1
|
Turčić M, Kraljević Pavelić S, Trivanović D, Pavelić K. Interaction of HERVs with PAMPs in Dysregulation of Immune Response Cascade Upon SARS-CoV-2 Infections. Int J Mol Sci 2024; 25:13360. [PMID: 39769125 PMCID: PMC11677760 DOI: 10.3390/ijms252413360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/20/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Human endogenous retroviruses (HERVs) are genomic fragments integrated into human DNA from germline infections by exogenous retroviruses that threatened primates early in their evolution and are inherited vertically in the germline. So far, HERVs have been studied in the context of extensive immunopathogenic, neuropathogenic and even oncogenic effects within their host. In particular, in our paper, we elaborate on the aspects related to the possible correlation of transposable HERV elements' activation and SARS-CoV-2 spike protein's presence in cells of COVID-19 patients or upon COVID-19 vaccination with implications for natural and adaptive immunity. In particular, the release of cytokines TNF-α, IL-1β and IL-6 occurs in such cases and plays a notable role in sustaining chronic inflammation. Moreover, well-known interindividual variations of HERVs might partially account for the interpersonal variability of COVID-19 symptoms or unwanted events post-vaccination. Accordingly, further studies are required to clarify the SARS-CoV-2 spike protein's role in triggering HERVs.
Collapse
Affiliation(s)
- Marijana Turčić
- Teaching Institute of Public Health of Primorsko-Goranska County, Krešimirova 52a, 51000 Rijeka, Croatia;
| | - Sandra Kraljević Pavelić
- Faculty of Health Studies, University of Rijeka, Ulica Viktora Cara Emina 5, 51000 Rijeka, Croatia
| | - Dragan Trivanović
- Faculty of Medicine, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia;
- Opća Bolnica Pula, Santoriova Ul. 24a, 52100 Pula, Croatia
| | - Krešimir Pavelić
- Faculty of Medicine, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia;
- International Academy of Science, Arts and Religion, Radnička Cesta, 71000 Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
2
|
Viret C, Bynoe MS. Human Endogenous Retroviruses Expression in Autoimmunity. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2024; 97:521-528. [PMID: 39703611 PMCID: PMC11650914 DOI: 10.59249/oikf8301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
In relation to ancient infections, a substantial number of retroviral sequences with persistent immunogenic potential were integrated within the human genome (HERVs). Under physiological conditions, coding sequences from HERVs can participate in cell/tissue homeostasis and physiological functions in an epigenetically controlled manner. However, HERV expression is susceptible to contribute to various pathologies, including autoinflammatory and autoimmune disorders, when reprogrammed by exogenous stimuli such as drugs or microbial infections. Both innate and adaptive components of the immune system can be mobilized in response to deregulated/de-repressed expression of HERV determinants and thereby, modify immune tolerance to tissue antigens. Self-directed immune responses induced/worsened by HERV expression are suspected to participate in both tissue-specific and systemic disorders. A substantial level of mechanistic investigation is needed to better delineate the impact of HERV expression in diseases in general, and in inflammation and autoimmunity in particular.
Collapse
Affiliation(s)
- Christophe Viret
- CIRI, Centre International de Recherche en
Infectiologie, Université de Lyon, CNRS UMR5308, INSERM U1111, Université Claude
Bernard Lyon 1, ENS de Lyon, Lyon, France
| | - Margaret S. Bynoe
- Department of Microbiology and Immunology, College of
Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
3
|
Chisca M, Larouche J, Xing Q, Kassiotis G. Antibodies against endogenous retroviruses. Immunol Rev 2024; 328:300-313. [PMID: 39152687 PMCID: PMC11659944 DOI: 10.1111/imr.13378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
The human genome harbors hundreds of thousands of integrations of ancient retroviruses, amassed over millions of years of evolution. To reduce further amplification in the genome, the host prevents transcription of these now endogenous retroviruses (ERVs) through epigenetic repression and, with evolutionary time, ERVs are incapacitated by accumulating mutations and deletions. However, several members of recently endogenized ERV groups still retain the capacity to produce viral RNA, retroviral proteins, and higher order structures, including virions. The retention of viral characteristics, combined with the reversible nature of epigenetic repression, particularly as seen in cancer, allow for immunologically unanticipated ERV expression, perceived by the adaptive immune system as a genuine retroviral infection, to which it has to respond. Accordingly, antibodies reactive with ERV antigens have been detected in diverse disorders and, occasionally, in healthy individuals. Although they are part of self, the retroviral legacy of ERV antigens, and association with and, possibly, causation of disease states may set them apart from typical self-antigens. Consequently, the pathogenic or, indeed, host-protective capacity of antibodies targeting ERV antigens is likely to be context-dependent. Here, we review the immunogenicity of typical ERV proteins, with emphasis on the antibody response and its potential disease implications.
Collapse
Affiliation(s)
- Mihaela Chisca
- Retroviral Immunology LaboratoryThe Francis Crick InstituteLondonUK
| | | | - Qi Xing
- Retroviral Immunology LaboratoryThe Francis Crick InstituteLondonUK
| | - George Kassiotis
- Retroviral Immunology LaboratoryThe Francis Crick InstituteLondonUK
- Department of Infectious Disease, Faculty of MedicineImperial College LondonLondonUK
| |
Collapse
|
4
|
Barisic S, Brahmbhatt EM, Cherkasova E, Spear TT, Savani U, Pierre S, Scurti GM, Chen L, Igboko M, Nadal R, Zeng G, Parry G, Stroncek DF, Highfill S, Dalheim AV, Reger R, Nishimura MI, Childs RW. Regression of renal cell carcinoma by T cell receptor-engineered T cells targeting a human endogenous retrovirus. J Immunother Cancer 2024; 12:e009147. [PMID: 39266213 PMCID: PMC11409391 DOI: 10.1136/jitc-2024-009147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND We discovered a novel human endogenous retrovirus (CT-RCC HERV-E) that was selectively expressed in most clear cell renal cell carcinomas (ccRCC) and served as a source of antigens for T cell-mediated killing. Here, we described the cloning of a novel T cell receptor (TCR) targeting a CT-RCC HERV-E-derived antigen specific to ccRCC and characterized antitumor activity of HERV-E TCR-transduced T cells (HERV-E T cells). METHODS We isolated a CD8+ T cell clone from a patient with immune-mediated regression of ccRCC post-allogeneic stem cell transplant that recognized the CT-RCC-1 HERV-E-derived peptide in an HLA-A11-restricted manner. We used 5'Rapid Amplification of cDNA Ends (RACE) to clone the full length HERV-E TCR and generated retrovirus encoding this TCR for transduction of T cells. We characterized HERV-E T cells for phenotype and function in vitro and in a murine xenograft model. Lastly, we implemented a good manufacturing practice-compliant method for scalable production of HERV-E T cells. RESULTS The HLA-A11-restricted HERV-E-reactive TCR exhibited a CD8-dependent phenotype and demonstrated specific recognition of the CT-RCC-1 peptide. CD8+ T cells modified to express HERV-E TCR displayed potent antitumor activity against HLA-A11+ ccRCC cells expressing CT-RCC HERV-E compared with unmodified T cells. Killing by HERV-E T cells was lost when cocultured against HERV-E knockout ccRCC cells. HERV-E T cells induced regression of established ccRCC tumors in a murine model and improved survival of tumor-bearing mice. Large-scale production of HERV-E T cells under good manufacturing practice conditions generated from healthy donors retained specific antigen recognition and cytotoxicity against ccRCC. CONCLUSIONS This is the first report showing that human ccRCC cells can be selectively recognized and killed by TCR-engineered T cells targeting a HERV-derived antigen. These preclinical findings provided the foundation for evaluating HERV-E TCR-transduced T cell infusions in patients with metastatic ccRCC in a clinical trial (NCT03354390).
Collapse
Affiliation(s)
- Stefan Barisic
- Laboratory of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Elena Cherkasova
- Laboratory of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Timothy T Spear
- Department of Surgery, Loyola University Chicago, Chicago, Illinois, USA
| | - Ujjawal Savani
- Laboratory of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephanie Pierre
- Laboratory of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gina M Scurti
- Department of Surgery, Loyola University Chicago, Chicago, Illinois, USA
| | - Long Chen
- Laboratory of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Muna Igboko
- Laboratory of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Rosa Nadal
- Laboratory of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gang Zeng
- T-Cure BioScience, Sherman Oaks, California, USA
| | - Gordon Parry
- T-Cure BioScience, Sherman Oaks, California, USA
| | - David F Stroncek
- Center for Cellular Engineering, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Steven Highfill
- Center for Cellular Engineering, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Annika V Dalheim
- Department of Surgery, Loyola University Chicago, Chicago, Illinois, USA
| | - Robert Reger
- Laboratory of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Richard W Childs
- Laboratory of Transplantation Immunotherapy, Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Frost B, Dubnau J. The Role of Retrotransposons and Endogenous Retroviruses in Age-Dependent Neurodegenerative Disorders. Annu Rev Neurosci 2024; 47:123-143. [PMID: 38663088 DOI: 10.1146/annurev-neuro-082823-020615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Over 40% of the human genome is composed of retrotransposons, DNA species that hold the potential to replicate via an RNA intermediate and are evolutionarily related to retroviruses. Retrotransposons are most studied for their ability to jump within a genome, which can cause DNA damage and novel insertional mutations. Retrotransposon-encoded products, including viral-like proteins, double-stranded RNAs, and extrachromosomal circular DNAs, can also be potent activators of the innate immune system. A growing body of evidence suggests that retrotransposons are activated in age-related neurodegenerative disorders and that such activation causally contributes to neurotoxicity. Here we provide an overview of retrotransposon biology and outline evidence of retrotransposon activation in age-related neurodegenerative disorders, with an emphasis on those involving TAR-DNA binding protein-43 (TDP-43) and tau. Studies to date provide the basis for ongoing clinical trials and hold promise for innovative strategies to ameliorate the adverse effects of retrotransposon dysregulation in neurodegenerative disorders.
