1
|
Nguyen MH, Palfy G, Fogeron ML, Ninot Pedrosa M, Zehnder J, Rimal V, Callon M, Lecoq L, Barnes A, Meier BH, Böckmann A. Analysis of the structure and interactions of the SARS-CoV-2 ORF7b accessory protein. Proc Natl Acad Sci U S A 2024; 121:e2407731121. [PMID: 39508769 PMCID: PMC11573672 DOI: 10.1073/pnas.2407731121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/03/2024] [Indexed: 11/15/2024] Open
Abstract
SARS-CoV-2 carries a sizeable number of proteins that are accessory to replication but may be essential for virus-host interactions and modulation of the host immune response. Here, we investigated the structure and interactions of the largely unknown ORF7b, a small membranous accessory membrane protein of SARS-CoV-2. We show that structural predictions indicate a transmembrane (TM) leucine zipper for ORF7b, and experimentally confirm the predominantly α-helical secondary structure within a phospholipid membrane mimetic by solid-state NMR. We also show that ORF7b forms heterogeneous higher-order multimers. We determined ORF7b interactions with cellular TM leucine zipper proteins using both biochemical and NMR approaches, providing evidence for ORF7b interaction with the TM domains of E-cadherin, as well as phospholamban. Our results place ORF7b as a hypothetical interferer in cellular processes that utilize leucine zipper motifs in transmembrane multimerization domains.
Collapse
Affiliation(s)
- Minh-Ha Nguyen
- Molecular Microbiology and Structural Biochemistry, Unité Mixte de Recherche 5086 CNRS/Université de Lyon, 69367 Lyon, France
| | - Gyula Palfy
- Department of Chemistry and Applied Biosciences, Institute of Molecular Physical Sciences, Eidgenössische Technische Hochschule Zurich, 8093 Zurich, Switzerland
| | - Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry, Unité Mixte de Recherche 5086 CNRS/Université de Lyon, 69367 Lyon, France
| | - Martí Ninot Pedrosa
- Molecular Microbiology and Structural Biochemistry, Unité Mixte de Recherche 5086 CNRS/Université de Lyon, 69367 Lyon, France
| | - Johannes Zehnder
- Department of Chemistry and Applied Biosciences, Institute of Molecular Physical Sciences, Eidgenössische Technische Hochschule Zurich, 8093 Zurich, Switzerland
| | - Vaclav Rimal
- Department of Chemistry and Applied Biosciences, Institute of Molecular Physical Sciences, Eidgenössische Technische Hochschule Zurich, 8093 Zurich, Switzerland
| | - Morgane Callon
- Molecular Microbiology and Structural Biochemistry, Unité Mixte de Recherche 5086 CNRS/Université de Lyon, 69367 Lyon, France
- Department of Chemistry and Applied Biosciences, Institute of Molecular Physical Sciences, Eidgenössische Technische Hochschule Zurich, 8093 Zurich, Switzerland
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry, Unité Mixte de Recherche 5086 CNRS/Université de Lyon, 69367 Lyon, France
| | - Alexander Barnes
- Department of Chemistry and Applied Biosciences, Institute of Molecular Physical Sciences, Eidgenössische Technische Hochschule Zurich, 8093 Zurich, Switzerland
| | - Beat H Meier
- Department of Chemistry and Applied Biosciences, Institute of Molecular Physical Sciences, Eidgenössische Technische Hochschule Zurich, 8093 Zurich, Switzerland
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, Unité Mixte de Recherche 5086 CNRS/Université de Lyon, 69367 Lyon, France
| |
Collapse
|
2
|
Lowery SA, Schuster N, Wong LYR, Carrillo T, Peters E, Odle A, Sariol A, Cesarz I, Li P, Perlman S. Mouse hepatitis virus JHMV I protein is required for maximal virulence. J Virol 2024; 98:e0068024. [PMID: 39158347 PMCID: PMC11406938 DOI: 10.1128/jvi.00680-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/04/2024] [Indexed: 08/20/2024] Open
Abstract
Betacoronaviruses encode a conserved accessory gene within the +1 open reading frame (ORF) of nucleocapsid called the internal N gene. This gene is referred to as "I" for mouse hepatitis virus (MHV), ORF9b for severe acute respiratory CoV (SARS-CoV) and SARS-CoV-2, and ORF8b for Middle East respiratory syndrome CoV (MERS-CoV). Previous studies have shown ORF8b and ORF9b have immunoevasive properties, while the only known information for MHV I is its localization within the virion of the hepatotropic/neurotropic A59 strain of MHV. Whether MHV I is an innate immune antagonist or has other functions has not been evaluated. In this report, we show that the I protein of the neurotropic JHM strain of MHV (JHMV) lacks a N terminal domain present in other MHV strains, has immunoevasive properties, and is a component of the virion. Genetic deletion of JHMV I (rJHMVIΔ57-137) resulted in a highly attenuated virus both in vitro and in vivo that displayed a post RNA replication/transcription defect that ultimately resulted in fewer infectious virions packaged compared with wild-type virus. This phenotype was only seen for rJHMVIΔ57-137, suggesting the structural changes predicted for A59 I altered its function, as genetic deletion of A59 I did not change viral replication or pathogenicity. Together, these data show that JHMV I both acts as a mild innate immune antagonist and aids in viral assembly and infectious virus production, and suggest that the internal N proteins from different betacoronaviruses have both common and virus strain-specific properties.IMPORTANCECoV accessory genes are largely studied in overexpression assays and have been identified as innate immune antagonists. However, functions identified after overexpression are often not confirmed in the infected animal host. Furthermore, some accessory proteins are components of the CoV virion, but their role in viral replication and release remains unclear. Here, we utilized reverse genetics to abrogate expression of a conserved CoV accessory gene, the internal N ("I") gene, of the neurotropic JHMV strain of MHV and found that loss of the I gene resulted in a post replication defect that reduced virion assembly and ultimately infectious virus production, while also increasing some inflammatory molecule expression. Thus, the JHMV I protein has roles in virion assembly that were previously underappreciated and in immunoevasion.
Collapse
Affiliation(s)
- Shea A. Lowery
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Noah Schuster
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Lok-Yin Roy Wong
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Thomas Carrillo
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Erin Peters
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Abby Odle
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Alan Sariol
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Isabella Cesarz
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Pengfei Li
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
3
|
Li Y, Tang Y, Wang X, Zhu A, Liu D, He Y, Guo H, Zheng J, Liu X, Chi F, Wang Y, Zhuang Z, Zhang Z, Liu D, Chen Z, Li F, Ran W, Yu K, Wang D, Wen L, Zhuo J, Zhang Y, Xi Y, Zhao J, Zhao J, Sun J. Characterization of humoral immune responses against SARS-CoV-2 accessory proteins in infected patients and mouse model. Virol Sin 2024; 39:414-421. [PMID: 38677713 PMCID: PMC11280257 DOI: 10.1016/j.virs.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 04/19/2024] [Indexed: 04/29/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, encodes several accessory proteins that have been shown to play crucial roles in regulating the innate immune response. However, their expressions in infected cells and immunogenicity in infected humans and mice are still not fully understood. This study utilized various techniques such as luciferase immunoprecipitation system (LIPS), immunofluorescence assay (IFA), and western blot (WB) to detect accessory protein-specific antibodies in sera of COVID-19 patients. Specific antibodies to proteins 3a, 3b, 7b, 8 and 9c can be detected by LIPS, but only protein 3a antibody was detected by IFA or WB. Antibodies against proteins 3a and 7b were only detected in ICU patients, which may serve as a marker for predicting disease progression. Further, we investigated the expression of accessory proteins in SARS-CoV-2-infected cells and identified the expressions of proteins 3a, 6, 7a, 8, and 9b. We also analyzed their ability to induce antibodies in immunized mice and found that only proteins 3a, 6, 7a, 8, 9b and 9c were able to induce measurable antibody productions, but these antibodies lacked neutralizing activities and did not protect mice from SARS-CoV-2 infection. Our findings validate the expression of SARS-CoV-2 accessory proteins and elucidate their humoral immune response, providing a basis for protein detection assays and their role in pathogenesis.
Collapse
Affiliation(s)
- Yuming Li
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China; Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Yanhong Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China; Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, 410005, China
| | - Xiaoqian Wang
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China; Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Dongdong Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Yiyun He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Hu Guo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jie Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Xinzhuo Liu
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China; Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China
| | - Fengyu Chi
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China; Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Zhen Zhuang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Zhaoyong Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Donglan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Zhao Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Fang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Wei Ran
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Kuai Yu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Dong Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Liyan Wen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jianfen Zhuo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Yanjun Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Yin Xi
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China.
| | - Jingxian Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China; Guangzhou National Laboratory, Guangzhou, Guangdong, 510005, China.
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China; Guangzhou National Laboratory, Guangzhou, Guangdong, 510005, China; Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, Shanghai Tech University, Shanghai, 201210, China; Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, 518005, China.
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China.
| |
Collapse
|
4
|
Kakavandi S, Zare I, VaezJalali M, Dadashi M, Azarian M, Akbari A, Ramezani Farani M, Zalpoor H, Hajikhani B. Structural and non-structural proteins in SARS-CoV-2: potential aspects to COVID-19 treatment or prevention of progression of related diseases. Cell Commun Signal 2023; 21:110. [PMID: 37189112 PMCID: PMC10183699 DOI: 10.1186/s12964-023-01104-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/15/2023] [Indexed: 05/17/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by a new member of the Coronaviridae family known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There are structural and non-structural proteins (NSPs) in the genome of this virus. S, M, H, and E proteins are structural proteins, and NSPs include accessory and replicase proteins. The structural and NSP components of SARS-CoV-2 play an important role in its infectivity, and some of them may be important in the pathogenesis of chronic diseases, including cancer, coagulation disorders, neurodegenerative disorders, and cardiovascular diseases. The SARS-CoV-2 proteins interact with targets such as angiotensin-converting enzyme 2 (ACE2) receptor. In addition, SARS-CoV-2 can stimulate pathological intracellular signaling pathways by triggering transcription factor hypoxia-inducible factor-1 (HIF-1), neuropilin-1 (NRP-1), CD147, and Eph receptors, which play important roles in the progression of neurodegenerative diseases like Alzheimer's disease, epilepsy, and multiple sclerosis, and multiple cancers such as glioblastoma, lung malignancies, and leukemias. Several compounds such as polyphenols, doxazosin, baricitinib, and ruxolitinib could inhibit these interactions. It has been demonstrated that the SARS-CoV-2 spike protein has a stronger affinity for human ACE2 than the spike protein of SARS-CoV, leading the current study to hypothesize that the newly produced variant Omicron receptor-binding domain (RBD) binds to human ACE2 more strongly than the primary strain. SARS and Middle East respiratory syndrome (MERS) viruses against structural and NSPs have become resistant to previous vaccines. Therefore, the review of recent studies and the performance of current vaccines and their effects on COVID-19 and related diseases has become a vital need to deal with the current conditions. This review examines the potential role of these SARS-CoV-2 proteins in the initiation of chronic diseases, and it is anticipated that these proteins could serve as components of an effective vaccine or treatment for COVID-19 and related diseases. Video Abstract.
Collapse
Affiliation(s)
- Sareh Kakavandi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz, 7178795844, Iran
| | - Maryam VaezJalali
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Dadashi
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Azarian
- Department of Radiology, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Abdullatif Akbari
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Marzieh Ramezani Farani
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, Incheon, 22212, Republic of Korea
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Jahirul Islam M, Nawal Islam N, Siddik Alom M, Kabir M, Halim MA. A review on structural, non-structural, and accessory proteins of SARS-CoV-2: Highlighting drug target sites. Immunobiology 2023; 228:152302. [PMID: 36434912 PMCID: PMC9663145 DOI: 10.1016/j.imbio.2022.152302] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 10/30/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, is a highly transmittable and pathogenic human coronavirus that first emerged in China in December 2019. The unprecedented outbreak of SARS-CoV-2 devastated human health within a short time leading to a global public health emergency. A detailed understanding of the viral proteins including their structural characteristics and virulence mechanism on human health is very crucial for developing vaccines and therapeutics. To date, over 1800 structures of non-structural, structural, and accessory proteins of SARS-CoV-2 are determined by cryo-electron microscopy, X-ray crystallography, and NMR spectroscopy. Designing therapeutics to target the viral proteins has several benefits since they could be highly specific against the virus while maintaining minimal detrimental effects on humans. However, for ongoing and future research on SARS-CoV-2, summarizing all the viral proteins and their detailed structural information is crucial. In this review, we compile comprehensive information on viral structural, non-structural, and accessory proteins structures with their binding and catalytic sites, different domain and motifs, and potential drug target sites to assist chemists, biologists, and clinicians finding necessary details for fundamental and therapeutic research.
