherpesviruses in the Nervous System: The Ins and Outs. Viruses 2019; 11:v11121165. [PMID: 31861082 PMCID: PMC6950448 DOI: 10.3390/v11121165] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 12/12/2022] Open
Abstract
The Alphaherpesvirinae include the neurotropic pathogens herpes simplex virus and varicella zoster virus of humans and pseudorabies virus of swine. These viruses establish lifelong latency in the nuclei of peripheral ganglia, but utilize the peripheral tissues those neurons innervate for productive replication, spread, and transmission. Delivery of virions from replicative pools to the sites of latency requires microtubule-directed retrograde axonal transport from the nerve terminus to the cell body of the sensory neuron. As a corollary, during reactivation newly assembled virions must travel along axonal microtubules in the anterograde direction to return to the nerve terminus and infect peripheral tissues, completing the cycle. Neurotropic alphaherpesviruses can therefore exploit neuronal microtubules and motors for long distance axonal transport, and alternate between periods of sustained plus end- and minus end-directed motion at different stages of their infectious cycle. This review summarizes our current understanding of the molecular details by which this is achieved.
Collapse
Affiliation(s)
- Drishya Diwaker
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA;
| | - Duncan W. Wilson
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA;
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
- Correspondence: ; Tel.: +1-(718)-430-2305
| |
Collapse
|
23
|
Beier KT. Hitchhiking on the neuronal highway: Mechanisms of transsynaptic specificity. J Chem Neuroanat 2019; 99:9-17. [PMID: 31075318 PMCID: PMC6701464 DOI: 10.1016/j.jchemneu.2019.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/20/2019] [Accepted: 05/06/2019] [Indexed: 01/28/2023]
Abstract
Transsynaptic viral tracers are an invaluable neuroanatomical tool to define neuronal circuit connectivity across single or multiple synapses. There are variants that label either inputs or outputs of defined starter populations, most of which are based on the herpes and rabies viruses. However, we still have an incomplete understanding of the factors influencing specificity of neuron-neuron transmission and labeling of inputs vs. outputs. This article will touch on three topics: First, how specific are the directional transmission patterns of these viruses? Second, what are the properties that confer synaptic specificity of viral transmission? Lastly, what can we learn from this specificity, and can we use it to devise better transsynaptic tracers?
Collapse
Affiliation(s)
- Kevin T Beier
- Department of Physiology and Biophysics, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, 92697, United States.
| |
Collapse
|
24
|
Hernández Durán A, Greco TM, Vollmer B, Cristea IM, Grünewald K, Topf M. Protein interactions and consensus clustering analysis uncover insights into herpesvirus virion structure and function relationships. PLoS Biol 2019; 17:e3000316. [PMID: 31199794 PMCID: PMC6594648 DOI: 10.1371/journal.pbio.3000316] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 06/26/2019] [Accepted: 05/23/2019] [Indexed: 01/08/2023] Open
Abstract
Infections with human herpesviruses are ubiquitous and a public health concern worldwide. Current treatments reduce the severity of some symptoms associated to herpetic infections but neither remove the viral reservoir from the infected host nor protect from the recurrent symptom outbreaks that characterise herpetic infections. The difficulty in therapeutically tackling these viral systems stems in part from their remarkably large proteomes and the complex networks of physical and functional associations that they tailor. This study presents our efforts to unravel the complexity of the interactome of herpes simplex virus type 1 (HSV1), the prototypical herpesvirus species. Inspired by our previous work, we present an improved and more integrative computational pipeline for the protein–protein interaction (PPI) network reconstruction in HSV1, together with a newly developed consensus clustering framework, which allowed us to extend the analysis beyond binary physical interactions and revealed a system-level layout of higher-order functional associations in the virion proteome. Additionally, the analysis provided new functional annotation for the currently undercharacterised protein pUS10. In-depth bioinformatics sequence analysis unravelled structural features in pUS10 reminiscent of those observed in some capsid-associated proteins in tailed bacteriophages, with which herpesviruses are believed to share a common ancestry. Using immunoaffinity purification (IP)–mass spectrometry (MS), we obtained additional support for our bioinformatically predicted interaction between pUS10 and the inner tegument protein pUL37, which binds cytosolic capsids, contributing to initial tegumentation and eventually virion maturation. In summary, this study unveils new, to our knowledge, insights at both the system and molecular levels that can help us better understand the complexity behind herpesvirus infections. Consensus clustering of protein-protein interaction networks provides insights into the assembly mechanism of herpes simplex virus type 1 (HSV1) virions and structure-function relationships underlying herpesvirus infection.