Collapse
Affiliation(s)
- Bess Frost
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, and Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas, USA;
| | - Josh Dubnau
- Department of Anesthesiology and Department of Neurobiology and Behavior, Stony Brook School of Medicine, Stony Brook, New York, USA;
| |
Collapse
|
6
|
Zhao XR, Zong JB, Liu YX, Aili T, Qiu M, Wu JH, Hu B. Endogenous Retroviruses Unveiled: A Comprehensive Review of Inflammatory Signaling/Senescence-Related Pathways and Therapeutic Strategies. Aging Dis 2024; 16:738-756. [PMID: 38916727 PMCID: PMC11964435 DOI: 10.14336/ad.2024.0123-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/14/2024] [Indexed: 06/26/2024] Open
Abstract
Endogenous retroviruses (ERVs), a subset of genomic transposable elements (TEs) in a broader sense, have remained latent within mammalian genomes for tens of millions of years. These genetic elements are typically in a silenced state due to stringent regulatory mechanisms. However, under specific conditions, they can become activated, triggering inflammatory responses through diverse mechanisms. This activation has been shown to play a potential role in various neurological disorders, tumors, and cellular senescence. Consequently, the regulation of ERV expression through various methods holds promise for clinical applications in disease treatment. ERVs also engage in interactions with a variety of exogenous viruses, thereby influencing the outcomes of viral infectious diseases. This article comprehensively reviews the pathogenic cascade of ERVs, encompassing activation, inflammation, associated diseases, senescence, and interplay with viruses. Additionally, it outlines therapeutic strategies targeting ERVs with the aim of offering novel research directions for understanding the relationship between ERVs and diseases, along with corresponding treatment modalities.
Collapse
Affiliation(s)
| | | | | | | | | | - Jie-hong Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
7
|
Fan J, Qin Z. Roles of Human Endogenous Retrovirus-K-Encoded Np9 in Human Diseases: A Small Protein with Big Functions. Viruses 2024; 16:581. [PMID: 38675923 PMCID: PMC11054019 DOI: 10.3390/v16040581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Human Endogenous Retrovirus Sequences (HERVs) constitute up to 8% of the human genome, yet not all HERVs remain silent passengers within our genomes. Some HERVs, especially HERV type K (HERV-K), have been found to be frequently transactivated in a variety of inflammatory diseases and human cancers. Np9, a small protein translated from the HERV-K env reading frame, has been reported as an oncogenic protein and is present in a variety of tumors and transformed cells. The Np9 protein can crosstalk with many cellular factors and is involved in the pathogenicity of various diseases, including some oncogenic virus infections. In the current review, we summarize recent findings about Np9 clinical relevance/implications, its mediated cellular functions/mechanisms, and potential targeted therapies in development.
Collapse
Affiliation(s)
| | - Zhiqiang Qin
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W Markham St., Little Rock, AR 72205, USA;
| |
Collapse
|
8
|
Li C, Qian Q, Yan C, Lu M, Li L, Li P, Fan Z, Lei W, Shang K, Wang P, Wang J, Lu T, Huang Y, Yang H, Wei H, Han J, Xiao J, Chen F. HervD Atlas: a curated knowledgebase of associations between human endogenous retroviruses and diseases. Nucleic Acids Res 2024; 52:D1315-D1326. [PMID: 37870452 PMCID: PMC10767980 DOI: 10.1093/nar/gkad904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023] Open
Abstract
Human endogenous retroviruses (HERVs), as remnants of ancient exogenous retrovirus infected and integrated into germ cells, comprise ∼8% of the human genome. These HERVs have been implicated in numerous diseases, and extensive research has been conducted to uncover their specific roles. Despite these efforts, a comprehensive source of HERV-disease association still needs to be added. To address this gap, we introduce the HervD Atlas (https://ngdc.cncb.ac.cn/hervd/), an integrated knowledgebase of HERV-disease associations manually curated from all related published literature. In the current version, HervD Atlas collects 60 726 HERV-disease associations from 254 publications (out of 4692 screened literature), covering 21 790 HERVs (21 049 HERV-Terms and 741 HERV-Elements) belonging to six types, 149 diseases and 610 related/affected genes. Notably, an interactive knowledge graph that systematically integrates all the HERV-disease associations and corresponding affected genes into a comprehensive network provides a powerful tool to uncover and deduce the complex interplay between HERVs and diseases. The HervD Atlas also features a user-friendly web interface that allows efficient browsing, searching, and downloading of all association information, research metadata, and annotation information. Overall, the HervD Atlas is an essential resource for comprehensive, up-to-date knowledge on HERV-disease research, potentially facilitating the development of novel HERV-associated diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Cuidan Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Qiheng Qian
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenghao Yan
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingming Lu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Lin Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Pan Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuojing Fan
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Wenyan Lei
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Shang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peihan Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianyi Lu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuting Huang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hongwei Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Haobin Wei
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingwan Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Jingfa Xiao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Chen
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing100101, China
| |
Collapse
|
9
|
DeMarino C, Nath A, Zhuang Z, Doucet-O’Hare TT. Does the interplay between human endogenous retrovirus K and extracellular vesicles contribute to aging? EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:548-56. [PMID: 38606283 PMCID: PMC11007738 DOI: 10.20517/evcna.2023.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The role of extracellular vesicles (EVs), including retroviral-like particles (RVLPs), in pathogenic processes is currently a subject of active investigation. Several studies have identified mechanistic links between the increased presence of EVs and the process of senescence. A recent study reveals that the reverse transcribed complementary DNA (cDNA) of a human endogenous retroviral sequence can activate the innate immune system and result in tissue damage and/or the spread of cellular senescence to distant tissues. Several studies have linked EVs to age-related diseases, such as Alzheimer's disease and Parkinson's disease, and have included isolation of EVs from individuals with these diseases. Loss of epigenetic regulation, immune activation, and environmental stimuli can all lead to the expression of endogenous retroviruses and the incorporation of their proteins and transcripts into EVs. In addition, EVs disseminating these endogenous retroviral components have now been shown to act in a paracrine manner in multiple human diseases. Further investigation of the connection between EVs containing endogenous retroviral protein products or nucleotides should be pursued in models of age-related diseases.
Collapse
Affiliation(s)
- Catherine DeMarino
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Zhengping Zhuang
- Neuro-Oncology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | | |
Collapse
|
10
|
Shin W, Mun S, Han K. Human Endogenous Retrovirus-K (HML-2)-Related Genetic Variation: Human Genome Diversity and Disease. Genes (Basel) 2023; 14:2150. [PMID: 38136972 PMCID: PMC10742618 DOI: 10.3390/genes14122150] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 12/24/2023] Open
Abstract
Human endogenous retroviruses (HERVs) comprise a significant portion of the human genome, making up roughly 8%, a notable comparison to the 2-3% represented by coding sequences. Numerous studies have underscored the critical role and importance of HERVs, highlighting their diverse and extensive influence on the evolution of the human genome and establishing their complex correlation with various diseases. Among HERVs, the HERV-K (HML-2) subfamily has recently attracted significant attention, integrating into the human genome after the divergence between humans and chimpanzees. Its insertion in the human genome has received considerable attention due to its structural and functional characteristics and the time of insertion. Originating from ancient exogenous retroviruses, these elements succeeded in infecting germ cells, enabling vertical transmission and existing as proviruses within the genome. Remarkably, these sequences have retained the capacity to form complete viral sequences, exhibiting activity in transcription and translation. The HERV-K (HML-2) subfamily is the subject of active debate about its potential positive or negative effects on human genome evolution and various pathologies. This review summarizes the variation, regulation, and diseases in human genome evolution arising from the influence of HERV-K (HML-2).
Collapse
Affiliation(s)
- Wonseok Shin
- NGS Clinical Laboratory, Division of Cancer Research, Dankook University Hospital, Cheonan 31116, Republic of Korea;
- Smart Animal Bio Institute, Dankook University, Cheonan 31116, Republic of Korea;
| | - Seyoung Mun
- Smart Animal Bio Institute, Dankook University, Cheonan 31116, Republic of Korea;
- College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan 31116, Republic of Korea
| | - Kyudong Han
- Smart Animal Bio Institute, Dankook University, Cheonan 31116, Republic of Korea;
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan 31116, Republic of Korea
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea
- Department of Bioconvergence Engineering, Dankook University, Yongin 16890, Republic of Korea
- R&D Center, HuNBiome Co., Ltd., Seoul 08507, Republic of Korea
| |
Collapse
|
11
|
Lyons DE, Kumar P, Roan NR, Defechereux PA, Feschotte C, Lange UC, Murthy N, Sameshima P, Verdin E, Ake JA, Parsons MS, Nath A, Gianella S, Smith DM, Kallas EG, Villa TJ, Strange R, Mwesigwa B, Furler O’Brien RL, Nixon DF, Ndhlovu LC, Valente ST, Ott M. HIV-1 Remission: Accelerating the Path to Permanent HIV-1 Silencing. Viruses 2023; 15:2171. [PMID: 38005849 PMCID: PMC10674359 DOI: 10.3390/v15112171] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Despite remarkable progress, a cure for HIV-1 infection remains elusive. Rebound competent latent and transcriptionally active reservoir cells persevere despite antiretroviral therapy and rekindle infection due to inefficient proviral silencing. We propose a novel "block-lock-stop" approach, entailing long term durable silencing of viral expression towards an irreversible transcriptionally inactive latent provirus to achieve long term antiretroviral free control of the virus. A graded transformation of remnant HIV-1 in PLWH from persistent into silent to permanently defective proviruses is proposed, emulating and accelerating the natural path that human endogenous retroviruses (HERVs) take over millions of years. This hypothesis was based on research into delineating the mechanisms of HIV-1 latency, lessons from latency reversing agents and advances of Tat inhibitors, as well as expertise in the biology of HERVs. Insights from elite controllers and the availability of advanced genome engineering technologies for the direct excision of remnant virus set the stage for a rapid path to an HIV-1 cure.
Collapse
Affiliation(s)
- Danielle E. Lyons
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06510, USA;
| | - Nadia R. Roan
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Urology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Patricia A. Defechereux
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA
| | - Cedric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | - Niren Murthy
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA;
- Innovative Genomics Institute, Berkeley, CA 94720, USA
| | - Pauline Sameshima
- Faculty of Education, Lakehead University, Thunder Bay, ON P7B 5E1, Canada;
| | - Eric Verdin
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Julie A. Ake
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA (M.S.P.)
| | - Matthew S. Parsons
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA (M.S.P.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
- Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD 20824, USA;
| | - Sara Gianella
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Davey M. Smith
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Esper G. Kallas
- Department of Infectious and Parasitic Diseases, University of Sao Paulo, São Paulo 04023-900, Brazil
| | - Thomas J. Villa
- HOPE Martin Delaney Collaboratory for HIV Cure Research Community Engagement Ambassador, Washinton, DC 20004, USA (R.S.)
