1
|
Olie SE, Andersen CØ, van de Beek D, Brouwer MC. Molecular diagnostics in cerebrospinal fluid for the diagnosis of central nervous system infections. Clin Microbiol Rev 2024; 37:e0002124. [PMID: 39404267 PMCID: PMC11629637 DOI: 10.1128/cmr.00021-24] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024] Open
Abstract
SUMMARYCentral nervous system (CNS) infections can be caused by various pathogens, including bacteria, viruses, fungi, and parasites. Molecular diagnostic methods are pivotal for identifying the different causative pathogens of these infections in clinical settings. The efficacy and specificity of these methods can vary per pathogen involved, and in a substantial part of patients, no pathogen is identified in the cerebrospinal fluid (CSF). Over recent decades, various molecular methodologies have been developed and applied to patients with CNS infections. This review provides an overview of the accuracy of nucleic acid amplification methods in CSF for a diverse range of pathogens, examines the potential value of multiplex PCR panels, and explores the broad-range bacterial and fungal PCR/sequencing panels. In addition, it evaluates innovative molecular approaches to enhance the diagnosis of CNS infections.
Collapse
Affiliation(s)
- Sabine E. Olie
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Christian Ø. Andersen
- Statens Serum Institute, Diagnostic Infectious Disease Preparedness, Copenhagen, Denmark
| | - Diederik van de Beek
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Matthijs C. Brouwer
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Vasileiou S, Kuvalekar M, Velazquez Y, Watanabe A, Leen AM, Gilmore SA. Phenotypic and functional characterization of posoleucel, a multivirus-specific T cell therapy for the treatment and prevention of viral infections in immunocompromised patients. Cytotherapy 2024; 26:869-877. [PMID: 38597860 DOI: 10.1016/j.jcyt.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/09/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Deficits in T cell immunity translate into increased risk of severe viral infection in recipients of solid organ and hematopoietic cell transplants. Thus, therapeutic strategies that employ the adoptive transfer of virus-specific T cells are being clinically investigated to treat and prevent viral diseases in these highly immunocompromised patients. Posoleucel is an off-the-shelf multivirus-specific T cell investigational product for the treatment and prevention of infections due to adenovirus, BK virus, cytomegalovirus, Epstein-Barr virus, human herpesvirus 6 or JC virus. METHODS Herein we perform extensive characterization of the phenotype and functional profile of posoleucel to illustrate the cellular properties that may contribute to its in vivo activity. RESULTS AND CONCLUSIONS Our results demonstrate that posoleucel is enriched for central and effector memory CD4+ and CD8+ T cells with specificity for posoleucel target viruses and expressing a broad repertoire of T cell receptors. Antigen-driven upregulation of cell-surface molecules and production of cytokine and effector molecules indicative of proliferation, co-stimulation, and cytolytic potential demonstrate the specificity of posoleucel and its potential to mount a broad, polyfunctional, and effective Th1-polarized antiviral response upon viral exposure. We also show the low risk for off-target and nonspecific effects as evidenced by the enrichment of posoleucel in memory T cells, low frequency of naive T cells, and lack of demonstrated alloreactivity in vitro. The efficacy of posoleucel is being explored in four placebo-controlled clinical trials in transplant recipients to treat and prevent viral infections (NCT05179057, NCT05305040, NCT04390113, NCT04605484).
Collapse
Affiliation(s)
- Spyridoula Vasileiou
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX; AlloVir, Inc., Waltham, MA
| | - Manik Kuvalekar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX; AlloVir, Inc., Waltham, MA
| | - Yovana Velazquez
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX; AlloVir, Inc., Waltham, MA
| | - Ayumi Watanabe
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Ann M Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX; AlloVir, Inc., Waltham, MA
| | | |
Collapse
|
3
|
Shah PT, Ejaz M, Tamanna K, Riaz MN, Wu Z, Wu C. Insights into the genetic characteristics, clustering patterns, and phylogeographic dynamics of the JC polyomavirus, 1993 to 2023. Virus Res 2024; 346:199414. [PMID: 38848817 PMCID: PMC11223118 DOI: 10.1016/j.virusres.2024.199414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
The human JC polyomavirus (JCV) is a widespread, neurotropic, opportunistic pathogen responsible for progressive multifocal leukoencephalopathy (PML) as well as other diseases in immunosuppressed individuals, including granule cell neuronopathy, JCV-associated nephropathy, encephalitis, and meningitis in rare cases. JCV classification is still unclear, where the ICTV (International Committee on Taxonomy of Viruses) has grouped all the strains into human polyomavirus 2, with no classification on clade and subclade levels. Therefore, JCV strains were previously classified using different genomic regions, e.g., full-length, VP1, and the V-T intergenic region etc., and the strains were grouped into several types related to various geographic locations and human ethnicities. However, neither of these classifications and nomenclature contemplates all the groups described so far. Herein, we evaluated all the available full-length coding genomes, VP1, and large T antigen nucleotide sequences of JCV reported during 1993-2023 and classified them into four major phylogenetic clades, i.e., GI-GIV, where GI is further grouped into two types GI.1 and GI.2 with five sub-clades each (GI.1/GI.2 a-e), GII into three (GII a-c), GIII as a separate clade, and GIV into seven sub-clades (GIV a-g). Similarly, the phylogeographic network analysis indicated four major clusters corresponding to GI-GIV clades, each with multiple subclusters and mutational sub-branches corresponding to the subclades. GI and GIV clusters are connected via GI.1-e reported from Europe and America, GII, GIII and GIV clusters are connected by GII-b and GII-c strains reported from Africa, while GIV cluster strains are connected to the Russia-Italy JCV haplotype. Furthermore, we identified JCV-variant-GS/B-Germany-1997 (GenBank ID: AF004350.1) as an inter-genotype recombinant having major and minor parents in the GI.1-e and GII-a clades, respectively. Additionally, the amino acid variability analysis revealed high entropy across all proteins. The large T antigen exhibited the highest variability, while the small t antigen showed the lowest variability. Our phylogenetic and phylogeographic analyses provide a new approach to genotyping and sub-genotyping and present a comprehensive classification system of JCV strains based on their genetic characteristics and geographic distribution, while the genetic recombination and amino acid variability can help identify pathogenicity and develop effective preventive and control measures against JCV infections.
Collapse
Affiliation(s)
- Pir Tariq Shah
- Faculty of Medicine, School of Basic Medicine, Dalian University of Technology, No.2 Linggong Road, Dalian, Liaoning Province 116024, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong Province 264000, China
| | - Mohammad Ejaz
- Department of Microbiology, Government Postgraduate College Mandian, Abbottabad, Pakistan
| | - Kosar Tamanna
- Department of Microbiology, Hazara University, Mansehra, Khyber Pakhtunkhwa 21300, Pakistan
| | - Muhammad Nasir Riaz
- Department of Microbiology, Hazara University, Mansehra, Khyber Pakhtunkhwa 21300, Pakistan
| | - Zhenyong Wu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong Province 264000, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Chengjun Wu
- Faculty of Medicine, School of Basic Medicine, Dalian University of Technology, No.2 Linggong Road, Dalian, Liaoning Province 116024, China.
| |
Collapse
|
4
|
Mouliou DS. John Cunningham Virus and Progressive Multifocal Leukoencephalopathy: A Falsely Played Diagnosis. Diseases 2024; 12:100. [PMID: 38785755 PMCID: PMC11120163 DOI: 10.3390/diseases12050100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Progressive Multifocal Leukoencephalopathy (PML) is a possibly fatal demyelinating disease and John Cunningham Polyomavirus (JCPyV) is believed to cause this condition. The so-called JCPyV was initially reported in lymphoma and Human Immunodeficiency Virus (HIV) cases, whereas nowadays, its incidence is increasing in Multiple Sclerosis (MS) cases treated with natalizumab (Tysabri). However, there are conflicting literature data on its pathology and diagnosis, whereas some misdiagnosed reports exist, giving rise to further questions towards the topic. In reality, the so-called PML and the supposed JCPyV are not what they seem to be. In addition, novel and more frequent PML-like conditions may be reported, especially after the Coronavirus Disease 2019 (COVID-19) pandemic.
Collapse
|
5
|
James LM, Georgopoulos AP. Positive Association Between the Immunogenetic Human Leukocyte Antigen (HLA) Profiles of Multiple Sclerosis and Brain Cancer. Neurosci Insights 2023; 18:26331055231214543. [PMID: 38046672 PMCID: PMC10693228 DOI: 10.1177/26331055231214543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/31/2023] [Indexed: 12/05/2023] Open
Abstract
Previous research has documented elevated risk of brain cancer in patients with multiple sclerosis (MS). Separately, human leukocyte antigen (HLA) has been implicated in protection or susceptibility for both conditions. The aim of the current study was to assess a possible role of shared immunogenetic influence on risk of MS and brain cancer. We first identified an immunogenetic profile for each condition based on the covariance between the population frequency of 127 high-resolution HLA alleles and the population prevalence of each condition in 14 Continental Western European countries and then evaluated the correspondence between MS and brain cancer immunogenetic profiles. Also, since each individual carries 12 HLA alleles (2 × 6 genes), we estimated HLA protection and susceptibility for MS and brain cancer at the individual level. We found that the immunogenetic profiles of MS and brain cancer were highly correlated overall (P < .001) and across all 6 HLA genes with the strongest association observed for DRB1, followed by DQB1 and HLA-A. These findings of immunogenetic overlap between MS and brain cancer are discussed in light of the role of HLA in the immune system response to viruses and other foreign antigens.
Collapse
Affiliation(s)
- Lisa M James
- Department of Veterans Affairs Health Care System, The HLA Research Group, Brain Sciences Center, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Apostolos P Georgopoulos
- Department of Veterans Affairs Health Care System, The HLA Research Group, Brain Sciences Center, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
6
|
Kanse S, Khandelwal M, Pandey RK, Khokhar M, Desai N, Kumbhar BV. Designing a Multi-Epitope Subunit Vaccine against VP1 Major Coat Protein of JC Polyomavirus. Vaccines (Basel) 2023; 11:1182. [PMID: 37514998 PMCID: PMC10386578 DOI: 10.3390/vaccines11071182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
The JC polyomavirus virus (JCPyV) affects more than 80% of the human population in their early life stage. It mainly affects immunocompromised individuals where virus replication in oligodendrocytes and astrocytes may lead to fatal progressive multifocal encephalopathy (PML). Virus protein 1 (VP1) is one of the major structural proteins of the viral capsid, responsible for keeping the virus alive in the gastrointestinal and urinary tracts. VP1 is often targeted for antiviral drug and vaccine development. Similarly, this study implied immune-informatics and molecular modeling methods to design a multi-epitope subunit vaccine targeting JCPyV. The VP1 protein epitopic sequences, which are highly conserved, were used to build the vaccine. This designed vaccine includes two adjuvants, five HTL epitopes, five CTL epitopes, and two BCL epitopes to stimulate cellular, humoral, and innate immune responses against the JCPyV. Furthermore, molecular dynamics simulation (100 ns) studies were used to examine the interaction and stability of the vaccine protein with TLR4. Trajectory analysis showed that the vaccine and TLR4 receptor form a stable complex. Overall, this study may contribute to the path of vaccine development against JCPyV.