Collapse
Affiliation(s)
- Anna Hernández Durán
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Todd M. Greco
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Princeton, New Jersey, United States of America
| | - Benjamin Vollmer
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Department of Structural Cell Biology of Viruses, Centre for Structural Systems Biology, Heinrich Pette Institute, Leibnitz Institute of Experimental Virology, University of Hamburg, Hamburg, Germany
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Princeton, New Jersey, United States of America
| | - Kay Grünewald
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Department of Structural Cell Biology of Viruses, Centre for Structural Systems Biology, Heinrich Pette Institute, Leibnitz Institute of Experimental Virology, University of Hamburg, Hamburg, Germany
- * E-mail: (MT); (KG)
| | - Maya Topf
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
- * E-mail: (MT); (KG)
| |
Collapse
|
25
|
Abstract
The Herpesviridae are structurally complex DNA viruses whose capsids undergo primary envelopment at the inner nuclear membrane and secondary envelopment at organelles in the cytoplasm. In both locations, there is evidence that envelope formation and scission involve the participation of multiple viral proteins and also the cellular ESCRT apparatus. It nevertheless appears that the best-understood viral strategies for ESCRT recruitment, those adopted by the retroviruses and many other families of enveloped RNA viruses, are not utilized by the Herpesviridae, at least during envelopment in the cytoplasm. Thus, although a large number of herpesvirus proteins have been assigned roles in envelopment, there is a dearth of candidates for the acquisition of the ESCRT complex and the control of envelope scission. This review summarizes our current understanding of ESCRT association by enveloped viruses, examines what is known of herpesvirus ESCRT utilization in the nucleus and cytoplasm, and identifies candidate cellular and viral proteins that could link enveloping herpesviruses to cellular ESCRT components.
Collapse
|
26
|
Rowe KL, Minaya MA, Belshe RB, Morrison LA. Molecular analyses and phylogeny of the herpes simplex virus 2 US9 and glycoproteins gE/gI obtained from infected subjects during the Herpevac Trial for Women. PLoS One 2019; 14:e0212877. [PMID: 30849089 PMCID: PMC6407778 DOI: 10.1371/journal.pone.0212877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/11/2019] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex virus 2 (HSV-2) is a large double-stranded DNA virus that causes genital sores when spread by sexual contact and is a principal cause of viral encephalitis in newborns and infants. Viral glycoproteins enable virion entry into and spread between cells, making glycoproteins a prime target for vaccine development. A truncated glycoprotein D2 (gD2) vaccine candidate, recently tested in the phase 3 Herpevac Trial for Women, did not prevent HSV-2 infection in initially seronegative women. Some women who became infected experienced multiple recurrences during the trial. The HSV US7, US8, and US9 genes encode glycoprotein I (gI), glycoprotein E (gE), and the US9 type II membrane protein, respectively. These proteins participate in viral spread across cell junctions and facilitate anterograde transport of virion components in neurons, prompting us to investigate whether sequence variants in these genes could be associated with frequent recurrence. The nucleotide sequences and dN/dS ratios of the US7-US9 region from viral isolates of individuals who experienced multiple recurrences were compared with those who had had a single episode of disease. No consistent polymorphism(s) distinguished the recurrent isolates. In frequently recurring isolates, the dN/dS ratio of US7 was low while greater variation (higher dN/dS ratio) occurred in US8, suggesting conserved function of the former during reactivation. Phylogenetic reconstruction of the US7-US9 region revealed eight strongly supported clusters within the 55 U.S. HSV-2 strains sampled, which were preserved in a second global phylogeny. Thus, although we have demonstrated evolutionary diversity in the US7-US9 complex, we found no molecular evidence of sequence variation in US7-US9 that distinguishes isolates from subjects with frequently recurrent episodes of disease.