- National HIV & Aging Advocacy Network, Washington, DC 20004, USA
| | - Richard Strange
- HOPE Martin Delaney Collaboratory for HIV Cure Research Community Engagement Ambassador, Washinton, DC 20004, USA (R.S.)
| | - Betty Mwesigwa
- Research Department, Makerere University Walter Reed Project, Kampala P.O Box 7062, Uganda
| | - Robert L. Furler O’Brien
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Douglas F. Nixon
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lishomwa C. Ndhlovu
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Susana T. Valente
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL 33458, USA
| | - Melanie Ott
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
12
|
Costa B, Vale N. Exploring HERV-K (HML-2) Influence in Cancer and Prospects for Therapeutic Interventions. Int J Mol Sci 2023; 24:14631. [PMID: 37834078 PMCID: PMC10572383 DOI: 10.3390/ijms241914631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
This review investigates the intricate role of human endogenous retroviruses (HERVs) in cancer development and progression, explicitly focusing on HERV-K (HML-2). This paper sheds light on the latest research advancements and potential treatment strategies by examining the historical context of HERVs and their involvement in critical biological processes such as embryonic development, immune response, and disease progression. This review covers computational modeling for drug-target binding assessment, systems biology modeling for simulating HERV-K viral cargo dynamics, and using antiviral drugs to combat HERV-induced diseases. The findings presented in this review contribute to our understanding of HERV-mediated disease mechanisms and provide insights into future therapeutic approaches. They emphasize why HERV-K holds significant promise as a biomarker and a target.
Collapse
Affiliation(s)
- Bárbara Costa
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal
| |
Collapse
|
13
|
Kyriakou E, Magiorkinis G. Interplay between endogenous and exogenous human retroviruses. Trends Microbiol 2023; 31:933-946. [PMID: 37019721 DOI: 10.1016/j.tim.2023.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 04/07/2023]
Abstract
In humans, retroviruses thrive more as symbionts than as parasites. Apart from the only two modern exogenous human retroviruses (human T-cell lymphotropic and immunodeficiency viruses; HTLV and HIV, respectively), ~8% of the human genome is occupied by ancient retroviral DNA [human endogenous retroviruses (HERVs)]. Here, we review the recent discoveries about the interactions between the two groups, the impact of infection by exogenous retroviruses on the expression of HERVs, the effect of HERVs on the pathogenicity of HIV and HTLV and on the severity of the diseases caused by them, and the antiviral protection that HERVs can allegedly provide to the host. Tracing the crosstalk between contemporary retroviruses and their endogenized ancestors will provide better understanding of the retroviral world.
Collapse
Affiliation(s)
- Eleni Kyriakou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Gkikas Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
14
|
Abstract
Our defenses against infection rely on the ability of the immune system to distinguish invading pathogens from self. This task is exceptionally challenging, if not seemingly impossible, in the case of retroviruses that have integrated almost seamlessly into the host. This review examines the limits of innate and adaptive immune responses elicited by endogenous retroviruses and other retroelements, the targets of immune recognition, and the consequences for host health and disease. Contrary to theoretical expectation, endogenous retroelements retain substantial immunogenicity, which manifests most profoundly when their epigenetic repression is compromised, contributing to autoinflammatory and autoimmune disease and age-related inflammation. Nevertheless, recent evidence suggests that regulated immune reactivity to endogenous retroelements is integral to immune system development and function, underpinning cancer immunosurveillance, resistance to infection, and responses to the microbiota. Elucidation of the interaction points with endogenous retroelements will therefore deepen our understanding of immune system function and contribution to disease.
Collapse
Affiliation(s)
- George Kassiotis
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, United Kingdom;
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
15
|
Liu X, Liu Z, Wu Z, Ren J, Fan Y, Sun L, Cao G, Niu Y, Zhang B, Ji Q, Jiang X, Wang C, Wang Q, Ji Z, Li L, Esteban CR, Yan K, Li W, Cai Y, Wang S, Zheng A, Zhang YE, Tan S, Cai Y, Song M, Lu F, Tang F, Ji W, Zhou Q, Belmonte JCI, Zhang W, Qu J, Liu GH. Resurrection of endogenous retroviruses during aging reinforces senescence. Cell 2023; 186:287-304.e26. [PMID: 36610399 DOI: 10.1016/j.cell.2022.12.017] [Citation(s) in RCA: 169] [Impact Index Per Article: 84.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 10/13/2022] [Accepted: 12/08/2022] [Indexed: 01/09/2023]
Abstract
Whether and how certain transposable elements with viral origins, such as endogenous retroviruses (ERVs) dormant in our genomes, can become awakened and contribute to the aging process is largely unknown. In human senescent cells, we found that HERVK (HML-2), the most recently integrated human ERVs, are unlocked to transcribe viral genes and produce retrovirus-like particles (RVLPs). These HERVK RVLPs constitute a transmissible message to elicit senescence phenotypes in young cells, which can be blocked by neutralizing antibodies. The activation of ERVs was also observed in organs of aged primates and mice as well as in human tissues and serum from the elderly. Their repression alleviates cellular senescence and tissue degeneration and, to some extent, organismal aging. These findings indicate that the resurrection of ERVs is a hallmark and driving force of cellular senescence and tissue aging.
Collapse
Affiliation(s)
- Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanling Fan
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Sun
- NHC Beijing Institute of Geriatrics, NHC Key Laboratory of Geriatrics, Institute of Geriatric Medicine of Chinese Academy of Medical Sciences, National Center of Gerontology/Beijing Hospital, Beijing 100730, China
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuyu Niu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China; Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Baohu Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianzhao Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cui Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhejun Ji
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanzhu Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Kaowen Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing 100053, China; The Fifth People's Hospital of Chongqing, Chongqing 400062, China
| | - Aihua Zheng
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong E Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shengjun Tan
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingao Cai
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Falong Lu
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Fuchou Tang
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Rubanov A, Berico P, Hernando E. Epigenetic Mechanisms Underlying Melanoma Resistance to Immune and Targeted Therapies. Cancers (Basel) 2022; 14:cancers14235858. [PMID: 36497341 PMCID: PMC9738385 DOI: 10.3390/cancers14235858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
Abstract
Melanoma is an aggressive skin cancer reliant on early detection for high likelihood of successful treatment. Solar UV exposure transforms melanocytes into highly mutated tumor cells that metastasize to the liver, lungs, and brain. Even upon resection of the primary tumor, almost thirty percent of patients succumb to melanoma within twenty years. Identification of key melanoma genetic drivers led to the development of pharmacological BRAFV600E and MEK inhibitors, significantly improving metastatic patient outcomes over traditional cytotoxic chemotherapy or pioneering IFN-α and IL-2 immune therapies. Checkpoint blockade inhibitors releasing the immunosuppressive effects of CTLA-4 or PD-1 proved to be even more effective and are the standard first-line treatment. Despite these major improvements, durable responses to immunotherapy and targeted therapy have been hindered by intrinsic or acquired resistance. In addition to gained or selected genetic alterations, cellular plasticity conferred by epigenetic reprogramming is emerging as a driver of therapy resistance. Epigenetic regulation of chromatin accessibility drives gene expression and establishes distinct transcriptional cell states. Here we review how aberrant chromatin, transcriptional, and epigenetic regulation contribute to therapy resistance and discuss how targeting these programs sensitizes melanoma cells to immune and targeted therapies.
Collapse
Affiliation(s)
- Andrey Rubanov
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Pietro Berico
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Eva Hernando
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
- Correspondence:
| |
Collapse
|
17
|
Boldyreva LV, Andreyeva EN, Pindyurin AV. Position Effect Variegation: Role of the Local Chromatin Context in Gene Expression Regulation. Mol Biol 2022. [DOI: 10.1134/s0026893322030049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Müller MD, Holst PJ, Nielsen KN. A Systematic Review of Expression and Immunogenicity of Human Endogenous Retroviral Proteins in Cancer and Discussion of Therapeutic Approaches. Int J Mol Sci 2022; 23:1330. [PMID: 35163254 PMCID: PMC8836156 DOI: 10.3390/ijms23031330] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are remnants of ancient retroviral infections that have become fixed in the human genome. While HERV genes are typically silenced in healthy somatic cells, there are numerous reports of HERV transcription and translation across a wide spectrum of cancers, while T and B cell responses against HERV proteins have been detected in cancer patients. This review systematically categorizes the published evidence on the expression of and adaptive immune response against specific HERVs in distinct cancer types. A systematic literature search was performed using Medical Search Headings (MeSH) in the PubMed/Medline database. Papers were included if they described the translational activity of HERVs. We present multiple tables that pair the protein expression of specific HERVs and cancer types with information on the quality of the evidence. We find that HERV-K is the most investigated HERV. HERV-W (syncytin-1) is the second-most investigated, while other HERVs have received less attention. From a therapeutic perspective, HERV-K and HERV-E are the only HERVs with experimental demonstration of effective targeted therapies, but unspecific approaches using antiviral and demethylating agents in combination with chemo- and immunotherapies have also been investigated.