Collapse
Affiliation(s)
- Sukhada Kanse
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS (Deemed to be) University, Vile Parle (West), Mumbai 400056, Maharashtra, India (N.D.)
| | - Mehak Khandelwal
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS (Deemed to be) University, Vile Parle (West), Mumbai 400056, Maharashtra, India (N.D.)
| | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur 342005, Rajasthan, India
| | - Neetin Desai
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS (Deemed to be) University, Vile Parle (West), Mumbai 400056, Maharashtra, India (N.D.)
| | - Bajarang Vasant Kumbhar
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS (Deemed to be) University, Vile Parle (West), Mumbai 400056, Maharashtra, India (N.D.)
| |
Collapse
|
7
|
Pereson MJ, Sanabria DJ, Torres C, Liotta DJ, Campos RH, Schurr TG, Di Lello FA, Badano I. Evolutionary analysis of JC polyomavirus in Misiones' population yields insight into the population dynamics of the early human dispersal in the Americas. Virology 2023; 585:100-108. [PMID: 37327595 DOI: 10.1016/j.virol.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND JC polyomavirus (JCV) has an ethno-geographical distribution across human populations. OBJECTIVE Study the origins of the population of Misiones (Argentina) by using JCV as genetic marker. METHODS Viral detection and characterization was conducted by PCR amplification and evolutionary analysis of the intergenic region sequences. RESULTS 22 out of 121 samples were positive for JCV, including 5 viral lineages: MY (n = 8), Eu-a (n = 7), B1-c (n = 4), B1-b (n = 2) and Af2 (n = 1). MY sequences clustered within a branch of Native American origin that diverged from its Asian counterpart about 21,914 years ago (HPD 95% interval 15,383-30,177), followed by a sustained demographic expansion around 5000 years ago. CONCLUSIONS JCV in Misiones reflects the multiethnic origin of the current population, with an important Amerindian contribution. Analysis of the MY viral lineage shows a pattern consistent with the arrival of early human migrations to the Americas and a population expansion by the pre-Columbian native societies.
Collapse
Affiliation(s)
- Matias J Pereson
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM). Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Ciudad Autónoma de Buenos Aires, Argentina
| | - Daiana J Sanabria
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Ciudad Autónoma de Buenos Aires, Argentina; Universidad Nacional de Misiones. Facultad de Ciencias Exactas, Químicas y Naturales. Laboratorio de Biología Molecular Aplicada (LaBiMAp). Posadas, Misiones, Argentina
| | - Carolina Torres
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM). Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Ciudad Autónoma de Buenos Aires, Argentina
| | - Domingo J Liotta
- Instituto Nacional de Medicina Tropical-ANLIS ''Dr. Malbrán'', Neuquén y Jujuy S/n, N3370, Puerto Iguazú, Misiones, Argentina
| | - Rodolfo H Campos
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM). Ciudad Autónoma de Buenos Aires, Argentina
| | - Theodore G Schurr
- Laboratory of Molecular Anthropology, Department of Anthropology, University of Pennsylvania. Philadelphia, PA 19104-6398, USA
| | - Federico A Di Lello
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM). Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Ciudad Autónoma de Buenos Aires, Argentina
| | - Inés Badano
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Ciudad Autónoma de Buenos Aires, Argentina; Universidad Nacional de Misiones. Facultad de Ciencias Exactas, Químicas y Naturales. Laboratorio de Biología Molecular Aplicada (LaBiMAp). Posadas, Misiones, Argentina; Universidad Nacional de Misiones. Red de Laboratorios. Laboratorio de Antropología Biológica y Bioinformática Aplicada (LABBA). Misiones, Argentina.
| |
Collapse
|
8
|
Matteo P, Federico D, Emanuela M, Giulia R, Tommaso B, Alfredo G, Anna C, Annamaria O. New and Old Horizons for an Ancient Drug: Pharmacokinetics, Pharmacodynamics, and Clinical Perspectives of Dimethyl Fumarate. Pharmaceutics 2022; 14:pharmaceutics14122732. [PMID: 36559226 PMCID: PMC9788528 DOI: 10.3390/pharmaceutics14122732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
(1) Background: In their 60-year history, dimethyl fumarate and other salts of fumaric acid have been used for the treatment of psoriasis and other immune-mediated diseases for their immune-modulating properties. Over the years, new mechanisms of action have been discovered for this evergreen drug that remains a first-line treatment for several different inflammatory diseases. Due to its pleiotropic effects, this molecule is still of great interest in varied conditions, not exclusively inflammatory diseases. (2) Methods: The PubMed database was searched using combinations of the following keywords: dimethyl fumarate, pharmacokinetics, pharmacodynamics, adverse effects, psoriasis, multiple sclerosis, and clinical indications. This article reviews and updates the pharmacokinetics, mechanisms of action, and clinical indications of dimethyl fumarate. (3) Conclusions: The pharmacology of dimethyl fumarate is complex, fascinating, and not fully known. Progressive insights into the molecule's mechanisms of action will make it possible to maximize its clinical efficacy, reduce concerns about adverse effects, and find other possible areas of application.
Collapse
Affiliation(s)
- Paolinelli Matteo
- Department of Clinical and Molecular Sciences-Dermatological Clinic, Polytechnic Marche University, 60121 Ancona, Italy
- Correspondence:
| | - Diotallevi Federico
- Department of Clinical and Molecular Sciences-Dermatological Clinic, Polytechnic Marche University, 60121 Ancona, Italy
| | - Martina Emanuela
- Department of Clinical and Molecular Sciences-Dermatological Clinic, Polytechnic Marche University, 60121 Ancona, Italy
| | - Radi Giulia
- Department of Clinical and Molecular Sciences-Dermatological Clinic, Polytechnic Marche University, 60121 Ancona, Italy
| | | | | | - Campanati Anna
- Department of Clinical and Molecular Sciences-Dermatological Clinic, Polytechnic Marche University, 60121 Ancona, Italy
| | - Offidani Annamaria
- Department of Clinical and Molecular Sciences-Dermatological Clinic, Polytechnic Marche University, 60121 Ancona, Italy
| |
Collapse
|
9
|
Sun Q, Li L, Zhou H, Wu Y, Gao Y, Wu B, Qiu Y, Zhou Z, Song Q, Zhao J, Wu P. The detection of urinary viruses is associated with aggravated symptoms and altered bacteriome in female with overactive bladder. Front Microbiol 2022; 13:984234. [PMID: 36212847 PMCID: PMC9537457 DOI: 10.3389/fmicb.2022.984234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/11/2022] [Indexed: 11/15/2022] Open
Abstract
Although it is known that changes in bacterial components of the urinary microbiome are associated with overactive bladder (OAB), the specific role of viruses is still insufficiently investigated. The aim of the present study is to evaluate the role of urinary viruses in woman with OAB, and analyze the potential relationship between viruses, bacteria and disease. Catheterized urine samples were collected from 55 women with OAB and 18 control individuals. OAB patients fulfilling the following criteria were considered eligible for this study: female, 18 years of age or older; presented with classic OAB symptoms defined by the International Continence Society; and OAB Symptom Score (OABSS) total score ≥ 3 points and question 3 (urgency) score ≥ 2 points. Based on results of metagenomic next-generation sequencing (mNGS), all participants were divided into virus-infected and virus-uninfected groups for analysis. The results of mNGS showed that the diversity of the OAB group was lower than that of the control group when focused on bacterial sequences, which was consistent with our previous study. According to the questionnaire filled out by the patients, OABSS and 8-item OAB questionnaire, female OAB patients who had viruses detected in their urine had more severe symptoms. In parallel, John Cunningham virus (mainly subtype 7 and subtype 2) was the most frequently detected virus in urine. Correlation analysis indicated that risk factors for virus infection in OAB patients include age, habit of holding urine and pelvic surgery history. Given our preliminary data, viral infection can aggravate OAB severity and affect the composition of bacterial. Further research is required to explain how viral infections can aggravate OAB patient symptoms and cause bacterial changes.
Collapse
Affiliation(s)
- Qi Sun
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Leqian Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Zhou
- Department of Hospital Infection Management, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Wu
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Yubo Gao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bingyi Wu
- Medical Research Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yifeng Qiu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhipeng Zhou
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qixiang Song
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Qixiang Song,
| | - Jie Zhao
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Jie Zhao,
| | - Peng Wu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Peng Wu,
| |
Collapse
|
10
|
Unterrainer M, Mahler C, Schumacher AM, Ruf V, Blum B, Quach S, Brendel M, Rupprecht R, Bartenstein P, Kerschensteiner M, Kümpfel T, Albert NL. Amino Acid Uptake, Glucose Metabolism, and Neuroinflammation in John Cunningham Virus Associated Progressive Multifocal Leukoencephalopathy. Clin Nucl Med 2022; 47:543-544. [PMID: 35195584 DOI: 10.1097/rlu.0000000000004093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ABSTRACT A 69-year-old woman presented with progressive dysarthria and cognitive deficits. On MRI, a T2-hyperintense, non-contrast-enhancing lesion was found in the left precentral area. 18F-FET and 18F-FDG PET scans revealed faint amino acid uptake and glucose hypometabolism of the lesion. To assess a neuroinflammatory component, TSPO PET with 18F-GE-180 was performed, where tracer uptake markedly exceeded the T2-hyperintense areas. Histology derived from a stereotactic biopsy findings confirmed John Cunningham virus-associated progressive multifocal leukoencephalopathy. This case underlines that TSPO PET comprises distinct imaging advantages over other established radioligands such as 18F-FET and 18F-FDG in progressive multifocal leukoencephalopathy.
Collapse
Affiliation(s)
| | | | | | - Viktoria Ruf
- Department of Neuropathology and Prion Research, LMU Munich, Munich
| | | | - Stefanie Quach
- Department of Neurosurgery, University Hospital, LMU Munich, Munich
| | | | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg
| | | | | | | | | |
Collapse
|
11
|
Mohammadi E, Shafiee F, Shahzamani K, Ranjbar MM, Alibakhshi A, Ahangarzadeh S, Beikmohammadi L, Shariati L, Hooshmandi S, Ataei B, Javanmard SH. Novel and emerging mutations of SARS-CoV-2: Biomedical implications. Biomed Pharmacother 2021; 139:111599. [PMID: 33915502 PMCID: PMC8062574 DOI: 10.1016/j.biopha.2021.111599] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/18/2021] [Accepted: 03/27/2021] [Indexed: 12/31/2022] Open
Abstract
Coronavirus disease-19 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 virus strains has geographical diversity associated with diverse severity, mortality rate, and response to treatment that were characterized using phylogenetic network analysis of SARS-CoV-2 genomes. Although, there is no explicit and integrative explanation for these variations, the genetic arrangement, and stability of SARS-CoV-2 are basic contributing factors to its virulence and pathogenesis. Hence, understanding these features can be used to predict the future transmission dynamics of SARS-CoV-2 infection, drug development, and vaccine. In this review, we discuss the most recent findings on the mutations in the SARS-CoV-2, which provide valuable information on the genetic diversity of SARS-CoV-2, especially for DNA-based diagnosis, antivirals, and vaccine development for COVID-19.
