1
|
Langel SN, Garrido C, Phan C, Travieso T, Kirshner H, DeMarco T, Ma ZM, Reader JR, Olstad KJ, Sammak RL, Shaan Lakshmanappa Y, Roh JW, Watanabe J, Usachenko J, Immareddy R, Pollard R, Iyer SS, Permar S, Miller LA, Van Rompay KKA, Blasi M. Dam-Infant Rhesus Macaque Pairs to Dissect Age-Dependent Responses to SARS-CoV-2 Infection. Immunohorizons 2022; 6:851-863. [PMID: 36547390 PMCID: PMC10538284 DOI: 10.4049/immunohorizons.2200075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022] Open
Abstract
The global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its associated coronavirus disease (COVID-19) has led to a pandemic of unprecedented scale. An intriguing feature of the infection is the minimal disease in most children, a demographic at higher risk for other respiratory viral diseases. To investigate age-dependent effects of SARS-CoV-2 pathogenesis, we inoculated two rhesus macaque monkey dam-infant pairs with SARS-CoV-2 and conducted virological and transcriptomic analyses of the respiratory tract and evaluated systemic cytokine and Ab responses. Viral RNA levels in all sampled mucosal secretions were comparable across dam-infant pairs in the respiratory tract. Despite comparable viral loads, adult macaques showed higher IL-6 in serum at day 1 postinfection whereas CXCL10 was induced in all animals. Both groups mounted neutralizing Ab responses, with infants showing a more rapid induction at day 7. Transcriptome analysis of tracheal airway cells isolated at day 14 postinfection revealed significant upregulation of multiple IFN-stimulated genes in infants compared with adults. In contrast, a profibrotic transcriptomic signature with genes associated with cilia structure and function, extracellular matrix composition and metabolism, coagulation, angiogenesis, and hypoxia was induced in adults compared with infants. Our study in rhesus macaque monkey dam-infant pairs suggests age-dependent differential airway responses to SARS-CoV-2 infection and describes a model that can be used to investigate SARS-CoV-2 pathogenesis between infants and adults.
Collapse
Affiliation(s)
- Stephanie N Langel
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Carolina Garrido
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC
| | - Caroline Phan
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC
| | - Tatianna Travieso
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Helene Kirshner
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC
| | - Todd DeMarco
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC
| | - Zhong-Min Ma
- California National Primate Research Center, University of California, Davis, Davis, CA
| | - J Rachel Reader
- California National Primate Research Center, University of California, Davis, Davis, CA
| | - Katherine J Olstad
- California National Primate Research Center, University of California, Davis, Davis, CA
| | - Rebecca L Sammak
- California National Primate Research Center, University of California, Davis, Davis, CA
| | | | - Jamin W Roh
- Center for Immunology and Infectious Diseases, University of California, Davis, Davis, CA
- Graduate Group in Immunology, University of California, Davis, Davis, CA
| | - Jennifer Watanabe
- California National Primate Research Center, University of California, Davis, Davis, CA
| | - Jodie Usachenko
- California National Primate Research Center, University of California, Davis, Davis, CA
| | - Ramya Immareddy
- California National Primate Research Center, University of California, Davis, Davis, CA
| | - Rachel Pollard
- Center for Immunology and Infectious Diseases, University of California, Davis, Davis, CA
| | - Smita S Iyer
- California National Primate Research Center, University of California, Davis, Davis, CA
- Center for Immunology and Infectious Diseases, University of California, Davis, Davis, CA
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA
| | - Sallie Permar
- Department of Pediatrics, New York-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY; and
| | - Lisa A Miller
- California National Primate Research Center, University of California, Davis, Davis, CA
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA
| | - Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, Davis, CA
| | - Maria Blasi
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC
| |
Collapse
|
2
|
