1
|
Developing an Effective Peptide-Based Vaccine for COVID-19: Preliminary Studies in Mice Models. Viruses 2022; 14:v14030449. [PMID: 35336856 PMCID: PMC8954996 DOI: 10.3390/v14030449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/12/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has caused massive health and economic disasters worldwide. Although several vaccines have effectively slowed the spread of the virus, their long-term protection and effectiveness against viral variants are still uncertain. To address these potential shortcomings, this study proposes a peptide-based vaccine to prevent COVID-19. A total of 15 B cell epitopes of the wild-type severe acute respiratory coronavirus 2 (SARS-CoV-2) spike (S) protein were selected, and their HLA affinities predicted in silico. Peptides were divided into two groups and tested in C57BL/6 mice with either QS21 or Al(OH)3 as the adjuvant. Our results demonstrated that the peptide-based vaccine stimulated high and durable antibody responses in mice, with the T and B cell responses differing based on the type of adjuvant employed. Using epitope mapping, we showed that our peptide-based vaccine produced antibody patterns similar to those in COVID-19 convalescent individuals. Moreover, plasma from vaccinated mice and recovered COVID-19 humans had the same neutralizing activity when tested with a pseudo particle assay. Our data indicate that this adjuvant peptide-based vaccine can generate sustainable and effective B and T cell responses. Thus, we believe that our peptide-based vaccine can be a safe and effective vaccine against COVID-19, particularly because of the flexibility of including new peptides to prevent emerging SARS-CoV-2 variants and avoiding unwanted autoimmune responses.
Collapse
|
2
|
Abstract
PURPOSE OF REVIEW The design of an HIV vaccine remains an elusive but top priority. Data from the non-human primate model and the first moderately protective HIV vaccine trial (RV144) point to a role for qualitative changes in humoral immune functions in protection from infection. Here, we review the current understanding of the antibody response throughout HIV infection, the known correlates of protection, and current strategies to manipulate antibodies to put an end to the epidemic. RECENT FINDINGS Recent studies point to innate immune-recruiting antibody function in preventing infection as well as controlling viremia following infection. These data have begun to inform next-generation design of HIV vaccines and antibody therapies by uncovering new viral targets and antibody architectures to improve potency and breadth. Emerging data illustrate a role for innate immune recruiting-antibodies in conferring protection against HIV infection as well as promoting viral control and clearance, offering an unprecedented opportunity to modulate and improve antibody function to fight HIV more effectively.
Collapse
Affiliation(s)
- Audrey L. Butler
- The Ragon Institute of MGH, MIT, and Harvard, 400 Technology Square, Cambridge, MA 02139 USA
| | - Stephanie Fischinger
- The Ragon Institute of MGH, MIT, and Harvard, 400 Technology Square, Cambridge, MA 02139 USA
| | - Galit Alter
- The Ragon Institute of MGH, MIT, and Harvard, 400 Technology Square, Cambridge, MA 02139 USA
| |
Collapse
|
3
|
Abstract
Non-viral gene delivery to skeletal muscle was one of the first applications of gene therapy that went into the clinic, mainly because skeletal muscle is an easily accessible tissue for local gene transfer and non-viral vectors have a relatively safe and low immunogenic track record. However, plasmid DNA, naked or complexed to the various chemistries, turn out to be moderately efficient in humans when injected locally and very inefficient (and very toxic in some cases) when injected systemically. A number of clinical applications have been initiated however, based on transgenes that were adapted to good local impact and/or to a wide physiological outcome (i.e., strong humoral and cellular immune responses following the introduction of DNA vaccines). Neuromuscular diseases seem more challenging for non-viral vectors. Nevertheless, the local production of therapeutic proteins that may act distantly from the injected site and/or the hydrodynamic perfusion of safe plasmids remains a viable basis for the non-viral gene therapy of muscle disorders, cachexia, as well as peripheral neuropathies.
Collapse
|
4
|
|
5
|
Kidokoro M, Shida H. Vaccinia Virus LC16m8∆ as a Vaccine Vector for Clinical Applications. Vaccines (Basel) 2014; 2:755-71. [PMID: 26344890 PMCID: PMC4494248 DOI: 10.3390/vaccines2040755] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/16/2014] [Accepted: 09/28/2014] [Indexed: 01/14/2023] Open
Abstract
The LC16m8 strain of vaccinia virus, the active ingredient in the Japanese smallpox vaccine, was derived from the Lister/Elstree strain. LC16m8 is replication-competent and has been administered to over 100,000 infants and 3,000 adults with no serious adverse reactions. Despite this outstanding safety profile, the occurrence of spontaneously-generated large plaque-forming virulent LC16m8 revertants following passage in cell culture is a major drawback. We identified the gene responsible for the reversion and deleted the gene (B5R) from LC16m8 to derive LC16m8Δ. LC16m8∆ is non-pathogenic in immunodeficient severe combined immunodeficiency (SCID) mice, genetically-stable and does not reverse to a large-plaque phenotype upon passage in cell culture, even under conditions in which most LC16m8 populations are replaced by revertants. Moreover, LC16m8∆ is >500-fold more effective than the non-replicating vaccinia virus (VV), Modified Vaccinia Ankara (MVA), at inducing murine immune responses against pathogenic VV. LC16m8∆, which expresses the SIV gag gene, also induced anti-Gag CD8⁺ T-cells more efficiently than MVA and another non-replicating VV, Dairen I minute-pock variants (DIs). Moreover, LC16m8∆ expressing HIV-1 Env in combination with a Sendai virus vector induced the production of anti-Env antibodies and CD8⁺ T-cells. Thus, the safety and efficacy of LC16m8∆ mean that it represents an outstanding platform for the development of human vaccine vectors.
Collapse
Affiliation(s)
- Minoru Kidokoro
- Department of Virology III, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan.
| | - Hisatoshi Shida
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan.
| |
Collapse
|
6
|
Nashar TO. The Quest for an HIV-1 Vaccine Adjuvant: Bacterial Toxins as New Potential Platforms. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2014; 5. [PMID: 27375924 PMCID: PMC4929853 DOI: 10.4172/2155-9899.1000225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
While tremendous efforts are undergoing towards finding an effective HIV-1 vaccine, the search for an HIV-1 vaccine adjuvant lags behind and is understudied. More recently, however, efforts have focused on testing adjuvant formulations that can boost the immune response and generate broadly neutralizing antibodies to HIV-1 ENV (gp160). Despite this, there remain a number of challenges towards achieving this goal. These include safety of adjuvant formulations; stability of the incorporated antigens; maintenance of ENV immunogenicity; optimal inoculation sites; the effective combination of adjuvants; stability of ENV neutralizing epitopes in some adjuvant formulations; mucosal immunity; and long-term maintenance of the immune response. A new class of adjuvants for HIV-1 proteins is suggested to overcome many of the limitations of some other adjuvants. Type 1 (LT-I) and type 2 (LT-II) human E. coli enterotoxins (HLTs) and their non-toxic B-subunits derivatives are strong systemic and mucosal adjuvants and effective carriers for other proteins and epitopes. Their stable molecular structure in the presence of fused proteins and epitopes, and their ability to target surface receptors on antigen presenting cells make them ideal for the delivery of HIV-1 ENV or HIV other proteins. Importantly, unlike some other adjuvants, HLTs and derivatives have well-defined modes of immune system activation. The challenges in finding optimal HIV-1 vaccine adjuvant formulation and the important properties of HLTs are discussed.
Collapse
Affiliation(s)
- Toufic O Nashar
- College of Veterinary Medicine, Nursing & Allied Health, Department of Pathobiology, Tuskegee University, Tuskegee, AL 36088, USA
| |
Collapse
|
7
|
Kulkarni V, Rosati M, Jalah R, Ganneru B, Alicea C, Yu L, Guan Y, LaBranche C, Montefiori DC, King AD, Valentin A, Pavlakis GN, Felber BK. DNA vaccination by intradermal electroporation induces long-lasting immune responses in rhesus macaques. J Med Primatol 2014; 43:329-40. [PMID: 24810337 PMCID: PMC4176517 DOI: 10.1111/jmp.12123] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2014] [Indexed: 12/27/2022]
Abstract
BACKGROUND A desirable HIV vaccine should induce protective long-lasting humoral and cellular immune responses. METHODS Macaques were immunized by env DNA, selected from a panel of recently transmitted SIVmac251 Env using intradermal electroporation as vaccine delivery method and magnitude, breadth and longevity of humoral and cellular immune responses. RESULTS The macaques developed high, long-lasting humoral immune responses with neutralizing capacity against homologous and heterologous Env. The avidity of the antibody responses was also preserved over 1-year follow-up. Analysis of cellular immune responses demonstrated induction of Env-specific memory T cells harboring granzyme B, albeit their overall levels were low. Similar to the humoral responses, the cellular immunity was persistent over the ~1-year follow-up. CONCLUSION These data show that vaccination by this intradermal DNA delivery regimen is able to induce potent and durable immune responses in macaques.
Collapse
Affiliation(s)
- Viraj Kulkarni
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Cohen YZ, Dolin R. Novel HIV vaccine strategies: overview and perspective. THERAPEUTIC ADVANCES IN VACCINES 2014; 1:99-112. [PMID: 24757518 DOI: 10.1177/2051013613494535] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A human immunodeficiency virus (HIV) vaccine remains a central component in the quest to control the worldwide epidemic. To examine the status of the development of HIV vaccines, we review the results of the efficacy trials carried out to date and the immunologic principles that guided them. Four vaccine concepts have been evaluated in HIV-1 vaccine efficacy trials, and the results of these trials have provided significant information for future vaccine development. While one of these trials demonstrated that a safe and effective HIV vaccine is possible, many questions remain regarding the basis for the observed protection and the most efficient way to stimulate it. Novel HIV vaccine strategies including induction of highly potent broadly neutralizing antibodies, use of novel homologous and heterologous vector systems, and vectored immunoprophylaxis seek to expand and build upon the knowledge gained from these trials.