Collapse
Affiliation(s)
- Elmira Mohammadi
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran; Core Research Facilities, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Shafiee
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kiana Shahzamani
- Isfahan Gastroenterology and Hepatology Research Center (lGHRC), Isfahan University of medical sciences, Isfahan, Iran
| | - Mohammad Mehdi Ranjbar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran
| | - Abbas Alibakhshi
- Molecular Medicine Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahrzad Ahangarzadeh
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Leila Beikmohammadi
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Laleh Shariati
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands; Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, 14155-6559 Tehran, Iran
| | - Soodeh Hooshmandi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Behrooz Ataei
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
12
|
Forni D, Cagliani R, Clerici M, Pozzoli U, Sironi M. You Will Never Walk Alone: Codispersal of JC Polyomavirus with Human Populations. Mol Biol Evol 2020; 37:442-454. [PMID: 31593241 DOI: 10.1093/molbev/msz227] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
JC polyomavirus (JCPyV) is one of the most prevalent human viruses. Findings based on the geographic distribution of viral subtypes suggested that JCPyV codiverged with human populations. This view was however challenged by data reporting a much more recent origin and expansion of JCPyV. We collected information on ∼1,100 worldwide strains and we show that their geographic distribution roughly corresponds to major human migratory routes. Bayesian phylogeographic analysis inferred a Subsaharan origin for JCPyV, although with low posterior probability. High confidence inference at internal nodes provided strong support for a long-standing association between the virus and human populations. In line with these data, pairwise FST values for JCPyV and human mtDNA sampled from the same areas showed a positive and significant correlation. Likewise, very strong relationships were found when node ages in the JCPyV phylogeny were correlated with human population genetic distances (nuclear-marker based FST). Reconciliation analysis detected a significant cophylogenetic signal for the human population and JCPyV trees. Notably, JCPyV also traced some relatively recent migration events such as the expansion of people from the Philippines/Taiwan area into Remote Oceania, the gene flow between North-Eastern Siberian and Ainus, and the Koryak contribution to Circum-Arctic Americans. Finally, different molecular dating approaches dated the origin of JCPyV in a time frame that precedes human out-of-Africa migration. Thus, JCPyV infected early human populations and accompanied our species during worldwide dispersal. JCPyV typing can provide reliable geographic information and the virus most likely adapted to the genetic background of human populations.
Collapse
Affiliation(s)
- Diego Forni
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Lecco, Italy
| | - Rachele Cagliani
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Lecco, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Uberto Pozzoli
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Lecco, Italy
| | - Manuela Sironi
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Lecco, Italy
| |
Collapse
|
13
|
Toppinen M, Pratas D, Väisänen E, Söderlund-Venermo M, Hedman K, Perdomo MF, Sajantila A. The landscape of persistent human DNA viruses in femoral bone. Forensic Sci Int Genet 2020; 48:102353. [PMID: 32668397 DOI: 10.1016/j.fsigen.2020.102353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/24/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022]
Abstract
The imprints left by persistent DNA viruses in the tissues can testify to the changes driving virus evolution as well as provide clues on the provenance of modern and ancient humans. However, the history hidden in skeletal remains is practically unknown, as only parvovirus B19 and hepatitis B virus DNA have been detected in hard tissues so far. Here, we investigated the DNA prevalences of 38 viruses in femoral bone of recently deceased individuals. To this end, we used quantitative PCRs and a custom viral targeted enrichment followed by next-generation sequencing. The data was analyzed with a tailor-made bioinformatics pipeline. Our findings revealed bone to be a much richer source of persistent DNA viruses than earlier perceived, discovering ten additional ones, including several members of the herpes- and polyomavirus families, as well as human papillomavirus 31 and torque teno virus. Remarkably, many of the viruses found have oncogenic potential and/or may reactivate in the elderly and immunosuppressed individuals. Thus, their persistence warrants careful evaluation of their clinical significance and impact on bone biology. Our findings open new frontiers for the study of virus evolution from ancient relics as well as provide new tools for the investigation of human skeletal remains in forensic and archaeological contexts.
Collapse
Affiliation(s)
- Mari Toppinen
- Department of Virology, University of Helsinki, Finland
| | - Diogo Pratas
- Department of Virology, University of Helsinki, Finland; Department of Electronics, Telecommunications and Informatics, University of Aveiro, Portugal; Institute of Electronics and Informatics Engineering of Aveiro, University of Aveiro, Portugal
| | | | | | - Klaus Hedman
- Department of Virology, University of Helsinki, Finland; HUSLAB, Helsinki University Hospital, Finland
| | | | - Antti Sajantila
- Department of Forensic Medicine, University of Helsinki, Finland; Forensic Medicine Unit, Finnish Institute of Health and Welfare, Finland.
| |
Collapse
|
14
|
Bennett KM, Storrar N, Johnson P, Fernandes PM. Progressive multifocal leukoencephalopathy (PML) following autologous peripheral blood stem cell transplantation for multiple myeloma. Clin Case Rep 2020; 8:938-943. [PMID: 32577238 PMCID: PMC7303860 DOI: 10.1002/ccr3.2612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/19/2019] [Accepted: 10/29/2019] [Indexed: 11/11/2022] Open
Abstract
PML should be considered in patients with neurological symptoms following MM and in those who are immunosuppressed. Symptoms are diverse and often rapidly progressing. Prompt referral and early involvement of the multidisciplinary team are crucial.
Collapse
Affiliation(s)
- Karina M. Bennett
- Department of NeurologyNHS LothianWestern General HospitalEdinburghUK
| | - Neill Storrar
- Department of HaematologyNHS LothianWestern General HospitalEdinburghUK
| | - Peter Johnson
- Department of HaematologyNHS LothianWestern General HospitalEdinburghUK
| | | |
Collapse
|
15
|
Takahashi K, Sato Y, Sekizuka T, Kuroda M, Suzuki T, Hasegawa H, Katano H. High expression of JC polyomavirus-encoded microRNAs in progressive multifocal leukoencephalopathy tissues and its repressive role in virus replication. PLoS Pathog 2020; 16:e1008523. [PMID: 32324824 PMCID: PMC7200015 DOI: 10.1371/journal.ppat.1008523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/05/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
JC polyomavirus (JCPyV, JCV) causes progressive multifocal leukoencephalopathy (PML) in immunocompromised hosts. JCPyV replicates in oligodendrocytes within the brain tissue of patients with PML. The JCPyV genome encodes a microRNA (miRNA) in the region encoding the large T antigen. JCPyV-encoded miRNA (miR-J1) has been detected in the tissue and cerebrospinal fluid samples of patients with PML; however, there are no reports describing the localization of polyomavirus-encoded miRNA in histological samples of patients with virus-associated diseases. In the present study, we detected high miR-J1 expression in the nuclei of JCPyV-infected cells in PML tissue samples via in situ hybridization. Additionally, in situ hybridization also revealed the expression of BK polyomavirus (BKPyV, BKV)-encoded miRNA in lesions of BKPyV-associated nephropathy. In situ hybridization for miR-J1-5p and -3p showed positive signals in 24/25 (96%) of PML tissues that were positive for JCPyV by immunohistochemistry. Higher copy numbers of miR-J1 were detected in PML tissues than in non-PML tissues by real-time reverse transcription PCR. Next generation sequencing showed that miR-J1-5p, a mature miRNA of primary miRNA, was predominant in the lesions compared with miR-J1-3p, another mature miRNA. Deletion or mutation of miR-J1 in recombinant JCPyV promoted the production of JCPyV-encoded proteins in cells transfected with JCPyV DNA, suggesting that polyomavirus-encoded miRNA may have a repressive role in viral replication in PML tissues. In situ hybridization for viral miRNA may be a useful diagnostic tool for PML.
Collapse
Affiliation(s)
- Kenta Takahashi
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Yuko Sato
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
16
|
Hussain I, Tasneem F, Gilani US, Arshad MI, Farhan Ul Haque M, Abbas Z, Umer M, Shahzad N. Human BK and JC polyomaviruses: Molecular insights and prevalence in Asia. Virus Res 2020; 278:197860. [PMID: 31911182 DOI: 10.1016/j.virusres.2020.197860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022]
Abstract
Polyomaviridae family consists of small circular dsDNA viruses. Out of the 14 human polyomaviruses described so far, BKPyV and JCPyV have been studied extensively since their discovery in 1971. Reportedly, both BKPyV and JCPyV are widely distributed across the globe with the frequency of 80-90 % in different populations. The primary infection of these viruses is usually asymptomatic and latent which is activated as a consequence of immunosuppression. Activated BKPyV and JCPyV viruses lead to the development of BK Virus Associated Nephropathy and Progressive Multifocal Leukoencephalopathy, respectively. Immense progress has been made during the last few decades regarding the molecular understanding of polyomaviruses. Epidemiology of polyomaviruses has also been studied extensively. However, most of the epidemiological studies have focused on European and American populations. Therefore, limited data is available regarding the geographical distribution of these potentially oncogenic viruses in Asian countries. In this article, we have presented a compendium of latest advances in the molecular understanding of polyomaviruses and their pathobiology. We also present a comprehensive review of published literature regarding the epidemiology and prevalence of BKPyV and JCPyV in Asian regions. For this purpose, a thorough search of available online resources was performed. As a result, we retrieved 24 studies for BKPyV and 22 studies for JCPyV, that describe their prevalence in Asia. These studies unanimously report high occurrence of both BKPyV and JCPyV in Asian populations. The available data from these studies was categorized into two groups: on the basis of prevalence (low, medium and high) and disease development (healthy and diseased). Altogether, Korean population hasbeen evidenced to possess highest frequency of BKPyV (66.7 %), while JCPyV was found to be most prevalent in Taiwan (88 %). Due to high and ubiquitous distribution of these viruses, frequent studies are required to develop a better understanding regarding the epidemiology and pathobiology of these viruses in Asia.
Collapse
Affiliation(s)
- Iqra Hussain
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Fareeda Tasneem
- Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Usman Shah Gilani
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | | | | | - Zaigham Abbas
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Muhammed Umer
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan, QLD, 4111, Australia
| | - Naveed Shahzad
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
17
|
Evolution and molecular epidemiology of polyomaviruses. INFECTION GENETICS AND EVOLUTION 2019; 79:104150. [PMID: 31870972 DOI: 10.1016/j.meegid.2019.104150] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 02/08/2023]
Abstract
Polyomaviruses (PyVs) are small DNA viruses that infect several species, including mammals, birds and fishes. Their study gained momentum after the report of previously unidentified viral species in the past decade, and especially, since the description of the first polyomavirus clearly oncogenic for humans. The aim of this work was to review the most relevant aspects of the evolution and molecular epidemiology of polyomaviruses, allowing to reveal general evolutionary patterns and to identify some unaddressed issues and future challenges. The main points analysed included: 1) the species and genera assignation criteria; 2) the hypotheses, mechanisms and timescale of the ancient and recent evolutionary history of polyomaviruses; and 3) the molecular epidemiology of human viruses, with special attention to JC, BK and Merkel cell polyomaviruses.