Fox A, Liu X, Zolla-Pazner S, Powell RL. Impact of IgG Isotype on the Induction of Antibody-Dependent Cellular Phagocytosis of HIV by Human Milk Leukocytes. Front Immunol 2022; 13:831767. [PMID: 35592337 PMCID: PMC9110811 DOI: 10.3389/fimmu.2022.831767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Approximately 100,000 mother-to-child transmission (MTCT) events of HIV via human milk feeding occur each year. However, only about 15% of infants milk-fed by untreated HIV+ mothers become infected, suggesting a protective effect of the milk itself. Infants ingest 105-108 maternal leukocytes daily via milk, which remain functional beyond ingestion. Such function may be elicited by maternal milk antibody (Ab). Though IgA is dominant in milk, most HIV-specific milk Abs are of the IgG subclass, highlighting the importance of investigating the function of each IgG isotype in the milk context. Though Ab effector function mediated by the constant (Fc) domain via interaction with Fc Receptors (FcRs), such as Ab-dependent cellular phagocytosis (ADCP), are critical in protecting against HIV infection, ADCP is largely unexplored as it relates to mitigation of MTCT. Presently we report the ADCP activity of milk leukocytes against HIV particles and immune complexes (ICs), using 57 unique samples from 34 women, elicited by IgG1/2/3/4 of monoclonal (m)Ab 246-D. Granulocyte ADCP of HIV was most potent compared to other phagocytes when elicited by IgG1/3/4. IgG1/3 activated granulocytes similarly, exhibiting 1.6x-4.4x greater activity compared to IgG2/4, and a preference for virus compared to ICs. Notably, CD16- monocyte ADCP of a given target were unaffected by isotype, and CD16+ monocytes were poorly stimulated by IgG1. IgG2/4 elicited potent IC ADCP, and in terms of total leukocyte IC ADCP, IgG4 and IgG3 exhibited similar function, with IgG4 eliciting 1.6x-2.1x greater activity compared to IgG1/IgG2, and CD16+ monocytes most stimulated by IgG2. These data contribute to a more comprehensive understanding of Fc-mediated functionality of milk leukocytes, which is critical in order to develop therapeutic approaches to eliminating this route of MTCT, including mucosal administration of mAbs and/or a maternal vaccination aimed to elicit a potent milk Ab response.
Collapse
Affiliation(s)
| | | | | | - Rebecca L. Powell
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
3
|
Hompe ED, Jacobson DL, Eudailey JA, Butler K, Edwards W, Pollara J, Brummel SS, Fouda GG, Chinula L, Kamanga M, Kinikar A, Moodley D, Owor M, Fowler MG, Permar SR. Maternal Humoral Immune Responses Do Not Predict Postnatal HIV-1 Transmission Risk in Antiretroviral-Treated Mothers from the IMPAACT PROMISE Study. mSphere 2019; 4:e00716-19. [PMID: 31645430 PMCID: PMC7407004 DOI: 10.1128/msphere.00716-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 11/20/2022] Open
Abstract
To design immune interventions that can synergize with antiretroviral therapy (ART) to reduce the rate of HIV mother-to-child transmission (MTCT), it is essential to characterize maternal immune responses in the setting of ART during pregnancy and breastfeeding and define their effect on MTCT. Prior studies reported an association between breast milk envelope (Env)-specific antibodies and antibody-dependent cell cytotoxicity (ADCC) activity with reduced postnatal transmission. In this study, we investigated whether these immune correlates were similarly associated with protection in a matched case-control study of mother-infant pairs receiving maternal ART or infant nevirapine prophylaxis during breastfeeding in the International Maternal-Pediatric-Adolescent AIDS Clinical Trials Network Promoting Maternal-Infant Survival Everywhere (PROMISE) trial, assessing postnatal transmission risk in 19 transmitting and 57 nontransmitting mothers using conditional logistic regression models adjusted for maternal plasma viral load. The odds ratios of postnatal MTCT for a 1-unit increase in an immune correlate were 3.61 (95% confidence interval [CI], 0.56, 23.14) for breast milk Env-specific secretory IgA (sIgA), 2.32 (95% CI, 0.43, 12.56) for breast milk and 2.16 (95% CI, 0.51, 9.14) for plasma Env-specific IgA, and 4.57 (95% CI, 0.68, 30.48) for breast milk and 0.96 (95% CI, 0.25, 3.67) for plasma ADCC activity, with all CIs spanning 1.0. Interestingly, although mucosal IgA responses are poor in untreated HIV-infected women, there was a strong correlation between the magnitudes of breast milk and plasma Env-specific IgA in this cohort. In this analysis of the small number of postnatal virus transmissions in the landmark PROMISE study, no single antibody response was associated with breast milk transmission risk.IMPORTANCE Each year, >150,000 infants become newly infected with HIV-1 through MTCT despite ART, with up to 42% of infections occurring during breastfeeding. Several factors contribute to continued pediatric infections, including ART nonadherence, the emergence of drug-resistant HIV strains, acute infection during breastfeeding, and poor access to ART in resource-limited areas. A better understanding of the maternal humoral immune responses that provide protection against postnatal transmission in the setting of ART is critical to guide the design of maternal vaccine strategies to further eliminate postnatal HIV transmission. In this study, we found that in women treated with antiretrovirals during pregnancy, there was a positive correlation between plasma viral load and breast milk and plasma IgA responses; however, conclusions regarding odds of MTCT risk were limited by the small sample size. These findings will inform future studies to investigate maternal immune interventions that can synergize with ART to eliminate MTCT during breastfeeding.