Collapse
Affiliation(s)
- Mikkel Dons Müller
- Institute of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark;
| | | | | |
Collapse
|
19
|
Peze-Heidsieck E, Bonnifet T, Znaidi R, Ravel-Godreuil C, Massiani-Beaudoin O, Joshi RL, Fuchs J. Retrotransposons as a Source of DNA Damage in Neurodegeneration. Front Aging Neurosci 2022; 13:786897. [PMID: 35058771 PMCID: PMC8764243 DOI: 10.3389/fnagi.2021.786897] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/30/2021] [Indexed: 01/09/2023] Open
Abstract
The etiology of aging-associated neurodegenerative diseases (NDs), such as Parkinson's disease (PD) and Alzheimer's disease (AD), still remains elusive and no curative treatment is available. Age is the major risk factor for PD and AD, but the molecular link between aging and neurodegeneration is not fully understood. Aging is defined by several hallmarks, some of which partially overlap with pathways implicated in NDs. Recent evidence suggests that aging-associated epigenetic alterations can lead to the derepression of the LINE-1 (Long Interspersed Element-1) family of transposable elements (TEs) and that this derepression might have important implications in the pathogenesis of NDs. Almost half of the human DNA is composed of repetitive sequences derived from TEs and TE mobility participated in shaping the mammalian genomes during evolution. Although most TEs are mutated and no longer mobile, more than 100 LINE-1 elements have retained their full coding potential in humans and are thus retrotransposition competent. Uncontrolled activation of TEs has now been reported in various models of neurodegeneration and in diseased human brain tissues. We will discuss in this review the potential contribution of LINE-1 elements in inducing DNA damage and genomic instability, which are emerging pathological features in NDs. TEs might represent an important molecular link between aging and neurodegeneration, and a potential target for urgently needed novel therapeutic disease-modifying interventions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Julia Fuchs
- Center for Interdisciplinary Research in Biology (CIRB), CNRS, INSERM, Collège de France, Université PSL, Paris, France
| |
Collapse
|
20
|
Liang G, Cobián-Güemes AG, Albenberg L, Bushman F. The gut virome in inflammatory bowel diseases. Curr Opin Virol 2021; 51:190-198. [PMID: 34763180 DOI: 10.1016/j.coviro.2021.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 02/06/2023]
Abstract
Dysbiosis of the microbiome has been extensively studied in inflammatory bowel diseases (IBD). The roles of bacteria and fungi have been studied in detail, but viral communities, an important component of the microbiome, have been less thoroughly investigated. Metagenomics provided a way to fill this gap by using DNA sequencing to enumerate all viruses in a sample, termed the 'virome'. Such methods have now been employed in several studies to assess associations between viral communities and IBD, yielding several commonly seen properties, including an increase in tailed bacteriophage (Caudovirales) and a decrease in the spherical Microviridae. Numerous studies of single human viruses have been carried out, but no one virus has emerged as tightly associated, focusing attention on whole virome communities and further factors. This review provides an overview of research on the human virome in IBD, with emphasis on (1) dynamics of the gut virome, (2) candidate mechanisms of virome alterations with disease, (3) methods for studying the virome, and (4) potentially actionable implications of virome data.
Collapse
Affiliation(s)
- Guanxiang Liang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6076, USA.
| | - Ana Georgina Cobián-Güemes
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6076, USA
| | - Lindsey Albenberg
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, 19104-4399, USA
| | - Frederic Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6076, USA.
| |
Collapse
|
21
|
Bello-Morales R, Andreu S, Ripa I, López-Guerrero JA. HSV-1 and Endogenous Retroviruses as Risk Factors in Demyelination. Int J Mol Sci 2021; 22:ijms22115738. [PMID: 34072259 PMCID: PMC8199333 DOI: 10.3390/ijms22115738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/19/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a neurotropic alphaherpesvirus that can infect the peripheral and central nervous systems, and it has been implicated in demyelinating and neurodegenerative processes. Transposable elements (TEs) are DNA sequences that can move from one genomic location to another. TEs have been linked to several diseases affecting the central nervous system (CNS), including multiple sclerosis (MS), a demyelinating disease of unknown etiology influenced by genetic and environmental factors. Exogenous viral transactivators may activate certain retrotransposons or class I TEs. In this context, several herpesviruses have been linked to MS, and one of them, HSV-1, might act as a risk factor by mediating processes such as molecular mimicry, remyelination, and activity of endogenous retroviruses (ERVs). Several herpesviruses have been involved in the regulation of human ERVs (HERVs), and HSV-1 in particular can modulate HERVs in cells involved in MS pathogenesis. This review exposes current knowledge about the relationship between HSV-1 and human ERVs, focusing on their contribution as a risk factor for MS.
Collapse
Affiliation(s)
- Raquel Bello-Morales
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (S.A.); (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
- Correspondence:
| | - Sabina Andreu
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (S.A.); (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| | - Inés Ripa
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (S.A.); (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| | - José Antonio López-Guerrero
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (S.A.); (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
22
|
O'Carroll IP, Fan L, Kroupa T, McShane EK, Theodore C, Yates EA, Kondrup B, Ding J, Martin TS, Rein A, Wang YX. Structural Mimicry Drives HIV-1 Rev-Mediated HERV-K Expression. J Mol Biol 2020; 432:166711. [PMID: 33197463 DOI: 10.1016/j.jmb.2020.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 10/23/2022]
Abstract
Expression of the Human Endogenous Retrovirus Type K (HERV-K), the youngest and most active HERV, has been associated with various cancers and neurodegenerative diseases. As in all retroviruses, a fraction of HERV-K transcripts is exported from the nucleus in unspliced or incompletely spliced forms to serve as templates for translation of viral proteins. In a fraction of HERV-K loci (Type 2 proviruses), nuclear export of the unspliced HERV-K mRNA appears to be mediated by a cis-acting signal on the mRNA, the RcRE, and the protein Rec-these are analogous to the RRE-Rev system in HIV-1. Interestingly, the HIV-1 Rev protein is able to mediate the nuclear export of the HERV-K RcRE, contributing to elevated HERV-K expression in HIV-infected patients. We aimed to understand the structural basis for HIV Rev-HERV-K RcRE recognition. We examined the conformation of the RcRE RNA in solution using small-angle X-ray scattering (SAXS) and atomic force microscopy (AFM). We found that the 433-nt long RcRE can assume folded or extended conformations as observed by AFM. SAXS analysis of a truncated RcRE variant revealed an "A"-shaped topological structure similar to the one previously reported for the HIV-1 RRE. The effect of the overall topology was examined using several deletion variants. SAXS and biochemical analyses demonstrated that the "A" shape is necessary for efficient Rev-RcRE complex formation in vitro and nuclear export activity in cell culture. The findings provide insight into the mechanism of HERV-K expression and a structural explanation for HIV-1 Rev-mediated expression of HERV-K in HIV-infected patients. IMPORTANCE: Expression of the human endogenous retrovirus type K (HERV-K) has been associated with various cancers and autoimmune diseases. Nuclear export of both HIV-1 and HERV-K mRNAs is dependent on the interaction between a small viral protein (Rev in HIV-1 and Rec in HERV-K) and a region on the mRNA (RRE in HIV-1 and RcRE in HERV-K). HIV-1 Rev is able to mediate the nuclear export of RcRE-containing HERV-K mRNAs, which contributes to elevated production of HERV-K proteins in HIV-infected patients. We report the solution conformation of the RcRE RNA-the first three-dimensional topological structure for a HERV molecule-and find that the RcRE resembles the HIV-1 nuclear export signal, RRE. The finding reveals the structural basis for the increased HERV-K expression observed in HIV-infected patients. Elevated HERV expression, mediated by HIV infection or other stressors, can have various HERV-related biological consequences. The findings provide structural insight for regulation of HERV-K expression.
Collapse
Affiliation(s)
- Ina P O'Carroll
- Department of Chemistry, United States Naval Academy, Annapolis, MD 21402, USA.
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, SAXS Core Facility of the National Cancer Institute, Frederick, MD 21702, USA
| | - Tomáš Kroupa
- HIV Dynamics and Replication Program, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Erin K McShane
- Department of Chemistry, United States Naval Academy, Annapolis, MD 21402, USA
| | - Christophe Theodore
- Department of Chemistry, United States Naval Academy, Annapolis, MD 21402, USA
| | - Elizabeth A Yates
- Department of Chemistry, United States Naval Academy, Annapolis, MD 21402, USA
| | - Benjamin Kondrup
- Department of Chemistry, United States Naval Academy, Annapolis, MD 21402, USA
| | - Jienyu Ding
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Tyler S Martin
- Department of Chemistry, United States Naval Academy, Annapolis, MD 21402, USA
| | - Alan Rein
- HIV Dynamics and Replication Program, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|
23
|
Human Endogenous Retrovirus K Rec forms a Regulatory Loop with MITF that Opposes the Progression of Melanoma to an Invasive Stage. Viruses 2020; 12:v12111303. [PMID: 33202765 PMCID: PMC7696977 DOI: 10.3390/v12111303] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/19/2022] Open
Abstract
The HML2 subfamily of HERV-K (henceforth HERV-K) represents the most recently endogenized retrovirus in the human genome. While the products of certain HERV-K genomic copies are expressed in normal tissues, they are upregulated in several pathological conditions, including various tumors. It remains unclear whether HERV-K(HML2)-encoded products overexpressed in cancer contribute to disease progression or are merely by-products of tumorigenesis. Here, we focus on the regulatory activities of the Long Terminal Repeats (LTR5_Hs) of HERV-K and the potential role of the HERV-K-encoded Rec in melanoma. Our regulatory genomics analysis of LTR5_Hs loci indicates that Melanocyte Inducing Transcription Factor (MITF) (also known as binds to a canonical E-box motif (CA(C/T)GTG) within these elements in proliferative type of melanoma, and that depletion of MITF results in reduced HERV-K expression. In turn, experimentally depleting Rec in a proliferative melanoma cell line leads to lower mRNA levels of MITF and its predicted target genes. Furthermore, Rec knockdown leads to an upregulation of epithelial-to-mesenchymal associated genes and an enhanced invasion phenotype of proliferative melanoma cells. Together these results suggest the existence of a regulatory loop between MITF and Rec that may modulate the transition from proliferative to invasive stages of melanoma. Because HERV-K(HML2) elements are restricted to hominoid primates, these findings might explain certain species-specific features of melanoma progression and point to some limitations of animal models in melanoma studies.