Collapse
|
18
|
Sanabria DJ, Mojsiejczuk LN, Torres C, Meyer AG, Mbayed VA, Liotta DJ, Campos RH, Schurr TG, Badano I. Genetic diversity of the JC polyomavirus (JCPyV) and mitochondrial DNA ancestry in Misiones, Argentina. INFECTION GENETICS AND EVOLUTION 2019; 75:104011. [PMID: 31446138 DOI: 10.1016/j.meegid.2019.104011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/01/2019] [Accepted: 08/19/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND The use of human and viral genetic markers offers a novel way to study human migration in multiethnic populations of Latin America. OBJECTIVES Our goal was to characterize the genetic diversity and geographical origins of JC Polyomavirus (JCPyV) and the genetic ancestry of mitochondrial DNA (mtDNA) in inhabitants from 25 de Mayo, Misiones-Argentina, a small village of largely German ancestry located close to the border with Brazil. We also evaluated the extent of agreement between viral and mtDNA markers for the different ancestry components of this population. STUDY DESIGN 68 individuals were analyzed for JCPyV and mtDNA diversity. JCPyV detection and typing was conducted in urine samples by PCR amplification, sequencing and phylogenetic analysis of the VP1 gene. mtDNA ancestry was assessed through HVS1 sequencing, with the resulting haplotypes being classified into haplogroups of Amerindian, European and African origin. The distribution of JCPyV diversity and mtDNA ancestry in the population was statistically evaluated by Fisher exact test and the level of agreement of both markers at the individual level was evaluated by Cohen's kappa coefficient. RESULTS Our analysis showed that 57.4% of the samples were positive for JCPyV. Of these, the 47.6% were Asian-American Type 2, 33.3% European Type 1 and 19.1% African Type 3 in origin. The mtDNA ancestry of the study participants was 33.3% Amerindian and 66.7% European. There was a significant difference among the distribution of JCPyV diversity and mtDNA ancestry (p = 0.009) and at the individual level there was no correlation between the distribution of the both markers (κ = 0.154, p = 0.297). CONCLUSION The apparent incongruence between JCPyV diversity and mtDNA ancestry may reflect the original settlement process and more recent migration to 25 de Mayo, the latter involving viral spread through migrants from Brazil. Some potential limitations to our interpretations are also discussed.
Collapse
Affiliation(s)
- Daiana J Sanabria
- Laboratorio de Biología Molecular Aplicada, Universidad Nacional de Misiones, Posadas, Misiones, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Laura N Mojsiejczuk
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina; Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Carolina Torres
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina; Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Alejandro G Meyer
- Laboratorio de Biología Molecular Aplicada, Universidad Nacional de Misiones, Posadas, Misiones, Argentina
| | - Viviana A Mbayed
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina; Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Domingo J Liotta
- Laboratorio de Biología Molecular Aplicada, Universidad Nacional de Misiones, Posadas, Misiones, Argentina
| | - Rodolfo H Campos
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina; Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Theodore G Schurr
- Laboratory of Molecular Anthropology, Department of Anthropology, University of Pennsylvania, Philadelphia, PA 19104-6398, USA
| | - Ines Badano
- Laboratorio de Biología Molecular Aplicada, Universidad Nacional de Misiones, Posadas, Misiones, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
19
|
Molecular epidemiology of JC polyomavirus in HIV-infected patients and healthy individuals from Iran. Braz J Microbiol 2019; 51:37-43. [PMID: 31364012 DOI: 10.1007/s42770-019-00117-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 07/02/2019] [Indexed: 01/04/2023] Open
Abstract
JC polyomavirus (JCPyV) is the causative agent for progressive multifocal leukoencephalopathy (PML) in immunocompromised patients. More than 40% of healthy population excretes JCPyV particles in their urine. As JCPyV is ubiquitous in human, the definition of genotype distribution can help trace population migration. In this study, to define the frequency of JCPyV in southwest of Iran, urine samples of 161 volunteers including 80 healthy individuals and 81 HIV-infected patients were collected. PCR assays and sequence analysis were performed using JCPyV-specific primers designed against VP1 coding region. JCPyV DNA was detected in 65 out of 81 urine samples (80.2%) of HIV-infected, and in 43 out of 80 urine samples (53.8%) of healthy individuals (P = 0.001). The shedding of JCPyV among HIV-infected patients revealed an age-related pattern while such relationship was not observed in healthy individuals group. The most common genotype found in this region was genotype 3A (80.8%), followed by genotype 2D (11.5%), 4 (3.8%), and 7 (3.8%). The frequency of JCPyV in the urine of HIV-infected patients was found significantly higher than in the healthy individuals (P = 0.001).
Collapse
|
20
|
Grant SA, Bienentreu JF, Vilaça ST, Brunetti CR, Lesbarrères D, Murray DL, Kyle CJ. Low intraspecific variation of Frog virus 3 with evidence for novel FV3-like isolates in central and northwestern Canada. DISEASES OF AQUATIC ORGANISMS 2019; 134:1-13. [PMID: 32132268 DOI: 10.3354/dao03354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Frog virus 3 (FV3) and FV3-like ranaviruses can infect a variety of cold-blooded aquatic species and present a primary threat to amphibians across the globe. Previous studies of FV3-like viruses have largely investigated higher-level phylogenetic distinctions of these pathogens via portions of the conserved major capsid protein (MCP), and the putative virulence gene vIF-2α. Few studies, however, have investigated the spatial distribution of FV3 variants at the population level3-data that can be used to further understand the spatial epidemiology of this disease. In this study, we sequenced the MCP and vIF-2α of 127 FV3-positive amphibians sampled from Canadian water bodies in Ontario, northeastern Alberta, and southern Northwest Territories to explore whether intraspecific genetic variation exists within FV3. There was a lack of variation at the 2 markers across these regions, suggesting that there is a lack of FV3 sequence diversity in Canada, which may hint at a single source of infection that has spread. However, an undocumented variant termed Wood Buffalo ranavirus (WBRV) was detected in samples from 3 sites in Alberta and Northwest Territories that clustered within the FV3-like lineage with 99.3% sequence homology for MCP. For vIF-2α, all sequences were the expected truncated variant except for 6 samples in Ontario. These latter sequences were suggestive of recombination with common midwife toad virus (CMTV). The lack of variation suggests that higher-resolution genome analyses will be required to further explore the spatial spread and intraspecific variation of the disease.
Collapse
Affiliation(s)
- Samantha A Grant
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario K9J 7B8, Canada
| | | | | | | | | | | | | |
Collapse
|
21
|
Levican J, Levican A, Ampuero M, Gaggero A. JC polyomavirus circulation in one-year surveillance in wastewater in Santiago, Chile. INFECTION GENETICS AND EVOLUTION 2019; 71:151-158. [PMID: 30905776 DOI: 10.1016/j.meegid.2019.03.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/19/2019] [Accepted: 03/20/2019] [Indexed: 11/27/2022]
Abstract
Human polyomavirus JC (JCPyV) is a widely distributed viral agent and because it high resistance against environmental conditions it is frequently recovered from diverse sources of water and is considered a good marker for human pollution. Phylogenetic analysis of JCPyV isolated in different part of the world has revealed 7 genotypes, which have been associated with specific populations or ethnics groups. This feature has been used to trace pre-historic and historic human migration patterns across the world. Although there are many reports describing genotypes distribution around the world, data on JCPyV genotypes in the southernmost areas of South America are scarce. The goal of this study is to detect and characterize the JCPyV that circulates in Santiago, Chile using sewage samples from wastewater treatment plants (WWTP). Sewage samples were obtained monthly during 1 year from three WWTPs which together process about 80% of wastewater generated in the city of Santiago, Chile. Our results show that JCPyV profusely circulates in Santiago, Chile, because it was detected in 80.56% of the samples, reinforcing the use of JCPyV as a feasible marker to assess human environmental pollution. JCPyV was detected in high frequency in influents and effluents samples, with the largest WWTPs showing the highest percentage of detection and viral loads. In the phylogenetic analysis the Chilean sequences clustered mainly with genotype 2A (Asian genotype). This is similar to that previously reported from Buenos Aires, Argentina and divergent to data from Brazil, where the circulation of European subtypes 1 and 4 and African subtypes 3 and 6 has been described.
Collapse
Affiliation(s)
- Jorge Levican
- Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Arturo Levican
- Tecnología Médica, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Manuel Ampuero
- Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Aldo Gaggero
- Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
22
|
Abstract
Multiple sclerosis (MS) is a chronic neurodegenerative autoimmune disease with a complex clinical course characterized by inflammation, demyelination, and axonal degeneration. Diagnosis of MS most commonly includes finding lesions in at least two separate areas of the central nervous system (CNS), including the brain, spinal cord, and optic nerves. In recent years, there has been a remarkable increase in the number of available treatments for MS. An optimal treatment is usually based on a personalized approach determined by an individual patient's prognosis and treatment risks. Biomarkers that can predict disability progression, monitor ongoing disease activity, and assess treatment response are integral in making important decisions regarding MS treatment. This review describes MS biomarkers that are currently being used in clinical practice; it also reviews and consolidates published findings from clinically relevant potential MS biomarkers in recent years. The work also discusses the challenges of validating and application of biomarkers in MS clinical practice.