Collapse
Affiliation(s)
- Eliza D Hompe
- Duke University School of Medicine, Durham, North Carolina, USA
| | - Denise L Jacobson
- Center for Biostatistics in AIDS Research, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Joshua A Eudailey
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Kevin Butler
- Center for Biostatistics in AIDS Research, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Whitney Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Justin Pollara
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Sean S Brummel
- Center for Biostatistics in AIDS Research, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Genevieve G Fouda
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Lameck Chinula
- University of North Carolina Project-Malawi, Lilongwe, Malawi
| | - Melvin Kamanga
- Johns Hopkins University Research Project, Blantyre, Malawi
| | - Aarti Kinikar
- Byramjee Jeejeebhoy Government Medical College, Pune, Maharashtra, India
| | - Dhayendre Moodley
- Centre for the AIDS Programme of Research in South Africa and School of Clinical Medicine, College of Health Sciences, University of KwaZulu Natal, Durban, South Africa
| | - Maxensia Owor
- Johns Hopkins University Research Collaboration, Makerere University, Kampala, Uganda
| | - Mary Glenn Fowler
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sallie R Permar
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
4
|
Nelson CS, Fouda GG, Permar SR. Pediatric HIV-1 Acquisition and Lifelong Consequences of Infant Infection. CURRENT IMMUNOLOGY REVIEWS 2019; 15:131-138. [PMID: 33223981 PMCID: PMC7678020 DOI: 10.2174/1573395514666180531074047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/11/2018] [Accepted: 05/24/2018] [Indexed: 11/22/2022]
Abstract
Increased availability of antiretroviral therapy to pregnant and breastfeeding women in resource-limited areas has proven remarkably successful at reducing HIV vertical transmission rates over the past several decades. Yet, still more than 170,000 children are infected annually due to failures in therapy implementation, monitoring, and adherence. Mother-to-child transmission (MTCT) of HIV-1 can occur at one of several distinct stages of infant development - intrauterine, intrapartum, and postpartum. The heterogeneity of the maternal-fetal interface at each of these modes of transmission poses a challenge for the implementation of immune interventions to prevent all modes of HIV MTCT. However, using mother-infant human cohorts and nonhuman primate models of infant simian immunodeficiency virus (SIV) acquisition, investigators have made important observation about the biology of pediatric HIV infection and have identified unique protective immune factors for each mode of transmission. Knowledge of immune factors protective against HIV MTCT will be critical to the development of targeted immune therapies to prevent infant HIV acquisition and to bring an end to the pediatric AIDS epidemic.