Collapse
Affiliation(s)
- Yehuda Z Cohen
- Center for Virus and Vaccine Research, Beth Israel Deaconess Medical Center, E/CLS-1003, 330 Brookline Ave, Boston, 02215, USA
| | - Raphael Dolin
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
9
|
Kanagavelu S, Termini JM, Gupta S, Raffa FN, Fuller KA, Rivas Y, Philip S, Kornbluth RS, Stone GW. HIV-1 adenoviral vector vaccines expressing multi-trimeric BAFF and 4-1BBL enhance T cell mediated anti-viral immunity. PLoS One 2014; 9:e90100. [PMID: 24587225 PMCID: PMC3938597 DOI: 10.1371/journal.pone.0090100] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 01/28/2014] [Indexed: 12/15/2022] Open
Abstract
Adenoviral vectored vaccines have shown considerable promise but could be improved by molecular adjuvants. Ligands in the TNF superfamily (TNFSF) are potential adjuvants for adenoviral vector (Ad5) vaccines based on their central role in adaptive immunity. Many TNFSF ligands require aggregation beyond the trimeric state (multi-trimerization) for optimal biological function. Here we describe Ad5 vaccines for HIV-1 Gag antigen (Ad5-Gag) adjuvanted with the TNFSF ligands 4-1BBL, BAFF, GITRL and CD27L constructed as soluble multi-trimeric proteins via fusion to Surfactant Protein D (SP-D) as a multimerization scaffold. Mice were vaccinated with Ad5-Gag combined with Ad5 expressing one of the SP-D-TNFSF constructs or single-chain IL-12p70 as adjuvant. To evaluate vaccine-induced protection, mice were challenged with vaccinia virus expressing Gag (vaccinia-Gag) which is known to target the female genital tract, a major route of sexually acquired HIV-1 infection. In this system, SP-D-4-1BBL or SP-D-BAFF led to significantly reduced vaccinia-Gag replication when compared to Ad5-Gag alone. In contrast, IL-12p70, SP-D-CD27L and SP-D-GITRL were not protective. Histological examination following vaccinia-Gag challenge showed a dramatic lymphocytic infiltration into the uterus and ovaries of SP-D-4-1BBL and SP-D-BAFF-treated animals. By day 5 post challenge, proinflammatory cytokines in the tissue were reduced, consistent with the enhanced control over viral replication. Splenocytes had no specific immune markers that correlated with protection induced by SP-D-4-1BBL and SP-D-BAFF versus other groups. IL-12p70, despite lack of anti-viral efficacy, increased the total numbers of splenic dextramer positive CD8+ T cells, effector memory T cells, and effector Gag-specific CD8+ T cells, suggesting that these markers are poor predictors of anti-viral immunity in this model. In conclusion, soluble multi-trimeric 4-1BBL and BAFF adjuvants led to strong protection from vaccinia-Gag challenge, but the protection was independent of standard immune markers. Soluble multi-trimeric SP-D-4-1BBL and SP-D-BAFF provide a novel technology to enhance adenoviral vector vaccines against HIV-1.
Collapse
Affiliation(s)
- Saravana Kanagavelu
- Department of Microbiology and Immunology, Miami Center for AIDS Research, and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - James M. Termini
- Department of Microbiology and Immunology, Miami Center for AIDS Research, and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Sachin Gupta
- Department of Microbiology and Immunology, Miami Center for AIDS Research, and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Francesca N. Raffa
- Department of Microbiology and Immunology, Miami Center for AIDS Research, and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Katherine A. Fuller
- Department of Microbiology and Immunology, Miami Center for AIDS Research, and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Yaelis Rivas
- Department of Microbiology and Immunology, Miami Center for AIDS Research, and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Sakhi Philip
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Richard S. Kornbluth
- Multimeric Biotherapeutics, Inc., La Jolla, California, United States of America
| | - Geoffrey W. Stone
- Department of Microbiology and Immunology, Miami Center for AIDS Research, and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
10
|
Glucopyranosyl lipid A adjuvant significantly enhances HIV specific T and B cell responses elicited by a DNA-MVA-protein vaccine regimen. PLoS One 2014; 9:e84707. [PMID: 24465426 PMCID: PMC3900398 DOI: 10.1371/journal.pone.0084707] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/18/2013] [Indexed: 12/14/2022] Open
Abstract
Using a unique vaccine antigen matched and single HIV Clade C approach we have assessed the immunogenicity of a DNA-poxvirus-protein strategy in mice and rabbits, administering MVA and protein immunizations either sequentially or simultaneously and in the presence of a novel TLR4 adjuvant, GLA-AF. Mice were vaccinated with combinations of HIV env/gag-pol-nef plasmid DNA followed by MVA-C (HIV env/gag-pol-nef) with HIV CN54gp140 protein (+/−GLA-AF adjuvant) and either co-administered in different muscles of the same animal with MVA-C or given sequentially at 3-week intervals. The DNA prime established a population of B cells that were able to mount a statistically significant anamnestic response to the boost vaccines. The greatest antigen-specific antibody response was observed in animals that received all vaccine components. Moreover, a high proportion of the total mucosal IgG (20 – 50%) present in the vaginal vault of these vaccinated animals was vaccine antigen-specific. The potent elicitation of antigen-specific immune responses to this vaccine modality was also confirmed in rabbits. Importantly, co-administration of MVA-C with the GLA-AF adjuvanted HIV CN54gp140 protein significantly augmented the antigen-specific T cell responses to the Gag antigen, a transgene product expressed by the MVA-C vector in a separate quadriceps muscle. We have demonstrated that co-administration of MVA and GLA-AF adjuvanted HIV CN54gp140 protein was equally effective in the generation of humoral responses as a sequential vaccination modality thus shortening and simplifying the immunization schedule. In addition, a significant further benefit of the condensed vaccination regime was that T cell responses to proteins expressed by the MVA-C were potently enhanced, an effect that was likely due to enhanced immunostimulation in the presence of systemic GLA-AF.
Collapse
|
11
|
Stercz B, Perlstadt H, Nagy K, Ongrádi J. Immunochemistry of adenoviruses: limitations and new horizons of gene therapy. Acta Microbiol Immunol Hung 2013; 60:447-59. [PMID: 24292088 DOI: 10.1556/amicr.60.2013.4.6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adenoviruses have increasingly been recognized as significant viral pathogens causing high morbidity and mortality especially among immunocompromised individuals such as transplant recipients and AIDS patients. Through the infection process, after the adenovirus fiber and penton are bonded to cell surface receptors through special amino acid moieties, secondary messengers activate protein kinases, pro-inflammatory cytokines and chemokines. Serotype and species specific antibodies also are induced. Recombinant human adenoviruses have been pivotal in the development of gene therapy strategies and have shown a great promise for the treatment of genetic disorders and malignancies. Recent studies have enlightened their harmful immunological effects dependent on fiber and hexon polypeptide structure and receptor binding. Pre-existing antibodies or those elicited by vectors neutralize input recombinant adenovirus particles rendering them ineffective. Mediators induce serious even lethal side effects and cytotoxic reactions which extinguish transgene expression. To overcome these difficulties new strategies are required in the application of recombinant adenoviruses to redirect vector entry from the natural receptors to alternative binding sites or using rare human or animal adenovirus fiber molecules to modify the native fiber structure by altering amino acid structure and creating chimeric fibers. This requires searching for, isolating and characterizing new serotypes, mutants or variants for new generation vectors. Human adenovirus 1 feline isolate (feline adenovirus) might fulfil these criteria.
Collapse
Affiliation(s)
- Balázs Stercz
- Semmelweis University Department of Medical Microbiology Budapest Hungary
| | | | | | | |
Collapse
|
12
|
Villarreal DO, Talbott KT, Choo DK, Shedlock DJ, Weiner DB. Synthetic DNA vaccine strategies against persistent viral infections. Expert Rev Vaccines 2013; 12:537-54. [PMID: 23659301 DOI: 10.1586/erv.13.33] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The human body has developed an elaborate defense system against microbial pathogens and foreign antigens. However, particular microbes have evolved sophisticated mechanisms to evade immune surveillance, allowing persistence within the human host. In an effort to combat such infections, intensive research has focused on the development of effective prophylactic and therapeutic countermeasures to suppress or clear persistent viral infections. To date, popular therapeutic strategies have included the use of live-attenuated microbes, viral vectors and dendritic-cell vaccines aiming to help suppress or clear infection. In recent years, improved DNA vaccines have now re-emerged as a promising candidate for therapeutic intervention due to the development of advanced optimization and delivery technologies. For instance, genetic optimization of synthetic plasmid constructs and their encoded antigens, in vivo electroporation-mediated vaccine delivery, as well as codelivery with molecular adjuvants have collectively enhanced both transgene expression and the elicitation of vaccine-induced immunity. In addition, the development of potent heterologous prime-boost regimens has also provided significant contributions to DNA vaccine immunogenicity. Herein, the authors will focus on these recent improvements to this synthetic platform in relation to their application in combating persistent virus infection.
Collapse
Affiliation(s)
- Daniel O Villarreal
- University of Pennsylvania, Perelman School of Medicine, Department of Pathology & Laboratory Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
13
|
Kulkarni V, Rosati M, Valentin A, Jalah R, Alicea C, Yu L, Guan Y, Shen X, Tomaras GD, LaBranche C, Montefiori DC, Irene C, Prattipati R, Pinter A, Sullivan SM, Pavlakis GN, Felber BK. Vaccination with Vaxfectin(®) adjuvanted SIV DNA induces long-lasting humoral immune responses able to reduce SIVmac251 Viremia. Hum Vaccin Immunother 2013; 9:2069-80. [PMID: 23820294 DOI: 10.4161/hv.25442] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We evaluated the immunogenicity and efficacy of Vaxfectin(®) adjuvanted SIV DNA vaccines in mice and macaques. Vaccination of mice with Vaxfectin(®) adjuvanted SIV gag DNA induced higher humoral immune responses than administration of unadjuvanted DNA, whereas similar levels of cellular immunity were elicited. Vaxfectin(®) adjuvanted SIVmac251 gag and env DNA immunization of rhesus macaques was used to examine magnitude, durability, and efficacy of humoral immunity. Vaccinated macaques elicited potent neutralizing antibodies able to cross-neutralize the heterologous SIVsmE660 Env. We found remarkable durability of Gag and Env humoral responses, sustained during ~2 y of follow-up. The Env-specific antibody responses induced by Vaxfectin(®) adjuvanted env DNA vaccination disseminated into mucosal tissues, as demonstrated by their presence in saliva, including responses to the V1-V2 region, and rectal fluids. The efficacy of the immune responses was evaluated upon intrarectal challenge with low repeated dose SIVmac251. Although 2 of the 3 vaccinees became infected, these animals showed significantly lower peak virus loads and lower chronic viremia than non-immunized infected controls. Thus, Vaxfectin(®) adjuvanted DNA is a promising vaccine approach for inducing potent immune responses able to control the highly pathogenic SIVmac251.