Collapse
Affiliation(s)
- Anu Paul
- Department of Neurology, Ann Romney Center for Neurological Diseases, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | - Manuel Comabella
- Department of Neurology, MS Centre of Catalonia, Vall d'Hebron University Hospital, Barcelona 08035, Spain
| | - Roopali Gandhi
- Department of Neurology, Ann Romney Center for Neurological Diseases, Brigham and Women's Hospital, Boston, Massachusetts 02115
| |
Collapse
|
23
|
Domingo-Calap P, Schubert B, Joly M, Solis M, Untrau M, Carapito R, Georgel P, Caillard S, Fafi-Kremer S, Paul N, Kohlbacher O, González-Candelas F, Bahram S. An unusually high substitution rate in transplant-associated BK polyomavirus in vivo is further concentrated in HLA-C-bound viral peptides. PLoS Pathog 2018; 14:e1007368. [PMID: 30335851 PMCID: PMC6207329 DOI: 10.1371/journal.ppat.1007368] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/30/2018] [Accepted: 09/28/2018] [Indexed: 11/18/2022] Open
Abstract
Infection with human BK polyomavirus, a small double-stranded DNA virus, potentially results in severe complications in immunocompromised patients. Here, we describe the in vivo variability and evolution of the BK polyomavirus by deep sequencing. Our data reveal the highest genomic evolutionary rate described in double-stranded DNA viruses, i.e., 10−3–10−5 substitutions per nucleotide site per year. High mutation rates in viruses allow their escape from immune surveillance and adaptation to new hosts. By combining mutational landscapes across viral genomes with in silico prediction of viral peptides, we demonstrate the presence of significantly more coding substitutions within predicted cognate HLA-C-bound viral peptides than outside. This finding suggests a role for HLA-C in antiviral immunity, perhaps through the action of killer cell immunoglobulin-like receptors. The present study provides a comprehensive view of viral evolution and immune escape in a DNA virus. Little is known about the mechanisms of evolution and viral immune escape in double-stranded DNA (dsDNA) viruses. Here, we study the evolution of BK polyomavirus and observe the highest genomic evolutionary rate described so far for a dsDNA virus, in the range of RNA viruses, which usually evolve rapidly. Furthermore, the prediction of viral peptides to determine immune escape suggests a specific role of HLA-C in antiviral immunity. These findings are helpful for future advances in antiviral therapies and provide a step forward in our understanding of in vivo viral evolution in humans.
Collapse
Affiliation(s)
- Pilar Domingo-Calap
- Plateforme GENOMAX, Laboratoire d’ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d’Immunologie et d’Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Strasbourg, France
- * E-mail: (PDC); (SB)
| | - Benjamin Schubert
- Center for Bioinformatics, University of Tübingen, Tübingen, Germany
- Applied Bioinformatics, Department of Computer Science, Tübingen, Germany
| | - Mélanie Joly
- Plateforme GENOMAX, Laboratoire d’ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d’Immunologie et d’Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Strasbourg, France
- Service de Néphrologie et Transplantation Rénale, Hôpitaux Universitaires de Strasbourg, France
| | - Morgane Solis
- Plateforme GENOMAX, Laboratoire d’ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d’Immunologie et d’Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Strasbourg, France
- Laboratoire de Virologie, Plateau Technique de Microbiologie, Pôle de Biologie, Hôpitaux Universitaires de Strasbourg, France
| | - Meiggie Untrau
- Plateforme GENOMAX, Laboratoire d’ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d’Immunologie et d’Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Strasbourg, France
| | - Raphael Carapito
- Plateforme GENOMAX, Laboratoire d’ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d’Immunologie et d’Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Strasbourg, France
- Laboratoire Central d’Immunologie, Plateau Technique de Biologie, Nouvel Hôpital Civil, France
| | - Philippe Georgel
- Plateforme GENOMAX, Laboratoire d’ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d’Immunologie et d’Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Strasbourg, France
| | - Sophie Caillard
- Plateforme GENOMAX, Laboratoire d’ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d’Immunologie et d’Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Strasbourg, France
- Service de Néphrologie et Transplantation Rénale, Hôpitaux Universitaires de Strasbourg, France
| | - Samira Fafi-Kremer
- Plateforme GENOMAX, Laboratoire d’ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d’Immunologie et d’Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Strasbourg, France
- Laboratoire de Virologie, Plateau Technique de Microbiologie, Pôle de Biologie, Hôpitaux Universitaires de Strasbourg, France
| | - Nicodème Paul
- Plateforme GENOMAX, Laboratoire d’ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d’Immunologie et d’Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Strasbourg, France
| | - Oliver Kohlbacher
- Center for Bioinformatics, University of Tübingen, Tübingen, Germany
- Applied Bioinformatics, Department of Computer Science, Tübingen, Germany
- Quantitative Biology Center, Tübingen, Germany
- Faculty of Medicine, University of Tübingen, Tübingen, Germany
- Biomolecular Interactions, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Institute for Translational Bioinformatics, University Hospital Tübingen, Tübingen, Germany
| | - Fernando González-Candelas
- Unidad Mixta Infección y Salud Pública FISABIO/Universitat de València, Institute for Integrative Systems Biology I2SysBio (CSIC-UV) and CIBER en Epidemiología y Salud Pública, Valencia, Spain
| | - Seiamak Bahram
- Plateforme GENOMAX, Laboratoire d’ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d’Immunologie et d’Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Strasbourg, France
- Laboratoire Central d’Immunologie, Plateau Technique de Biologie, Nouvel Hôpital Civil, France
- * E-mail: (PDC); (SB)
| |
Collapse
|
24
|
Garretto A, Thomas-White K, Wolfe AJ, Putonti C. Detecting viral genomes in the female urinary microbiome. J Gen Virol 2018; 99:1141-1146. [PMID: 29889019 PMCID: PMC6171713 DOI: 10.1099/jgv.0.001097] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/26/2018] [Indexed: 12/17/2022] Open
Abstract
Viruses are the most abundant component of the human microbiota. Recent evidence has uncovered a rich diversity of viruses within the female bladder, including both bacteriophages and eukaryotic viruses. We conducted whole-genome sequencing of the bladder microbiome of 30 women: 10 asymptomatic 'healthy' women and 20 women with an overactive bladder. These metagenomes include sequences representative of human, bacterial and viral DNA. This analysis, however, focused specifically on viral sequences. Using the bioinformatic tool virMine, we discovered sequence fragments, as well as complete genomes, of bacteriophages and the eukaryotic virus JC polyomavirus. The method employed here is a critical proof of concept: the genomes of viral populations within the low-biomass bladder microbiota can be reconstructed through whole-genome sequencing of the entire microbial community.
Collapse
Affiliation(s)
- Andrea Garretto
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA
| | - Krystal Thomas-White
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
- Present address: 325 Sharon Park Dr, Suite 522, Menlo Park, CA, USA
| | - Alan J. Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
- Department of Computer Science, Loyola University Chicago, Chicago, IL, USA
| |
Collapse
|
25
|
The Role of aDNA in Understanding the Coevolutionary Patterns of Human Sexually Transmitted Infections. Genes (Basel) 2018; 9:genes9070317. [PMID: 29941858 PMCID: PMC6070984 DOI: 10.3390/genes9070317] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 12/18/2022] Open
Abstract
Analysis of pathogen genome data sequenced from clinical and historical samples has made it possible to perform phylogenetic analyses of sexually transmitted infections on a global scale, and to estimate the diversity, distribution, and coevolutionary host relationships of these pathogens, providing insights into pathogen emergence and disease prevention. Deep-sequenced pathogen genomes from clinical studies and ancient samples yield estimates of within-host and between-host evolutionary rates and provide data on changes in pathogen genomic stability and evolutionary responses. Here we examine three groups of pathogens transmitted mainly through sexual contact between modern humans to provide insight into ancient human behavior and history with their pathogens. Exploring ancient pathogen genomic divergence and the ancient viral-host parallel evolutionary histories will help us to reconstruct the origin of present-day geographical distribution and diversity of clinical pathogen infections, and will hopefully allow us to foresee possible environmentally induced pathogen evolutionary responses. Lastly, we emphasize that ancient pathogen DNA research should be combined with modern clinical pathogen data, and be equitable and provide advantages for all researchers worldwide, e.g., through shared data.
Collapse
|
26
|
Torres C, Barrios ME, Cammarata RV, Victoria M, Fernandez-Cassi X, Bofill-Mas S, Colina R, Blanco Fernández MD, Mbayed VA. Phylodynamics of Merkel-cell polyomavirus and human polyomavirus 6: A long-term history with humans. Mol Phylogenet Evol 2018; 126:210-220. [PMID: 29680507 DOI: 10.1016/j.ympev.2018.04.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 04/06/2018] [Accepted: 04/16/2018] [Indexed: 01/10/2023]
Abstract
New human polyomaviruses have been described in the last years, including the Merkel-cell polyomavirus (MCPyV; Human polyomavirus 5) and the Human polyomavirus 6 (HPyV6). Although their infection is usually asymptomatic, in immunocompromised host can cause life-threatening pathologies, such as the Merkel cell carcinoma, an aggressive skin neoplasia associated to the MCPyV. Despite being prevalent viruses in population, epidemiological data from South America are scarce, as well as the characterization of the viral types circulating and their origin. The aims of this work were to describe MCPyV and HPyV6 from environmental samples with different geographical origin and to analyze their phylogenetic and evolutionary histories, particularly for MCPyV. Partial and complete genome sequences were obtained from sewage samples from Argentina, Uruguay and Spain. A total number of 87 sequences were obtained for MCPyV and 33 for HPyV6. Phylogenetic analysis showed that MCPyV sequences distributed according to their geographic origin in Europe/North America, Africa, Asia, South America and Oceania groups, suggesting that viral diversification might have followed human migrations across the globe. In particular, viruses from Argentina associated with Europe/North America and South America genotypes, whereas those from Uruguay and Spain also grouped with Africa genotype, reflecting the origin of the current population in each country, which could arrive not only during ancient human migration but also during recent migratory events. In addition, the South American group presented a high level of clusterization, showing internal clusters that could be related to specific locations, such as French Guiana and Brazil or the Southern region into South America, such as Argentina and Uruguay, suggesting a long term evolutionary process in the region. Additionally, in this work, we carried out the first analysis about the evolutionary history of MCPyV trough the integration of phylogenetic, epidemiological and historical data. Since a strong association is observed between the phylogenetic relationships and the origin of the sampled population, this analysis was based on the hypothesis of co-divergence between the virus and human populations. This analysis resulted in a substitution rate of 5.1 × 10-8 s/s/y (∼5.1% of divergence per million years) for the complete genome of MCPyV, which is in the range of those estimated for other double-stranded DNA viruses. Regarding HPyV6, a South American group with clusterization was observed (sequences from Uruguay). Meanwhile, sequences from Argentina grouped with European ones (France and Spain) and remained separated from those isolated in China, USA or Australia. The analysis of viruses from the environment allowed us to deep characterize prevalent infections in different geographic regions, reveling that viruses circulating in each population reflected its origin and that there are specific lineages associated with South America.