Collapse
Affiliation(s)
- Md Jahirul Islam
- Division of Infectious Diseases and Division of Computer Aided Drug Design, The Red-Green Research Centre, BICCB, 16 Tejkunipara, Tejgaon, Dhaka 1215, Bangladesh
| | - Nafisa Nawal Islam
- Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Md Siddik Alom
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Mahmuda Kabir
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mohammad A Halim
- Department of Chemistry and Biochemistry, Kennesaw State University, 370 Paulding Avenue NW, Kennesaw, GA 30144, USA
| |
Collapse
|
6
|
Surya W, Queralt-Martin M, Mu Y, Aguilella VM, Torres J. SARS-CoV-2 accessory protein 7b forms homotetramers in detergent. Virol J 2022; 19:193. [PMID: 36414943 PMCID: PMC9680129 DOI: 10.1186/s12985-022-01920-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/04/2022] [Indexed: 11/23/2022] Open
Abstract
A global pandemic is underway caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 genome, like its predecessor SARS-CoV, contains open reading frames that encode accessory proteins involved in virus-host interactions active during infection and which likely contribute to pathogenesis. One of these accessory proteins is 7b, with only 44 (SARS-CoV) and 43 (SARS-CoV-2) residues. It has one predicted transmembrane domain fully conserved, which suggests a functional role, whereas most variability is contained in the predicted cytoplasmic C-terminus. In SARS-CoV, 7b protein is expressed in infected cells, and the transmembrane domain was necessary and sufficient for Golgi localization. Also, anti-p7b antibodies have been found in the sera of SARS-CoV convalescent patients. In the present study, we have investigated the hypothesis that SARS-2 7b protein forms oligomers with ion channel activity. We show that in both SARS viruses 7b is almost completely α-helical and has a single transmembrane domain. In SDS, 7b forms various oligomers, from monomers to tetramers, but only monomers when exposed to reductants. Combination of SDS gel electrophoresis and analytical ultracentrifugation (AUC) in both equilibrium and velocity modes suggests a dimer-tetramer equilibrium, but a monomer-dimer-tetramer equilibrium in the presence of reductant. This data suggests that although disulfide-linked dimers may be present, they are not essential to form tetramers. Inclusion of pentamers or higher oligomers in the SARS-2 7b model were detrimental to fit quality. Preliminary models of this association was generated with AlphaFold2, and two alternative models were exposed to a molecular dynamics simulation in presence of a model lipid membrane. However, neither of the two models provided any evident pathway for ions. To confirm this, SARS-2 p7b was studied using Planar Bilayer Electrophysiology. Addition of p7b to model membranes produced occasional membrane permeabilization, but this was not consistent with bona fide ion channels made of a tetrameric assembly of α-helices.
Collapse
Affiliation(s)
- Wahyu Surya
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Maria Queralt-Martin
- grid.9612.c0000 0001 1957 9153Laboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I, 12080 Castelló, Spain
| | - Yuguang Mu
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Vicente M. Aguilella
- grid.9612.c0000 0001 1957 9153Laboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I, 12080 Castelló, Spain
| | - Jaume Torres
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| |
Collapse
|
7
|
Chen D, Zheng Z, Han Z. Expression and Purification of Recombinant SARS-CoV-2 Accessory Protein ORF7a and Functional Analysis of Its Role in Up-Regulating Cytokine Production. COVID 2022; 2:1449-1459. [DOI: 10.3390/covid2100104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The severity of coronavirus disease 2019 is closely linked to dysregulated immune responses. The search for viral proteins associated with immune regulation in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical to reveal the pathogenicity of the virus. In this study, accessory proteins ORF7a (referred to as ORF7a-1 and ORF7a-2, respectively) from two SARS-related coronaviruses, severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2, were produced through the denaturing and refolding of inclusion body proteins. The recombinant protein was incubated with alveolar epithelial cells, and the transcription and expression levels of major cytokines were determined by reverse transcription-quantitative PCR and enzyme-linked immunosorbent assay. SARS-related coronavirus ORF7a can up-regulate the transcription and expression of interleukin-6, C-C motif chemokine ligand 8, interferon α, and interferon β. The results also indicated that the two highly conserved ORF7a had certain differences in promoting the transcription and expression of cytokines. The study showed that ORF7a is a virus-encoded immune regulator by alveolar epithelial cells that plays an important role in the pathogenicity of SARS-related coronaviruses.
Collapse
Affiliation(s)
- Dan Chen
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhenhua Zheng
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhenggang Han
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
8
|
Kazmierski J, Friedmann K, Postmus D, Emanuel J, Fischer C, Jansen J, Richter A, Bosquillon de Jarcy L, Schüler C, Sohn M, Sauer S, Drosten C, Saliba A, Sander LE, Müller MA, Niemeyer D, Goffinet C. Nonproductive exposure of PBMCs to SARS-CoV-2 induces cell-intrinsic innate immune responses. Mol Syst Biol 2022; 18:e10961. [PMID: 35975552 PMCID: PMC9382356 DOI: 10.15252/msb.202210961] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 12/15/2022] Open
Abstract
Cell-intrinsic responses mounted in PBMCs during mild and severe COVID-19 differ quantitatively and qualitatively. Whether they are triggered by signals emitted by productively infected cells of the respiratory tract or result from physical interaction with virus particles remains unclear. Here, we analyzed susceptibility and expression profiles of PBMCs from healthy donors upon ex vivo exposure to SARS-CoV and SARS-CoV-2. In line with the absence of detectable ACE2 receptor expression, human PBMCs were refractory to productive infection. RT-PCR experiments and single-cell RNA sequencing revealed JAK/STAT-dependent induction of interferon-stimulated genes (ISGs) but not proinflammatory cytokines. This SARS-CoV-2-specific response was most pronounced in monocytes. SARS-CoV-2-RNA-positive monocytes displayed a lower ISG signature as compared to bystander cells of the identical culture. This suggests a preferential invasion of cells with a low ISG baseline profile or delivery of a SARS-CoV-2-specific sensing antagonist upon efficient particle internalization. Together, nonproductive physical interaction of PBMCs with SARS-CoV-2- and, to a much lesser extent, SARS-CoV particles stimulate JAK/STAT-dependent, monocyte-accentuated innate immune responses that resemble those detected in vivo in patients with mild COVID-19.
Collapse
Affiliation(s)
- Julia Kazmierski
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
- Berlin Institute of HealthBerlinGermany
| | - Kirstin Friedmann
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
| | - Dylan Postmus
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
- Berlin Institute of HealthBerlinGermany
| | - Jackson Emanuel
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
| | - Cornelius Fischer
- Scientific Genomics Platforms, Laboratory of Functional Genomics, Nutrigenomics and Systems BiologyMax Delbrück Center for Molecular MedicineBerlinGermany
| | - Jenny Jansen
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
- Berlin Institute of HealthBerlinGermany
| | - Anja Richter
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
| | - Laure Bosquillon de Jarcy
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
- Department of Infectious Diseases and Respiratory MedicineCharité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of Health (BIH)BerlinGermany
| | - Christiane Schüler
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
- Berlin Institute of HealthBerlinGermany
| | - Madlen Sohn
- Scientific Genomics Platforms, Laboratory of Functional Genomics, Nutrigenomics and Systems BiologyMax Delbrück Center for Molecular MedicineBerlinGermany
| | - Sascha Sauer
- Scientific Genomics Platforms, Laboratory of Functional Genomics, Nutrigenomics and Systems BiologyMax Delbrück Center for Molecular MedicineBerlinGermany
| | - Christian Drosten
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
- German Center for Infection Research, Associated Partner CharitéBerlinGermany
| | - Antoine‐Emmanuel Saliba
- Helmholtz Institute for RNA‐based Infection Research (HIRI)Helmholtz‐Center for Infection Research (HZI)WürzburgGermany
| | - Leif Erik Sander
- Department of Infectious Diseases and Respiratory MedicineCharité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of Health (BIH)BerlinGermany
| | - Marcel A Müller
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
- German Center for Infection Research, Associated Partner CharitéBerlinGermany
| | - Daniela Niemeyer
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
- German Center for Infection Research, Associated Partner CharitéBerlinGermany
| | - Christine Goffinet
- Institute of Virology, Campus Charité Mitte, Charité – Universitätsmedizin BerlinBerlinGermany
- Berlin Institute of HealthBerlinGermany
| |
Collapse
|
9
|
SARS-CoV-2 ORF7a potently inhibits the antiviral effect of the host factor SERINC5. Nat Commun 2022; 13:2935. [PMID: 35618710 PMCID: PMC9135752 DOI: 10.1038/s41467-022-30609-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 04/22/2022] [Indexed: 01/03/2023] Open
Abstract
Serine Incorporator 5 (SERINC5), a cellular multipass transmembrane protein that is involved in sphingolipid and phosphatydilserine biogenesis, potently restricts a number of retroviruses, including Human Immunodeficiency Virus (HIV). SERINC5 is incorporated in the budding virions leading to the inhibition of virus infectivity. In turn, retroviruses, including HIV, encode factors that counteract the antiviral effect of SERINC5. While SERINC5 has been well studied in retroviruses, little is known about its role in other viral families. Due to the paucity of information regarding host factors targeting Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), we evaluated the effect of SERINC proteins on SARS-CoV-2 infection. Here, we show SERINC5 inhibits SARS-CoV-2 entry by blocking virus-cell fusion, and SARS-CoV-2 ORF7a counteracts the antiviral effect of SERINC5 by blocking the incorporation of over expressed SERINC5 in budding virions. SERINC5, is a cellular multipass transmembrane protein involved in sphingolipid and phosphatydilserine biogenesis and a known retroviral restriction factor. Here, Timilsina et al. show that SERINC5 is a host restriction factor for SARS-CoV-2 that prevents viral fusion during entry. Further they show that viral ORF7a counteracts SERINC5 anti-viral activity by blocking its incorporation into progeny virions.
Collapse
|
10
|
Bai C, Zhong Q, Gao GF. Overview of SARS-CoV-2 genome-encoded proteins. SCIENCE CHINA-LIFE SCIENCES 2021; 65:280-294. [PMID: 34387838 PMCID: PMC8362648 DOI: 10.1007/s11427-021-1964-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023]
Abstract
Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) has spread rapidly throughout the world. SARS-CoV-2 is an enveloped, plus-stranded RNA virus with a single-stranded RNA genome of approximately 30,000 nucleotides. The SARS-CoV-2 genome encodes 29 proteins, including 16 nonstructural, 4 structural and 9 accessory proteins. To date, over 1,228 experimental structures of SARS-CoV-2 proteins have been deposited in the Protein Data Bank (PDB), including 16 protein structures, two functional domain structures of nucleocapsid (N) protein, and scores of complexes. Overall, they exhibit high similarity to SARS-CoV proteins. Here, we summarize the progress of structural and functional research on SARS-CoV-2 proteins. These studies provide structural and functional insights into proteins of SARS-CoV-2, and further elucidate the daedal relationship between different components at the atomic level in the viral life cycle, including attachment to the host cell, viral genome replication and transcription, genome packaging and assembly, and virus release. It is important to understand the structural and functional properties of SARS-CoV-2 proteins as it will facilitate the development of anti-CoV drugs and vaccines to prevent and control the current SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Chongzhi Bai
- CAS Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,Central Laboratory, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, 030012, China.,Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China
| | - Qiming Zhong
- Central Laboratory, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, 030012, China
| | - George Fu Gao
- CAS Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China.
| |
Collapse
|
11
|
Chazal N. Coronavirus, the King Who Wanted More Than a Crown: From Common to the Highly Pathogenic SARS-CoV-2, Is the Key in the Accessory Genes? Front Microbiol 2021; 12:682603. [PMID: 34335504 PMCID: PMC8317507 DOI: 10.3389/fmicb.2021.682603] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), that emerged in late 2019, is the etiologic agent of the current "coronavirus disease 2019" (COVID-19) pandemic, which has serious health implications and a significant global economic impact. Of the seven human coronaviruses, all of which have a zoonotic origin, the pandemic SARS-CoV-2, is the third emerging coronavirus, in the 21st century, highly pathogenic to the human population. Previous human coronavirus outbreaks (SARS-CoV-1 and MERS-CoV) have already provided several valuable information on some of the common molecular and cellular mechanisms of coronavirus infections as well as their origin. However, to meet the new challenge caused by the SARS-CoV-2, a detailed understanding of the biological specificities, as well as knowledge of the origin are crucial to provide information on viral pathogenicity, transmission and epidemiology, and to enable strategies for therapeutic interventions and drug discovery. Therefore, in this review, we summarize the current advances in SARS-CoV-2 knowledges, in light of pre-existing information of other recently emerging coronaviruses. We depict the specificity of the immune response of wild bats and discuss current knowledge of the genetic diversity of bat-hosted coronaviruses that promotes viral genome expansion (accessory gene acquisition). In addition, we describe the basic virology of coronaviruses with a special focus SARS-CoV-2. Finally, we highlight, in detail, the current knowledge of genes and accessory proteins which we postulate to be the major keys to promote virus adaptation to specific hosts (bat and human), to contribute to the suppression of immune responses, as well as to pathogenicity.