Collapse
Affiliation(s)
- Viraj Kulkarni
- Human Retrovirus Pathogenesis Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Margherita Rosati
- Human Retrovirus Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Antonio Valentin
- Human Retrovirus Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Rashmi Jalah
- Human Retrovirus Pathogenesis Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Candido Alicea
- Human Retrovirus Pathogenesis Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Lei Yu
- Institute of Human Virology and Department of Microbiology & Immunology; University of Maryland School of Medicine; Baltimore, MD USA
| | - Yongjun Guan
- Institute of Human Virology and Department of Microbiology & Immunology; University of Maryland School of Medicine; Baltimore, MD USA
| | | | | | | | | | - Carmela Irene
- Public Health Research Institute; University of Medicine and Dentistry of New Jersey; Newark, NJ USA
| | - Rajasekhar Prattipati
- Public Health Research Institute; University of Medicine and Dentistry of New Jersey; Newark, NJ USA
| | - Abraham Pinter
- Public Health Research Institute; University of Medicine and Dentistry of New Jersey; Newark, NJ USA
| | | | - George N Pavlakis
- Human Retrovirus Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute; Frederick, MD USA
| |
Collapse
|
14
|
Li J, Valentin A, Kulkarni V, Rosati M, Beach RK, Alicea C, Hannaman D, Reed SG, Felber BK, Pavlakis GN. HIV/SIV DNA vaccine combined with protein in a co-immunization protocol elicits highest humoral responses to envelope in mice and macaques. Vaccine 2013; 31:3747-55. [PMID: 23624057 DOI: 10.1016/j.vaccine.2013.04.037] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/05/2013] [Accepted: 04/15/2013] [Indexed: 12/27/2022]
Abstract
Vaccination with HIV/SIV DNAs elicits potent T-cell responses. To improve humoral immune responses, we combined DNA and protein in a co-immunization protocol using in vivo electroporation in mice and macaques. DNA&protein co-immunization induced higher antibody responses than DNA or protein alone, or DNA prime/protein boost in mice. DNA&protein co-immunization induced similar levels of cellular responses as those obtained by DNA only vaccination. The inclusion of SIV or HIV Env gp120 protein did not impair the development of cellular immune responses elicited by DNA present in the vaccine regimen. In macaques, the DNA&protein co-immunization regimen also elicited higher levels of humoral responses with broader cross-neutralizing activity. Despite the improved immunogenicity of DNA&protein co-immunization, the protein formulation with the EM-005 (GLA-SE) adjuvant further increased the anti-Env humoral responses. Dissecting the contribution of EM-005, we found that its administration upregulated the expression of co-stimulatory molecules and stimulated cytokine production, especially IL-6, by dendritic cells in vivo. These terminally differentiated, mature, dendritic cells possibly promote higher levels of humoral responses, supporting the inclusion of the EM-005 adjuvant with the vaccine. Thus, DNA&protein co-immunization is a promising strategy to improve the rapidity of development, magnitude and potency of the humoral immune responses.
Collapse
Affiliation(s)
- Jinyao Li
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Diaz CM, Chiappori A, Aurisicchio L, Bagchi A, Clark J, Dubey S, Fridman A, Fabregas JC, Marshall J, Scarselli E, La Monica N, Ciliberto G, Montero AJ. Phase 1 studies of the safety and immunogenicity of electroporated HER2/CEA DNA vaccine followed by adenoviral boost immunization in patients with solid tumors. J Transl Med 2013; 11:62. [PMID: 23497415 PMCID: PMC3599587 DOI: 10.1186/1479-5876-11-62] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 03/03/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND DNA electroporation has been demonstrated in preclinical models to be a promising strategy to improve cancer immunity, especially when combined with other genetic vaccines in heterologous prime-boost protocols. We report the results of 2 multicenter phase 1 trials involving adult cancer patients (n=33) with stage II-IV disease. METHODS Patients were vaccinated with V930 alone, a DNA vaccine containing equal amounts of plasmids expressing the extracellular and trans-membrane domains of human HER2, and a plasmid expressing CEA fused to the B subunit of Escherichia coli heat labile toxin (Study 1), or a heterologous prime-boost vaccination approach with V930 followed by V932, a dicistronic adenovirus subtype-6 viral vector vaccine coding for the same antigens (Study 2). RESULTS The use of the V930 vaccination with electroporation alone or in combination with V932 was well-tolerated without any serious adverse events. In both studies, the most common vaccine-related side effects were injection site reactions and arthralgias. No measurable cell-mediated immune response (CMI) to CEA or HER2 was detected in patients by ELISPOT; however, a significant increase of both cell-mediated immunity and antibody titer against the bacterial heat labile toxin were observed upon vaccination. CONCLUSION V930 vaccination alone or in combination with V932 was well tolerated without any vaccine-related serious adverse effects, and was able to induce measurable immune responses against bacterial antigen. However, the prime-boost strategy did not appear to augment any detectable CMI responses against either CEA or HER2. TRIAL REGISTRATION Study 1 - ClinicalTrials.gov, NCT00250419; Study 2 - ClinicalTrials.gov, NCT00647114.
Collapse
|
16
|
The development of gene-based vectors for immunization. Vaccines (Basel) 2013. [PMCID: PMC7151937 DOI: 10.1016/b978-1-4557-0090-5.00064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
17
|
Zhang X, Sobue T, Isshiki M, Makino SI, Inoue M, Kato K, Shioda T, Ohashi T, Sato H, Komano J, Hanabusa H, Shida H. Elicitation of both anti HIV-1 Env humoral and cellular immunities by replicating vaccinia prime Sendai virus boost regimen and boosting by CD40Lm. PLoS One 2012; 7:e51633. [PMID: 23236521 PMCID: PMC3517520 DOI: 10.1371/journal.pone.0051633] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 11/08/2012] [Indexed: 11/18/2022] Open
Abstract
For protection from HIV-1 infection, a vaccine should elicit both humoral and cell-mediated immune responses. A novel vaccine regimen and adjuvant that induce high levels of HIV-1 Env-specific T cell and antibody (Ab) responses was developed in this study. The prime-boost regimen that used combinations of replication-competent vaccinia LC16m8Δ (m8Δ) and Sendai virus (SeV) vectors expressing HIV-1 Env efficiently produced both Env-specific CD8+ T cells and anti-Env antibodies, including neutralizing antibodies (nAbs). These results sharply contrast with vaccine regimens that prime with an Env expressing plasmid and boost with the m8Δ or SeV vector that mainly elicited cellular immunities. Moreover, co-priming with combinations of m8Δs expressing Env or a membrane-bound human CD40 ligand mutant (CD40Lm) enhanced Env-specific CD8+ T cell production, but not anti-Env antibody production. In contrast, priming with an m8Δ that coexpresses CD40Lm and Env elicited more anti-Env Abs with higher avidity, but did not promote T cell responses. These results suggest that the m8Δ prime/SeV boost regimen in conjunction with CD40Lm expression could be used as an immunization platform for driving both potent cellular and humoral immunities against pathogens such as HIV-1.
Collapse
Affiliation(s)
- Xianfeng Zhang
- Institute for Genetic Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Tomoyoshi Sobue
- Institute for Genetic Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Mao Isshiki
- Institute for Genetic Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Shun-ichi Makino
- Institute for Genetic Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Makoto Inoue
- DNAVEC Corporation, Techno Park Oho, Tsukuba, Ibaraki, Japan
| | - Kazunori Kato
- Department of BioMedical Engineering, Toyo University, Kawagoe, Saitama, Japan
| | - Tatsuo Shioda
- Department of Viral Infection, Research Institute for Microbial Disease, Osaka University, Yamada-oka, Suita-shi, Osaka, Japan
| | - Takashi Ohashi
- Institute for Genetic Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Hirotaka Sato
- Institute for Genetic Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Jun Komano
- Division of Virology, Department of Infectious Diseases, Osaka Prefectural Institute of Public Health, Nakamichi Higashinari-ku, Osaka, Japan
| | | | - Hisatoshi Shida
- Institute for Genetic Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
- * E-mail:
| |
Collapse
|
18
|
Vasconcelos JR, Dominguez MR, Araújo AF, Ersching J, Tararam CA, Bruna-Romero O, Rodrigues MM. Relevance of long-lived CD8(+) T effector memory cells for protective immunity elicited by heterologous prime-boost vaccination. Front Immunol 2012; 3:358. [PMID: 23264773 PMCID: PMC3525016 DOI: 10.3389/fimmu.2012.00358] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 11/10/2012] [Indexed: 11/13/2022] Open
Abstract
Owing to the importance of major histocompatibility complex class Ia-restricted CD8(+) T cells for host survival following viral, bacterial, fungal, or parasitic infection, it has become largely accepted that these cells should be considered in the design of a new generation of vaccines. For the past 20 years, solid evidence has been provided that the heterologous prime-boost regimen achieves the best results in terms of induction of long-lived protective CD8(+) T cells against a variety of experimental infections. Although this regimen has often been used experimentally, as is the case for many vaccines, the mechanism behind the efficacy of this vaccination regimen is still largely unknown. The main purpose of this review is to examine the characteristics of the protective CD8(+) T cells generated by this vaccination regimen. Part of its efficacy certainly relies on the generation and maintenance of large numbers of specific lymphocytes. Other specific characteristics may also be important, and studies on this direction have only recently been initiated. So far, the characterization of these protective, long-lived T cell populations suggests that there is a high frequency of polyfunctional T cells; these cells cover a large breadth and display a T effector memory (TEM) phenotype. These TEM cells are capable of proliferating after an infectious challenge and are highly refractory to apoptosis due to a control of the expression of pro-apoptotic receptors such as CD95. Also, they do not undergo significant long-term immunological erosion. Understanding the mechanisms that control the generation and maintenance of the protective activity of these long-lived TEM cells will certainly provide important insights into the physiology of CD8(+) T cells and pave the way for the design of new or improved vaccines.