Collapse
Affiliation(s)
- Carolina Torres
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología, Cátedra de Virología, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina.
| | - Melina Elizabeth Barrios
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología, Cátedra de Virología, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina
| | - Robertina Viviana Cammarata
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología, Cátedra de Virología, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina
| | - Matías Victoria
- Laboratorio de Virología Molecular, CENUR Litoral Norte, Sede Salto, Universidad de la República, Uruguay
| | - Xavier Fernandez-Cassi
- Laboratory of Virus Contaminants of Water and Food, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Catalonia, Spain
| | - Silvia Bofill-Mas
- Laboratory of Virus Contaminants of Water and Food, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Catalonia, Spain
| | - Rodney Colina
- Laboratorio de Virología Molecular, CENUR Litoral Norte, Sede Salto, Universidad de la República, Uruguay
| | - María Dolores Blanco Fernández
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología, Cátedra de Virología, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina
| | - Viviana Andrea Mbayed
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología, Cátedra de Virología, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina
| |
Collapse
|
27
|
Carr M, Gonzalez G, Sasaki M, Dool SE, Ito K, Ishii A, Hang'ombe BM, Mweene AS, Teeling EC, Hall WW, Orba Y, Sawa H. Identification of the same polyomavirus species in different African horseshoe bat species is indicative of short-range host-switching events. J Gen Virol 2017; 98:2771-2785. [PMID: 28984241 DOI: 10.1099/jgv.0.000935] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Polyomaviruses (PyVs) are considered to be highly host-specific in different mammalian species, with no well-supported evidence for host-switching events. We examined the species diversity and host specificity of PyVs in horseshoe bats (Rhinolophus spp.), a broadly distributed and highly speciose mammalian genus. We annotated six PyV genomes, comprising four new PyV species, based on pairwise identity within the large T antigen (LTAg) coding region. Phylogenetic comparisons revealed two instances of highly related PyV species, one in each of the Alphapolyomavirus and Betapolyomavirus genera, present in different horseshoe bat host species (Rhinolophus blasii and R. simulator), suggestive of short-range host-switching events. The two pairs of Rhinolophus PyVs in different horseshoe bat host species were 99.9 and 88.8 % identical with each other over their respective LTAg coding sequences and thus constitute the same virus species. To corroborate the species identification of the bat hosts, we analysed mitochondrial cytb and a large nuclear intron dataset derived from six independent and neutrally evolving loci for bat taxa of interest. Bayesian estimates of the ages of the most recent common ancestors suggested that the near-identical and more distantly related PyV species diverged approximately 9.1E4 (5E3-2.8E5) and 9.9E6 (4E6-18E6) years before the present, respectively, in contrast to the divergence times of the bat host species: 12.4E6 (10.4E6-15.4E6). Our findings provide evidence that short-range host-switching of PyVs is possible in horseshoe bats, suggesting that PyV transmission between closely related mammalian species can occur.
Collapse
Affiliation(s)
- Michael Carr
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan.,National Virus Reference Laboratory, University College Dublin, Belfield, Dublin 4, Ireland
| | - Gabriel Gonzalez
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Serena E Dool
- Zoological Institute and Museum, University of Greifswald, Anklamer Street 20, D-17489 Greifswald, Germany
| | - Kimihito Ito
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Akihiro Ishii
- Hokudai Center for Zoonosis Control in Zambia, Research Center for Zoonosis Control, Hokkaido University, Lusaka, Zambia
| | - Bernard M Hang'ombe
- Department of Para-clinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Aaron S Mweene
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Emma C Teeling
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - William W Hall
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan.,Global Virus Network, Baltimore, MD 21201, USA
| | - Yasuko Orba
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Hirofumi Sawa
- Global Virus Network, Baltimore, MD 21201, USA.,Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan.,Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| |
Collapse
|
28
|
Biology, evolution, and medical importance of polyomaviruses: An update. INFECTION GENETICS AND EVOLUTION 2017. [DOI: 10.1016/j.meegid.2017.06.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
|
30
|
Rotondo JC, Candian T, Selvatici R, Mazzoni E, Bonaccorsi G, Greco P, Tognon M, Martini F. Tracing Males From Different Continents by Genotyping JC Polyomavirus in DNA From Semen Samples. J Cell Physiol 2017; 232:982-985. [PMID: 27859215 DOI: 10.1002/jcp.25686] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 11/10/2016] [Indexed: 01/08/2023]
Abstract
The human JC polyomavirus (JCPyV) is an ubiquitous viral agent infecting approximately 60% of humans. Recently, JCPyV sequences have been detected in semen samples. The aim of this investigation was to test whether semen JCPyV genotyping can be employed to trace the origin continent of males. Semen DNA samples (n = 170) from males of different Continents were investigated by PCR for the polymorphic JCPyV viral capsid protein 1 (VP1) sequences, followed by DNA sequencing. JCPyV sequences were detected with an overall prevalence of 27.6% (47/170). DNA sequencing revealed that European males carried JCPyV types 1A (71.4%), 4 (11.4%), 2B (2.9%), 2D1 (2.9%), and 3A (2.9%). Asians JCPyV type 2D1 (66.7%) and Africans JCPyV types 3A (33.3%) and 1A (33.3%). In 10.6% of males, two different JCPyV genotypes were detected, suggesting that the second JCPyV genotype was acquired in the destination country. This study indicates that the majority of semen samples found to be JCPyV-positive, were infected with the JCPyV genotype found in the geographic area of male origin. Therefore, semen JCPyV genotyping could be employed to trace the origin continent of males. Our findings could be applied to forensic investigations, in case of for instance sexual crimes. Indeed, JCPyV genotyping should enable investigators to make additional detailed profiling of the offender. J. Cell. Physiol. 232: 982-985, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- John Charles Rotondo
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology Experimental Biology, Laboratories of Cell Biology and Molecular Genetics, Ferrara, Italy
| | - Tommaso Candian
- Department of Morphology, Surgery and Experimental Medicine, Section of Obstetrics and Gynaecology, Ferrara, Italy
| | - Rita Selvatici
- Department of Medical Sciences, Section of Microbiology and Medical Genetics, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Elisa Mazzoni
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology Experimental Biology, Laboratories of Cell Biology and Molecular Genetics, Ferrara, Italy
| | - Gloria Bonaccorsi
- Department of Morphology, Surgery and Experimental Medicine, Section of Obstetrics and Gynaecology, Ferrara, Italy
| | - Pantaleo Greco
- Department of Morphology, Surgery and Experimental Medicine, Section of Obstetrics and Gynaecology, Ferrara, Italy
| | - Mauro Tognon
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology Experimental Biology, Laboratories of Cell Biology and Molecular Genetics, Ferrara, Italy
| | - Fernanda Martini
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology Experimental Biology, Laboratories of Cell Biology and Molecular Genetics, Ferrara, Italy
| |
Collapse
|
31
|
Gantuz M, Lorenzetti MA, Chabay PA, Preciado MV. A novel recombinant variant of latent membrane protein 1 from Epstein Barr virus in Argentina denotes phylogeographical association. PLoS One 2017; 12:e0174221. [PMID: 28328987 PMCID: PMC5362222 DOI: 10.1371/journal.pone.0174221] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/05/2017] [Indexed: 12/15/2022] Open
Abstract
Epstein Barr virus (EBV) infection in Argentina occurs at an early age and occasionally develops infectious mononucleosis (IM). EBV is also related with lymphomas. LMP1, the viral oncoprotein is polymorphic and is used to define viral variants.
Collapse
Affiliation(s)
- Magdalena Gantuz
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), CONICET-GCBA, Laboratorio de Biología Molecular, División Patología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Mario Alejandro Lorenzetti
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), CONICET-GCBA, Laboratorio de Biología Molecular, División Patología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Paola Andrea Chabay
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), CONICET-GCBA, Laboratorio de Biología Molecular, División Patología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - María Victoria Preciado
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), CONICET-GCBA, Laboratorio de Biología Molecular, División Patología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
32
|
Positive Selection Drives Rapid Evolution of the meq Oncogene of Marek's Disease Virus. PLoS One 2016; 11:e0162180. [PMID: 27662574 PMCID: PMC5035050 DOI: 10.1371/journal.pone.0162180] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/18/2016] [Indexed: 11/30/2022] Open
Abstract
Marek’s disease (MD), caused by Marek’s disease virus (MDV), a poultry-borne alphaherpesvirus, is a devastating disease of poultry causing an estimated annual loss of one billion dollars to poultry producers, worldwide. Despite decades of control through vaccination, MDV field strains continue to emerge having increased virulence. The evolutionary mechanism driving the emergence of this continuum of strains to increased MDV virulence, however, remains largely enigmatic. Increase in MDV virulence has been associated with specific amino acid changes within the C-terminus domain of Mareks’s EcoRI-Q (meq)-encoded oncoprotein. In this study, we sought to determine whether the meq gene has evolved adaptively and whether past vaccination efforts have had any significant effect on the reduction or increase of MDV diversity over time. Our analysis suggests that meq is estimated to be evolving at a much faster rate than most dsDNA viruses, and is comparable with the evolutionary rate of RNA viruses. Interestingly, most of the polymorphisms in meq gene appear to have evolved under positive selection and the time of divergence at the meq locus coincides with the period during which the poultry industry had undergone transitions in management practices including the introduction and widespread use of live attenuated vaccines. Our study has revealed that the decades-long use of vaccines did not reduce MDV diversity, but rather had a stimulating effect on the emergence of field strains with increased genetic diversity until the early 2000s. During the years 2004–2005, there was an abrupt decline in the genetic diversity of field isolates followed by a recovery from this bottleneck in the year 2010. Collectively, these data suggest that vaccination seems to not have had any effect on MDV eradication, but rather had a stimulating effect on MDV emergence through adaptation.
Collapse
|
33
|
Rani A, Ranjan R, McGee HS, Metwally A, Hajjiri Z, Brennan DC, Finn PW, Perkins DL. A diverse virome in kidney transplant patients contains multiple viral subtypes with distinct polymorphisms. Sci Rep 2016; 6:33327. [PMID: 27633952 PMCID: PMC5025891 DOI: 10.1038/srep33327] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/19/2016] [Indexed: 01/08/2023] Open
Abstract
Recent studies have established that the human urine contains a complex microbiome, including a virome about which little is known. Following immunosuppression in kidney transplant patients, BK polyomavirus (BKV) has been shown to induce nephropathy (BKVN), decreasing graft survival. In this study we investigated the urine virome profile of BKV+ and BKV- kidney transplant recipients. Virus-like particles were stained to confirm the presence of VLP in the urine samples. Metagenomic DNA was purified, and the virome profile was analyzed using metagenomic shotgun sequencing. While the BK virus was predominant in the BKV+ group, it was also found in the BKV- group patients. Additional viruses were also detected in all patients, notably including JC virus (JCV) and Torque teno virus (TTV) and interestingly, we detected multiple subtypes of the BKV, JCV and TTV. Analysis of the BKV subtypes showed that nucleotide polymorphisms were detected in the VP1, VP2 and Large T Antigen proteins, suggesting potential functional effects for enhanced pathogenicity. Our results demonstrate a complex urinary virome in kidney transplant patients with multiple viruses with several distinct subtypes warranting further analysis of virus subtypes in immunosuppressed hosts.