Collapse
|
24
|
Xue B, Sechi LA, Kelvin DJ. Human Endogenous Retrovirus K (HML-2) in Health and Disease. Front Microbiol 2020; 11:1690. [PMID: 32765477 PMCID: PMC7380069 DOI: 10.3389/fmicb.2020.01690] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/29/2020] [Indexed: 02/05/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are derived from exogenous retrovirus infections in the evolution of primates and account for about 8% of the human genome. They were considered as silent passengers within our genomes for a long time, however, reactivation of HERVs has been associated with tumors and autoimmune diseases, especially the HERV-K (HML-2) family, the most recent integration groups with the least number of mutations and the most biologically active to encode functional retroviral proteins and produce retrovirus-like particles. Increasing studies are committed to determining the potential role of HERV-K (HML-2) in pathogenicity. Although there is still no evidence for HERV-K (HML-2) as a direct cause of diseases, aberrant expression profiles of the HERV-K (HML-2) transcripts and their regulatory function to their proximal host-genes were identified in different diseases. In this review, we summarized the advances between HERV-K (HML-2) and diseases to provide basis for further studies on the causal relationship between HERV-K (HML-2) and diseases. We recommended more attention to polymorphic integrated HERV-K (HML-2) loci which could be genetic causative factors and be associated with inter-individual differences in tumorigenesis and autoimmune diseases.
Collapse
Affiliation(s)
- Bei Xue
- Division of Immunology, Shantou University Medical College, Shantou, China
- Department of Microbiology and Immunology, Canadian Center for Vaccinology, Dalhousie University, Halifax, NS, Canada
| | - Leonardo A. Sechi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Mediterranean Center for Disease Control, University of Sassari, Sassari, Italy
| | - David J. Kelvin
- Division of Immunology, Shantou University Medical College, Shantou, China
- Department of Microbiology and Immunology, Canadian Center for Vaccinology, Dalhousie University, Halifax, NS, Canada
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
25
|
Vergara Bermejo A, Ragonnaud E, Daradoumis J, Holst P. Cancer Associated Endogenous Retroviruses: Ideal Immune Targets for Adenovirus-Based Immunotherapy. Int J Mol Sci 2020; 21:ijms21144843. [PMID: 32650622 PMCID: PMC7402293 DOI: 10.3390/ijms21144843] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer is a major challenge in our societies, according to the World Health Organization (WHO) about 1/6 deaths were cancer related in 2018 and it is considered the second leading cause of death globally. Immunotherapies have changed the paradigm of oncologic treatment for several cancers where the field had fallen short in providing competent therapies. Despite the improvement, broadly acting and highly effective therapies capable of eliminating or preventing human cancers with insufficient mutated antigens are still missing. Adenoviral vector-based vaccines are a successful tool in the treatment of various diseases including cancer; however, their success has been limited. In this review we discuss the potential of adenovirus as therapeutic tools and the current developments to use them against cancer. More specifically, we examine how to use them to target endogenous retroviruses (ERVs). ERVs, comprising 8% of the human genome, have been detected in several cancers, while they remain silent in healthy tissues. Their low immunogenicity together with their immunosuppressive capacity aid cancer to escape immunosurveillance. In that regard, virus-like-vaccine (VLV) technology, combining adenoviral vectors and virus-like-particles (VLPs), can be ideal to target ERVs and elicit B-cell responses, as well as CD8+ and CD4+ T-cells responses.
Collapse
Affiliation(s)
- Amaia Vergara Bermejo
- InProTher, Bioinnovation Institute, Copenhagen Bio Science Park, 2200 Copenhagen, Denmark; (E.R.); (J.D.)
- Correspondence: (A.V.B.); (P.H.)
| | - Emeline Ragonnaud
- InProTher, Bioinnovation Institute, Copenhagen Bio Science Park, 2200 Copenhagen, Denmark; (E.R.); (J.D.)
| | - Joana Daradoumis
- InProTher, Bioinnovation Institute, Copenhagen Bio Science Park, 2200 Copenhagen, Denmark; (E.R.); (J.D.)
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Peter Holst
- InProTher, Bioinnovation Institute, Copenhagen Bio Science Park, 2200 Copenhagen, Denmark; (E.R.); (J.D.)
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence: (A.V.B.); (P.H.)
| |
Collapse
|
26
|
Lin KY, Wang WD, Lin CH, Rastegari E, Su YH, Chang YT, Liao YF, Chang YC, Pi H, Yu BY, Chen SH, Lin CY, Lu MY, Su TY, Tzou FY, Chan CC, Hsu HJ. Piwi reduction in the aged niche eliminates germline stem cells via Toll-GSK3 signaling. Nat Commun 2020; 11:3147. [PMID: 32561720 PMCID: PMC7305233 DOI: 10.1038/s41467-020-16858-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/30/2020] [Indexed: 12/13/2022] Open
Abstract
Transposons are known to participate in tissue aging, but their effects on aged stem cells remain unclear. Here, we report that in the Drosophila ovarian germline stem cell (GSC) niche, aging-related reductions in expression of Piwi (a transposon silencer) derepress retrotransposons and cause GSC loss. Suppression of Piwi expression in the young niche mimics the aged niche, causing retrotransposon depression and coincident activation of Toll-mediated signaling, which promotes Glycogen synthase kinase 3 activity to degrade β-catenin. Disruption of β-catenin-E-cadherin-mediated GSC anchorage then results in GSC loss. Knocking down gypsy (a highly active retrotransposon) or toll, or inhibiting reverse transcription in the piwi-deficient niche, suppresses GSK3 activity and β-catenin degradation, restoring GSC-niche attachment. This retrotransposon-mediated impairment of aged stem cell maintenance may have relevance in many tissues, and could represent a viable therapeutic target for aging-related tissue degeneration.
Collapse
Affiliation(s)
- Kun-Yang Lin
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Wen-Der Wang
- Department of BioAgricultural Sciences, National Chiayi University, Chiayi City, 60004, Taiwan
| | - Chi-Hung Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Elham Rastegari
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Han Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Tzu Chang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yung-Feng Liao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Chieh Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Haiwei Pi
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Bo-Yi Yu
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Shu-Hwa Chen
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Mei-Yeh Lu
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Tsu-Yi Su
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Fei-Yang Tzou
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Chih-Chiang Chan
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Hwei-Jan Hsu
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, 11529, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan.
- Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
27
|
Merrick BA, Phadke DP, Bostrom MA, Shah RR, Wright GM, Wang X, Gordon O, Pelch KE, Auerbach SS, Paules RS, DeVito MJ, Waalkes MP, Tokar EJ. KRAS-retroviral fusion transcripts and gene amplification in arsenic-transformed, human prostate CAsE-PE cancer cells. Toxicol Appl Pharmacol 2020; 397:115017. [PMID: 32344290 PMCID: PMC7606314 DOI: 10.1016/j.taap.2020.115017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 01/03/2023]
Abstract
CAsE-PE cells are an arsenic-transformed, human prostate epithelial line containing oncogenic mutations in KRAS compared to immortalized, normal KRAS parent cells, RWPE-1. We previously reported increased copy number of mutated KRAS in CAsE-PE cells, suggesting gene amplification. Here, KRAS flanking genomic and transcriptomic regions were sequenced in CAsE-PE cells for insight into KRAS amplification. Comparison of DNA-Seq and RNA-Seq showed increased reads from background aligning to all KRAS exons in CAsE-PE cells, while a uniform DNA-Seq read distribution occurred in RWPE-1 cells with normal transcript expression. We searched for KRAS fusions in DNA and RNA sequencing data finding a portion of reads aligning to KRAS and viral sequence. After generation of cDNA from total RNA, short and long KRAS probes were generated to hybridize cDNA and KRAS enriched fragments were PacBio sequenced. More KRAS reads were captured from CAsE-PE cDNA versus RWPE-1 by each probe set. Only CAsE-PE cDNA showed KRAS viral fusion transcripts, primarily mapping to LTR and endogenous retrovirus sequences on either 5'- or 3'-ends of KRAS. Most KRAS viral fusion transcripts contained 4 to 6 exons but some PacBio sequences were in unusual orientations, suggesting viral insertions within the gene body. Additionally, conditioned media was extracted for potential retroviral particles. RNA-Seq of culture media isolates identified KRAS retroviral fusion transcripts in CAsE-PE media only. Truncated KRAS transcripts suggested multiple retroviral integration sites occurred within the KRAS gene producing KRAS retroviral fusions of various lengths. Findings suggest activation of endogenous retroviruses in arsenic carcinogenesis should be explored.
Collapse
Affiliation(s)
- B Alex Merrick
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States.
| | - Dhiral P Phadke
- Sciome, LLC, Research Triangle Park, North Carolina, United States
| | - Meredith A Bostrom
- David H. Murdock Research Institute, Kannapolis, North Carolina, United States
| | - Ruchir R Shah
- Sciome, LLC, Research Triangle Park, North Carolina, United States
| | - Garron M Wright
- David H. Murdock Research Institute, Kannapolis, North Carolina, United States
| | - Xinguo Wang
- David H. Murdock Research Institute, Kannapolis, North Carolina, United States
| | - Oksana Gordon
- David H. Murdock Research Institute, Kannapolis, North Carolina, United States
| | - Katherine E Pelch
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| | - Scott S Auerbach
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| | - Richard S Paules
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| | - Michael J DeVito
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| | - Michael P Waalkes
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| | - Erik J Tokar
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| |
Collapse
|
28
|
Gumna J, Purzycka KJ, Ahn HW, Garfinkel DJ, Pachulska-Wieczorek K. Retroviral-like determinants and functions required for dimerization of Ty1 retrotransposon RNA. RNA Biol 2019; 16:1749-1763. [PMID: 31469343 PMCID: PMC6844567 DOI: 10.1080/15476286.2019.1657370] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
During replication of long terminal repeat (LTR)-retrotransposons, their proteins and genome (g) RNA assemble into virus-like particles (VLPs) that are not infectious but functionally related to retroviral virions. Both virions and VLPs contain gRNA in a dimeric form, but contrary to retroviruses, little is known about how gRNA dimerization and packaging occurs in LTR-retrotransposons. The LTR-retrotransposon Ty1 from Saccharomyces cerevisiae is an informative model for studying LTR-retrotransposon and retrovirus replication. Using structural, mutational and functional analyses, we explored dimerization of Ty1 genomic RNA. We provide direct evidence that interactions of self-complementary PAL1 and PAL2 palindromic sequences localized within the 5′UTR are essential for Ty1 gRNA dimer formation. Mutations disrupting PAL1-PAL2 complementarity restricted RNA dimerization in vitro and Ty1 mobility in vivo. Although dimer formation and mobility of these mutants was inhibited, our work suggests that Ty1 RNA can dimerize via alternative contact points. In contrast to previous studies, we cannot confirm a role for PAL3, tRNAiMet as well as recently proposed initial kissing-loop interactions in dimer formation. Our data also supports the critical role of Ty1 Gag in RNA dimerization. Mature Ty1 Gag binds in the proximity of sequences involved in RNA dimerization and tRNAiMet annealing, but the 5′ pseudoknot in Ty1 RNA may constitute a preferred Gag-binding site. Taken together, these results expand our understanding of genome dimerization and packaging strategies utilized by LTR-retroelements.