Collapse
Affiliation(s)
- José R Vasconcelos
- Centro de Terapia Celular e Molecular, Universidade Federal de São Paulo - Escola Paulista de Medicina São Paulo, São Paulo, Brazil ; Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo - Escola Paulista de Medicina São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Despite many years of research, human DNA vaccines have yet to fulfill their early promise. Over the past 15 years, multiple generations of DNA vaccines have been developed and tested in preclinical models for prophylactic and therapeutic applications in the areas of infectious disease and cancer, but have failed in the clinic. Thus, while DNA vaccines have achieved successful licensure for veterinary applications, their poor immunogenicity in humans when compared with traditional protein-based vaccines has hindered their progress. Many strategies have been attempted to improve DNA vaccine potency including use of more efficient promoters and codon optimization, addition of traditional or genetic adjuvants, electroporation, intradermal delivery and various prime-boost strategies. This review summarizes these advances in DNA vaccine technologies and attempts to answer the question of when DNA vaccines might eventually be licensed for human use.
Collapse
Affiliation(s)
- Fadi Saade
- Vaxine Pty Ltd, Bedford Park, Adelaide 5042, Australia
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, Bedford Park, Adelaide 5042, Australia
- Department of Diabetes and Endocrinology, Flinders Medical Centre/Flinders University, Adelaide 5042, Australia
| |
Collapse
|
20
|
Kalams SA, Parker S, Jin X, Elizaga M, Metch B, Wang M, Hural J, Lubeck M, Eldridge J, Cardinali M, Blattner WA, Sobieszczyk M, Suriyanon V, Kalichman A, Weiner DB, Baden LR. Safety and immunogenicity of an HIV-1 gag DNA vaccine with or without IL-12 and/or IL-15 plasmid cytokine adjuvant in healthy, HIV-1 uninfected adults. PLoS One 2012; 7:e29231. [PMID: 22242162 PMCID: PMC3252307 DOI: 10.1371/journal.pone.0029231] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 11/22/2011] [Indexed: 01/09/2023] Open
Abstract
Background DNA vaccines are a promising approach to vaccination since they circumvent the problem of vector-induced immunity. DNA plasmid cytokine adjuvants have been shown to augment immune responses in small animals and in macaques. Methodology/Principal Findings We performed two first in human HIV vaccine trials in the US, Brazil and Thailand of an RNA-optimized truncated HIV-1 gag gene (p37) DNA derived from strain HXB2 administered either alone or in combination with dose-escalation of IL-12 or IL-15 plasmid cytokine adjuvants. Vaccinations with both the HIV immunogen and cytokine adjuvant were generally well-tolerated and no significant vaccine-related adverse events were identified. A small number of subjects developed asymptomatic low titer antibodies to IL-12 or IL-15. Cellular immunogenicity following 3 and 4 vaccinations was poor, with response rates to gag of 4.9%/8.7% among vaccinees receiving gag DNA alone, 0%/11.5% among those receiving gag DNA+IL-15, and no responders among those receiving DNA+high dose (1500 ug) IL-12 DNA. However, after three doses, 44.4% (4/9) of vaccinees receiving gag DNA and intermediate dose (500 ug) of IL-12 DNA demonstrated a detectable cellular immune response. Conclusions/Significance This combination of HIV gag DNA with plasmid cytokine adjuvants was well tolerated. There were minimal responses to HIV gag DNA alone, and no apparent augmentation with either IL-12 or IL-15 plasmid cytokine adjuvants. Despite the promise of DNA vaccines, newer formulations or methods of delivery will be required to increase their immunogenicity. Trial Registration Clinicaltrials.gov NCT00115960NCT00111605
Collapse
Affiliation(s)
- Spyros A Kalams
- Division of Infectious Diseases, Department of Medicine, Department of Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of Ameica.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Tamminga C, Sedegah M, Regis D, Chuang I, Epstein JE, Spring M, Mendoza-Silveiras J, McGrath S, Maiolatesi S, Reyes S, Steinbeiss V, Fedders C, Smith K, House B, Ganeshan H, Lejano J, Abot E, Banania GJ, Sayo R, Farooq F, Belmonte M, Murphy J, Komisar J, Williams J, Shi M, Brambilla D, Manohar N, Richie NO, Wood C, Limbach K, Patterson NB, Bruder JT, Doolan DL, King CR, Diggs C, Soisson L, Carucci D, Levine G, Dutta S, Hollingdale MR, Ockenhouse CF, Richie TL. Adenovirus-5-vectored P. falciparum vaccine expressing CSP and AMA1. Part B: safety, immunogenicity and protective efficacy of the CSP component. PLoS One 2011; 6:e25868. [PMID: 22003411 PMCID: PMC3189219 DOI: 10.1371/journal.pone.0025868] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 09/12/2011] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND A protective malaria vaccine will likely need to elicit both cell-mediated and antibody responses. As adenovirus vaccine vectors induce both these responses in humans, a Phase 1/2a clinical trial was conducted to evaluate the efficacy of an adenovirus serotype 5-vectored malaria vaccine against sporozoite challenge. METHODOLOGY/PRINCIPAL FINDINGS NMRC-MV-Ad-PfC is an adenovirus vector encoding the Plasmodium falciparum 3D7 circumsporozoite protein (CSP). It is one component of a two-component vaccine NMRC-M3V-Ad-PfCA consisting of one adenovector encoding CSP and one encoding apical membrane antigen-1 (AMA1) that was evaluated for safety and immunogenicity in an earlier study (see companion paper, Sedegah et al). Fourteen Ad5 seropositive or negative adults received two doses of NMRC-MV-Ad-PfC sixteen weeks apart, at 1 x 1010 particle units per dose. The vaccine was safe and well tolerated. All volunteers developed positive ELISpot responses by 28 days after the first immunization (geometric mean 272 spot forming cells/million[sfc/m]) that declined during the following 16 weeks and increased after the second dose to levels that in most cases were less than the initial peak (geometric mean 119 sfc/m). CD8+ predominated over CD4+ responses, as in the first clinical trial. Antibody responses were poor and like ELISpot responses increased after the second immunization but did not exceed the initial peak. Pre-existing neutralizing antibodies (NAb) to Ad5 did not affect the immunogenicity of the first dose, but the fold increase in NAb induced by the first dose was significantly associated with poorer antibody responses after the second dose, while ELISpot responses remained unaffected. When challenged by the bite of P. falciparum-infected mosquitoes, two of 11 volunteers showed a delay in the time to patency compared to infectivity controls, but no volunteers were sterilely protected. SIGNIFICANCE The NMRC-MV-Ad-PfC vaccine expressing CSP was safe and well tolerated given as two doses, but did not provide sterile protection. TRIAL REGISTRATION ClinicalTrials.gov NCT00392015.
Collapse
Affiliation(s)
- Cindy Tamminga
- U.S. Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
De Rosa SC, Thomas EP, Bui J, Huang Y, deCamp A, Morgan C, Kalams SA, Tomaras GD, Akondy R, Ahmed R, Lau CY, Graham BS, Nabel GJ, McElrath MJ. HIV-DNA priming alters T cell responses to HIV-adenovirus vaccine even when responses to DNA are undetectable. THE JOURNAL OF IMMUNOLOGY 2011; 187:3391-401. [PMID: 21844392 DOI: 10.4049/jimmunol.1101421] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Many candidate HIV vaccines are designed to primarily elicit T cell responses. Although repeated immunization with the same vaccine boosts Ab responses, the benefit for T cell responses is ill defined. We compared two immunization regimens that include the same recombinant adenoviral serotype 5 (rAd5) boost. Repeated homologous rAd5 immunization fails to increase T cell responses, but increases gp140 Ab responses 10-fold. DNA prime, as compared with rAd5 prime, directs long-term memory CD8(+) T cells toward a terminally differentiated effector memory phenotype with cytotoxic potential. Based on the kinetics of activated cells measured directly ex vivo, the DNA vaccination primes for both CD4(+) and CD8(+) T cells, despite the lack of detection of the latter until after the boost. These results suggest that heterologous prime-boost combinations have distinct immunological advantages over homologous prime-boosts and suggest that the effect of DNA on subsequent boosting may not be easily detectable directly after the DNA vaccination.
Collapse
Affiliation(s)
- Stephen C De Rosa
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Padte NN, Li X, Tsuji M, Vasan S. Clinical development of a novel CD1d-binding NKT cell ligand as a vaccine adjuvant. Clin Immunol 2010; 140:142-51. [PMID: 21185784 DOI: 10.1016/j.clim.2010.11.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/08/2010] [Accepted: 11/16/2010] [Indexed: 01/12/2023]
Abstract
Natural killer T (NKT) cells are known to play a role against certain microbial infections, including malaria and HIV, two major global infectious diseases. Strategies that can harness and amplify the immunotherapeutic potential of NKT cells can serve as powerful tools in the fight against such diseases. 7DW8-5, a novel glycolipid, may be one such tool. The interaction of 7DW8-5 with CD1d molecules induces activation of NKT cells, thereby activating various immune-competent cells including dendritic cells (DCs) to provide a significant adjuvant effect for several vaccines. This review discusses the discovery and characterization of 7DW8-5 and the practical considerations of its preclinical and clinical development as a potential glycolipid adjuvant for candidate malaria and HIV vaccines.