Collapse
Affiliation(s)
- Asha Rani
- Department of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - Ravi Ranjan
- Department of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - Halvor S. McGee
- Department of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - Ahmed Metwally
- Department of Medicine, University of Illinois, Chicago, IL 60612, USA
- Department of Bioengineering, University of Illinois, Chicago, IL 60612, USA
| | - Zahraa Hajjiri
- Department of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - Daniel C. Brennan
- Division of Renal Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Patricia W. Finn
- Department of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - David L. Perkins
- Department of Medicine, University of Illinois, Chicago, IL 60612, USA
- Department of Bioengineering, University of Illinois, Chicago, IL 60612, USA
- Department of Surgery, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
34
|
Assessing Host-Virus Codivergence for Close Relatives of Merkel Cell Polyomavirus Infecting African Great Apes. J Virol 2016; 90:8531-41. [PMID: 27440885 DOI: 10.1128/jvi.00247-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/12/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED It has long been hypothesized that polyomaviruses (PyV; family Polyomaviridae) codiverged with their animal hosts. In contrast, recent analyses suggested that codivergence may only marginally influence the evolution of PyV. We reassess this question by focusing on a single lineage of PyV infecting hominine hosts, the Merkel cell polyomavirus (MCPyV) lineage. By characterizing the genetic diversity of these viruses in seven African great ape taxa, we show that they exhibit very strong host specificity. Reconciliation analyses identify more codivergence than noncodivergence events. In addition, we find that a number of host and PyV divergence events are synchronous. Collectively, our results support codivergence as the dominant process at play during the evolution of the MCPyV lineage. More generally, our results add to the growing body of evidence suggesting an ancient and stable association of PyV and their animal hosts. IMPORTANCE The processes involved in viral evolution and the interaction of viruses with their hosts are of great scientific interest and public health relevance. It has long been thought that the genetic diversity of double-stranded DNA viruses was generated over long periods of time, similar to typical host evolutionary timescales. This was also hypothesized for polyomaviruses (family Polyomaviridae), a group comprising several human pathogens, but this remains a point of controversy. Here, we investigate this question by focusing on a single lineage of polyomaviruses that infect both humans and their closest relatives, the African great apes. We show that these viruses exhibit considerable host specificity and that their evolution largely mirrors that of their hosts, suggesting that codivergence with their hosts played a major role in their diversification. Our results provide statistical evidence in favor of an association of polyomaviruses and their hosts over millions of years.
Collapse
|
35
|
Zehender G, Frati ER, Martinelli M, Bianchi S, Amendola A, Ebranati E, Ciccozzi M, Galli M, Lai A, Tanzi E. Dating the origin and dispersal of Human Papillomavirus type 16 on the basis of ancestral human migrations. INFECTION GENETICS AND EVOLUTION 2016; 39:258-264. [PMID: 26827632 DOI: 10.1016/j.meegid.2016.01.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 01/22/2016] [Accepted: 01/26/2016] [Indexed: 01/04/2023]
Abstract
A major limitation when reconstructing the origin and evolution of HPV-16 is the lack of reliable substitution rate estimates for the viral genes. On the basis of the hypothesis of human HPV-16 co-divergence, we estimated a mean evolutionary rate of 1.47×10(-7) (95% HPD=0.64-2.47×10(-7)) subs/site/year for the viral LCR region. The results of a Bayesian phylogeographical analysis suggest that the currently circulating HPV-16 most probably originated in Africa about 110 thousand years ago (Kya), before giving rise to four known geographical lineages: the Asian/European lineage, which most probably originated in Asia a mean 38 Kya, and the Asian/American and two African lineages, which probably respectively originated about 33 and 27 Kya. These data closely reflect current hypotheses concerning modern human expansion based on studies of mitochondrial DNA phylogeny. The correlation between ancient human migration and the present HPV phylogeny may be explained by the co-existence of modes of transmission other than sexual transmission.
Collapse
Affiliation(s)
- Gianguglielmo Zehender
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy.
| | - Elena Rosanna Frati
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Marianna Martinelli
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Silvia Bianchi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Antonella Amendola
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Erika Ebranati
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| | - Massimo Ciccozzi
- Department of Infectious, Parasitic and Immunomediated Diseases, National Institute of Health, Rome, Italy; Campus Bio-Medico University, Rome, Italy
| | - Massimo Galli
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| | - Alessia Lai
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| | - Elisabetta Tanzi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|
36
|
Kazem S, Lauber C, van der Meijden E, Kooijman S, Kravchenko AA, Feltkamp MC, Gorbalenya AE. Limited variation during circulation of a polyomavirus in the human population involves the COCO-VA toggling site of Middle and Alternative T-antigen(s). Virology 2016; 487:129-40. [DOI: 10.1016/j.virol.2015.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 11/26/2022]
|
37
|
Epand RM. Antiviral Host Defence Peptides. HOST DEFENSE PEPTIDES AND THEIR POTENTIAL AS THERAPEUTIC AGENTS 2016. [PMCID: PMC7123656 DOI: 10.1007/978-3-319-32949-9_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The ongoing global mortality and morbidity associated with viral pathogens highlights the need for the continued development of effective, novel antiviral molecules. The antiviral activity of cationic host defence peptides is of significant interest as novel therapeutics for treating viral infection and predominantly due to their broad spectrum antiviral activity. These peptides also display powerful immunomodulatory activity and are key mediators of inflammation. Therefore, they offer a significant opportunity to inform the development of novel therapeutics for treating viral infections by either directly targeting the pathogen or by enhancing the innate immune response. In this chapter, we review the antiviral activity of cathelicidins and defensins, and examine the potential for these peptides to be used as novel antiviral agents.
Collapse
Affiliation(s)
- Richard M. Epand
- Health Sciences Centre, McMaster University, Hamilton, Ontario Canada
| |
Collapse
|
38
|
Plantone D, Renna R, Sbardella E, Koudriavtseva T. Concurrence of multiple sclerosis and brain tumors. Front Neurol 2015; 6:40. [PMID: 25788892 PMCID: PMC4349169 DOI: 10.3389/fneur.2015.00040] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/17/2015] [Indexed: 12/28/2022] Open
Affiliation(s)
- Domenico Plantone
- Unit of Neurology, Multiple Sclerosis Center, Regina Elena National Cancer Institute, IFO , Rome , Italy
| | - Rosaria Renna
- Unit of Neurology, Multiple Sclerosis Center, Regina Elena National Cancer Institute, IFO , Rome , Italy
| | - Emilia Sbardella
- Unit of Neurology, Multiple Sclerosis Center, Regina Elena National Cancer Institute, IFO , Rome , Italy
| | - Tatiana Koudriavtseva
- Unit of Neurology, Multiple Sclerosis Center, Regina Elena National Cancer Institute, IFO , Rome , Italy
| |
Collapse
|
39
|
Molecular epidemiology of merkel cell polyomavirus: evidence for geographically related variant genotypes. J Clin Microbiol 2014; 52:1687-90. [PMID: 24523477 DOI: 10.1128/jcm.02348-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is linked to a cutaneous cancer mainly occurring in Caucasians. DNA from skin swabs of 255 adults, originating from the 5 continents, were subjected to MCPyV PCRs. Phylogenetic analyses demonstrate the existence of 5 major geographically related MCPyV genotypes (Europe/North America, Africa [sub-Saharan], Oceania, South America, and Asia/Japan).
Collapse
|
40
|
Sarker S, Patterson EI, Peters A, Baker GB, Forwood JK, Ghorashi SA, Holdsworth M, Baker R, Murray N, Raidal SR. Mutability dynamics of an emergent single stranded DNA virus in a naïve host. PLoS One 2014; 9:e85370. [PMID: 24416396 PMCID: PMC3885698 DOI: 10.1371/journal.pone.0085370] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/26/2013] [Indexed: 01/21/2023] Open
Abstract
Quasispecies variants and recombination were studied longitudinally in an emergent outbreak of beak and feather disease virus (BFDV) infection in the orange-bellied parrot (Neophema chrysogaster). Detailed health monitoring and the small population size (<300 individuals) of this critically endangered bird provided an opportunity to longitudinally track viral replication and mutation events occurring in a circular, single-stranded DNA virus over a period of four years within a novel bottleneck population. Optimized PCR was used with different combinations of primers, primer walking, direct amplicon sequencing and sequencing of cloned amplicons to analyze BFDV genome variants. Analysis of complete viral genomes (n = 16) and Rep gene sequences (n = 35) revealed that the outbreak was associated with mutations in functionally important regions of the normally conserved Rep gene and immunogenic capsid (Cap) gene with a high evolutionary rate (3.41×10−3 subs/site/year) approaching that for RNA viruses; simultaneously we observed significant evidence of recombination hotspots between two distinct progenitor genotypes within orange-bellied parrots indicating early cross-transmission of BFDV in the population. Multiple quasispecies variants were also demonstrated with at least 13 genotypic variants identified in four different individual birds, with one containing up to seven genetic variants. Preferential PCR amplification of variants was also detected. Our findings suggest that the high degree of genetic variation within the BFDV species as a whole is reflected in evolutionary dynamics within individually infected birds as quasispecies variation, particularly when BFDV jumps from one host species to another.
Collapse
Affiliation(s)
- Subir Sarker
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, New South Wales, Australia
| | - Edward I. Patterson
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, New South Wales, Australia
| | - Andrew Peters
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, New South Wales, Australia
| | - G. Barry Baker
- Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Jade K. Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, New South Wales, Australia
| | - Seyed A. Ghorashi
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, New South Wales, Australia
| | - Mark Holdsworth
- Biodiversity Conservation Branch, Department of Primary Industries, Parks, Water and Environment, Hobart, Tasmania, Australia
| | - Rupert Baker
- Healesville Sanctuary, Zoos Victoria, Healesville, Victoria, Australia
| | - Neil Murray
- Department of Genetics, La Trobe University, Bundoora, Victoria, Australia
| | - Shane R. Raidal
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, New South Wales, Australia
- * E-mail:
| |
Collapse
|
41
|
Alosaimi B, Hampson L, He X, Maranga IO, Oliver AW, Hampson IN. Increased prevalence of JC polyomavirus in cervical carcinomas from women infected with HIV. J Med Virol 2013; 86:672-7. [DOI: 10.1002/jmv.23868] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Bandar Alosaimi
- Viral Oncology Laboratories; University of Manchester Institute of Cancer Sciences; Manchester UK
| | - Lynne Hampson
- Viral Oncology Laboratories; University of Manchester Institute of Cancer Sciences; Manchester UK
| | - Xiaotong He
- Viral Oncology Laboratories; University of Manchester Institute of Cancer Sciences; Manchester UK
| | - Innocent O. Maranga
- Department of Obstetrics and Gynaecology; University of Nairobi, Kenyatta National Hospital; Nairobi Kenya
| | - Anthony. W. Oliver
- Viral Oncology Laboratories; University of Manchester Institute of Cancer Sciences; Manchester UK
| | - Ian N. Hampson
- Viral Oncology Laboratories; University of Manchester Institute of Cancer Sciences; Manchester UK
| |
Collapse
|
42
|
Kolb AW, Ané C, Brandt CR. Using HSV-1 genome phylogenetics to track past human migrations. PLoS One 2013; 8:e76267. [PMID: 24146849 DOI: 10.1371/journal.pone.0076267] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 08/24/2013] [Indexed: 01/11/2023] Open
Abstract
We compared 31 complete and nearly complete globally derived HSV-1 genomic sequences using HSV-2 HG52 as an outgroup to investigate their phylogenetic relationships and look for evidence of recombination. The sequences were retrieved from NCBI and were then aligned using Clustal W. The generation of a maximum likelihood tree resulted in a six clade structure that corresponded with the timing and routes of past human migration. The East African derived viruses contained the greatest amount of genetic diversity and formed four of the six clades. The East Asian and European/North American derived viruses formed separate clades. HSV-1 strains E07, E22 and E03 were highly divergent and may each represent an individual clade. Possible recombination was analyzed by partitioning the alignment into 5 kb segments, performing individual phylogenetic analysis on each partition and generating a.phylogenetic network from the results. However most evidence for recombination spread at the base of the tree suggesting that recombination did not significantly disrupt the clade structure. Examination of previous estimates of HSV-1 mutation rates in conjunction with the phylogenetic data presented here, suggests that the substitution rate for HSV-1 is approximately 1.38 × 10(-7) subs/site/year. In conclusion, this study expands the previously described HSV-1 three clade phylogenetic structures to a minimum of six and shows that the clade structure also mirrors global human migrations. Given that HSV-1 has co-evolved with its host, sequencing HSV-1 isolated from various populations could serve as a surrogate biomarker to study human population structure and migration patterns.