Collapse
Affiliation(s)
- Cody S. Nelson
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Genevieve G.A. Fouda
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Sallie R. Permar
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
5
|
Garcia M, Power ML, Moyes KM. Immunoglobulin A and nutrients in milk from great apes throughout lactation. Am J Primatol 2016; 79:1-11. [PMID: 28118501 DOI: 10.1002/ajp.22614] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Differences in macronutrients between human and ape milks appear relatively small, but variation in other components such as immunoglobulins (Ig) may be greater. This study characterized the macronutrient and secretory (sIgA) profiles in milk from gorillas and orangutans throughout lactation. Fifty-three milk samples from four gorillas and three orangutans were collected throughout 48 and 22 months postpartum (MPP), respectively. Samples were grouped in five stages of lactation (0 to 6 months, more than 6 months to 12 months, more than 12 months to 18 months, more than 18 months to 36 months, and more than 36 months to 48 months). Data were analyzed as a complete randomized design. Concentration of sIgA did not change due to species or its interaction with MPP. Crude protein, regardless of MPP, was greater for gorillas compared with orangutans (1.27 vs. 0.85%). Fat, sugar, and gross energy were affected by the interaction of species × MPP. For gorilla milk, concentrations of sIgA were 43 mg/L at 6 MPP increasing to 79 mg/L at 48 MPP. Protein was highest at 48 MPP. Sugar was lowest at 48 MPP. Values for fat and gross energy were the highest 36 MPP. For orangutan milk, concentrations of sIgA were highest at 6 MPP. Sugar decreased with MPP. Protein, dry matter, or fat were unaffected by MPP. Gross energy content was steady during the first 18 MPP but it tended to decrease by 36 MPP. The results indicate that macronutrients are similar between human, published data, and great ape milk, though gorilla milk has higher protein and human milk higher fat (published data). Concentrations of sIgA in ape milk were about 10-fold lower than human values from the literature. Differences between human and ape milk may lie more in bioactive/immune molecules than nutrients. RESEARCH HIGHLIGHTS Milk macronutrients from great apes differed throughout lactation. Milk macronutrients but not IgA from non-human great apes and humans were quite similar. Milk protein was greater in Gorilla compared with Orangutan.
Collapse
Affiliation(s)
- Miriam Garcia
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland
| | - Michael L Power
- Nutrition Laboratory, Smithsonian National Zoological Park, Washington, District of Columbia
| | - Kasey M Moyes
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland
| |
Collapse
|
6
|
The well-tempered SIV infection: Pathogenesis of SIV infection in natural hosts in the wild, with emphasis on virus transmission and early events post-infection that may contribute to protection from disease progression. INFECTION GENETICS AND EVOLUTION 2016; 46:308-323. [PMID: 27394696 DOI: 10.1016/j.meegid.2016.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 12/25/2022]
Abstract
African NHPs are infected by over 40 different simian immunodeficiency viruses. These viruses have coevolved with their hosts for long periods of time and, unlike HIV in humans, infection does not generally lead to disease progression. Chronic viral replication is maintained for the natural lifespan of the host, without loss of overall immune function. Lack of disease progression is not correlated with transmission, as SIV infection is highly prevalent in many African NHP species in the wild. The exact mechanisms by which these natural hosts of SIV avoid disease progression are still unclear, but a number of factors might play a role, including: (i) avoidance of microbial translocation from the gut lumen by preventing or repairing damage to the gut epithelium; (ii) control of immune activation and apoptosis following infection; (iii) establishment of an anti-inflammatory response that resolves chronic inflammation; (iv) maintenance of homeostasis of various immune cell populations, including NK cells, monocytes/macrophages, dendritic cells, Tregs, Th17 T-cells, and γδ T-cells; (v) restriction of CCR5 availability at mucosal sites; (vi) preservation of T-cell function associated with down-regulation of CD4 receptor. Some of these mechanisms might also be involved in protection of natural hosts from mother-to-infant SIV transmission during breastfeeding. The difficulty of performing invasive studies in the wild has prohibited investigation of the exact events surrounding transmission in natural hosts. Increased understanding of the mechanisms of SIV transmission in natural hosts, and of the early events post-transmission which may contribute to avoidance of disease progression, along with better comprehension of the factors involved in protection from SIV breastfeeding transmission in the natural hosts, could prove invaluable for the development of new prevention strategies for HIV.