Collapse
Affiliation(s)
- Julita Gumna
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Katarzyna J Purzycka
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Hyo Won Ahn
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - David J Garfinkel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Katarzyna Pachulska-Wieczorek
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
29
|
Chan SM, Sapir T, Park SS, Rual JF, Contreras-Galindo R, Reiner O, Markovitz DM. The HERV-K accessory protein Np9 controls viability and migration of teratocarcinoma cells. PLoS One 2019; 14:e0212970. [PMID: 30818388 PMCID: PMC6394991 DOI: 10.1371/journal.pone.0212970] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/12/2019] [Indexed: 11/19/2022] Open
Abstract
Human endogenous retroviruses are remnants of ancient germline infections that make up approximately 8% of the modern human genome. The HERV-K (HML-2) family is one of the most recent entrants into the human germline, these viruses appear to be transcriptionally active, and HERV-K viral like particles (VLPs) are found in cell lines from a number of human malignancies. HERV-K VLPs were first found to be produced in teratocarcinoma cell lines, and since then teratocarcinoma has been thought of as the classical model for HERV-Ks, with the NCCIT teratocarcinoma cell line particularly known to produce VLPs. Treatment for teratocarcinoma has progressed since its discovery, with improved prognosis for patients. Since the introduction of platinum based therapy, first year survival has greatly improved even with disseminated disease; however, it is estimated that 20% to 30% of patients present with metastatic germ cell tumor relapse following initial treatments. Also, the toxicity associated with the use of chemotherapeutic agents used to treat germ cell tumors is still a major concern. In this study, we show that the depletion of the HERV-K accessory protein Np9 increases the sensitivity of NCCIT teratocarcinoma cells to bleomycin and cisplatin. While decreasing the expression of Np9 had only a modest effect on the baseline viability of the cells, the reduced expression of Np9 increased the sensitivity of the teratocarcinoma cells to environmental (serum starvation) and chemical (chemotherapeutic) stresses. Np9 is also essential to the migration of NCCIT teratocarcinoma cells: in a wound closure assay, reduced expression of Np9 resulted in cells migrating into the wound at a slower rate, whereas reintroduction of Np9 resulted in NCCIT cells migrating back into the wound in a manner similar to the control. These findings support the implication that the HERV-K accessory protein Np9 has oncogenic potential.
Collapse
Affiliation(s)
- Susana M. Chan
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Tamar Sapir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sung-Soo Park
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jean-François Rual
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Rafael Contreras-Galindo
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - David M. Markovitz
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, United States of America
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
- Cancer Biology Program, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
30
|
Chen Y, Yan Q, Zhou P, Li S, Zhu F. HERV-W env regulates calcium influx via activating TRPC3 channel together with depressing DISC1 in human neuroblastoma cells. J Neurovirol 2019; 25:101-113. [PMID: 30397826 DOI: 10.1007/s13365-018-0692-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/06/2018] [Accepted: 10/24/2018] [Indexed: 12/11/2022]
Abstract
The activation and involvement of human endogenous retroviruses W family envelope gene (HERV-W env, also called ERVWE1) have been reported in several neuropsychiatric disorders, including schizophrenia, as well as in multiple sclerosis (MS). Dysregulation of intracellular calcium content is also involved in the pathogenesis of these diseases. Our previous studies showed that HERV-W env overexpression results in activation of small conductance Ca2+-activated K+ channel protein 3 (SK3), a potential risk factor for schizophrenia. In the present study, we aimed to elucidate the relationship between HERV-W env and calcium signaling in schizophrenia. Our results showed that HERV-W env could induce Ca2+ influx in two human neuroblastoma cell lines and upregulate the expression and activation of TRPC3 in cells. The abnormal increase in intracellular Ca2+ concentration was inhibited by addition of the TRPC3 channel blocker pyr3, demonstrating that the Ca2+ influx induced by HERV-W env was TRPC3-dependent. Further experiments showed that HERV-W env overexpression downregulated DISC1, while knockdown of DISC1 promoted activation of TRPC3 without affecting TRPC3 expression. In conclusion, HERV-W env induced Ca2+ influx in human neuroblastoma cells by activating the TRPC3 channel through directly regulating its expression or downregulating DISC1, which could also increase TRPC3 activation without affecting TRPC3 expression. These findings provide new insights into how HERV-W env affects neuronal activity and contributes to the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Yatang Chen
- Department of Medical Microbiology, School of Medicine, Wuhan University, 185 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Qiujin Yan
- Department of Medical Microbiology, School of Medicine, Wuhan University, 185 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Ping Zhou
- Department of Medical Microbiology, School of Medicine, Wuhan University, 185 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Shan Li
- Department of Integrated Medicine, Dongfeng Hospital, Hubei University of Medicine, Hubei, 442000, People's Republic of China
| | - Fan Zhu
- Department of Medical Microbiology, School of Medicine, Wuhan University, 185 Donghu Road, Wuhan, 430071, People's Republic of China.
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
31
|
Chen J, Foroozesh M, Qin Z. Transactivation of human endogenous retroviruses by tumor viruses and their functions in virus-associated malignancies. Oncogenesis 2019; 8:6. [PMID: 30643113 PMCID: PMC6331641 DOI: 10.1038/s41389-018-0114-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/24/2018] [Accepted: 11/26/2018] [Indexed: 02/07/2023] Open
Abstract
Human endogenous retroviruses (HERVs), viral-associated sequences, are normal components of the human genome and account for 8–9% of our genome. These original provirus sequences can be transactivated to produce functional products. Several reactivated HERVs have been implicated in cancers and autoimmune diseases. An emerging body of literature supports a potential role of reactivated HERVs in viral diseases, in particular viral-associated neoplasms. Demystifying studies on the mechanism(s) of HERV reactivation could provide a new framework for the development of treatment and prevention strategies targeting virus-associated tumors. Although available data suggest that co-infection by other viruses, such as Kaposi’s Sarcoma-associated herpesvirus (KSHV) and Epstein–Barr virus (EBV), may be a crucial driving force to transactivate HERV boom, the mechanisms of action of viral infection-induced HERV transactivation and the contributions of HERVs to viral oncogenesis warrant further studies. Here, we review viral co-infection contributes to HERVs transactivation with focus on human viral infection associated oncogenesis and diseases, including the abilities of viral regulators involved in HERV reactivation, and physiological effects of viral infection response on HERV reactivation.
Collapse
Affiliation(s)
- Jungang Chen
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR, 72205, USA
| | - Maryam Foroozesh
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA, 70125, USA
| | - Zhiqiang Qin
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR, 72205, USA. .,Department of Pediatrics, East Hospital, Tongji University School of Medicine, 200120, Shanghai, China. .,Research Center for Translational Medicine and Key Laboratory of Arrhythmias, East Hospital, Tongji University School of Medicine, 200120, Shanghai, China.
| |
Collapse
|
32
|
Garcia-Montojo M, Doucet-O'Hare T, Henderson L, Nath A. Human endogenous retrovirus-K (HML-2): a comprehensive review. Crit Rev Microbiol 2018; 44:715-738. [PMID: 30318978 DOI: 10.1080/1040841x.2018.1501345] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The human genome contains a large number of retroviral elements acquired over the process of evolution, some of which are specific to primates. However, as many of these are defective or silenced through epigenetic changes, they were historically considered "junk DNA" and their potential role in human physiology or pathological circumstances have been poorly studied. The most recently acquired, human endogenous retrovirus-K (HERV-K), has multiple copies in the human genome and some of them have complete open reading frames that are transcribed and translated, especially in early embryogenesis. Phylogenetically, HERV-K is considered a supergroup of viruses. One of the subtypes, termed HML-2, seems to be the most active and hence, it is the best studied. Aberrant expression of HML-2 in adult tissues has been associated with certain types of cancer and with neurodegenerative diseases. This review discusses the discovery of these viruses, their classification, structure, regulation and potential for replication, physiological roles, and their involvement in disease pathogenesis. Finally, it presents different therapeutic approaches being considered to target these viruses.
Collapse
Affiliation(s)
- Marta Garcia-Montojo
- a Section of Infections of the Nervous System , National Institute of Neurological Disorders and Stroke, National Institutes of Health , Bethesda , MD , USA
| | - Tara Doucet-O'Hare
- a Section of Infections of the Nervous System , National Institute of Neurological Disorders and Stroke, National Institutes of Health , Bethesda , MD , USA
| | - Lisa Henderson
- a Section of Infections of the Nervous System , National Institute of Neurological Disorders and Stroke, National Institutes of Health , Bethesda , MD , USA
| | - Avindra Nath
- a Section of Infections of the Nervous System , National Institute of Neurological Disorders and Stroke, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
33
|
Mayer J, Harz C, Sanchez L, Pereira GC, Maldener E, Heras SR, Ostrow LW, Ravits J, Batra R, Meese E, García-Pérez JL, Goodier JL. Transcriptional profiling of HERV-K(HML-2) in amyotrophic lateral sclerosis and potential implications for expression of HML-2 proteins. Mol Neurodegener 2018; 13:39. [PMID: 30068350 PMCID: PMC6091006 DOI: 10.1186/s13024-018-0275-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder. About 90% of ALS cases are without a known genetic cause. The human endogenous retrovirus multi-copy HERV-K(HML-2) group was recently reported to potentially contribute to neurodegeneration and disease pathogenesis in ALS because of transcriptional upregulation and toxic effects of HML-2 Envelope (Env) protein. Env and other proteins are encoded by some transcriptionally active HML-2 loci. However, more detailed information is required regarding which HML-2 loci are transcribed in ALS, which of their proteins are expressed, and differences between the disease and non-disease states. METHODS For brain and spinal cord tissue samples from ALS patients and controls, we identified transcribed HML-2 loci by generating and mapping HML-2-specific cDNA sequences. We predicted expression of HML-2 env gene-derived proteins based on the observed cDNA sequences. Furthermore, we determined overall HML-2 transcript levels by RT-qPCR and investigated presence of HML-2 Env protein in ALS and control tissue samples by Western blotting. RESULTS We identified 24 different transcribed HML-2 loci. Some of those loci are transcribed at relatively high levels. However, significant differences in HML-2 loci transcriptional activities were not seen when comparing ALS and controls. Likewise, overall HML-2 transcript levels, as determined by RT-qPCR, were not significantly different between ALS and controls. Indeed, we were unable to detect full-length HML-2 Env protein in ALS and control tissue samples despite reasonable sensitivity. Rather our analyses suggest that a number of HML-2 protein variants other than full-length Env may potentially be expressed in ALS patients. CONCLUSIONS Our results expand and refine recent publications on HERV-K(HML-2) and ALS. Some of our results are in conflict with recent findings and call for further specific analyses. Our profiling of HML-2 transcription in ALS opens up the possibility that HML-2 proteins other than canonical full-length Env may have to be considered when studying the role of HML-2 in ALS disease.