Collapse
Affiliation(s)
- Aaron W Kolb
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | | | | |
Collapse
|
43
|
Ma M, He M, Liao L, Guo Y, Yu D, Xiong Z, Liu Y, Zeng P, Liao P. Molecular epidemiology and population dynamics of hepatitis B virus in Dianjiang County, Chongqing, China. Arch Virol 2013; 159:117-24. [PMID: 23913187 DOI: 10.1007/s00705-013-1765-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 05/05/2013] [Indexed: 12/12/2022]
Abstract
Hepatitis B virus infection is highly endemic in China, especially in rural areas such as Dianjiang County with poor-quality health care and little local HBV information. Therefore, for the first time, the present study was carried out to investigate the molecular epidemiology, phylogeny and population dynamics of HBV based on 146 HBV-infected patients. A 435-bp portion of the HBV S region was sequenced, and the phylogeny was reconstructed, indicating that three genotypes, B, C and D of HBV were distributed in Dianjiang County. The predominant genotype is B (67.12 %), followed by C (32.19 %) and D (0.68 %). Patient demographic information and clinical outcomes were examined by genotypes, and no significant association was found. Population dynamics analysis suggested that both genotype B and C have experienced a tenfold expansion during the last five years for reasons that are unclear. Thus, a thorough molecular epidemiology investigation is strongly recommended in the future.
Collapse
Affiliation(s)
- Mingyan Ma
- Dianjiang people's hospital of Chongqing, Chongqing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Tellier S, Brochard K, Garnier A, Bandin F, Llanas B, Guigonis V, Cailliez M, Pietrement C, Dunand O, Nathanson S, Bertholet-Thomas A, Ichay L, Decramer S. Long-term outcome of children treated with rituximab for idiopathic nephrotic syndrome. Pediatr Nephrol 2013; 28:911-8. [PMID: 23340857 DOI: 10.1007/s00467-012-2406-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 12/18/2012] [Accepted: 12/19/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND Rituximab (RTX) has recently showed promising results in the treatment of steroid-dependent idiopathic nephrotic syndrome (SDNS). METHODS This was a retrospective multicenter study of 18 children treated with RTX for SDNS, with a mean follow-up of 3.2 years. RTX was introduced because of side effects or relapses during therapy with immunosuppressive agents. The children received one to four infusions of RTX during the first course of treatment, and subsequent infusions were given due to CD19-cell recovery (CD19 >1 %; 54 % of children) or relapse (41 %), as well as systematically (5 %). RESULTS Treatment with RTX maintained sustained remission without relapse in 22 % of patients and increased the duration of remission in all other patients. The time between two successive relapses was 9 months in the absence of re-treatment and 24.5 months when infusions were performed at the time of CD19-cell recovery. At the last follow-up, 44.5 % of patients were free of oral drug therapy. Of those still receiving oral drugs, all doses had been decreased. No serious adverse events occurred. CONCLUSION The results of this retrospective study confirm the efficacy and very good safety of RTX in the treatment of SDNS. The optimal therapeutic protocol seems to be a repeated single infusion at the time of CD19-cell recovery.
Collapse
|
45
|
de Vienne DM, Refrégier G, López-Villavicencio M, Tellier A, Hood ME, Giraud T. Cospeciation vs host-shift speciation: methods for testing, evidence from natural associations and relation to coevolution. THE NEW PHYTOLOGIST 2013; 198:347-385. [PMID: 23437795 DOI: 10.1111/nph.12150] [Citation(s) in RCA: 272] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 12/19/2012] [Indexed: 05/26/2023]
Abstract
Hosts and their symbionts are involved in intimate physiological and ecological interactions. The impact of these interactions on the evolution of each partner depends on the time-scale considered. Short-term dynamics - 'coevolution' in the narrow sense - has been reviewed elsewhere. We focus here on the long-term evolutionary dynamics of cospeciation and speciation following host shifts. Whether hosts and their symbionts speciate in parallel, by cospeciation, or through host shifts, is a key issue in host-symbiont evolution. In this review, we first outline approaches to compare divergence between pairwise associated groups of species, their advantages and pitfalls. We then consider recent insights into the long-term evolution of host-parasite and host-mutualist associations by critically reviewing the literature. We show that convincing cases of cospeciation are rare (7%) and that cophylogenetic methods overestimate the occurrence of such events. Finally, we examine the relationships between short-term coevolutionary dynamics and long-term patterns of diversification in host-symbiont associations. We review theoretical and experimental studies showing that short-term dynamics can foster parasite specialization, but that these events can occur following host shifts and do not necessarily involve cospeciation. Overall, there is now substantial evidence to suggest that coevolutionary dynamics of hosts and parasites do not favor long-term cospeciation.
Collapse
Affiliation(s)
- D M de Vienne
- Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - G Refrégier
- Université Paris-Sud, Institut de Génétique et Microbiologie, UMR 8621, 91405, Orsay, France
- CNRS, UMR8621, 91405, Orsay, France
| | - M López-Villavicencio
- Muséum National d'Histoire Naturelle, 57 rue Cuvier, F-75231, Paris Cedex 05, France
| | - A Tellier
- Section of Population Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, D-85354, Freising, Germany
| | - M E Hood
- Department of Biology, Amherst College, Amherst, MA, USA
| | - T Giraud
- Université Paris-Sud, Ecologie, Systématique et Evolution, UMR 8079, 91405, Orsay, France
- CNRS, UMR8079, 91405, Orsay, France
| |
Collapse
|
46
|
Feltkamp MCW, Kazem S, van der Meijden E, Lauber C, Gorbalenya AE. From Stockholm to Malawi: recent developments in studying human polyomaviruses. J Gen Virol 2013; 94:482-496. [DOI: 10.1099/vir.0.048462-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Until a few years ago the polyomavirus family (Polyomaviridae) included a dozen viruses identified in avian and mammalian hosts. Two of these, the JC and BK-polyomaviruses isolated a long time ago, are known to infect humans and cause severe illness in immunocompromised hosts. Since 2007 an unprecedented number of eight novel polyomaviruses were discovered in humans. Among them are the KI- and WU-polyomaviruses identified in respiratory samples, the Merkel cell polyomavirus found in skin carcinomas and the polyomavirus associated with trichodysplasia spinulosa, a skin disease of transplant patients. Another four novel human polyomaviruses were identified, HPyV6, HPyV7, HPyV9 and the Malawi polyomavirus, so far not associated with any disease. In the same period several novel mammalian polyomaviruses were described. This review summarizes the recent developments in studying the novel human polyomaviruses, and touches upon several aspects of polyomavirus virology, pathogenicity, epidemiology and phylogeny.
Collapse
Affiliation(s)
- Mariet C. W. Feltkamp
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Siamaque Kazem
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Els van der Meijden
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Chris Lauber
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Alexander E. Gorbalenya
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119899 Moscow, Russia
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
47
|
Abstract
SUMMARYPhylogeography of parasites and microbes is a recent field. Phylogeographic studies have been performed mostly to test three major hypotheses that are not mutually exclusive on the origins and distributions of human parasites and microbes: (1) the “out of Africa” pattern where parasites are supposed to have followed the dispersal and expansion of modern humans in and out of Africa, (2) the “domestication” pattern where parasites were captured in the domestication centres and dispersed through them and (3) the “globalization” pattern, in relation to historical and more recent trade routes. With some exceptions, such studies of human protozoans, helminths and ectoparasites are quite limited. The conclusion emphasizes the need to acquire more phylogeographic data in non-Occidental countries, and particularly in Asia where all the animal domestications took place.
Collapse
|
48
|
Bárcena-Panero A, Echevarría JE, Romero-Gómez MP, Royuela E, Castellanos A, González I, Fedele G. Development and validation with clinical samples of internally controlled multiplex real-time PCR for diagnosis of BKV and JCV infection in associated pathologies. Comp Immunol Microbiol Infect Dis 2012; 35:173-9. [PMID: 22261266 DOI: 10.1016/j.cimid.2011.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/28/2011] [Accepted: 12/19/2011] [Indexed: 11/17/2022]
Abstract
This article describes the development and validation with clinical samples of an internally controlled multiplex quantitative real-time PCR (QRT-PCR) for human polyomaviruses BK (BKV) and JC (JCV). Blood and urine samples from renal transplant recipients with suspected nephropathy, and cerebrospinal fluid (CSF) specimens from AIDS, natalizumab-treated and HIV-negative patients with suspected progressive multifocal leukoencephalopathy, previously checked for BKV and JCV by conventional PCR, were tested by QRT-PCR. All samples positive by conventional PCR were confirmed by QRT-PCR. Four cases of JCV-associated neurological infection, including all those detected in natalizumab-treated patients, and one case of BKV-related neurological infection were only identified by QRT-PCR. BKV was quantified in the CSF of neurological patients for the first time. Analyses of the Quality Control for Molecular Diagnostics 2010 panel were "highly satisfactory" for BKV and "satisfactory" for JCV. The QRT-PCR is specific and reproducible. It improves the sensitivity of conventional PCR for the diagnosis of BKV and JCV infection in various diseases.
Collapse
Affiliation(s)
- Ana Bárcena-Panero
- Viral Isolation and Detection Laboratory, Microbiology Diagnostic Service, National Microbiology Centre, Carlos III Health Institute, Majadahonda, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
49
|
Sharp PM, Simmonds P. Evaluating the evidence for virus/host co-evolution. Curr Opin Virol 2011; 1:436-41. [DOI: 10.1016/j.coviro.2011.10.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 10/19/2011] [Indexed: 01/04/2023]
|
50
|
Dominguez-Bello MG, Blaser MJ. The Human Microbiota as a Marker for Migrations of Individuals and Populations. ANNUAL REVIEW OF ANTHROPOLOGY 2011. [DOI: 10.1146/annurev-anthro-081309-145711] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Martin J. Blaser
- Departments of Medicine and Microbiology, New York University Langone Medical Center, New York, NY 10016;
| |
Collapse
|