Collapse
Affiliation(s)
- Nathalie Chazal
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
12
|
Gorkhali R, Koirala P, Rijal S, Mainali A, Baral A, Bhattarai HK. Structure and Function of Major SARS-CoV-2 and SARS-CoV Proteins. Bioinform Biol Insights 2021; 15:11779322211025876. [PMID: 34220199 PMCID: PMC8221690 DOI: 10.1177/11779322211025876] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/25/2021] [Indexed: 01/20/2023] Open
Abstract
SARS-CoV-2 virus, the causative agent of COVID-19 pandemic, has a genomic organization consisting of 16 nonstructural proteins (nsps), 4 structural proteins, and 9 accessory proteins. Relative of SARS-CoV-2, SARS-CoV, has genomic organization, which is very similar. In this article, the function and structure of the proteins of SARS-CoV-2 and SARS-CoV are described in great detail. The nsps are expressed as a single or two polyproteins, which are then cleaved into individual proteins using two proteases of the virus, a chymotrypsin-like protease and a papain-like protease. The released proteins serve as centers of virus replication and transcription. Some of these nsps modulate the host’s translation and immune systems, while others help the virus evade the host immune system. Some of the nsps help form replication-transcription complex at double-membrane vesicles. Others, including one RNA-dependent RNA polymerase and one exonuclease, help in the polymerization of newly synthesized RNA of the virus and help minimize the mutation rate by proofreading. After synthesis of the viral RNA, it gets capped. The capping consists of adding GMP and a methylation mark, called cap 0 and additionally adding a methyl group to the terminal ribose called cap1. Capping is accomplished with the help of a helicase, which also helps remove a phosphate, two methyltransferases, and a scaffolding factor. Among the structural proteins, S protein forms the receptor of the virus, which latches on the angiotensin-converting enzyme 2 receptor of the host and N protein binds and protects the genomic RNA of the virus. The accessory proteins found in these viruses are small proteins with immune modulatory roles. Besides functions of these proteins, solved X-ray and cryogenic electron microscopy structures related to the function of the proteins along with comparisons to other coronavirus homologs have been described in the article. Finally, the rate of mutation of SARS-CoV-2 residues of the proteome during the 2020 pandemic has been described. Some proteins are mutated more often than other proteins, but the significance of these mutation rates is not fully understood.
Collapse
Affiliation(s)
- Ritesh Gorkhali
- Department of Biotechnology, Kathmandu University, Dhulikhel, Nepal
| | | | - Sadikshya Rijal
- Department of Biotechnology, Kathmandu University, Dhulikhel, Nepal
| | - Ashmita Mainali
- Department of Biotechnology, Kathmandu University, Dhulikhel, Nepal
| | - Adesh Baral
- Department of Biotechnology, Kathmandu University, Dhulikhel, Nepal
| | | |
Collapse
|
13
|
[Basic information of Coronavirus]. Uirusu 2021; 70:29-36. [PMID: 33967109 DOI: 10.2222/jsv.70.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Coronaviruses are pathogens that infect many of animals, resulting in respiratory or enteric diseases. Coronaviruses constitute Nidovirales together with Arteriviridae. Most of human coronaviruses are known to cause mild illness and common cold. However, an epidemic of severe acute respiratory syndrome (SARS) occurred in 2002, ten years after SARS epidemic Middle East respiratory syndrome (MERS) emerged in 2012. Now, we face on a novel coronavirus which emerges in end of 2019. This novel coronavirus is named as SARS-CoV-2. SARS-CoV-2 is spread to worldwide within one to two months and causes coronavirus disease 2019 (COVID-19), respiratory illness. Coronaviruses are enveloped viruses possessing a positive-sense and large single stranded RNA genomes. The 5' two-thirds of the CoV genome consists of two overlapping open reading frames (ORFs 1a and 1b) that encode non-structural proteins (nsps). The other one-third of the genome consists of ORFs encoding structural proteins, including spike (S), membrane (M), envelope (E) and nucleocapsid (N) proteins, and accessory proteins. Upon infection of CoV into host cells, the translation of two precursor polyproteins, pp1a and pp1ab, occurs and these polyproteins are cleaved into 16 nsps by viral proteases. Structural proteins assemble to the vesicles located from ER to Golgi (ER Golgiintermediate compartment) and virions bud into the vesicles. Virions are released from infectedcells via exocytosis.
Collapse
|
14
|
Ongaro A, Oselladore E, Memo M, Ribaudo G, Gianoncelli A. Insight into the LFA-1/SARS-CoV-2 Orf7a Complex by Protein-Protein Docking, Molecular Dynamics, and MM-GBSA Calculations. J Chem Inf Model 2021; 61:2780-2787. [PMID: 34043356 PMCID: PMC8189040 DOI: 10.1021/acs.jcim.1c00198] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) genome, open reading frames (ORFs) encode for viral accessory proteins. Among these, Orf7a structurally resembles the members of the immunoglobulin (Ig) superfamily and intracellular adhesion molecules (ICAMs), in particular. ICAMs are involved in integrin binding through lymphocyte function-associated antigen 1 (LFA-1). Based on such considerations and on previous findings on SARS-CoV, it has been postulated that the formation of the LFA-1/Orf7a complex could contribute to SARS-CoV-2 infectivity and pathogenicity. With the current work, we aim at providing insight into this macromolecular assembly, taking advantage of the recently reported SARS-CoV-2 Orf7a structure. Protein-protein docking, molecular dynamics (MD) simulations, and a Molecular Mechanical-Generalized Born Surface Area (MM-GBSA)-based stage were enrolled to provide refined models.
Collapse
Affiliation(s)
- Alberto Ongaro
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Erika Oselladore
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Giovanni Ribaudo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Alessandra Gianoncelli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|
15
|
Chakraborty S, Mallajosyula V, Tato CM, Tan GS, Wang TT. SARS-CoV-2 vaccines in advanced clinical trials: Where do we stand? Adv Drug Deliv Rev 2021; 172:314-338. [PMID: 33482248 PMCID: PMC7816567 DOI: 10.1016/j.addr.2021.01.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 02/07/2023]
Abstract
The ongoing SARS-CoV-2 pandemic has led to the focused application of resources and scientific expertise toward the goal of developing investigational vaccines to prevent COVID-19. The highly collaborative global efforts by private industry, governments and non-governmental organizations have resulted in a number of SARS-CoV-2 vaccine candidates moving to Phase III trials in a period of only months since the start of the pandemic. In this review, we provide an overview of the preclinical and clinical data on SARS-CoV-2 vaccines that are currently in Phase III clinical trials and in few cases authorized for emergency use. We further discuss relevant vaccine platforms and provide a discussion of SARS-CoV-2 antigens that may be targeted to increase the breadth and durability of vaccine responses.
Collapse
Affiliation(s)
- Saborni Chakraborty
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, USA
| | - Vamsee Mallajosyula
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA, USA
| | - Cristina M Tato
- Infectious Disease Initiative, Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Gene S Tan
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA 92037, USA; Department of Infectious Diseases, University of California San Diego, La Jolla, CA 92037, USA
| | - Taia T Wang
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
16
|
Zhou Z, Huang C, Zhou Z, Huang Z, Su L, Kang S, Chen X, Chen Q, He S, Rong X, Xiao F, Chen J, Chen S. Structural insight reveals SARS-CoV-2 ORF7a as an immunomodulating factor for human CD14 + monocytes. iScience 2021; 24:102187. [PMID: 33615195 PMCID: PMC7879101 DOI: 10.1016/j.isci.2021.102187] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/11/2020] [Accepted: 02/09/2021] [Indexed: 01/08/2023] Open
Abstract
Dysregulated immune cell responses have been linked to the severity of coronavirus disease 2019 (COVID-19), but the specific viral factors of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were currently unknown. Herein, we reveal that the Immunoglobulin-like fold ectodomain of the viral protein SARS-CoV-2 ORF7a interacts with high efficiency to CD14+ monocytes in human peripheral blood, compared to pathogenic protein SARS-CoV ORF7a. The crystal structure of SARS-CoV-2 ORF7a at 2.2 Å resolution reveals three remarkable changes on the amphipathic side of the four-stranded β-sheet, implying a potential functional interface of the viral protein. Importantly, SARS-CoV-2 ORF7a coincubation with CD14+ monocytes ex vivo triggered a decrease in HLA-DR/DP/DQ expression levels and upregulated significant production of proinflammatory cytokines, including IL-6, IL-1β, IL-8, and TNF-α. Our work demonstrates that SARS-CoV-2 ORF7a is an immunomodulating factor for immune cell binding and triggers dramatic inflammatory responses, providing promising therapeutic drug targets for pandemic COVID-19.
Collapse
Affiliation(s)
- Ziliang Zhou
- Molecular Imaging Center, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Chunliu Huang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhechong Zhou
- Molecular Imaging Center, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Zhaoxia Huang
- Molecular Imaging Center, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Lili Su
- The Health Management Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Sisi Kang
- Molecular Imaging Center, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Xiaoxue Chen
- Molecular Imaging Center, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Qiuyue Chen
- Molecular Imaging Center, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Suhua He
- Molecular Imaging Center, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Xia Rong
- Institute of Clinical Transfusion, Guangzhou Blood Center, Guangzhou 510095, China
| | - Fei Xiao
- Molecular Imaging Center, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Jun Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
- Center for Precision Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Shoudeng Chen
- Molecular Imaging Center, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
- Department of Experimental Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| |
Collapse
|
17
|
Gorgulla C, Padmanabha Das KM, Leigh KE, Cespugli M, Fischer PD, Wang ZF, Tesseyre G, Pandita S, Shnapir A, Calderaio A, Gechev M, Rose A, Lewis N, Hutcheson C, Yaffe E, Luxenburg R, Herce HD, Durmaz V, Halazonetis TD, Fackeldey K, Patten J, Chuprina A, Dziuba I, Plekhova A, Moroz Y, Radchenko D, Tarkhanova O, Yavnyuk I, Gruber C, Yust R, Payne D, Näär AM, Namchuk MN, Davey RA, Wagner G, Kinney J, Arthanari H. A multi-pronged approach targeting SARS-CoV-2 proteins using ultra-large virtual screening. iScience 2021; 24:102021. [PMID: 33426509 PMCID: PMC7783459 DOI: 10.1016/j.isci.2020.102021] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/28/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
The unparalleled global effort to combat the continuing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic over the last year has resulted in promising prophylactic measures. However, a need still exists for cheap, effective therapeutics, and targeting multiple points in the viral life cycle could help tackle the current, as well as future, coronaviruses. Here, we leverage our recently developed, ultra-large-scale in silico screening platform, VirtualFlow, to search for inhibitors that target SARS-CoV-2. In this unprecedented structure-based virtual campaign, we screened roughly 1 billion molecules against each of 40 different target sites on 17 different potential viral and host targets. In addition to targeting the active sites of viral enzymes, we also targeted critical auxiliary sites such as functionally important protein-protein interactions.