Collapse
Affiliation(s)
- Neal N Padte
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY 10016, USA
| | | | | | | |
Collapse
|
24
|
Paris RM, Kim JH, Robb ML, Michael NL. Prime-boost immunization with poxvirus or adenovirus vectors as a strategy to develop a protective vaccine for HIV-1. Expert Rev Vaccines 2010; 9:1055-69. [PMID: 20822348 DOI: 10.1586/erv.10.106] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Challenges in the development of an effective HIV-1 vaccine are myriad with significant hurdles posed by viral diversity, the lack of a human correlate of protection and difficulty in creating immunogens capable of eliciting broadly neutralizing antibodies. The implicit requirement for novel approaches to these problems has resulted in vaccine candidates designed to elicit cellular and/or humoral immune responses, to include recombinant DNA, viral and bacterial vectors, and subunit proteins. Here, we review data from clinical studies primarily of poxvirus and adenovirus vector vaccines, used in a heterologous prime-boost combination strategy. Currently, this strategy appears to hold the most promise for an effective vaccine based on results from immunogenicity testing and nonhuman primate challenge models, as well as the modest efficacy recently observed in the Thai prime-boost trial.
Collapse
Affiliation(s)
- Robert M Paris
- US Military HIV Research Program (MHRP), Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand.
| | | | | | | |
Collapse
|
25
|
Peiperl L, Morgan C, Moodie Z, Li H, Russell N, Graham BS, Tomaras GD, De Rosa SC, McElrath MJ, the NIAID HIV Vaccine Trials Network. Safety and immunogenicity of a replication-defective adenovirus type 5 HIV vaccine in Ad5-seronegative persons: a randomized clinical trial (HVTN 054). PLoS One 2010; 5:e13579. [PMID: 21048953 PMCID: PMC2965084 DOI: 10.1371/journal.pone.0013579] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 09/27/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Individuals without prior immunity to a vaccine vector may be more sensitive to reactions following injection, but may also show optimal immune responses to vaccine antigens. To assess safety and maximal tolerated dose of an adenoviral vaccine vector in volunteers without prior immunity, we evaluated a recombinant replication-defective adenovirus type 5 (rAd5) vaccine expressing HIV-1 Gag, Pol, and multiclade Env proteins, VRC-HIVADV014-00-VP, in a randomized, double-blind, dose-escalation, multicenter trial (HVTN study 054) in HIV-1-seronegative participants without detectable neutralizing antibodies (nAb) to the vector. As secondary outcomes, we also assessed T-cell and antibody responses. METHODOLOGY/PRINCIPAL FINDINGS Volunteers received one dose of vaccine at either 10(10) or 10(11) adenovector particle units, or placebo. T-cell responses were measured against pools of global potential T-cell epitope peptides. HIV-1 binding and neutralizing antibodies were assessed. Systemic reactogenicity was greater at the higher dose, but the vaccine was well tolerated at both doses. Although no HIV infections occurred, commercial diagnostic assays were positive in 87% of vaccinees one year after vaccination. More than 85% of vaccinees developed HIV-1-specific T-cell responses detected by IFN-γ ELISpot and ICS assays at day 28. T-cell responses were: CD8-biased; evenly distributed across the three HIV-1 antigens; not substantially increased at the higher dose; and detected at similar frequencies one year following injection. The vaccine induced binding antibodies against at least one HIV-1 Env antigen in all recipients. CONCLUSIONS/SIGNIFICANCE This vaccine appeared safe and was highly immunogenic following a single dose in human volunteers without prior nAb against the vector. TRIAL REGISTRATION ClinicalTrials.gov NCT00119873.
Collapse
Affiliation(s)
- Laurence Peiperl
- University of California San Francisco, San Francisco, California, United States of America
| | - Cecilia Morgan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Zoe Moodie
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Hongli Li
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Nina Russell
- Bill & Melinda Gates Foundation, Seattle, Washington, United States of America
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Stephen C. De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- University of Washington, Seattle, Washington, United States of America
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- University of Washington, Seattle, Washington, United States of America
| | | |
Collapse
|
26
|
Bett AJ, Dubey SA, Mehrotra DV, Guan L, Long R, Anderson K, Collins K, Gaunt C, Fernandez R, Cole S, Meschino S, Tang A, Sun X, Gurunathan S, Tartaglia J, Robertson MN, Shiver JW, Casimiro DR. Comparison of T cell immune responses induced by vectored HIV vaccines in non-human primates and humans. Vaccine 2010; 28:7881-9. [PMID: 20937317 DOI: 10.1016/j.vaccine.2010.09.079] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 09/20/2010] [Accepted: 09/24/2010] [Indexed: 11/26/2022]
Abstract
Following the disappointing outcome of the phase IIb test-of-concept step study in which Merck's adenovirus type 5 (Ad5) HIV-1 clade B gag/pol/nef vaccine failed to demonstrate efficacy in HIV high-risk individuals, an extensive review of the trial and preclinical studies which supported the trial is ongoing. One point of interest is how well preclinical nonhuman primate immunogenicity studies predicted what was observed in humans. Here we compare the HIV-1-specific cellular immune responses elicited in nonhuman primates and human clinical trial subjects to several HIV-1 vaccine candidates. We find that although rhesus macaques are immunologically more responsive to vaccination than humans, the hierarchy in potency of single-modality prime-boost regimens using several vector approaches (adenovirus, DNA, and pox vectors) was well predicted. Vaccine approaches using complex formulations such as novel adjuvants (DNA+CRL1005) or mixed-modality prime-boost (DNA/Ad5; Ad5/ALVAC) did not correlate as well between rhesus macaques and humans. Although the immunogenicity of the vaccines and vaccine regimens evaluated were not all accurately predicted, testing in rhesus macaques generally offers an indispensable tool for ranking the immunological potential of HIV-1 vaccine candidates.
Collapse
Affiliation(s)
- Andrew J Bett
- Department of Vaccine Basic Research, Merck Research Laboratories, West Point, PA 19486-0004, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sun Y, Santra S, Buzby AP, Mascola JR, Nabel GJ, Letvin NL. Recombinant vector-induced HIV/SIV-specific CD4+ T lymphocyte responses in rhesus monkeys. Virology 2010; 406:48-55. [PMID: 20667574 PMCID: PMC2952962 DOI: 10.1016/j.virol.2010.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 06/14/2010] [Accepted: 07/02/2010] [Indexed: 11/25/2022]
Abstract
The recently reported modest success of the RV144 Thai trial vaccine regimen in preventing HIV-1 acquisition has focused interest on the potential contribution to that protection of vaccine-elicited CD4(+) T cell responses. We evaluated the induction of virus-specific CD4(+) T cell responses in rhesus monkeys using a series of diverse vaccine vectors. We assessed both the magnitudes and functional profiles of the antigen-specific CD4(+) T cells by measuring cytokine production, memory differentiation, and the expression of mucosal homing molecules. We found that DNA prime/recombinant MVA boost immunizations induced particularly high-frequency virus-specific CD4(+) T cell responses with polyfunctional repertoires, and these responses were partially preserved following SHIV-89.6P challenge. The majority of the vaccine-elicited CD4(+) T cells were CD28(+) memory T cells that expressed low levels of beta7. Neither the magnitudes nor the functional profiles of the virus-specific CD4(+) T cells generated by vaccination were associated with a preservation of CD4(+) T cells or control of viral replication following SHIV-89.6P challenge. Interestingly, monkeys primed with recombinant Ad5 immunogens showed a dramatic expansion of both the magnitude and polyfunctionality of the vaccine-elicited CD4(+) T cell responses following envelope protein boost. These results demonstrate that vaccine strategies that include recombinant MVA or recombinant Ad5 vectors can elicit robust CD4(+) T cell responses.