Collapse
Affiliation(s)
- Jens Mayer
- Department of Human Genetics, University of Saarland, Homburg, Germany
| | - Christian Harz
- Department of Human Genetics, University of Saarland, Homburg, Germany
| | - Laura Sanchez
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - Gavin C. Pereira
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Esther Maldener
- Department of Human Genetics, University of Saarland, Homburg, Germany
| | - Sara R. Heras
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, 18071 Granada, Spain
| | - Lyle W. Ostrow
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 28217 USA
| | - John Ravits
- Department of Neurosciences, School of Medicine, UCSD, San Diego, CA USA
| | - Ranjan Batra
- Department of Neurosciences, School of Medicine, UCSD, San Diego, CA USA
| | - Eckart Meese
- Department of Human Genetics, University of Saarland, Homburg, Germany
| | - Jose Luis García-Pérez
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - John L. Goodier
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
| |
Collapse
|
34
|
ALSUntangled 45: Antiretrovirals. Amyotroph Lateral Scler Frontotemporal Degener 2018; 19:630-634. [PMID: 29693424 DOI: 10.1080/21678421.2018.1465248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
35
|
Rosario K, Fierer N, Miller S, Luongo J, Breitbart M. Diversity of DNA and RNA Viruses in Indoor Air As Assessed via Metagenomic Sequencing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1014-1027. [PMID: 29298386 DOI: 10.1021/acs.est.7b04203] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Diverse bacterial and fungal communities inhabit human-occupied buildings and circulate in indoor air; however, viral diversity in these man-made environments remains largely unknown. Here we investigated DNA and RNA viruses circulating in the air of 12 university dormitory rooms by analyzing dust accumulated over a one-year period on heating, ventilation, and air conditioning (HVAC) filters. A metagenomic sequencing approach was used to determine the identity and diversity of viral particles extracted from the HVAC filters. We detected a broad diversity of viruses associated with a range of hosts, including animals, arthropods, bacteria, fungi, humans, plants, and protists, suggesting that disparate organisms can contribute to indoor airborne viral communities. Viral community composition and the distribution of human-infecting papillomaviruses and polyomaviruses were distinct in the different dormitory rooms, indicating that airborne viral communities are variable in human-occupied spaces and appear to reflect differential rates of viral shedding from room occupants. This work significantly expands the known airborne viral diversity found indoors, enabling the design of sensitive and quantitative assays to further investigate specific viruses of interest and providing new insight into the likely sources of viruses found in indoor air.
Collapse
Affiliation(s)
- Karyna Rosario
- College of Marine Science, University of South Florida , Saint Petersburg, Florida 33701, United States
| | - Noah Fierer
- Department of Ecology and Evolutionary Biology, University of Colorado , Boulder, Colorado 80309, United States
- Cooperative Institute for Research in Environmental Sciences, University of Colorado , Boulder, Colorado 80309, United States
| | - Shelly Miller
- Department of Mechanical Engineering, University of Colorado , Boulder, Colorado 80309, United States
| | - Julia Luongo
- Department of Mechanical Engineering, University of Colorado , Boulder, Colorado 80309, United States
| | - Mya Breitbart
- College of Marine Science, University of South Florida , Saint Petersburg, Florida 33701, United States
| |
Collapse
|
36
|
Susceptibility of Human Endogenous Retrovirus Type K to Reverse Transcriptase Inhibitors. J Virol 2017; 91:JVI.01309-17. [PMID: 28931682 DOI: 10.1128/jvi.01309-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/14/2017] [Indexed: 12/13/2022] Open
Abstract
Human endogenous retroviruses (HERVs) make up 8% of the human genome. The HERV type K (HERV-K) HML-2 (HK2) family contains proviruses that are the most recent entrants into the human germ line and are transcriptionally active. In HIV-1 infection and cancer, HK2 genes produce retroviral particles that appear to be infectious, yet the replication capacity of these viruses and potential pathogenicity has been difficult to ascertain. In this report, we screened the efficacy of commercially available reverse transcriptase inhibitors (RTIs) at inhibiting the enzymatic activity of HK2 RT and HK2 genomic replication. Interestingly, only one provirus, K103, was found to encode a functional RT among those examined. Several nucleoside analogue RTIs (NRTIs) blocked K103 RT activity and consistently inhibited the replication of HK2 genomes. The NRTIs zidovudine (AZT), stavudine (d4T), didanosine (ddI), and lamivudine (3TC), and the nucleotide RTI inhibitor tenofovir (TDF), show efficacy in blocking K103 RT. HIV-1-specific nonnucleoside RTIs (NNRTIs), protease inhibitors (PIs), and integrase inhibitors (IIs) did not affect HK2, except for the NNRTI etravirine (ETV). The inhibition of HK2 infectivity by NRTIs appears to take place at either the reverse transcription step of the viral genome prior to HK2 viral particle formation and/or in the infected cells. Inhibition of HK2 by these drugs will be useful in suppressing HK2 infectivity if these viruses prove to be pathogenic in cancer, neurological disorders, or other diseases associated with HK2. The present studies also elucidate a key aspect of the life cycle of HK2, specifically addressing how they do, and/or did, replicate.IMPORTANCE Endogenous retroviruses are relics of ancestral virus infections in the human genome. The most recent of these infections was caused by HK2. While HK2 often remains silent in the genome, this group of viruses is activated in HIV-1-infected and cancer cells. Recent evidence suggests that these viruses are infectious, and the potential exists for HK2 to contribute to disease. We show that HK2, and specifically the enzyme that mediates virus replication, can be inhibited by a panel of drugs that are commercially available. We show that several drugs block HK2 with different efficacies. The inhibition of HK2 replication by antiretroviral drugs appears to occur in the virus itself as well as after infection of cells. Therefore, these drugs might prove to be an effective treatment by suppressing HK2 infectivity in diseases where these viruses have been implicated, such as cancer and neurological syndromes.
Collapse
|
37
|
|
38
|
Abstract
In the last 20 years research in Immunology underwent fundamental changes. Most importantly, the identification of the key role of innate immune pattern recognition receptors (PRRs) that recognize evolutionarily conserved molecular patterns on infectious pathogens. This results in priming of innate immune cells, which in turn activate and direct the adaptive immune response. Progress in innate immune recognition instigated the current working hypothesis, that recognition of endogenous ligands by PRRs results in innate immune cell activation (autoinflammation) or activation of adaptive cells, with self-reactive antigen receptors (autoimmunity). In particular, nucleic acid-sensing innate immune receptors seem to be prime candidates for a mechanistic understanding of autoreactive activation of the immune system. However, it remains uncertain what the actual source of nucleic acid ligands is and what other signals are needed to drive activation of autoreactive innate immune cells and break self-tolerance of the adaptive immune system. Here, I will review our present understanding about whether the infection with exogenous retroviruses or the reactivation of endogenous retroviruses might play an etiological role in certain autoimmune conditions of humans and murine experimental models.
Collapse
Affiliation(s)
- Philipp Yu
- Institute of Immunology, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
39
|
A contaminant-free assessment of Endogenous Retroviral RNA in human plasma. Sci Rep 2016; 6:33598. [PMID: 27640347 PMCID: PMC5027517 DOI: 10.1038/srep33598] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/30/2016] [Indexed: 12/21/2022] Open
Abstract
Endogenous retroviruses (ERVs) comprise 6–8% of the human genome. HERVs are silenced in most normal tissues, up-regulated in stem cells and in placenta but also in cancer and HIV-1 infection. Crucially, there are conflicting reports on detecting HERV RNA in non-cellular clinical samples such as plasma that suggest the study of HERV RNA can be daunting. Indeed, we find that the use of real-time PCR in a quality assured clinical laboratory setting can be sensitive to low-level proviral contamination. We developed a mathematical model for low-level contamination that allowed us to design a laboratory protocol and standard operating procedures for robust measurement of HERV RNA. We focus on one family, HERV-K HML-2 (HK2) that has been most recently active even though they invaded our ancestral genomes almost 30 millions ago. We extensively validated our experimental design on a model cell culture system showing high sensitivity and specificity, totally eliminating the proviral contamination. We then tested 236 plasma samples from patients infected with HIV-1, HCV or HBV and found them to be negative. The study of HERV RNA for human translational studies should be performed with extensively validated protocols and standard operating procedures to control the widespread low-level human DNA contamination.
Collapse
|
40
|
Abstract
Retrotransposons have generated about 40 % of the human genome. This review examines the strategies the cell has evolved to coexist with these genomic "parasites", focussing on the non-long terminal repeat retrotransposons of humans and mice. Some of the restriction factors for retrotransposition, including the APOBECs, MOV10, RNASEL, SAMHD1, TREX1, and ZAP, also limit replication of retroviruses, including HIV, and are part of the intrinsic immune system of the cell. Many of these proteins act in the cytoplasm to degrade retroelement RNA or inhibit its translation. Some factors act in the nucleus and involve DNA repair enzymes or epigenetic processes of DNA methylation and histone modification. RISC and piRNA pathway proteins protect the germline. Retrotransposon control is relaxed in some cell types, such as neurons in the brain, stem cells, and in certain types of disease and cancer, with implications for human health and disease. This review also considers potential pitfalls in interpreting retrotransposon-related data, as well as issues to consider for future research.