Collapse
Affiliation(s)
- Christoph Gorgulla
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Department of Physics, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Krishna M. Padmanabha Das
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kendra E. Leigh
- Max Planck Institute of Biophysics, Frankfurt am Main, Hessen 60438, Germany
| | | | - Patrick D. Fischer
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Saarland 66123, Germany
| | - Zi-Fu Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | | | | | | | - Anthony Calderaio
- VirtualFlow Organization, https://virtual-flow.org/, Boston, MA 02115, USA
| | | | - Alexander Rose
- Mol∗ Consortium, https://molstar.org, San Diego, CA 92109, USA
| | | | | | | | | | - Henry D. Herce
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | | | - Konstantin Fackeldey
- Zuse Institute Berlin (ZIB), Berlin 14195, Germany
- Institute of Mathematics, Technical University Berlin, Berlin 10587, Germany
| | - J.J. Patten
- Department of Microbiology, Boston University Medical School, Boston University, Boston, MA 02118, USA
| | | | | | | | - Yurii Moroz
- Chemspace, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Kyiv 01601, Ukraine
| | - Dmytro Radchenko
- Enamine, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Kyiv 01601, Ukraine
| | | | | | - Christian Gruber
- Innophore GmbH, Graz 8010, Austria
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
| | - Ryan Yust
- Google, Mountain View, CA 94043, USA
| | | | - Anders M. Näär
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Mark N. Namchuk
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Robert A. Davey
- Department of Microbiology, Boston University Medical School, Boston University, Boston, MA 02118, USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | | | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| |
Collapse
|
18
|
Giri R, Bhardwaj T, Shegane M, Gehi BR, Kumar P, Gadhave K, Oldfield CJ, Uversky VN. Understanding COVID-19 via comparative analysis of dark proteomes of SARS-CoV-2, human SARS and bat SARS-like coronaviruses. Cell Mol Life Sci 2021; 78:1655-1688. [PMID: 32712910 DOI: 10.1101/2020.03.13.990598] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/03/2020] [Accepted: 07/17/2020] [Indexed: 05/18/2023]
Abstract
The recently emerged coronavirus designated as SARS-CoV-2 (also known as 2019 novel coronavirus (2019-nCoV) or Wuhan coronavirus) is a causative agent of coronavirus disease 2019 (COVID-19), which is rapidly spreading throughout the world now. More than 1.21 million cases of SARS-CoV-2 infection and more than 67,000 COVID-19-associated mortalities have been reported worldwide till the writing of this article, and these numbers are increasing every passing hour. The World Health Organization (WHO) has declared the SARS-CoV-2 spread as a global public health emergency and admitted COVID-19 as a pandemic now. Multiple sequence alignment data correlated with the already published reports on SARS-CoV-2 evolution indicated that this virus is closely related to the bat severe acute respiratory syndrome-like coronavirus (bat SARS-like CoV) and the well-studied human SARS coronavirus (SARS-CoV). The disordered regions in viral proteins are associated with the viral infectivity and pathogenicity. Therefore, in this study, we have exploited a set of complementary computational approaches to examine the dark proteomes of SARS-CoV-2, bat SARS-like, and human SARS CoVs by analysing the prevalence of intrinsic disorder in their proteins. According to our findings, SARS-CoV-2 proteome contains very significant levels of structural order. In fact, except for nucleocapsid, Nsp8, and ORF6, the vast majority of SARS-CoV-2 proteins are mostly ordered proteins containing less intrinsically disordered protein regions (IDPRs). However, IDPRs found in SARS-CoV-2 proteins are functionally important. For example, cleavage sites in its replicase 1ab polyprotein are found to be highly disordered, and almost all SARS-CoV-2 proteins contains molecular recognition features (MoRFs), which are intrinsic disorder-based protein-protein interaction sites that are commonly utilized by proteins for interaction with specific partners. The results of our extensive investigation of the dark side of SARS-CoV-2 proteome will have important implications in understanding the structural and non-structural biology of SARS or SARS-like coronaviruses.
Collapse
Affiliation(s)
- Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India.
| | - Taniya Bhardwaj
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Meenakshi Shegane
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Bhuvaneshwari R Gehi
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
| | | | - Vladimir N Uversky
- Department of Molecular Medicine, Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Moscow region, Pushchino, 142290, Russia
| |
Collapse
|
19
|
Nizamudeen ZA, Xu ER, Karthik V, Halawa M, Arkill KP, Jackson AM, Bates DO, Emsley J. Structural assessment of SARS-CoV2 accessory protein ORF7a predicts LFA-1 and Mac-1 binding potential. Biosci Rep 2021; 41:BSR20203837. [PMID: 33305306 PMCID: PMC7796194 DOI: 10.1042/bsr20203837] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/17/2023] Open
Abstract
ORF7a is an accessory protein common to SARS-CoV1 and the recently discovered SARS-CoV2, which is causing the COVID-19 pandemic. The ORF7a protein has a structural homology with ICAM-1 which binds to the T lymphocyte integrin receptor LFA-1. As COVID-19 has a strong immune component as part of the disease, we sought to determine whether SARS-CoV2 would have a similar structural interaction with LFA-1. Using molecular docking simulations, we found that SARS-CoV2 ORF7a has the key structural determinants required to bind LFA-1 but also the related leukocyte integrin Mac-1, which is also known to be expressed by macrophages. Our study shows that SARS-CoV2 ORF7a protein has a conserved Ig immunoglobulin-like fold containing an integrin binding site that provides a mechanistic hypothesis for SARS-CoV2's interaction with the human immune system. This suggests that experimental investigation of ORF7a-mediated effects on immune cells such as T lymphocytes and macrophages (leukocytes) could help understand the disease further and develop effective treatments.
Collapse
Affiliation(s)
- Zubair Ahmed Nizamudeen
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Emma-Ruoqi Xu
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Vivin Karthik
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, U.S.A
| | - Mohamed Halawa
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Kenton P. Arkill
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Andrew M. Jackson
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, U.K
| | - David O. Bates
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Jonas Emsley
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, U.K
| |
Collapse
|
20
|
Qin P, Luo WT, Su Q, Zhao P, Zhang Y, Wang B, Yang YL, Huang YW. The porcine deltacoronavirus accessory protein NS6 is expressed in vivo and incorporated into virions. Virology 2021; 556:1-8. [PMID: 33515858 PMCID: PMC7825830 DOI: 10.1016/j.virol.2021.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 01/12/2023]
Abstract
Porcine deltacoronavirus (PDCoV) is one of the emerged coronaviruses posing a significant threat to the swine industry. Previous work showed the presence of a viral accessory protein NS6 in PDCoV-infected cells. In this study, we detected the expression of the NS6 protein in small intestinal tissues of PDCoV-infected piglets. In addition, SDS-PAGE and Western blot analysis of sucrose gradient-purified virions showed the presence of a 13-kDa NS6 protein. Further evidences of the presence of NS6 in the PDCoV virions were obtained by immunogold staining of purified virions with anti-NS6 antiserum, and by immunoprecipitation of NS6 from purified virions. Finally, the anti-NS6 antibody was not able to neutralize PDCoV in cultured cells. These data establish for the first time that the accessory protein NS6 is expressed during infection in vivo and incorporated into PDCoV virions.
Collapse
Affiliation(s)
- Pan Qin
- Institute of Preventive Veterinary Science and Key Laboratory of Animal Virology of Ministry of Agriculture, Department of Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Wen-Ting Luo
- Institute of Preventive Veterinary Science and Key Laboratory of Animal Virology of Ministry of Agriculture, Department of Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Quan Su
- Institute of Preventive Veterinary Science and Key Laboratory of Animal Virology of Ministry of Agriculture, Department of Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Pengwei Zhao
- Institute of Preventive Veterinary Science and Key Laboratory of Animal Virology of Ministry of Agriculture, Department of Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yuqi Zhang
- Institute of Preventive Veterinary Science and Key Laboratory of Animal Virology of Ministry of Agriculture, Department of Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Bin Wang
- Institute of Preventive Veterinary Science and Key Laboratory of Animal Virology of Ministry of Agriculture, Department of Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yong-Le Yang
- Institute of Preventive Veterinary Science and Key Laboratory of Animal Virology of Ministry of Agriculture, Department of Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yao-Wei Huang
- Institute of Preventive Veterinary Science and Key Laboratory of Animal Virology of Ministry of Agriculture, Department of Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
21
|
Patel CN, Kumar SP, Pandya HA, Rawal RM. Identification of potential inhibitors of coronavirus hemagglutinin-esterase using molecular docking, molecular dynamics simulation and binding free energy calculation. Mol Divers 2020; 25:421-433. [PMID: 32996011 PMCID: PMC7524381 DOI: 10.1007/s11030-020-10135-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023]
Abstract
Abstract The pandemic outbreak of the Corona viral infection has become a critical global health issue. Biophysical and structural evidence shows that spike protein possesses a high binding affinity towards host angiotensin-converting enzyme 2 and viral hemagglutinin-acetylesterase (HE) glycoprotein receptor. We selected HE as a target in this study to identify potential inhibitors using a combination of various computational approaches such as molecular docking, ADMET analysis, dynamics simulations and binding free energy calculations. Virtual screening of NPACT compounds identified 3,4,5-Trihydroxy-1,8-bis[(2R,3R)-3,5,7-trihydroxy-3,4-dihydro-2H-chromen-2-yl]benzo[7]annulen-6-one, Silymarin, Withanolide D, Spirosolane and Oridonin as potential HE inhibitors with better binding energy. Furthermore, molecular dynamics simulations for 100 ns time scale revealed that most of the key HE contacts were retained throughout the simulations trajectories. Binding free energy calculations using MM/PBSA approach ranked the top-five potential NPACT compounds which can act as effective HE inhibitors. Graphic abstract ![]()
Electronic supplementary material The online version of this article (10.1007/s11030-020-10135-w) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chirag N Patel
- Department of Botany, Bioinformatics, and Climate Change Impacts Management, University School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Sivakumar Prasanth Kumar
- Department of Life Sciences, University School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Himanshu A Pandya
- Department of Botany, Bioinformatics, and Climate Change Impacts Management, University School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Rakesh M Rawal
- Department of Life Sciences, University School of Sciences, Gujarat University, Ahmedabad, 380009, India.
| |
Collapse
|
22
|
Beeraka NM, Sadhu SP, Madhunapantula SV, Rao Pragada R, Svistunov AA, Nikolenko VN, Mikhaleva LM, Aliev G. Strategies for Targeting SARS CoV-2: Small Molecule Inhibitors-The Current Status. Front Immunol 2020; 11:552925. [PMID: 33072093 PMCID: PMC7531039 DOI: 10.3389/fimmu.2020.552925] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/18/2020] [Indexed: 01/08/2023] Open
Abstract
Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2) induced Coronavirus Disease - 19 (COVID-19) cases have been increasing at an alarming rate (7.4 million positive cases as on June 11 2020), causing high mortality (4,17,956 deaths as on June 11 2020) and economic loss (a 3.2% shrink in global economy in 2020) across 212 countries globally. The clinical manifestations of this disease are pneumonia, lung injury, inflammation, and severe acute respiratory syndrome (SARS). Currently, there is no vaccine or effective pharmacological agents available for the prevention/treatment of SARS-CoV2 infections. Moreover, development of a suitable vaccine is a challenging task due to antibody-dependent enhancement (ADE) and Th-2 immunopathology, which aggravates infection with SARS-CoV-2. Furthermore, the emerging SARS-CoV-2 strain exhibits several distinct genomic and structural patterns compared to other coronavirus strains, making the development of a suitable vaccine even more difficult. Therefore, the identification of novel small molecule inhibitors (NSMIs) that can interfere with viral entry or viral propagation is of special interest and is vital in managing already infected cases. SARS-CoV-2 infection is mediated by the binding of viral Spike proteins (S-protein) to human cells through a 2-step process, which involves Angiotensin Converting Enzyme-2 (ACE2) and Transmembrane Serine Protease (TMPRSS)-2. Therefore, the development of novel inhibitors of ACE2/TMPRSS2 is likely to be beneficial in combating SARS-CoV-2 infections. However, the usage of ACE-2 inhibitors to block the SARS-CoV-2 viral entry requires additional studies as there are conflicting findings and severe health complications reported for these inhibitors in patients. Hence, the current interest is shifted toward the development of NSMIs, which includes natural antiviral phytochemicals and Nrf-2 activators to manage a SARS-CoV-2 infection. It is imperative to investigate the efficacy of existing antiviral phytochemicals and Nrf-2 activators to mitigate the SARS-CoV-2-mediated oxidative stress. Therefore, in this review, we have reviewed structural features of SARS-CoV-2 with special emphasis on key molecular targets and their known modulators that can be considered for the development of NSMIs.