Collapse
Affiliation(s)
- Kelsey L. Rowe
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Miguel A. Minaya
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Robert B. Belshe
- Department of Internal Medicine, Division of Infectious Diseases, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Lynda A. Morrison
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
- Department of Internal Medicine, Division of Infectious Diseases, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
27
|
The Autographa californica Multiple Nucleopolyhedrovirus ac51 Gene Is Required for Efficient Nuclear Egress of Nucleocapsids and Is Essential for In Vivo Virulence. J Virol 2019; 93:JVI.01923-18. [PMID: 30429334 DOI: 10.1128/jvi.01923-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 12/30/2022] Open
Abstract
Alphabaculoviruses are lepidopteran-specific nucleopolyhedroviruses that replicate within the nucleus; however, the anterograde transport of the nucleocapsids of these viruses, which is an obligatory step for progeny virion production, is not well understood. In the present study, a unique Alphabaculovirus gene with unknown function, namely, the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac51 gene, was found to be required for efficient nuclear egress of AcMNPV nucleocapsids. Our results indicate that ac51 is a late gene, and Ac51 protein was detectable from 24 to 72 h postinfection using an antibody raised against Ac51. Ac51 is distributed in both the cytoplasm and nuclei of infected cells. Upon ac51 deletion, budded virion (BV) production by 96 h posttransfection was reduced by approximately 1,000-fold compared with that of wild-type AcMNPV. Neither viral DNA synthesis nor viral gene expression was affected. Ac51 was demonstrated to be a nucleocapsid protein of BVs, and ac51 deletion did not interrupt nucleocapsid assembly and occlusion-derived virion (ODV) formation. However, BV production in the supernatants of transfected cells during a viral life cycle was substantially decreased when ac51 was deleted. Further analysis showed that, compared with wild-type AcMNPV, ac51 deletion decreased nucleocapsid egress, while the numbers of nucleocapsids in the nuclei were comparable. Deletion of ac51 also eliminated the virulence of AcMNPV in vivo Taken together, our results support the conclusion that ac51 plays an important role in the nuclear egress of nucleocapsids during BV formation and is essential for the in vivo virulence of AcMNPV.
Collapse
|
28
|
Kinesin-1 Proteins KIF5A, -5B, and -5C Promote Anterograde Transport of Herpes Simplex Virus Enveloped Virions in Axons. J Virol 2018; 92:JVI.01269-18. [PMID: 30068641 DOI: 10.1128/jvi.01269-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 01/09/2023] Open
Abstract
Herpes simplex virus (HSV) and other alphaherpesviruses must spread from sites of viral latency in sensory ganglia to peripheral tissues, where the viruses can replicate to higher titers before spreading to other hosts. These viruses move in neuronal axons from ganglia to the periphery propelled by kinesin motors moving along microtubules. Two forms of HSV particles undergo this anterograde transport in axons: (i) unenveloped capsids that become enveloped after reaching axon tips and (ii) enveloped virions that are transported within membrane vesicles in axons. Fundamental to understanding this axonal transport is the question of which of many different axonal kinesins convey HSV particles. Knowing which kinesins promote axonal transport would provide clues to the identity of HSV proteins that tether onto kinesins. Prominent among axonal kinesins are the kinesin-1 (KIF5A, -5B, and -5C) and kinesin-3 (e.g., KIF1A and -1B) families. We characterized fluorescent forms of cellular cargo molecules to determine if enveloped HSV particles were present in the vesicles containing these cargos. Kinesin-1 cargo proteins were present in vesicles containing HSV particles, but not kinesin-3 cargos. Fluorescent kinesin-1 protein KIF5C extensively colocalized with HSV particles, while fluorescent kinesin-1 KIF1A did not. Silencing of kinesin-1 proteins KIF5A, -5B, and -5C or light chains KLC1 and KLC2 inhibited the majority of HSV anterograde transport, while silencing of KIF1A had