Collapse
Affiliation(s)
- Yue Sun
- Division of Viral Pathogenesis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Sampa Santra
- Division of Viral Pathogenesis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Adam P. Buzby
- Division of Viral Pathogenesis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - John R. Mascola
- Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gary J. Nabel
- Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Norman L. Letvin
- Division of Viral Pathogenesis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
28
|
Jaoko W, Karita E, Kayitenkore K, Omosa-Manyonyi G, Allen S, Than S, Adams EM, Graham BS, Koup RA, Bailer RT, Smith C, Dally L, Farah B, Anzala O, Muvunyi CM, Bizimana J, Tarragona-Fiol T, Bergin PJ, Hayes P, Ho M, Loughran K, Komaroff W, Stevens G, Thomson H, Boaz MJ, Cox JH, Schmidt C, Gilmour J, Nabel GJ, Fast P, Bwayo J. Safety and immunogenicity study of Multiclade HIV-1 adenoviral vector vaccine alone or as boost following a multiclade HIV-1 DNA vaccine in Africa. PLoS One 2010; 5:e12873. [PMID: 20877623 PMCID: PMC2943475 DOI: 10.1371/journal.pone.0012873] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 08/23/2010] [Indexed: 11/21/2022] Open
Abstract
Background We conducted a double-blind, randomized, placebo-controlled Phase I study of a recombinant replication-defective adenovirus type 5 (rAd5) vector expressing HIV-1 Gag and Pol from subtype B and Env from subtypes A, B and C, given alone or as boost following a DNA plasmid vaccine expressing the same HIV-1 proteins plus Nef, in 114 healthy HIV-uninfected African adults. Methodology/Principal Findings Volunteers were randomized to 4 groups receiving the rAd5 vaccine intramuscularly at dosage levels of 1×1010 or 1×1011 particle units (PU) either alone or as boost following 3 injections of the DNA vaccine given at 4 mg/dose intramuscularly by needle-free injection using Biojector® 2000. Safety and immunogenicity were evaluated for 12 months. Both vaccines were well-tolerated. Overall, 62% and 86% of vaccine recipients in the rAd5 alone and DNA prime - rAd5 boost groups, respectively, responded to the HIV-1 proteins by an interferon-gamma (IFN-γ) ELISPOT. The frequency of immune responses was independent of rAd5 dosage levels. The highest frequency of responses after rAd5 alone was detected at 6 weeks; after DNA prime - rAd5 boost, at 6 months (end of study). At baseline, neutralizing antibodies against Ad5 were present in 81% of volunteers; the distribution was similar across the 4 groups. Pre-existing immunity to Ad5 did not appear to have a significant impact on reactogenicity or immune response rates to HIV antigens by IFN-γ ELISPOT. Binding antibodies against Env were detected in up to 100% recipients of DNA prime - rAd5 boost. One volunteer acquired HIV infection after the study ended, two years after receipt of rAd5 alone. Conclusions/Significance The HIV-1 rAd5 vaccine, either alone or as a boost following HIV-1 DNA vaccine, was well-tolerated and immunogenic in African adults. DNA priming increased the frequency and magnitude of cellular and humoral immune responses, but there was no effect of rAd5 dosage on immunogenicity endpoints. Trial Registration ClinicalTrials.gov NCT00124007
Collapse
MESH Headings
- AIDS Vaccines/adverse effects
- AIDS Vaccines/immunology
- Adenoviridae/genetics
- Adenoviridae/immunology
- Adolescent
- Adult
- Antibodies, Viral/immunology
- Double-Blind Method
- Drug-Related Side Effects and Adverse Reactions
- Genetic Vectors/adverse effects
- Genetic Vectors/genetics
- Genetic Vectors/immunology
- HIV Infections/immunology
- HIV Infections/prevention & control
- HIV Infections/virology
- HIV-1/classification
- HIV-1/genetics
- HIV-1/immunology
- Humans
- Immunization, Secondary
- Male
- Middle Aged
- Vaccines, DNA/adverse effects
- Vaccines, DNA/immunology
- Young Adult
- gag Gene Products, Human Immunodeficiency Virus/adverse effects
- gag Gene Products, Human Immunodeficiency Virus/genetics
- gag Gene Products, Human Immunodeficiency Virus/immunology
- pol Gene Products, Human Immunodeficiency Virus/adverse effects
- pol Gene Products, Human Immunodeficiency Virus/genetics
- pol Gene Products, Human Immunodeficiency Virus/immunology
Collapse
Affiliation(s)
- Walter Jaoko
- Kenya AIDS Vaccine Initiative (KAVI), Nairobi, Kenya
| | - Etienne Karita
- Projet San Francisco (PSF), Rwanda-Zambia HIV Research Project, Kigali, Rwanda
| | | | | | - Susan Allen
- Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Soe Than
- International AIDS Vaccine Initiative (IAVI), New York, New York, United States of America
| | - Elizabeth M. Adams
- Vaccine Clinical Research Branch (VCRB), Vaccine Research Program (VRP)/Division of AIDS (DAIDS)/National Institute of Allergy and Infectious Diseases (NIAID)/National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Barney S. Graham
- Vaccine Research Center (VRC)/NIAID/NIH, Bethesda, Maryland, United States of America
| | - Richard A. Koup
- Vaccine Research Center (VRC)/NIAID/NIH, Bethesda, Maryland, United States of America
| | - Robert T. Bailer
- Vaccine Research Center (VRC)/NIAID/NIH, Bethesda, Maryland, United States of America
| | - Carol Smith
- The EMMES Corporation, Rockville, Maryland, United States of America
| | - Len Dally
- The EMMES Corporation, Rockville, Maryland, United States of America
| | - Bashir Farah
- Kenya AIDS Vaccine Initiative (KAVI), Nairobi, Kenya
| | - Omu Anzala
- Kenya AIDS Vaccine Initiative (KAVI), Nairobi, Kenya
| | - Claude M. Muvunyi
- Projet San Francisco (PSF), Rwanda-Zambia HIV Research Project, Kigali, Rwanda
| | - Jean Bizimana
- Projet San Francisco (PSF), Rwanda-Zambia HIV Research Project, Kigali, Rwanda
| | | | - Philip J. Bergin
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Peter Hayes
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Martin Ho
- The EMMES Corporation, Rockville, Maryland, United States of America
| | - Kelley Loughran
- The EMMES Corporation, Rockville, Maryland, United States of America
| | - Wendy Komaroff
- International AIDS Vaccine Initiative (IAVI), New York, New York, United States of America
| | - Gwynneth Stevens
- International AIDS Vaccine Initiative (IAVI), New York, New York, United States of America
| | - Helen Thomson
- International AIDS Vaccine Initiative (IAVI), New York, New York, United States of America
| | - Mark J. Boaz
- International AIDS Vaccine Initiative (IAVI), New York, New York, United States of America
| | - Josephine H. Cox
- International AIDS Vaccine Initiative (IAVI), New York, New York, United States of America
| | - Claudia Schmidt
- International AIDS Vaccine Initiative (IAVI), New York, New York, United States of America
| | - Jill Gilmour
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Gary J. Nabel
- Vaccine Research Center (VRC)/NIAID/NIH, Bethesda, Maryland, United States of America
| | - Patricia Fast
- International AIDS Vaccine Initiative (IAVI), New York, New York, United States of America
- * E-mail:
| | - Job Bwayo
- Kenya AIDS Vaccine Initiative (KAVI), Nairobi, Kenya
| |
Collapse
|
29
|
Prime‐boost vaccinations using recombinant flavivirus replicon and vaccinia virus vaccines: an ELISPOT analysis. Immunol Cell Biol 2010; 89:426-36. [DOI: 10.1038/icb.2010.99] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
Comparative analysis of immune responses induced by vaccination with SIV antigens by recombinant Ad5 vector or plasmid DNA in rhesus macaques. Mol Ther 2010; 18:1568-76. [PMID: 20551910 DOI: 10.1038/mt.2010.112] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
DNA vaccines have undergone important enhancements in their design, formulation, and delivery process. Past literature supports that DNA vaccines are not as immunogenic in nonhuman primates as live vector systems. The most potent recombinant vector system for induction of cellular immune responses in macaques and humans is adenovirus serotype 5 (Ad5), an important benchmark for new vaccine development. Here, we performed a head-to-head evaluation of the Merck Ad5 SIV vaccine and an optimized electroporation (EP) delivered SIV DNA vaccine in macaques. Animals receiving the Ad5 vaccine were immunized three times, whereas the DNA-vaccinated animals were immunized up to four times based on optimized protocols. We observed significant differences in the quantity of IFNgamma responses by enzyme-linked immunosorbent spot (ELISpot), greater proliferative capacity of CD8(+) T cells, and increased polyfunctionality of both CD4(+) and CD8(+) T cells in the DNA-vaccinated group. Importantly, Ad5 immunizations failed to boost following the first immunization, whereas DNA responses were continually boosted with all four immunizations demonstrating a major advantage of these improved DNA vaccines. These optimized DNA vaccines induce very different immune phenotypes than traditional Ad5 vaccines, suggesting that they could play an important role in vaccine research and development.
Collapse
|
31
|
Kutscher S, Allgayer S, Dembek CJ, Bogner JR, Protzer U, Goebel FD, Erfle V, Cosma A. MVA-nef induces HIV-1-specific polyfunctional and proliferative T-cell responses revealed by the combination of short- and long-term immune assays. Gene Ther 2010; 17:1372-83. [DOI: 10.1038/gt.2010.90] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Priming immunization with DNA augments immunogenicity of recombinant adenoviral vectors for both HIV-1 specific antibody and T-cell responses. PLoS One 2010; 5:e9015. [PMID: 20126394 PMCID: PMC2814848 DOI: 10.1371/journal.pone.0009015] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 01/11/2010] [Indexed: 11/19/2022] Open
Abstract
Background Induction of HIV-1-specific T-cell responses relevant to diverse subtypes is a major goal of HIV vaccine development. Prime-boost regimens using heterologous gene-based vaccine vectors have induced potent, polyfunctional T cell responses in preclinical studies. Methods The first opportunity to evaluate the immunogenicity of DNA priming followed by recombinant adenovirus serotype 5 (rAd5) boosting was as open-label rollover trials in subjects who had been enrolled in prior studies of HIV-1 specific DNA vaccines. All subjects underwent apheresis before and after rAd5 boosting to characterize in depth the T cell and antibody response induced by the heterologous DNA/rAd5 prime-boost combination. Results rAd5 boosting was well-tolerated with no serious adverse events. Compared to DNA or rAd5 vaccine alone, sequential DNA/rAd5 administration induced 7-fold higher magnitude Env-biased HIV-1-specific CD8+ T-cell responses and 100-fold greater antibody titers measured by ELISA. There was no significant neutralizing antibody activity against primary isolates. Vaccine-elicited CD4+ and CD8+ T-cells expressed multiple functions and were predominantly long-term (CD127+) central or effector memory T cells and that persisted in blood for >6 months. Epitopes mapped in Gag and Env demonstrated partial cross-clade recognition. Conclusion Heterologous prime-boost using vector-based gene delivery of vaccine antigens is a potent immunization strategy for inducing both antibody and T-cell responses. Trial Registration ClinicalTrails.gov NCT00102089, NCT00108654
Collapse
|
33
|
Asefa B, Korokhov N, Lemiale F. Heterologous HIV-based lentiviral/adenoviral vectors immunizations result in enhanced HIV-specific immunity. Vaccine 2010; 28:3617-24. [PMID: 20051277 DOI: 10.1016/j.vaccine.2009.12.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 12/16/2009] [Accepted: 12/19/2009] [Indexed: 12/20/2022]
Abstract
Viral vectors are considered as one of the major means for the induction of strong immune responses against recombinant antigens by genetic immunization. Among these, lentiviral vectors are particularly attractive vehicles, as they can infect a wide variety of cells and can transduce replicating as well as non-replicating cells. We have engineered VRX1023, an HIV-1-based lentiviral vector (LV) vaccine candidate, to deliver HIV-1 Gag, Pol and Rev antigens under control of the native LTR promoter. While VRX1023 has been shown to elicit strong cell-mediated and humoral immunity as a stand-alone vaccine, we report here its combination in a heterologous prime-boost approach. Its combination with an adenovirus serotype 5 (Ad5)-based vector in the mouse model increased the frequency and polyfunctionality of HIV-specific CD4+ and CD8+ T cells. Homologous prime-boost regimens induced high levels of anti-vector neutralizing antibodies in Ad5-immunized mice, whereas the VSV-G-pseudotyped VRX1023 LV elicited low levels of anti-lentiviral vector neutralization. In addition, the heterologous prime-boost strategy resulted in a 5-fold reduction in Ad5-specific vector neutralization as compared to Ad5 homologous immunization. In conclusion, this study demonstrates that LV and Ad5 vector candidates can be combined in a heterologous immunization regimen, yielding dramatically improved immunogenicity while overcoming anti-vector immunity. These findings may have implications for the development of HIV vaccine regimens in populations with elevated Ad5 seroprevalence or when repeated vector administrations are required.