Collapse
Affiliation(s)
- Narasimha M. Beeraka
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), JSS Academy of Higher Education & Research (JSS AHER), Mysore, India
| | - Surya P. Sadhu
- AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, India
| | - SubbaRao V. Madhunapantula
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), JSS Academy of Higher Education & Research (JSS AHER), Mysore, India
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysore, India
| | | | - Andrey A. Svistunov
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Vladimir N. Nikolenko
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
- Department of Normal and Topographic Anatomy, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | - Gjumrakch Aliev
- Research Institute of Human Morphology, Moscow, Russia
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Moscow, Russia
- GALLY International Research Institute, San Antonio, TX, United States
| |
Collapse
|
23
|
Giri R, Bhardwaj T, Shegane M, Gehi BR, Kumar P, Gadhave K, Oldfield CJ, Uversky VN. Understanding COVID-19 via comparative analysis of dark proteomes of SARS-CoV-2, human SARS and bat SARS-like coronaviruses. Cell Mol Life Sci 2020; 78:1655-1688. [PMID: 32712910 PMCID: PMC7382329 DOI: 10.1007/s00018-020-03603-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/03/2020] [Accepted: 07/17/2020] [Indexed: 01/08/2023]
Abstract
The recently emerged coronavirus designated as SARS-CoV-2 (also known as 2019 novel coronavirus (2019-nCoV) or Wuhan coronavirus) is a causative agent of coronavirus disease 2019 (COVID-19), which is rapidly spreading throughout the world now. More than 1.21 million cases of SARS-CoV-2 infection and more than 67,000 COVID-19-associated mortalities have been reported worldwide till the writing of this article, and these numbers are increasing every passing hour. The World Health Organization (WHO) has declared the SARS-CoV-2 spread as a global public health emergency and admitted COVID-19 as a pandemic now. Multiple sequence alignment data correlated with the already published reports on SARS-CoV-2 evolution indicated that this virus is closely related to the bat severe acute respiratory syndrome-like coronavirus (bat SARS-like CoV) and the well-studied human SARS coronavirus (SARS-CoV). The disordered regions in viral proteins are associated with the viral infectivity and pathogenicity. Therefore, in this study, we have exploited a set of complementary computational approaches to examine the dark proteomes of SARS-CoV-2, bat SARS-like, and human SARS CoVs by analysing the prevalence of intrinsic disorder in their proteins. According to our findings, SARS-CoV-2 proteome contains very significant levels of structural order. In fact, except for nucleocapsid, Nsp8, and ORF6, the vast majority of SARS-CoV-2 proteins are mostly ordered proteins containing less intrinsically disordered protein regions (IDPRs). However, IDPRs found in SARS-CoV-2 proteins are functionally important. For example, cleavage sites in its replicase 1ab polyprotein are found to be highly disordered, and almost all SARS-CoV-2 proteins contains molecular recognition features (MoRFs), which are intrinsic disorder-based protein–protein interaction sites that are commonly utilized by proteins for interaction with specific partners. The results of our extensive investigation of the dark side of SARS-CoV-2 proteome will have important implications in understanding the structural and non-structural biology of SARS or SARS-like coronaviruses.
Collapse
Affiliation(s)
- Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India.
| | - Taniya Bhardwaj
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Meenakshi Shegane
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Bhuvaneshwari R Gehi
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
| | | | - Vladimir N Uversky
- Department of Molecular Medicine, Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Moscow region, Pushchino, 142290, Russia
| |
Collapse
|
24
|
Gorgulla C, Padmanabha Das KM, Leigh KE, Cespugli M, Fischer PD, Wang ZF, Tesseyre G, Pandita S, Shnapir A, Calderaio A, Gechev M, Rose A, Lewis N, Hutcheson C, Yaffe E, Luxenburg R, Herce HD, Durmaz V, Halazonetis TD, Fackeldey K, Patten JJ, Chuprina A, Dziuba I, Plekhova A, Moroz Y, Radchenko D, Tarkhanova O, Yavnyuk I, Gruber C, Yust R, Payne D, Näär AM, Namchuk MN, Davey RA, Wagner G, Kinney J, Arthanari H. A Multi-Pronged Approach Targeting SARS-CoV-2 Proteins Using Ultra-Large Virtual Screening. CHEMRXIV : THE PREPRINT SERVER FOR CHEMISTRY 2020:12682316. [PMID: 33200116 PMCID: PMC7668741 DOI: 10.26434/chemrxiv.12682316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 07/24/2020] [Indexed: 11/23/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), previously known as 2019 novel coronavirus (2019-nCoV), has spread rapidly across the globe, creating an unparalleled global health burden and spurring a deepening economic crisis. As of July 7th, 2020, almost seven months into the outbreak, there are no approved vaccines and few treatments available. Developing drugs that target multiple points in the viral life cycle could serve as a strategy to tackle the current as well as future coronavirus pandemics. Here we leverage the power of our recently developed in silico screening platform, VirtualFlow, to identify inhibitors that target SARS-CoV-2. VirtualFlow is able to efficiently harness the power of computing clusters and cloud-based computing platforms to carry out ultra-large scale virtual screens. In this unprecedented structure-based multi-target virtual screening campaign, we have used VirtualFlow to screen an average of approximately 1 billion molecules against each of 40 different target sites on 17 different potential viral and host targets in the cloud. In addition to targeting the active sites of viral enzymes, we also target critical auxiliary sites such as functionally important protein-protein interaction interfaces. This multi-target approach not only increases the likelihood of finding a potent inhibitor, but could also help identify a collection of anti-coronavirus drugs that would retain efficacy in the face of viral mutation. Drugs belonging to different regimen classes could be combined to develop possible combination therapies, and top hits that bind at highly conserved sites would be potential candidates for further development as coronavirus drugs. Here, we present the top 200 in silico hits for each target site. While in-house experimental validation of some of these compounds is currently underway, we want to make this array of potential inhibitor candidates available to researchers worldwide in consideration of the pressing need for fast-tracked drug development.
Collapse
Affiliation(s)
- Christoph Gorgulla
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, USA
- Department of Physics, Faculty of Arts and Sciences, Harvard University, Cambridge, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, USA
| | - Krishna M. Padmanabha Das
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, USA
| | | | | | - Patrick D. Fischer
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, USA
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| | - Zi-Fu Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, USA
| | | | | | | | | | | | | | | | | | | | | | - Henry D. Herce
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, USA
| | | | | | - Konstantin Fackeldey
- Zuse Institute Berlin (ZIB), Berlin, Germany
- Institute of Mathematics, Technical University Berlin, Berlin, Germany
| | - Justin J. Patten
- Department of Microbiology, Boston University Medical School, Boston University, Boston, USA
| | | | | | | | - Yurii Moroz
- Chemspace, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, Ukraine
| | - Dmytro Radchenko
- Enamine, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, Ukraine
| | | | | | - Christian Gruber
- Innophore GmbH, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Austria
| | | | | | - Anders M. Näär
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, USA
| | - Mark N. Namchuk
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, USA
| | - Robert A. Davey
- Department of Microbiology, Boston University Medical School, Boston University, Boston, USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, USA
| | | | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, USA
| |
Collapse
|
25
|
Abstract
BACKGROUND Coronaviruses (CoVs) primarily cause enzootic infections in birds and mammals but, in the last few decades, have shown to be capable of infecting humans as well. The outbreak of severe acute respiratory syndrome (SARS) in 2003 and, more recently, Middle-East respiratory syndrome (MERS) has demonstrated the lethality of CoVs when they cross the species barrier and infect humans. A renewed interest in coronaviral research has led to the discovery of several novel human CoVs and since then much progress has been made in understanding the CoV life cycle. The CoV envelope (E) protein is a small, integral membrane protein involved in several aspects of the virus' life cycle, such as assembly, budding, envelope formation, and pathogenesis. Recent studies have expanded on its structural motifs and topology, its functions as an ion-channelling viroporin, and its interactions with both other CoV proteins and host cell proteins. MAIN BODY This review aims to establish the current knowledge on CoV E by highlighting the recent progress that has been made and comparing it to previous knowledge. It also compares E to other viral proteins of a similar nature to speculate the relevance of these new findings. Good progress has been made but much still remains unknown and this review has identified some gaps in the current knowledge and made suggestions for consideration in future research. CONCLUSIONS The most progress has been made on SARS-CoV E, highlighting specific structural requirements for its functions in the CoV life cycle as well as mechanisms behind its pathogenesis. Data shows that E is involved in critical aspects of the viral life cycle and that CoVs lacking E make promising vaccine candidates. The high mortality rate of certain CoVs, along with their ease of transmission, underpins the need for more research into CoV molecular biology which can aid in the production of effective anti-coronaviral agents for both human CoVs and enzootic CoVs.
Collapse
Affiliation(s)
- Dewald Schoeman
- Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, University of the Western Cape, Cape Town, South Africa
| | - Burtram C Fielding
- Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, University of the Western Cape, Cape Town, South Africa.
| |
Collapse
|
26
|
Fang P, Fang L, Hong Y, Liu X, Dong N, Ma P, Bi J, Wang D, Xiao S. Discovery of a novel accessory protein NS7a encoded by porcine deltacoronavirus. J Gen Virol 2017; 98:173-178. [PMID: 27995863 PMCID: PMC7079566 DOI: 10.1099/jgv.0.000690] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging swine enteric coronavirus. Bioinformatics predicts that PDCoV encodes two accessory proteins (NS6 and NS7), the species-specific proteins for coronavirus. In this study, four mAbs against the predicted NS7 were prepared by using the purified recombinant NS7 protein. Indirect immunofluorescence assay demonstrated that all mAbs recognized cells transfected with an NS7 expression construct or infected with PDCoV. Western blot showed that NS7-specific mAbs recognized an additional protein band of about 12 kDa from PDCoV-infected cell lysates but not from cells with the ectopic expression of NS7. Detailed analysis suggested that this additional protein band represented a novel accessory protein, termed NS7a, a 100 amino acid polypeptide identical to the 3′ end of NS7. Moreover, NS7a is encoded by a separate subgenomic mRNA with a non-canonical transcription regulatory sequence. In summary, our results identified a third accessory protein encoded by PDCoV, which will enhance our understanding of PDCoV.
Collapse
Affiliation(s)
- Puxian Fang
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, PR China.,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Liurong Fang
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, PR China.,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yingying Hong
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, PR China.,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiaorong Liu
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, PR China.,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Nan Dong
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, PR China.,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Panpan Ma
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, PR China.,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jing Bi
- Department of Immunology and Aetiology, College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan 430065, PR China.,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Dang Wang
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, PR China.,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shaobo Xiao
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, PR China.,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
27
|
Fang P, Fang L, Liu X, Hong Y, Wang Y, Dong N, Ma P, Bi J, Wang D, Xiao S. Identification and subcellular localization of porcine deltacoronavirus accessory protein NS6. Virology 2016; 499:170-177. [PMID: 27661736 PMCID: PMC7111631 DOI: 10.1016/j.virol.2016.09.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 12/27/2022]
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging swine enteric coronavirus. Accessory proteins are genus-specific for coronavirus, and two putative accessory proteins, NS6 and NS7, are predicted to be encoded by PDCoV; however, this remains to be confirmed experimentally. Here, we identified the leader-body junction sites of NS6 subgenomic RNA (sgRNA) and found that the actual transcription regulatory sequence (TRS) utilized by NS6 is non-canonical and is located upstream of the predicted TRS. Using the purified NS6 from an Escherichia coli expression system, we obtained two anti-NS6 monoclonal antibodies that could detect the predicted NS6 in cells infected with PDCoV or transfected with NS6-expressing plasmids. Further studies revealed that NS6 is always localized in the cytoplasm of PDCoV-infected cells, mainly co-localizing with the endoplasmic reticulum (ER) and ER-Golgi intermediate compartments, as well as partially with the Golgi apparatus. Together, our results identify the NS6 sgRNA and demonstrate its expression in PDCoV-infected cells.