Collapse
Affiliation(s)
- John L. Goodier
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA 212051
| |
Collapse
|
41
|
Kassiotis G, Stoye JP. Immune responses to endogenous retroelements: taking the bad with the good. Nat Rev Immunol 2016; 16:207-19. [PMID: 27026073 DOI: 10.1038/nri.2016.27] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ultimate form of parasitism and evasion of host immunity is for the parasite genome to enter the germ line of the host species. Retroviruses have invaded the host germ line on the grandest scale, and this is evident in the extraordinary abundance of endogenous retroelements in the genome of all vertebrate species that have been studied. Many of these endogenous retroelements have retained viral characteristics; some also the capacity to replicate and, consequently, the potential to trigger host innate and adaptive immune responses. However, although retroelements are mainly recognized for their pathogenic potential, recent evidence suggests that this 'enemy within' may also have beneficial roles in tuning host immune reactivity. In this Review, we discuss how the immune system recognizes and is shaped by endogenous retroelements.
Collapse
Affiliation(s)
- George Kassiotis
- Retroviral Immunology, the Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK.,Department of Medicine, Faculty of Medicine, Imperial College London, London W2 1PG, UK
| | - Jonathan P Stoye
- Department of Medicine, Faculty of Medicine, Imperial College London, London W2 1PG, UK.,Retrovirus-Host Interactions, the Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK
| |
Collapse
|
42
|
Hanke K, Hohn O, Bannert N. HERV-K(HML-2), a seemingly silent subtenant - but still waters run deep. APMIS 2016; 124:67-87. [PMID: 26818263 DOI: 10.1111/apm.12475] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/12/2015] [Indexed: 01/26/2023]
Abstract
A large proportion of the human genome consists of endogenous retroviruses, some of which are well preserved, showing transcriptional activity, and expressing retroviral proteins. The HERV-K(HML-2) family represents the most intact members of these elements, with some having open and intact reading frames for viral proteins and the ability to form virus-like particles. Although generally suppressed in most healthy tissues by a variety of epigenetic processes and antiviral mechanisms, there is evidence that some members of this family are (at least partly) still active - particularly in certain stem cells and various tumors. This raises the possibility of their involvement in tumor induction or in developmental processes. In recent years, many new insights into this fascinating field have been attained, and this review focuses on new discoveries about coevolutionary events and intracellular defense mechanisms against HERV-K(HML-2) activity. We also describe what might occur when these mechanisms fail or become modulated by viral proteins or other viruses and discuss the new vistas opened up by the reconstitution of ancestral viral proteins and even complete HML-2 viruses.
Collapse
Affiliation(s)
- Kirsten Hanke
- Department HIV and Other Retroviruses, Robert Koch Institute, Berlin, Germany
| | - Oliver Hohn
- Department HIV and Other Retroviruses, Robert Koch Institute, Berlin, Germany
| | - Norbert Bannert
- Department HIV and Other Retroviruses, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
43
|
Infectious Entry Pathway Mediated by the Human Endogenous Retrovirus K Envelope Protein. J Virol 2016; 90:3640-9. [PMID: 26792739 DOI: 10.1128/jvi.03136-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/12/2016] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Endogenous retroviruses (ERVs), the majority of which exist as degraded remnants of ancient viruses, comprise approximately 8% of the human genome. The youngest human ERVs (HERVs) belong to the HERV-K(HML-2) subgroup and were endogenized within the past 1 million years. The viral envelope protein (ENV) facilitates the earliest events of endogenization (cellular attachment and entry), and here, we characterize the requirements for HERV-K ENV to mediate infectious cell entry. Cell-cell fusion assays indicate that a minimum of two events are required for fusion, proteolytic processing by furin-like proteases and exposure to acidic pH. We generated an infectious autonomously replicating recombinant vesicular stomatitis virus (VSV) in which the glycoprotein was replaced by HERV-K ENV. HERV-K ENV imparts an endocytic entry pathway that requires dynamin-mediated membrane scission and endosomal acidification but is distinct from clathrin-dependent or macropinocytic uptake pathways. The lack of impediments to the replication of the VSV core in eukaryotic cells allowed us to broadly survey the HERV-K ENV-dictated tropism. Unlike extant betaretroviral envelopes, which impart a narrow species tropism, we found that HERV-K ENV mediates broad tropism encompassing cells from multiple mammalian and nonmammalian species. We conclude that HERV-K ENV dictates an evolutionarily conserved entry pathway and that the restriction of HERV-K to primate genomes reflects downstream stages of the viral replication cycle. IMPORTANCE Approximately 8% of the human genome is of retroviral origin. While many of those viral genomes have become inactivated, some copies of the most recently endogenized human retrovirus, HERV-K, can encode individual functional proteins. Here, we characterize the envelope protein (ENV) of the virus to define how it mediates infection of cells. We demonstrate that HERV-K ENV undergoes a proteolytic processing step and triggers membrane fusion in response to acidic pH--a strategy common to many viral fusogens. Our data suggest that the infectious entry pathway mediated by this ENV requires endosomal acidification and the GTPase dynamin but does not require clathrin-dependent uptake. In marked contrast to other betaretroviruses, HERV-K ENV imparts broad species tropism in cultured cells. This work provides new insights into the entry pathway of an extinct human virus and provides a powerful tool to further probe the endocytic route by which HERV-K infects cells.
Collapse
|
44
|
Determination of Sequences Required for Human Endogenous Retrovirus K Transduction and Its Recognition by Foreign Retroviral Virions. J Virol 2015; 90:3243-6. [PMID: 26719267 DOI: 10.1128/jvi.02731-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/16/2015] [Indexed: 11/20/2022] Open
Abstract
Sequences necessary for transduction of human endogenous retrovirus (HERV)-Kcon, a consensus of the HERV-K(HML-2) family, were analyzed and found to reside in the leader/gag region. They act in an orientation-dependent way and consist of at least two sites working together. Having defined these sequences, we exploited this information to produce a simple system to investigate to what extent virions of HERV-Kcon, murine leukemia virus, and HIV-1 have the ability to transduce each other's genomes, leading to potential contamination of gene therapy vectors.
Collapse
|
45
|
Nadeau MJ, Manghera M, Douville RN. Inside the Envelope: Endogenous Retrovirus-K Env as a Biomarker and Therapeutic Target. Front Microbiol 2015; 6:1244. [PMID: 26617584 PMCID: PMC4643131 DOI: 10.3389/fmicb.2015.01244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/26/2015] [Indexed: 11/27/2022] Open
Abstract
Due to multiple ancestral human retroviral germ cell infections, the modern human genome is strewn with relics of these infections, termed endogenous retroviruses (ERVs). ERV expression has been silenced due to negative selective pressures and genetic phenomena such as mutations and epigenetic silencing. Nonetheless, select ERVs have retained the capacity to be damaging to their host when reawakened. Much of the current research on the ERVK Env protein strongly suggests a causal or contributive role in the pathogenesis of various cancers, autoimmune and infectious diseases. Additionally, there is a small body of research suggesting that ERVK Env has been domesticated for use in placental development, akin to the ERVW syncytin. Though much is left to ascertain, the innate immune response to ERVK Env expression has been partially characterized and appears to be due to a region located in the transmembrane domain of the Env protein. In this review, we aim to highlight ERVK Env as a biomarker for inflammatory conditions and explore its use as a future therapeutic target for cancers, HIV infection and neurological disease.
Collapse
Affiliation(s)
- Marie-Josée Nadeau
- Douville Lab, Department of Biology, University of Winnipeg Winnipeg, MB, Canada
| | - Mamneet Manghera
- Douville Lab, Department of Biology, University of Winnipeg Winnipeg, MB, Canada ; Department of Immunology, University of Manitoba Winnipeg, MB, Canada
| | - Renée N Douville
- Douville Lab, Department of Biology, University of Winnipeg Winnipeg, MB, Canada ; Department of Immunology, University of Manitoba Winnipeg, MB, Canada
| |
Collapse
|
46
|
Kramer P, Lausch V, Volkwein A, Hanke K, Hohn O, Bannert N. The human endogenous retrovirus K(HML-2) has a broad envelope-mediated cellular tropism and is prone to inhibition at a post-entry, pre-integration step. Virology 2015; 487:121-8. [PMID: 26517399 DOI: 10.1016/j.virol.2015.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/09/2015] [Accepted: 10/14/2015] [Indexed: 11/28/2022]
Abstract
The HERV-K(HML-2) family is the most recent addition to the collection of human endogenous retroviruses. It comprises proviruses that encode functional proteins that can assemble into replication defective particles carrying the envelope protein. Using a reconstituted HERV-K113 envelope sequence, we have analyzed its ability to mediate entry into a set of 33 cell lines from 10 species. Of these, 30 were permissive, demonstrating an amphotropism consistent with a broad expression of receptor protein(s). In an initial effort to identify a receptor for HERV-K(HML-2) we investigated whether transferrin receptor 1 and hyaluronidase 2, known cellular receptors of the closely related betaretroviruses mouse mammary tumor virus (MMTV) and Jaagsiekte sheep retrovirus (JSRV), could facilitate HERV-K(HML-2) entry. However, neither of these proteins could serve as a receptor for HERV-K(HML-2). Moreover, during attempts to further characterize the tropism of HERV-K(HML-2), we identified a cellular activity that inhibits infection at a post-entry, pre-integration step.
Collapse
Affiliation(s)
- Philipp Kramer
- Robert Koch Institute, Division for HIV and Other Retroviruses, Nordufer 20, 13353 Berlin, Germany
| | - Veronika Lausch
- Robert Koch Institute, Division for HIV and Other Retroviruses, Nordufer 20, 13353 Berlin, Germany
| | - Alexander Volkwein
- Robert Koch Institute, Division for HIV and Other Retroviruses, Nordufer 20, 13353 Berlin, Germany
| | - Kirsten Hanke
- Robert Koch Institute, Division for HIV and Other Retroviruses, Nordufer 20, 13353 Berlin, Germany
| | - Oliver Hohn
- Robert Koch Institute, Division for HIV and Other Retroviruses, Nordufer 20, 13353 Berlin, Germany
| | - Norbert Bannert
- Robert Koch Institute, Division for HIV and Other Retroviruses, Nordufer 20, 13353 Berlin, Germany.
| |
Collapse
|