little effect on HSV transport in axons. We concluded that kinesin-1 proteins are important in the anterograde transport of the majority of HSV enveloped virions in neuronal axons and kinesin-3 proteins are less important.IMPORTANCE Herpes simplex virus (HSV) and other alphaherpesviruses, such as varicella-zoster virus, depend upon the capacity to navigate in neuronal axons. To do this, virus particles tether onto dyneins and kinesins that motor along microtubules from axon tips to neuronal cell bodies (retrograde) or from cell bodies to axon tips (anterograde). Following reactivation from latency, alphaherpesviruses absolutely depend upon anterograde transport of virus particles in axons in order to reinfect peripheral tissues and spread to other hosts. Which of the many axonal kinesins transport HSV in axons is not clear. We characterized fluorescent cellular cargo molecules and kinesins to provide evidence that HSV enveloped particles are ferried by kinesin-1 proteins KIF5A, -5B, and -5C and their light chains, KLC1 and KLC2, in axons. Moreover, we obtained evidence that kinesin-1 proteins are functionally important in anterograde transport of HSV virions by silencing these proteins.
Collapse
|
29
|
Lv Y, Zhou S, Gao S, Deng H. Remodeling of host membranes during herpesvirus assembly and egress. Protein Cell 2018; 10:315-326. [PMID: 30242641 PMCID: PMC6468031 DOI: 10.1007/s13238-018-0577-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/21/2018] [Indexed: 02/04/2023] Open
Abstract
Many viruses, enveloped or non-enveloped, remodel host membrane structures for their replication, assembly and escape from host cells. Herpesviruses are important human pathogens and cause many diseases. As large enveloped DNA viruses, herpesviruses undergo several complex steps to complete their life cycles and produce infectious progenies. Firstly, herpesvirus assembly initiates in the nucleus, producing nucleocapsids that are too large to cross through the nuclear pores. Nascent nucleocapsids instead bud at the inner nuclear membrane to form primary enveloped virions in the perinuclear space followed by fusion of the primary envelopes with the outer nuclear membrane, to translocate the nucleocapsids into the cytoplasm. Secondly, nucleocapsids obtain a series of tegument proteins in the cytoplasm and bud into vesicles derived from host organelles to acquire viral envelopes. The vesicles are then transported to and fuse with the plasma membrane to release the mature virions to the extracellular space. Therefore, at least two budding and fusion events take place at cellular membrane structures during herpesviruses assembly and egress, which induce membrane deformations. In this review, we describe and discuss how herpesviruses exploit and remodel host membrane structures to assemble and escape from the host cell.
Collapse
Affiliation(s)
- Ying Lv
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sheng Zhou
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengyan Gao
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongyu Deng
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
30
|
Abstract
The assembly and egress of herpes simplex virus (HSV) is a complicated multistage process that involves several different cellular compartments and the activity of many viral and cellular proteins. The process begins in the nucleus, with capsid assembly followed by genome packaging into the preformed capsids. The DNA-filled capsids (nucleocapsids) then exit the nucleus by a process of envelopment at the inner nuclear membrane followed by fusion with the outer nuclear membrane. In the cytoplasm nucleocapsids associate with tegument proteins, which form a complicated protein network that links the nucleocapsid to the cytoplasmic domains of viral envelope proteins. Nucleocapsids and associated tegument then undergo secondary envelopment at intracellular membranes originating from late secretory pathway and endosomal compartments. This leads to assembled virions in the lumen of large cytoplasmic vesicles, which are then transported to the cell periphery to fuse with the plasma membrane and release virus particles from the cell. The details of this multifaceted process are described in this chapter.
Collapse
|