Collapse
Affiliation(s)
- Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xiaorong Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yingying Hong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yongle Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Nan Dong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Panpan Ma
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jing Bi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Department of Immunology and Aetology, College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Dang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
28
|
Jimenez-Guardeño JM, Regla-Nava JA, Nieto-Torres JL, DeDiego ML, Castaño-Rodriguez C, Fernandez-Delgado R, Perlman S, Enjuanes L. Identification of the Mechanisms Causing Reversion to Virulence in an Attenuated SARS-CoV for the Design of a Genetically Stable Vaccine. PLoS Pathog 2015; 11:e1005215. [PMID: 26513244 PMCID: PMC4626112 DOI: 10.1371/journal.ppat.1005215] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/18/2015] [Indexed: 12/15/2022] Open
Abstract
A SARS-CoV lacking the full-length E gene (SARS-CoV-∆E) was attenuated and an effective vaccine. Here, we show that this mutant virus regained fitness after serial passages in cell culture or in vivo, resulting in the partial duplication of the membrane gene or in the insertion of a new sequence in gene 8a, respectively. The chimeric proteins generated in cell culture increased virus fitness in vitro but remained attenuated in mice. In contrast, during SARS-CoV-∆E passage in mice, the virus incorporated a mutated variant of 8a protein, resulting in reversion to a virulent phenotype. When the full-length E protein was deleted or its PDZ-binding motif (PBM) was mutated, the revertant viruses either incorporated a novel chimeric protein with a PBM or restored the sequence of the PBM on the E protein, respectively. Similarly, after passage in mice, SARS-CoV-∆E protein 8a mutated, to now encode a PBM, and also regained virulence. These data indicated that the virus requires a PBM on a transmembrane protein to compensate for removal of this motif from the E protein. To increase the genetic stability of the vaccine candidate, we introduced small attenuating deletions in E gene that did not affect the endogenous PBM, preventing the incorporation of novel chimeric proteins in the virus genome. In addition, to increase vaccine biosafety, we introduced additional attenuating mutations into the nsp1 protein. Deletions in the carboxy-terminal region of nsp1 protein led to higher host interferon responses and virus attenuation. Recombinant viruses including attenuating mutations in E and nsp1 genes maintained their attenuation after passage in vitro and in vivo. Further, these viruses fully protected mice against challenge with the lethal parental virus, and are therefore safe and stable vaccine candidates for protection against SARS-CoV. Zoonotic coronaviruses, including SARS-CoV, Middle East respiratory syndrome (MERS-CoV), porcine epidemic diarrhea virus (PEDV) and swine delta coronavirus (SDCoV) have recently emerged causing high morbidity and mortality in human or piglets. No fully protective therapy is still available for these CoVs. Therefore, the development of efficient vaccines is a high priority. Live attenuated vaccines are considered most effective compared to other types of vaccines, as they induce a long-lived, balanced immune response. However, safety is the main concern of this type of vaccines because attenuated viruses can eventually revert to a virulent phenotype. Therefore, an essential feature of any live attenuated vaccine candidate is its stability. In addition, introduction of several safety guards is advisable to increase vaccine safety. In this manuscript, we analyzed the mechanisms by which an attenuated SARS-CoV reverted to a virulent phenotype and describe the introduction of attenuating deletions that maintained virus stability. The virus, engineered with two safety guards, provided full protection against challenge with a lethal SARS-CoV. Understanding the molecular mechanisms leading to pathogenicity and the in vivo evaluation of vaccine genetic stability contributed to a rational design of a promising SARS-CoV vaccine.
Collapse
Affiliation(s)
- Jose M. Jimenez-Guardeño
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Jose A. Regla-Nava
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Jose L. Nieto-Torres
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta L. DeDiego
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlos Castaño-Rodriguez
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Raul Fernandez-Delgado
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Stanley Perlman
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
29
|
Narayanan K, Ramirez SI, Lokugamage KG, Makino S. Coronavirus nonstructural protein 1: Common and distinct functions in the regulation of host and viral gene expression. Virus Res 2014; 202:89-100. [PMID: 25432065 PMCID: PMC4444399 DOI: 10.1016/j.virusres.2014.11.019] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 01/16/2023]
Abstract
Novel strategies to inhibit host gene expression by coronavirus nonstructural protein 1. Summarizes the conserved and divergent functions of Alpha and Betacoronavirus nsp1. Provides a mechanistic insight into the unique properties of SARS coronavirus nsp1.
The recent emergence of two highly pathogenic human coronaviruses (CoVs), severe acute respiratory syndrome CoV and Middle East respiratory syndrome CoV, has ignited a strong interest in the identification of viral factors that determine the virulence and pathogenesis of CoVs. The nonstructural protein 1 (nsp1) of CoVs has attracted considerable attention in this regard as a potential virulence factor and a target for CoV vaccine development because of accumulating evidence that point to its role in the downregulation of host innate immune responses to CoV infection. Studies have revealed both functional conservation and mechanistic divergence among the nsp1 of different mammalian CoVs in perturbing host gene expression and antiviral responses. This review summarizes the current knowledge about the biological functions of CoV nsp1 that provides an insight into the novel strategies utilized by this viral protein to modulate host and viral gene expression during CoV infection.
Collapse
Affiliation(s)
- Krishna Narayanan
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1019, United States.
| | - Sydney I Ramirez
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1019, United States.
| | - Kumari G Lokugamage
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1019, United States.
| | - Shinji Makino
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1019, United States.
| |
Collapse
|
30
|
Liu DX, Fung TS, Chong KKL, Shukla A, Hilgenfeld R. Accessory proteins of SARS-CoV and other coronaviruses. Antiviral Res 2014; 109:97-109. [PMID: 24995382 PMCID: PMC7113789 DOI: 10.1016/j.antiviral.2014.06.013] [Citation(s) in RCA: 310] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/17/2014] [Accepted: 06/23/2014] [Indexed: 01/21/2023]
Abstract
The huge RNA genome of SARS coronavirus comprises a number of open reading frames that code for a total of eight accessory proteins. Although none of these are essential for virus replication, some appear to have a role in virus pathogenesis. Notably, some SARS-CoV accessory proteins have been shown to modulate the interferon signaling pathways and the production of pro-inflammatory cytokines. The structural information on these proteins is also limited, with only two (p7a and p9b) having their structures determined by X-ray crystallography. This review makes an attempt to summarize the published knowledge on SARS-CoV accessory proteins, with an emphasis on their involvement in virus-host interaction. The accessory proteins of other coronaviruses are also briefly discussed. This paper forms part of a series of invited articles in Antiviral Research on "From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses" (see Introduction by Hilgenfeld and Peiris (2013)).
Collapse
Affiliation(s)
- Ding Xiang Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - To Sing Fung
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Kelvin Kian-Long Chong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Aditi Shukla
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; German Center for Infection Research (DZIF), University of Lübeck, Germany
| | - Rolf Hilgenfeld
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; German Center for Infection Research (DZIF), University of Lübeck, Germany
| |
Collapse
|
31
|
Developments in the Search for Small-Molecule Inhibitors for Treatment of Severe Acute Respiratory Syndrome Coronavirus. Antiviral Res 2014. [DOI: 10.1128/9781555815493.ch12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
McBride R, Fielding BC. The role of severe acute respiratory syndrome (SARS)-coronavirus accessory proteins in virus pathogenesis. Viruses 2012. [PMID: 23202509 PMCID: PMC3509677 DOI: 10.3390/v4112902] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A respiratory disease caused by a novel coronavirus, termed the severe acute respiratory syndrome coronavirus (SARS-CoV), was first reported in China in late 2002. The subsequent efficient human-to-human transmission of this virus eventually affected more than 30 countries worldwide, resulting in a mortality rate of ~10% of infected individuals. The spread of the virus was ultimately controlled by isolation of infected individuals and there has been no infections reported since April 2004. However, the natural reservoir of the virus was never identified and it is not known if this virus will re-emerge and, therefore, research on this virus continues. The SARS-CoV genome is about 30 kb in length and is predicted to contain 14 functional open reading frames (ORFs). The genome encodes for proteins that are homologous to known coronavirus proteins, such as the replicase proteins (ORFs 1a and 1b) and the four major structural proteins: nucleocapsid (N), spike (S), membrane (M) and envelope (E). SARS-CoV also encodes for eight unique proteins, called accessory proteins, with no known homologues. This review will summarize the current knowledge on SARS-CoV accessory proteins and will include: (i) expression and processing; (ii) the effects on cellular processes; and (iii) functional studies.
Collapse
Affiliation(s)
- Ruth McBride
- Anatomy Cluster, Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Modderdam Road, Bellville, Western Cape, 7535, South Africa;
| | - Burtram C. Fielding
- Molecular Biology and Virology Laboratory, Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Modderdam Road, Bellville, Western Cape, 7535, South Africa
- Author to whom correspondence should be addressed; ; Tel.: +27-21-959-3620; Fax: +27-21-959-3125
| |
Collapse
|
33
|
Verdiá-Báguena C, Nieto-Torres JL, Alcaraz A, DeDiego ML, Torres J, Aguilella VM, Enjuanes L. Coronavirus E protein forms ion channels with functionally and structurally-involved membrane lipids. Virology 2012; 432:485-94. [PMID: 22832120 PMCID: PMC3438407 DOI: 10.1016/j.virol.2012.07.005] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 06/06/2012] [Accepted: 07/06/2012] [Indexed: 12/28/2022]
Abstract
Coronavirus (CoV) envelope (E) protein ion channel activity was determined in channels formed in planar lipid bilayers by peptides representing either the transmembrane domain of severe acute respiratory syndrome CoV (SARS-CoV) E protein, or the full-length E protein. Both of them formed a voltage independent ion conductive pore with symmetric ion transport properties. Mutations N15A and V25F located in the transmembrane domain prevented the ion conductivity. E protein derived channels showed no cation preference in non-charged lipid membranes, whereas they behaved as pores with mild cation selectivity in negatively-charged lipid membranes. The ion conductance was also controlled by the lipid composition of the membrane. Lipid charge also regulated the selectivity of a HCoV-229E E protein derived peptide. These results suggested that the lipids are functionally involved in E protein ion channel activity, forming a protein-lipid pore, a novel concept for CoV E protein ion channel entity.
Collapse
Affiliation(s)
- Carmina Verdiá-Báguena
- Department of Physics, Laboratory of Molecular Biophysics, Universitat Jaume I, 12071 Castellón, Spain
| | | | | | | | | | | | | |
Collapse
|
34
|
Calvo E, DeDiego ML, García P, López JA, Pérez-Breña P, Falcón A. Severe acute respiratory syndrome coronavirus accessory proteins 6 and 9b interact in vivo. Virus Res 2012; 169:282-8. [PMID: 22820404 PMCID: PMC7114373 DOI: 10.1016/j.virusres.2012.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 07/11/2012] [Accepted: 07/12/2012] [Indexed: 12/15/2022]
Abstract
The 3'proximal one-third of the severe acute respiratory syndrome coronavirus (SARS-CoV) genome encodes the structural proteins and eight accessory proteins, including 3a, 3b, 6, 7a, 7b, 8a, 8b and 9b, varying in length from 39 to 274aa which do not share significant homology with viral proteins of known coronaviruses. The SARS-CoV protein 6 is 63 amino acids in length and has been previously involved in virus pathogenicity and replication. To further analyze this functions, the interaction of SARS-CoV protein 6 with other viral and/or cellular factors has been analyzed during SARS-CoV infective cycle. Protein 6 immunoprecipitation from extracts of SARS-CoV infected cells and mass spectrometry analysis revealed an interaction of viral proteins 6 and 9b in biologically relevant conditions. This interaction has been reinforced by co-localization of both proteins in the cytoplasm of SARS-CoV infected cells.
Collapse
Affiliation(s)
- Enrique Calvo
- Unidad de Proteómica, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Coronaviruses infect many species of animals including humans, causing acute and chronic diseases. This review focuses primarily on the pathogenesis of murine coronavirus mouse hepatitis virus (MHV) and severe acute respiratory coronavirus (SARS-CoV). MHV is a collection of strains, which provide models systems for the study of viral tropism and pathogenesis in several organs systems, including the central nervous system, the liver, and the lung, and has been cited as providing one of the few animal models for the study of chronic demyelinating diseases such as multiple sclerosis. SARS-CoV emerged in the human population in China in 2002, causing a worldwide epidemic with severe morbidity and high mortality rates, particularly in older individuals. We review the pathogenesis of both viruses and the several reverse genetics systems that made much of these studies possible. We also review the functions of coronavirus proteins, structural, enzymatic, and accessory, with an emphasis on roles in pathogenesis. Structural proteins in addition to their roles in virion structure and morphogenesis also contribute significantly to viral spread in vivo and in antagonizing host cell responses. Nonstructural proteins include the small accessory proteins that are not at all conserved between MHV and SARS-CoV and the 16 conserved proteins encoded in the replicase locus, many of which have enzymatic activities in RNA metabolism or protein processing in addition to functions in antagonizing host response.