Collapse
|
7
|
Combined HIV-1 Envelope Systemic and Mucosal Immunization of Lactating Rhesus Monkeys Induces a Robust Immunoglobulin A Isotype B Cell Response in Breast Milk. J Virol 2016; 90:4951-4965. [PMID: 26937027 DOI: 10.1128/jvi.00335-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 02/24/2016] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Maternal vaccination to induce anti-HIV immune factors in breast milk is a potential intervention to prevent postnatal HIV-1 mother-to-child transmission (MTCT). We previously demonstrated that immunization of lactating rhesus monkeys with a modified vaccinia Ankara (MVA) prime/intramuscular (i.m.) protein boost regimen induced functional IgG responses in milk, while MVA prime/intranasal (i.n.) boost induced robust milk Env-specific IgA responses. Yet, recent studies have suggested that prevention of postnatal MTCT may require both Env-specific IgA and functional IgG responses in milk. Thus, to investigate whether both responses could be elicited by a combined systemic/mucosal immunization strategy, animals previously immunized with the MVA prime/i.n. boost regimen received an i.n./i.m. combined C.1086 gp120 boost. Remarkably, high-magnitude Env-specific IgA responses were observed in milk, surpassing those in plasma. Furthermore, 29% of vaccine-elicited Env-specific B cells isolated from breast milk were IgA isotype, in stark contrast to the overwhelming predominance of IgG isotype Env-specific B cells in breast milk of chronically HIV-infected women. A clonal relationship was identified between Env-specific blood and breast milk B cells, suggesting trafficking of that cell population between the two compartments. Furthermore, IgA and IgG monoclonal antibodies isolated from Env-specific breast milk B cells demonstrated diverse Env epitope specificities and multiple effector functions, including tier 1 neutralization, antibody-dependent cellular cytotoxicity (ADCC), infected cell binding, and inhibition of viral attachment to epithelial cells. Thus, maternal i.n./i.m. combined immunization is a novel strategy to enhance protective Env-specific IgA in milk, which is subsequently transferred to the infant via breastfeeding. IMPORTANCE Efforts to increase the availability of antiretroviral therapy to pregnant and breastfeeding women in resource-limited areas have proven remarkably successful at reducing HIV vertical transmission rates. However, more than 200,000 children are infected annually due to failures in therapy implementation, monitoring, and adherence, nearly half by postnatal HIV exposure via maternal breast milk. Intriguingly, in the absence of antiretroviral therapy, only 10% of breastfed infants born to HIV-infected mothers acquire the virus, suggesting the existence of naturally protective immune factors in milk. Enhancement of these protective immune factors through maternal vaccination will be a critical strategy to reduce the global pediatric AIDS epidemic. We have previously demonstrated that a high magnitude of HIV Env-specific IgA in milk correlates with reduced risk of infant HIV acquisition. In this study, we describe a novel HIV vaccine regimen that induces potent IgA responses in milk and therefore could potentially protect against breast milk HIV MTCT.
Collapse
|
8
|
Rapid Development of gp120-Focused Neutralizing B Cell Responses during Acute Simian Immunodeficiency Virus Infection of African Green Monkeys. J Virol 2015; 89:9485-98. [PMID: 26157116 DOI: 10.1128/jvi.01564-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 06/30/2015] [Indexed: 02/02/2023] Open
Abstract
UNLABELLED The initial phases of acute human immunodeficiency virus type 1 (HIV-1) infection may be critical for development of effective envelope (Env)-specific antibodies capable of impeding the establishment of the latent pool of HIV-1-infected CD4(+) T cells, preventing virus-induced immune hyperactivation to limit disease progression and blocking vertical virus transmission. However, the initial systemic HIV-1 Env-specific antibody response targets gp41 epitopes and fails to control acute-phase viremia. African-origin, natural simian immunodeficiency virus (SIV) hosts do not typically progress to AIDS and rarely postnatally transmit virus to their infants, despite high milk viral loads. Conversely, SIV-infected rhesus macaques (RMs), Asian-origin nonnatural SIV hosts, sustain pathogenic SIV infections and exhibit higher rates of postnatal virus transmission. In this study, of acute SIV infection, we compared the initial systemic Env-specific B cell responses of AGMs and RMs in order to probe potential factors influencing the lack of disease progression observed in AGMs. AGMs developed higher-magnitude plasma gp120-specific IgA and IgG responses than RMs, whereas RMs developed more robust gp140-directed IgG responses. These gp120-focused antibody responses were accompanied by rapid autologous neutralizing responses during acute SIV infection in AGMs compared to RMs. Moreover, acute SIV infection elicited a