Collapse
Affiliation(s)
- Benyam Asefa
- VIRxSYS Corporation, 200 Perry Parkway, Gaithersburg, MD 20877, USA
| | | | | |
Collapse
|
34
|
Efficacy of multivalent adenovirus-based vaccine against simian immunodeficiency virus challenge. J Virol 2009; 84:2996-3003. [PMID: 20042509 DOI: 10.1128/jvi.00969-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The prophylactic efficacies of several multivalent replication-incompetent adenovirus serotype 5 (Ad5) vaccines were examined in rhesus macaques using an intrarectal high-dose simian immunodeficiency virus SIVmac239 challenge model. Cohorts of Mamu-A*01(+)/B*17(-) Indian rhesus macaques were immunized with one of several combinations of Ad5 vectors expressing Gag, Pol, Nef, and Env gp140; for comparison, a Mamu-A*01(+) cohort was immunized using the Ad5 vector alone. There was no sign of immunological interference between antigens in the immunized animals. In general, expansion of the antigen breadth resulted in more favorable virological outcomes. In particular, the order of efficacy trended as follows: Gag/Pol/Nef/Env approximately Gag/Pol > Gag approximately Gag/Pol/Nef > Nef. However, the precision in ranking the vaccines based on the study results may be limited by the cohort size, and as such, may warrant additional testing. The implications of these results in light of the recent discouraging results of the phase IIb study of the trivalent Ad5 HIV-1 vaccine are discussed.
Collapse
|
35
|
Dharmapuri S, Peruzzi D, Aurisicchio L. Engineered adenovirus serotypes for overcoming anti-vector immunity. Expert Opin Biol Ther 2009; 9:1279-87. [PMID: 19645630 DOI: 10.1517/14712590903187053] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Adenovirus (Ad)-based gene transfer has been successfully utilised in gene therapy and vaccine applications. To date, an increasing number of human clinical trials utilise recombinant Ad-based vectors as a gene transfer platform. In particular, progress has been made recently in utilising Ad-based vectors as a vaccine platform in HIV, cancer immunotherapy approaches and in vaccination for other infections. Despite these successes, the scientific and bio-industrial communities have recently recognised that innate and pre-existing immunity against Ad vectors can constitute a serious obstacle to the development and application of this technology. It is essential to overcome vector-mediated immune responses, such as production of inflammatory cytokines and pre-existing immunity to Ad, because the induction of these responses not only shortens the period of gene expression but also leads to serious side effects. This review focuses on the biology of Ad infection and the approaches that are being adopted to overcome immunity against the Ad-based vectors.
Collapse
|
36
|
HIV-1 Gag-specific immunity induced by a lentivector-based vaccine directed to dendritic cells. Proc Natl Acad Sci U S A 2009; 106:20382-7. [PMID: 19918062 DOI: 10.1073/pnas.0911742106] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lentivectors (LVs) have attracted considerable interest for their potential as a vaccine delivery vehicle. In this study, we evaluate in mice a dendritic cell (DC)-directed LV system encoding the Gag protein of human immunodeficiency virus (HIV) (LV-Gag) as a potential vaccine for inducing an anti-HIV immune response. The DC-directed specificity is achieved through pseudotyping the vector with an engineered Sindbis virus glycoprotein capable of selectively binding to the DC-SIGN protein. A single immunization by this vector induces a durable HIV Gag-specific immune response. We investigated the antigen-specific immunity and T-cell memory generated by a prime/boost vaccine regimen delivered by either successive LV-Gag injections or a DNA prime/LV-Gag boost protocol. We found that both prime/boost regimens significantly enhance cellular and humoral immune responses. Importantly, a heterologous DNA prime/LV-Gag boost regimen results in superior Gag-specific T-cell responses as compared with a DNA prime/adenovector boost immunization. It induces not only a higher magnitude response, as measured by Gag-specific tetramer analysis and intracellular IFN-gamma staining, but also a better quality of response evidenced by a wider mix of cytokines produced by the Gag-specific CD8(+) and CD4(+) T cells. A boosting immunization with LV-Gag also generates T cells reactive to a broader range of Gag-derived epitopes. These results demonstrate that this DC-directed LV immunization is a potent modality for eliciting anti-HIV immune responses.
Collapse
|
37
|
Zolla-Pazner S, Cohen S, Pinter A, Krachmarov C, Wrin T, Wang S, Lu S. Cross-clade neutralizing antibodies against HIV-1 induced in rabbits by focusing the immune response on a neutralizing epitope. Virology 2009; 392:82-93. [PMID: 19632700 PMCID: PMC2736369 DOI: 10.1016/j.virol.2009.05.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 05/18/2009] [Accepted: 05/28/2009] [Indexed: 11/17/2022]
Abstract
Studies were performed to induce cross-clade neutralizing antibodies (Abs) by testing various combinations of prime and boost constructs that focus the immune response on structurally-conserved epitopes in the V3 loop of HIV-1 gp120. Rabbits were immunized with gp120 DNA containing a V3 loop characterized by the GPGR motif at its tip, and/or with gp120 DNA with a V3 loop carrying the GPGQ motif. Priming was followed by boosts with V3-fusion proteins (V3-FPs) carrying the V3 sequence from a subtype B virus (GPGR motif), and/or with V3 sequences from subtypes A and C (GPGQ motif). The broadest and most consistent neutralizing responses were generated when using a clade C gp120 DNA prime and with the V3(B)-FP boost. Immune sera displayed neutralizing activity in three assays against pseudoviruses and primary isolates from subtypes A, AG, B, C, and D. Polyclonal Abs in the immune rabbit sera neutralized viruses that were not neutralized by pools of human anti-V3 monoclonal Abs. Greater than 80% of the neutralizing Abs were specific for V3, showing that the immune response could be focused on a neutralizing epitope and that vaccine-induced anti-V3 Abs have cross-clade neutralizing activity.
Collapse
Affiliation(s)
- Susan Zolla-Pazner
- New York University School of Medicine (550 First Avenue, New York, NY)
- Veterans Affairs New York Harbor Healthcare System (423 East 23 Street, New York, NY)
| | - Sandra Cohen
- New York University School of Medicine (550 First Avenue, New York, NY)
| | - Abraham Pinter
- The Public Health Research Institute Center, University of Medicine and Dentistry of New Jersey (225 Warren Street, Newark, NJ)
| | - Chavdar Krachmarov
- The Public Health Research Institute Center, University of Medicine and Dentistry of New Jersey (225 Warren Street, Newark, NJ)
| | - Terri Wrin
- Monogram Biosciences, Inc. (345 Oyster Point Blvd., South San Francisco, CA)
| | - Shixia Wang
- The University of Massachusetts Medical Center (365 Plantation Street, Worcester, MA)
| | - Shan Lu
- The University of Massachusetts Medical Center (365 Plantation Street, Worcester, MA)
| |
Collapse
|
38
|
Soloff AC, Liu X, Gao W, Day RD, Gambotto A, Barratt-Boyes SM. Adenovirus 5- and 35-based immunotherapy enhances the strength but not breadth or quality of immunity during chronic SIV infection. Eur J Immunol 2009; 39:2437-49. [DOI: 10.1002/eji.200839130] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
Current World Literature. Curr Opin Allergy Clin Immunol 2009; 9:386-90. [DOI: 10.1097/aci.0b013e32832eb836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Protective efficacy of a single immunization of a chimeric adenovirus vector-based vaccine against simian immunodeficiency virus challenge in rhesus monkeys. J Virol 2009; 83:9584-90. [PMID: 19553307 DOI: 10.1128/jvi.00821-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Rare serotype and chimeric recombinant adenovirus (rAd) vectors that evade anti-Ad5 immunity are currently being evaluated as potential vaccine vectors for human immunodeficiency virus type 1 and other pathogens. We have recently reported that a heterologous rAd prime-boost regimen expressing simian immunodeficiency virus (SIV) Gag afforded durable partial immune control of an SIV challenge in rhesus monkeys. However, single-shot immunization may ultimately be preferable for global vaccine delivery. We therefore evaluated the immunogenicity and protective efficacy of a single immunization of chimeric rAd5 hexon hypervariable region 48 (rAd5HVR48) vectors expressing SIV Gag, Pol, Nef, and Env against a homologous SIV challenge in rhesus monkeys. Inclusion of Env resulted in improved control of peak and set point SIV RNA levels following challenge. In contrast, DNA vaccine priming did not further improve the protective efficacy of rAd5HVR48 vectors in this system.
Collapse
|
41
|
Radosević K, Rodriguez A, Lemckert A, Goudsmit J. Heterologous prime-boost vaccinations for poverty-related diseases: advantages and future prospects. Expert Rev Vaccines 2009; 8:577-92. [PMID: 19397415 DOI: 10.1586/erv.09.14] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Classical vaccination approaches, based on a single vaccine administered in a homologous prime-boost schedule and optimized to induce primarily neutralizing antibodies, are unlikely to be sufficiently efficacious to prevent TB, malaria or HIV infections. Novel vaccines, capable of inducing a more powerful immune response, in particular T-cell immunity, are desperately needed. Combining different vaccine modalities that are able to complement each other and induce broad and sustainable immunity is a promising approach. This review provides an overview of heterologous prime-boost vaccination modalities currently in development for the 'big three' poverty-related diseases and emphasizes the need for innovative vaccination approaches.