Collapse
Affiliation(s)
- Susan R Weiss
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, USA
| | | |
Collapse
|
36
|
DeDiego ML, Nieto-Torres JL, Jiménez-Guardeño JM, Regla-Nava JA, Alvarez E, Oliveros JC, Zhao J, Fett C, Perlman S, Enjuanes L. Severe acute respiratory syndrome coronavirus envelope protein regulates cell stress response and apoptosis. PLoS Pathog 2011; 7:e1002315. [PMID: 22028656 PMCID: PMC3197621 DOI: 10.1371/journal.ppat.1002315] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 08/29/2011] [Indexed: 12/21/2022] Open
Abstract
Severe acute respiratory syndrome virus (SARS-CoV) that lacks the envelope (E) gene (rSARS-CoV-ΔE) is attenuated in vivo. To identify factors that contribute to rSARS-CoV-ΔE attenuation, gene expression in cells infected by SARS-CoV with or without E gene was compared. Twenty-five stress response genes were preferentially upregulated during infection in the absence of the E gene. In addition, genes involved in signal transduction, transcription, cell metabolism, immunoregulation, inflammation, apoptosis and cell cycle and differentiation were differentially regulated in cells infected with rSARS-CoV with or without the E gene. Administration of E protein in trans reduced the stress response in cells infected with rSARS-CoV-ΔE or with respiratory syncytial virus, or treated with drugs, such as tunicamycin and thapsigargin that elicit cell stress by different mechanisms. In addition, SARS-CoV E protein down-regulated the signaling pathway inositol-requiring enzyme 1 (IRE-1) of the unfolded protein response, but not the PKR-like ER kinase (PERK) or activating transcription factor 6 (ATF-6) pathways, and reduced cell apoptosis. Overall, the activation of the IRE-1 pathway was not able to restore cell homeostasis, and apoptosis was induced probably as a measure to protect the host by limiting virus production and dissemination. The expression of proinflammatory cytokines was reduced in rSARS-CoV-ΔE-infected cells compared to rSARS-CoV-infected cells, suggesting that the increase in stress responses and the reduction of inflammation in the absence of the E gene contributed to the attenuation of rSARS-CoV-ΔE. To identify potential mechanisms mediating the in vivo attenuation of SARS-CoV lacking the E gene (rSARS-CoV-ΔE), the effect of the presence of the E gene on host gene expression was studied. In rSARS-CoV-ΔE-infected cells, the expression of at least 25 stress response genes was preferentially upregulated, compared to cells infected with rSARS-CoV. E protein supplied in trans reversed the increase in stress response genes observed in cells infected with rSARS-CoV-ΔE or with respiratory syncytial virus, and by treatment with drugs causing stress by different mechanisms. Furthermore, in the presence of the E protein a subset (IRE-1 pathway), but not two others (PERK and ATF-6), of the unfolded protein response was also reduced. Nevertheless, the activation of the unfolded protein response to control cell homeostasis was not sufficient to alleviate cell stress, and an increase in cell apoptosis in cells infected with the virus lacking E protein was observed. This apoptotic response was probably induced to protect the host by limiting virus production and dissemination. In cells infected with rSARS-CoV-ΔE, genes associated with the proinflammatory pathway were down-regulated compared to cells infected with virus expressing E protein, supporting the idea that a reduction in inflammation was also relevant in the attenuation of the virus deletion mutant.
Collapse
Affiliation(s)
- Marta L DeDiego
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Nieto-Torres JL, Dediego ML, Alvarez E, Jiménez-Guardeño JM, Regla-Nava JA, Llorente M, Kremer L, Shuo S, Enjuanes L. Subcellular location and topology of severe acute respiratory syndrome coronavirus envelope protein. Virology 2011; 415:69-82. [PMID: 21524776 PMCID: PMC4726981 DOI: 10.1016/j.virol.2011.03.029] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 03/10/2011] [Accepted: 03/31/2011] [Indexed: 11/28/2022]
Abstract
Severe acute respiratory syndrome (SARS) coronavirus (CoV) envelope (E) protein is a transmembrane protein. Several subcellular locations and topological conformations of E protein have been proposed. To identify the correct ones, polyclonal and monoclonal antibodies specific for the amino or the carboxy terminus of E protein, respectively, were generated. E protein was mainly found in the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) of cells transfected with a plasmid encoding E protein or infected with SARS-CoV. No evidence of E protein presence in the plasma membrane was found by using immunofluorescence, immunoelectron microscopy and cell surface protein labeling. In addition, measurement of plasma membrane voltage gated ion channel activity by whole-cell patch clamp suggested that E protein was not present in the plasma membrane. A topological conformation in which SARS-CoV E protein amino terminus is oriented towards the lumen of intracellular membranes and carboxy terminus faces cell cytoplasm is proposed.
Collapse
Affiliation(s)
- Jose L Nieto-Torres
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Barnard DL, Kumaki Y. Recent developments in anti-severe acute respiratory syndrome coronavirus chemotherapy. Future Virol 2011; 6:615-631. [PMID: 21765859 DOI: 10.2217/fvl.11.33] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in early 2003 to cause a very severe acute respiratory syndrome, which eventually resulted in a 10% case-fatality rate. Owing to excellent public health measures that isolated focus cases and their contacts, and the use of supportive therapies, the epidemic was suppressed to the point that further cases have not appeared since 2005. However, despite intensive research since then (over 3500 publications), it remains an untreatable disease. The potential for re-emergence of the SARS-CoV or a similar virus with unknown but potentially serious consequences remains high. This is due in part to the extreme genetic variability of RNA viruses such as the coronaviruses, the many animal reservoirs that seem to be able host the SARS-CoV in which reassortment or recombination events could occur and the ability coronaviruses have to transmit relatively rapidly from species to species in a short period of time. Thus, it seems prudent to continue to explore and develop antiviral chemotherapies to treat SARS-CoV infections. To this end, the various efficacious anti-SARS-CoV therapies recently published from 2007 to 2010 are reviewed in this article. In addition, compounds that have been tested in various animal models and were found to reduce virus lung titers and/or were protective against death in lethal models of disease, or otherwise have been shown to ameliorate the effects of viral infection, are also reported.
Collapse
Affiliation(s)
- Dale L Barnard
- Utah State University, Institute for Antiviral Research, Department of Animal, Dairy & Veterinary Science, 5600 Old Main Hill, Logan, UT 84322, USA
| | | |
Collapse
|
39
|
Dormitzer PR, Mandl CW, Rappuoli R. Recombinant Live Vaccines to Protect Against the Severe Acute Respiratory Syndrome Coronavirus. REPLICATING VACCINES 2011. [PMCID: PMC7123558 DOI: 10.1007/978-3-0346-0277-8_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The severe acute respiratory syndrome (SARS) coronavirus (CoV) was identified as the etiological agent of an acute respiratory disease causing atypical pneumonia and diarrhea with high mortality. Different types of SARS-CoV vaccines, including nonreplicative and vectored vaccines, have been developed. Administration of these vaccines to animal model systems has shown promise for the generation of efficacious and safe vaccines. Nevertheless, the identification of side effects, preferentially in the elderly animal models, indicates the need to develop novel vaccines that should be tested in improved animal model systems. Live attenuated viruses have generally proven to be the most effective vaccines against viral infections. A limited number of SARS-CoV attenuating modifications have been described, including mutations, and partial or complete gene deletions affecting the replicase, like the nonstructural proteins (nsp1 or nsp2), or the structural genes, and drastic changes in the sequences that regulate the expression of viral subgenomic mRNAs. A promising vaccine candidate developed in our laboratory was based on deletion of the envelope E gene alone, or in combination with the removal of six additional genes nonessential for virus replication. Viruses lacking E protein were attenuated, grew in the lung, and provided homologous and heterologous protection. Improvements of this vaccine candidate have been directed toward increasing virus titers using the power of viruses with mutator phenotypes, while maintaining the attenuated phenotype. The safety of the live SARS-CoV vaccines is being increased by the insertion of complementary modifications in genes nsp1, nsp2, and 3a, by gene scrambling to prevent the rescue of a virulent phenotype by recombination or remodeling of vaccine genomes based on codon deoptimization using synthetic biology. The newly generated vaccine candidates are very promising, but need to be evaluated in animal model systems that include young and aged animals.
Collapse
Affiliation(s)
- Philip R. Dormitzer
- Novartis Vaccines & Diagnostics, Sydney St. 45, Cambridge, 02139 Massachusetts USA
| | - Christian W. Mandl
- Novartis Vaccines & Diagnostics, Inc., Massachusetts Ave. 350, Cambridge, 02139 Massachusetts USA
| | - Rino Rappuoli
- Novartis Vaccines & Diagnostics S.r.l., Via Fiorentina 1, Siena, 53100 Italy
| |
Collapse
|
40
|
Abstract
Coronaviruses infect many species of animals including humans, causing acute and chronic diseases. This review focuses primarily on the pathogenesis of murine coronavirus mouse hepatitis virus (MHV) and severe acute respiratory coronavirus (SARS-CoV). MHV is a collection of strains, which provide models systems for the study of viral tropism and pathogenesis in several organs systems, including the central nervous system, the liver, and the lung, and has been cited as providing one of the few animal models for the study of chronic demyelinating diseases such as multiple sclerosis. SARS-CoV emerged in the human population in China in 2002, causing a worldwide epidemic with severe morbidity and high mortality rates, particularly in older individuals. We review the pathogenesis of both viruses and the several reverse genetics systems that made much of these studies possible. We also review the functions of coronavirus proteins, structural, enzymatic, and accessory, with an emphasis on roles in pathogenesis. Structural proteins in addition to their roles in virion structure and morphogenesis also contribute significantly to viral spread in vivo and in antagonizing host cell responses. Nonstructural proteins include the small accessory proteins that are not at all conserved between MHV and SARS-CoV and the 16 conserved proteins encoded in the replicase locus, many of which have enzymatic activities in RNA metabolism or protein processing in addition to functions in antagonizing host response.
Collapse
Affiliation(s)
- Susan R Weiss
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, USA
| | | |
Collapse
|
41
|
Keng CT, Akerström S, Leung CSW, Poon LLM, Peiris JSM, Mirazimi A, Tan YJ. SARS coronavirus 8b reduces viral replication by down-regulating E via an ubiquitin-independent proteasome pathway. Microbes Infect 2010; 13:179-88. [PMID: 21035562 PMCID: PMC7110893 DOI: 10.1016/j.micinf.2010.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 10/19/2010] [Accepted: 10/21/2010] [Indexed: 12/27/2022]
Abstract
The severe acute respiratory syndrome coronavirus (SARS-CoV) 8b protein, which is not expressed by other known coronaviruses, can down-regulate the envelope (E) protein via a proteasome-dependent pathway. Here, we showed that the down-regulation of E is not dependent on the lysine residues on 8b and the reduction of polyubiquitination of E mutants is not correlated with their down-regulation by 8b, suggesting an ubiquitin-independent proteasome pathway is involved. A time-course study revealed that 8b was expressed at late-stages of SARS-CoV infection. By using Vero E6 cells stably expressing green fluorescence protein-tagged 8b, ectopic expression of 8b was shown to significantly reduce the production of progeny virus and down-regulate E expression. Taken together, these results suggest that 8b negatively modulates virus replication by down-regulating E via an ubiquitin-independent proteasome pathway.
Collapse
Affiliation(s)
- Choong-Tat Keng
- Collaborative Anti-Viral Research Group, Institute of Molecular and Cell Biology, Singapore
| | | | | | | | | | | | | |
Collapse
|
42
|
Identification of a severe acute respiratory syndrome coronavirus-like virus in a leaf-nosed bat in Nigeria. mBio 2010; 1. [PMID: 21063474 PMCID: PMC2975989 DOI: 10.1128/mbio.00208-10] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 09/03/2010] [Indexed: 12/25/2022] Open
Abstract
Bats are reservoirs for emerging zoonotic viruses that can have a profound impact on human and animal health, including lyssaviruses, filoviruses, paramyxoviruses, and severe acute respiratory syndrome coronaviruses (SARS-CoVs). In the course of a project focused on pathogen discovery in contexts where human-bat contact might facilitate more efficient interspecies transmission of viruses, we surveyed gastrointestinal tissue obtained from bats collected in caves in Nigeria that are frequented by humans. Coronavirus consensus PCR and unbiased high-throughput pyrosequencing revealed the presence of coronavirus sequences related to those of SARS-CoV in a Commerson's leaf-nosed bat (Hipposideros commersoni). Additional genomic sequencing indicated that this virus, unlike subgroup 2b CoVs, which includes SARS-CoV, is unique, comprising three overlapping open reading frames between the M and N genes and two conserved stem-loop II motifs. Phylogenetic analyses in conjunction with these features suggest that this virus represents a new subgroup within group 2 CoVs.