higher number of circulating Env-specific memory B cells in peripheral blood of AGMs than in the blood of RMs. These findings indicate that AGMs have initial systemic Env-specific B cell responses to SIV infection distinct from those of a nonnatural SIV host, resulting in more functional SIV-specific humoral responses, which may be involved in impairing pathogenic disease progression and minimizing postnatal transmission. IMPORTANCE Due to the worldwide prevalence of HIV-1 infections, development of a vaccine to prevent infection or limit the viral reservoir remains an important goal. HIV-1-infected humans, as well as SIV-infected nonnatural SIV hosts, develop pathogenic infections and readily transmit the virus to their infants. Conversely, natural SIV hosts do not develop pathogenic infections and rarely transmit the virus to their infants. The immunologic factors contributing to these favorable outcomes in natural SIV hosts could prove invaluable for directing HIV-1 vaccine and therapy design. This study identified distinctions in the specificity and function of the initial systemic SIV envelope-specific B cell response that developed during acute SIV infection in natural and nonnatural SIV host species. Identification of distinct acute B cell responses in natural SIV hosts may inform vaccine strategies seeking to elicit similar responses prior to or during the initial phases of acute HIV-1 infection.
Collapse
|
9
|
Sacha C, Vandergrift N, Jeffries T, McGuire E, Fouda G, Liebl B, Marshall D, Gurley T, Stiegel L, Whitesides J, Friedman J, Badiabo A, Foulger A, Yates N, Tomaras G, Kepler T, Liao H, Haynes B, Moody M, Permar S. Restricted isotype, distinct variable gene usage, and high rate of gp120 specificity of HIV-1 envelope-specific B cells in colostrum compared with those in blood of HIV-1-infected, lactating African women. Mucosal Immunol 2015; 8:316-26. [PMID: 25100291 PMCID: PMC4320043 DOI: 10.1038/mi.2014.69] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 07/07/2014] [Indexed: 02/04/2023]
Abstract
A successful HIV-1 vaccine must elicit immune responses that impede mucosal virus transmission, though functional roles of protective HIV-1 Envelope (Env)-specific mucosal antibodies remain unclear. Colostrum is a rich source of readily accessible mucosal B cells that may help define the mucosal antibody response contributing to prevention of postnatal HIV-1 transmission. To examine the HIV-1 Env-specific colostrum B-cell repertoire, single B cells were isolated from 17 chronically HIV-infected, lactating women, producing 51 blood and 39 colostrum HIV-1 Env-specific B-cell antibodies. All HIV-1 Env-specific colostrum-derived antibodies were immunoglobulin (Ig)G1 isotype and had mean heavy chain complementarity-determining region 3 (CDR3) lengths and mutation frequencies similar to those isolated from blood. However, variable heavy chain (VH) gene subfamily 1(∼)69 usage was higher among colostrum than blood HIV-1 Env-reactive antibodies (49% vs. 20%, P=0.006, Fisher's exact test). Additionally, more HIV-1 Env-specific colostrum antibodies were gp120 specific than those isolated from blood (44% vs. 16%, P=0.005, Fisher's exact test). One cross-compartment HIV-1 Env-specific clonal B-cell lineage was identified. These unique characteristics of colostrum B-cell antibodies suggest selective homing of HIV-1-specific IgG1-secreting memory B cells to the mammary gland and have implications for targeting mucosal B-cell populations by vaccination.
Collapse
Affiliation(s)
- C.R. Sacha
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - N. Vandergrift
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - T.L. Jeffries
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - E. McGuire
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - G.G. Fouda
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - B. Liebl
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - D.J. Marshall
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - T.C. Gurley
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - L. Stiegel
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - J.F. Whitesides
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - J. Friedman
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - A. Badiabo
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - A. Foulger
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - N.L. Yates
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - G.D. Tomaras
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - T.B. Kepler
- Boston University School of Medicine, Boston, MA, USA
| | - H.X. Liao
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - B.F. Haynes
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - M.A. Moody
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - S.R. Permar
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA,Corresponding author. Mailing address: Human Vaccine Institute, Duke University Medical Center, Box 103020, Durham, NC 27710. Fax: 919-684-5230. Phone: 919-684-2515.