Collapse
Affiliation(s)
- Katarina Radosević
- Immunology and Proof of Concept, Innovation & Discovery Lab, Crucell Holland BV, Leiden, The Netherlands.
| | | | | | | |
Collapse
|
42
|
Osada T, Woo CY, McKinney M, Yang XY, Lei G, Labreche HG, Hartman ZC, Niedzwiecki D, Chao N, Amalfitano A, Morse MA, Lyerly HK, Clay TM. Induction of Wilms' tumor protein (WT1)-specific antitumor immunity using a truncated WT1-expressing adenovirus vaccine. Clin Cancer Res 2009; 15:2789-96. [PMID: 19351755 DOI: 10.1158/1078-0432.ccr-08-2589] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE Wilms' tumor protein (WT1) is overexpressed in most leukemias and many solid tumors and is a promising target for tumor immunotherapy. WT1 peptide-based cancer vaccines have been reported but have limited application due to HLA restriction of the peptides. We sought to vaccinate using adenoviral (Ad) vectors encoding tumor-associated antigens such as WT1 that can stimulate tumor-associated antigen-specific immunity across a broad array of HLA types and multiple class I and class II epitopes. EXPERIMENTAL DESIGN We developed a novel Ad vector encoding a truncated version of WT1 (Ad-tWT1) lacking the highly conserved COOH terminus zinc finger domains and tested its ability to stimulate WT1-specific immune responses and antitumor immunity in two murine models of WT1-expressing tumors. RESULTS Despite encoding a transcription factor, we found that Ad-tWT1-transduced murine and human dendritic cells showed cytoplasmic expression of the truncated WT1 protein. In addition, vaccination of C57BL/6 mice with Ad-tWT1 generated WT1-specific cell-mediated and humoral immune responses and conferred protection against challenge with the leukemia cell line, mWT1-C1498. Moreover, in a tumor therapy model, Ad-tWT1 vaccination of TRAMP-C2 tumor-bearing mice significantly suppressed tumor growth. CONCLUSIONS This is the first report of a WT1-encoding Ad vector that is capable of inducing effective immunity against WT1-expressing malignancies. Based on these findings, Ad-tWT1 warrants investigation in human clinical trials to evaluate its applications as a vaccine for patients with WT1-expressing cancers.
Collapse
Affiliation(s)
- Takuya Osada
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Appledorn DM, Patial S, Godbehere S, Parameswaran N, Amalfitano A. TRIF, and TRIF-interacting TLRs differentially modulate several adenovirus vector-induced immune responses. J Innate Immun 2009; 1:376-88. [PMID: 20375595 DOI: 10.1159/000207194] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 12/17/2008] [Indexed: 01/28/2023] Open
Abstract
The use of Adenovirus (Ad)-based vectors has proven to be a useful platform for the development of gene therapy and vaccine protocols. The immunological mechanisms underlying these properties need to be identified and understood to foster safer, more efficacious use of this important gene transfer platform. Our recent studies have confirmed an important role for MyD88 dependent toll-like receptor (TLR) pathways as mediators of these responses. In this study, we confirm that TLR3, TLR4 and TRIF (TIR-domain-containing adapter-inducing interferon-beta) can also have augmentative or inhibitory roles during Ad-induced immune responses. Importantly, our studies revealed that TLR4 acts to suppress several aspects of the Ad-induced innate immune response, a finding not previously reported for this TLR in any model system. In addition, using MyD88 and TRIF double knockout mice, we demonstrate that the MyD88 and TRIF adaptor proteins can play either additive or redundant roles in mediating certain aspects of Ad vector-induced innate and adaptive immune responses. Furthering this complexity, our model system strongly suggests that non-TLR based systems must not only exist, but also have a significant role to play during Ad vector-mediated induction of adaptive immune responses.
Collapse
Affiliation(s)
- D M Appledorn
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48823, USA
| | | | | | | | | |
Collapse
|
44
|
Finnefrock AC, Tang A, Li F, Freed DC, Feng M, Cox KS, Sykes KJ, Guare JP, Miller MD, Olsen DB, Hazuda DJ, Shiver JW, Casimiro DR, Fu TM. PD-1 blockade in rhesus macaques: impact on chronic infection and prophylactic vaccination. THE JOURNAL OF IMMUNOLOGY 2009; 182:980-7. [PMID: 19124741 DOI: 10.4049/jimmunol.182.2.980] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Programmed Cell Death 1 (PD-1) plays a crucial role in immunomodulation. Binding of PD-1 to its ligand receptors down-regulates immune responses, and published reports suggest that this immune modulation is exploited in cases of tumor progression or chronic viral infection to evade immune surveillance. Thus, blockade of this signal could restore or enhance host immune functions. To test this hypothesis, we generated a panel of mAbs specific to human PD-1 that block PD ligand 1 and tested them for in vitro binding, blocking, and functional T cell responses, and evaluated a lead candidate in two in vivo rhesus macaque (Macaca mulatta) models. In the first therapeutic model, chronically SIV-infected macaques were treated with a single infusion of anti-PD-1 mAb; viral loads increased transiently before returning to, or falling below, pretreatment baselines. In the second prophylactic model, naive macaques were immunized with an SIV-gag adenovirus vector vaccine. Induced PD-1 blockade caused a statistically significant (p<0.05) increase in the peak percentage of T cells specific for the CM9 Gag epitope. These new results on PD-1 blockade in nonhuman primates point to a broader role for PD-1 immunomodulation and to potential applications in humans.
Collapse
Affiliation(s)
- Adam C Finnefrock
- Vaccine Basic Research, Merck Research Laboratories, West Point, PA 19486, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Plotkin SA. Sang Froid in a time of trouble: is a vaccine against HIV possible? J Int AIDS Soc 2009; 12:2. [PMID: 19187552 PMCID: PMC2647531 DOI: 10.1186/1758-2652-12-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 02/02/2009] [Indexed: 12/11/2022] Open
Abstract
Since the announcement of the STEP trial results in the past months, we have heard many sober pronouncements on the possibility of an HIV vaccine. On the other hand, optimistic quotations have been liberally used, from Shakespeare's Henry V's "Once more unto the breach, dear friends" to Winston Churchill's definition of success as "going from one failure to another with no loss of enthusiasm". I will forgo optimistic quotations for the phrase "Sang Froid", which translates literally from the French as "cold blood"; what it really means is to avoid panic when things look bad, to step back and coolly evaluate the situation. This is not to counsel easy optimism or to fly in face of the facts, but I believe that while the situation is serious, it is not desperate.I should stipulate at the outset that I am neither an immunologist nor an expert in HIV, but someone who has spent his life in vaccine development. What I will try to do is to provide a point of view from that experience.There is no doubt that the results of STEP were disappointing: not only did the vaccine fail to control viral load, but may have adversely affected susceptibility to infection. But HIV is not the only vaccine to experience difficulties; what lessons can we glean from prior vaccine development?
Collapse
|
46
|
Peruzzi D, Dharmapuri S, Cirillo A, Bruni BE, Nicosia A, Cortese R, Colloca S, Ciliberto G, La Monica N, Aurisicchio L. A novel chimpanzee serotype-based adenoviral vector as delivery tool for cancer vaccines. Vaccine 2009; 27:1293-300. [PMID: 19162112 PMCID: PMC7115565 DOI: 10.1016/j.vaccine.2008.12.051] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 12/22/2008] [Accepted: 12/28/2008] [Indexed: 01/03/2023]
Abstract
The use of adenovirus (Ad) as vaccine vectors is hindered by pre-existing immunity to human Ads in most of the human population. In order to overcome this limitation, uncommon alternative Ad serotypes need to be utilized. In this study, an E1-E3 deleted recombinant Ad based on the chimpanzee serotype 3 (ChAd3) was engineered to express human carcinoembryonic antigen (CEA) protein or rat neu extracellular/transmembrane domains (ECD.TM). ChAd3 vectors were tested in CEA transgenic (CEA.Tg) and BALB/NeuT mice, which show immunologic tolerance to these antigens. ChAd3 is capable of inducing an immune response comparable to that of hAd5 serotype-based vectors, thus breaking tolerance to tumor associated antigens (TAAs) and achieving anti-tumor effects. Of importance is that ChAd3 can overcome hAd5 pre-existing immunity and work in conjunction with DNA electroporation (DNA-EP) and other Ad vaccines based on common human serotypes.
Collapse
Affiliation(s)
- Daniela Peruzzi
- Oncology/Functional Department, IRBM-Merck Research Labs-via Pontina Km30.6, 00040 Pomezia, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Suzuki H, Kidokoro M, Fofana IB, Ohashi T, Okamura T, Matsuo K, Yamamoto N, Shida H. Immunogenicity of newly constructed attenuated vaccinia strain LC16m8Delta that expresses SIV Gag protein. Vaccine 2009; 27:966-71. [PMID: 19135118 DOI: 10.1016/j.vaccine.2008.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 11/23/2008] [Accepted: 12/06/2008] [Indexed: 10/21/2022]
Abstract
We developed the method to efficiently construct recombinant vaccinia viruses based on LC16m8Delta strain that can replicate in mammalian cells but is still safe in human. Immunization in a prime-boost strategy using DNA and LC16m8Delta expressing SIV Gag elicited 7-30-fold more IFN-gamma-producing T cells in mice than that using DNA and non-replicating vaccinia DIs recombinant strain. As the previous study on the DNA-prime and recombinant DIs-boost anti-SIV vaccine showed protective efficacy in the macaque model [Someya K, Ami Y, Nakasone T, Izumi Y, Matsuo K, Horibata S, et al. Induction of positive cellular and humoral responses by a prime-boost vaccine encoded with simian immunodeficiency virus gag/pol. J Immunol 2006;176(3):1784-95], LC16m8Delta would have potential as a better recombinant viral vector for HIV vaccine.
Collapse
Affiliation(s)
- Hajime Suzuki
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|