Collapse
|
43
|
Alvarez E, DeDiego ML, Nieto-Torres JL, Jiménez-Guardeño JM, Marcos-Villar L, Enjuanes L. The envelope protein of severe acute respiratory syndrome coronavirus interacts with the non-structural protein 3 and is ubiquitinated. Virology 2010; 402:281-91. [PMID: 20409569 PMCID: PMC7119183 DOI: 10.1016/j.virol.2010.03.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 01/05/2010] [Accepted: 03/06/2010] [Indexed: 02/02/2023]
Abstract
To analyze the proteins interacting with the severe acute respiratory syndrome coronavirus (SARS-CoV) envelope (E) protein, a SARS-CoV was engineered including two tags associated to the E protein. Using this virus, complexes of SARS-CoV E and other proteins were purified using a tandem affinity purification system. Several viral and cell proteins including spike, membrane, non-structural protein 3 (nsp3), dynein heavy chain, fatty acid synthase and transmembrane protein 43 bound E protein. In the present work, we focused on the binding of E protein to nsp3 in infected cells and cell-free systems. This interaction was mediated by the N-terminal acidic domain of nsp3. Moreover, nsp3 and E protein colocalized during the infection. It was shown that E protein was ubiquitinated in vitro and in cell culture, suggesting that the interaction between nsp3 and E protein may play a role in the E protein ubiquitination status and therefore on its turnover.
Collapse
Affiliation(s)
- Enrique Alvarez
- Centro Nacional de Biotecnología (CNB), CSIC, Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
44
|
Vasilenko N, Moshynskyy I, Zakhartchouk A. SARS coronavirus protein 7a interacts with human Ap4A-hydrolase. Virol J 2010; 7:31. [PMID: 20144233 PMCID: PMC2831879 DOI: 10.1186/1743-422x-7-31] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 02/09/2010] [Indexed: 12/12/2022] Open
Abstract
The SARS coronavirus (SARS-CoV) open reading frame 7a (ORF 7a) encodes a 122 amino acid accessory protein. It has no significant sequence homology with any other known proteins. The 7a protein is present in the virus particle and has been shown to interact with several host proteins; thereby implicating it as being involved in several pathogenic processes including apoptosis, inhibition of cellular protein synthesis, and activation of p38 mitogen activated protein kinase. In this study we present data demonstrating that the SARS-CoV 7a protein interacts with human Ap4A-hydrolase (asymmetrical diadenosine tetraphosphate hydrolase, EC 3.6.1.17). Ap4A-hydrolase is responsible for metabolizing the "allarmone" nucleotide Ap4A and therefore likely involved in regulation of cell proliferation, DNA replication, RNA processing, apoptosis and DNA repair. The interaction between 7a and Ap4A-hydrolase was identified using yeast two-hybrid screening. The interaction was confirmed by co-immunoprecipitation from cultured human cells transiently expressing V5-His tagged 7a and HA tagged Ap4A-hydrolase. Human tissue culture cells transiently expressing 7a and Ap4A-hydrolase tagged with EGFP and Ds-Red2 respectively show these proteins co-localize in the cytoplasm.
Collapse
Affiliation(s)
- Natalia Vasilenko
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK S7N5E3, Canada
| | | | | |
Collapse
|
45
|
The N-terminal region of severe acute respiratory syndrome coronavirus protein 6 induces membrane rearrangement and enhances virus replication. J Virol 2010; 84:3542-51. [PMID: 20106914 DOI: 10.1128/jvi.02570-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus (SARS-CoV) accessory protein 6 (p6) is a 63-amino-acid multifunctional Golgi-endoplasmic reticulum (ER) membrane-associated protein, with roles in enhancing virus replication and in evading the innate immune response to infection by inhibiting STAT1 (signal transducer and activator of transcription factor 1) translocation to the nucleus. Here, we demonstrate that p6 has an N-terminal region-cytoplasm-C-terminal region-cytoplasm configuration with residues 2 to 37 likely membrane embedded. Expression of p6, or of its N-terminal 41-amino-acid region, in the absence of other viral proteins, induced the formation of membranous structures, some of which were similar to double membrane vesicles involved in virus replication. Consistent with a role in virus replication, p6 partially colocalized with nonstructural protein 3 (nsp3), a marker for virus replication complexes. Further, while the C-terminal region is required for preventing STAT1 translocation to the nucleus, our results also indicated that the N-terminal 18 amino acids were necessary for maximal inhibition. Collectively, these results support the notion that p6 is a two-domain protein, although the function of each is not completely independent of the other.
Collapse
|
46
|
Modulation of Host Cell Death by SARS Coronavirus Proteins. MOLECULAR BIOLOGY OF THE SARS-CORONAVIRUS 2010. [PMCID: PMC7176189 DOI: 10.1007/978-3-642-03683-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Both types of cell death, namely necrosis and apoptosis, are found in organs of SARS coronavirus (CoV) infected patients. The gastrointestinal tract, however, although also a target for SARS-CoV replication, is obviously not affected by cell death mechanisms. Such differences in cell death induction are paralleled by in-vitro studies. In a colon-derived cell line (Caco-2), proapoptotic proteins were down- and antiapoptotic proteins were upregulated during SARS-CoV infection. By contrast, in SARS-CoV infected Vero E6 cells, apoptosis was induced via the p38 MAPK and caspase dependent pathways. Both apoptotic pathways, although mostly the intrinsic signal transduction, can be targeted by structural as well as accessory proteins of SARS-CoV. The fact that all structural and most of the accessory proteins of SARS-CoV are implicated in apoptotic scenarios indicates the fundamental role of apoptosis in the SARS-CoV life cycle. Interestingly, at least for the nucleocapsid protein of SARS-CoV, a cell-type specific manipulation of apoptosis was confirmed.
Collapse
|
47
|
A single tyrosine in the severe acute respiratory syndrome coronavirus membrane protein cytoplasmic tail is important for efficient interaction with spike protein. J Virol 2009; 84:1891-901. [PMID: 20007283 DOI: 10.1128/jvi.02458-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) encodes 3 major envelope proteins: spike (S), membrane (M), and envelope (E). Previous work identified a dibasic endoplasmic reticulum retrieval signal in the cytoplasmic tail of SARS-CoV S that promotes efficient interaction with SARS-CoV M. The dibasic signal was shown to be important for concentrating S near the virus assembly site rather than for direct interaction with M. Here, we investigated the sequence requirements of the SARS-CoV M protein that are necessary for interaction with SARS-CoV S. The SARS-CoV M tail was shown to be necessary for S localization in the Golgi region when the proteins were exogenously coexpressed in cells. This was specific, since SARS-CoV M did not retain an unrelated glycoprotein in the Golgi. Importantly, we found that an essential tyrosine residue in the SARS-CoV M cytoplasmic tail, Y(195), was important for S-M interaction. When Y(195) was mutated to alanine, M(Y195A) no longer retained S intracellularly at the Golgi. Unlike wild-type M, M(Y195A) did not reduce the amount of SARS-CoV S carbohydrate processing or surface levels when the two proteins were coexpressed. Mutating Y(195) also disrupted SARS-CoV S-M interaction in vitro. These results suggest that Y(195) is necessary for efficient SARS-CoV S-M interaction and, thus, has a significant involvement in assembly of infectious virus.
Collapse
|
48
|
Zheng N, Xia R, Yang C, Yin B, Li Y, Duan C, Liang L, Guo H, Xie Q. Boosted expression of the SARS-CoV nucleocapsid protein in tobacco and its immunogenicity in mice. Vaccine 2009; 27:5001-7. [PMID: 19523911 PMCID: PMC7115566 DOI: 10.1016/j.vaccine.2009.05.073] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Revised: 05/20/2009] [Accepted: 05/26/2009] [Indexed: 12/18/2022]
Abstract
Vaccines produced in plant systems are safe and economical; however, the extensive application of plant-based vaccines is mainly hindered by low expression levels of heterologous proteins in plant systems. Here, we demonstrated that the post-transcriptional gene silencing suppressor p19 protein from tomato bushy stunt virus substantially enhanced the transient expression of recombinant SARS-CoV nucleocapsid (rN) protein in Nicotiana benthamiana. The rN protein in the agrobacteria-infiltrated plant leaf accumulated up to a concentration of 79 microg per g fresh leaf weight at 3 days post infiltration. BALB/c mice were intraperitoneally vaccinated with pre-treated plant extract emulsified in Freund's adjuvant. The rN protein-specific IgG in the mouse sera attained a titer about 1:1,800 following three doses of immunization, which suggested effective B-cell maturation and differentiation in mice. Antibodies of the subclasses IgG1 and IgG2a were abundantly present in the mouse sera. During vaccination of rN protein, the expression of IFN-gamma and IL-10 was evidently up-regulated in splenocytes at different time points, while the expression of IL-2 and IL-4 was not. Up to now, this is the first study that plant-expressed recombinant SARS-CoV N protein can induce strong humoral and cellular responses in mice.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/pharmacology
- Animals
- Antibodies, Viral/blood
- Coronavirus Nucleocapsid Proteins
- Female
- Freund's Adjuvant/administration & dosage
- Freund's Adjuvant/pharmacology
- Gene Silencing
- Humans
- Immunoglobulin G/blood
- Injections, Intraperitoneal
- Interferon-gamma/metabolism
- Interleukin-10/metabolism
- Leukocytes, Mononuclear/immunology
- Mice
- Mice, Inbred BALB C
- Nucleocapsid Proteins/genetics
- Nucleocapsid Proteins/immunology
- Nucleocapsid Proteins/isolation & purification
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/isolation & purification
- Severe acute respiratory syndrome-related coronavirus/genetics
- Severe acute respiratory syndrome-related coronavirus/immunology
- Spleen/immunology
- Nicotiana/genetics
- Nicotiana/metabolism
- Tombusvirus/genetics
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Vaccines, Subunit/isolation & purification
Collapse
Affiliation(s)
- Nuoyan Zheng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Beijing 100101, China
- State Key Laboratory for Biocontrol, Sun Yat-sen (Zhongshan) University, 135 Xingang Road W, Guangzhou 510275, China
| | - Ran Xia
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Beijing 100101, China
| | - Cuiping Yang
- State Key Laboratory for Biocontrol, Sun Yat-sen (Zhongshan) University, 135 Xingang Road W, Guangzhou 510275, China
| | - Bojiao Yin
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Beijing 100101, China
- State Key Laboratory for Biocontrol, Sun Yat-sen (Zhongshan) University, 135 Xingang Road W, Guangzhou 510275, China
| | - Yin Li
- State Key Laboratory for Biocontrol, Sun Yat-sen (Zhongshan) University, 135 Xingang Road W, Guangzhou 510275, China
| | - Chengguo Duan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, China
| | - Liming Liang
- State Key Laboratory for Biocontrol, Sun Yat-sen (Zhongshan) University, 135 Xingang Road W, Guangzhou 510275, China
| | - Huishan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Beijing 100101, China
| |
Collapse
|
49
|
Lal SK, Xu K, Sun B. SARS Accessory Proteins ORF3a and 9b and Their Functional Analysis. MOLECULAR BIOLOGY OF THE SARS-CORONAVIRUS 2009. [PMCID: PMC7123986 DOI: 10.1007/978-3-642-03683-5_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The SARS coronavirus (CoV) positive-stranded RNA viral genome encodes 14 open reading frames (ORFs), eight of which encode proteins termed as “accessory proteins.” These proteins help the virus infect the host and promote virulence. In this chapter we describe some of our latest investigations into the structure and function of two such accessory proteins: ORF3a and 9b. The ORF3a accessory protein is the largest accessory protein in SARS-CoV and is a unique membrane protein consisting of three transmembrane domains. It colocalizes on the cell membrane and host Golgi networks and may be involved in ion channel formation during infection. Similarly the ORF9b accessory protein is 98 amino acids, associates with the spike and nucleocapsid proteins and has unusual membrane binding properties. In this chapter we have suggested possible new roles for these two accessory proteins which may in the long run contain answers to many unanswered questions and also give us new ideas for drugs and vaccine design.
Collapse
Affiliation(s)
- Sunil K. Lal
- Engineering & Biotechnology, International Centre for Genetic, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | | | | |
Collapse
|
50
|
Abstract
Coronavirus genomes are single-stranded positive-sense RNA that are transcribed into a nested set of 3′ coterminal subgenomic RNAs for gene expression. Members of the Coronaviridae express canonical polymerase genes, as well as structural genes, including S, E, M, and N, but also express a highly divergent set of accessory genes whose open reading frames are interspersed among the structural genes within the 3′ one-third of the viral genome. The accessory genes are thought to contain “luxury” functions that are often not required for in-vitro virus replication. The severe acute respiratory syndrome coronavirus (SARS-CoV) expresses eight such accessory genes (ORF3a, -3b, -6, -7a, -7b, -8a, -8b, and -9b), the most of any known coronavirus. This chapter will review our current knowledge of expression, structure, and function of each of the SARS-CoV accessory genes.
Collapse
Affiliation(s)
- Sunil K. Lal
- Engineering & Biotechnology, International Centre for Genetic, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | | |
Collapse
|