| |
Collapse
|
10
|
Smith SD, Amos JD, Beck KN, Colvin LM, Franke KS, Liebl BE, Permar SR. Refinement of a protocol for the induction of lactation in nonpregnant nonhuman primates by using exogenous hormone treatment. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2014; 53:700-707. [PMID: 25650978 PMCID: PMC4253585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/03/2014] [Accepted: 04/07/2014] [Indexed: 06/04/2023]
Abstract
Obtaining sufficient quantities of milk from NHP is necessary for pharmacologic and immunologic studies required for the development and safety assessment of drugs and vaccines to be used in the maternal-infant setting. We previously induced lactation in nonpregnant female rhesus macaques (RM, Macaca mulatta) and African green monkeys (AGM, Chlorocebus sabaeus) for studies of immune responses in milk, but the volume collected was variable. To improve lactation induction protocols for nonbreeding nonhuman primates, we investigated serum hormone levels and collection protocols in AGM and RM. Here, we correlated milk volume with serum levels of endogenous and administered hormones: estradiol, prolactin, progesterone, and medroxyprogesterone in RM and AGM. We also investigated whether age, parity or the timing of milk collections were associated with the volume of milk collected from the AGM and RM in which lactation was induced by using exogenous hormones. We found an inverse correlation with serum estradiol and milk volume in the RM but no significant correlation between milk volumes and the remaining serum hormone levels in the induced RM or AGM. In addition, HIL AGM had higher peak estradiol levels than did naturally lactating AGM. A revised estradiol-sparing protocol increased milk volumes in the AGM. In addition, milk volume in RM was greater in the morning than the afternoon. In conclusion, we have refined a lactation induction protocol in nonpregnant primates, which is a needed alternative to using nursing primates for the assessment of drug levels and immune responses in milk.
Collapse
Affiliation(s)
- Shannon D Smith
- Division of Laboratory Animal Resources, Duke University Medical Center, Durham, North Carolina, USA
| | - Joshua D Amos
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Krista N Beck
- Division of Laboratory Animal Resources, Duke University Medical Center, Durham, North Carolina, USA
| | - Lisa M Colvin
- Division of Laboratory Animal Resources, Duke University Medical Center, Durham, North Carolina, USA
| | - Kelly S Franke
- Division of Laboratory Animal Resources, Duke University Medical Center, Durham, North Carolina, USA
| | - Brooke E Liebl
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Sallie R Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
11
|
Palaia JM, McConnell M, Achenbach JE, Gustafson CE, Stoermer KA, Nolan M, Guay LA, Leitner TK, Matovu F, Taylor AW, Fowler MG, Janoff EN. Neutralization of HIV subtypes A and D by breast milk IgG from women with HIV infection in Uganda. J Infect 2013; 68:264-72. [PMID: 24239588 DOI: 10.1016/j.jinf.2013.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 11/01/2013] [Accepted: 11/07/2013] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Among HIV-exposed infants in resource-limited countries, 8-12% are infected postnatally by breastfeeding. However, most of those uninfected at birth remain uninfected over time despite daily exposure to HIV in breast milk. Thus, we assessed the HIV-inhibitory activity of breast milk. METHODS We measured cross-clade neutralization in activated PBMC of Ugandan subtype A (92UG031) and D (92UG005) primary HIV by breast milk or purified milk IgG and IgA from 25 HIV-infected Ugandan women. Isotype-specific antigen recognition was resolved by immunoblot. We determined HIV subtype from envelope population sequences in cells from 13 milk samples by PCR. RESULTS Milk inhibited p24 production by ≥50% (dose-dependent) by subtype A (21/25; 84%) and subtype D (11/25; 44%). IgG consistently reacted with multiple HIV antigens, including gp120/gp41, but IgA primarily recognized p24 alone. Depletion of IgG (n = 5), not IgA, diminished neutralization (mean 78 ± 33%) that was largely restored by IgG repletion. Mothers infected with subtype A more effectively neutralized subtype A than D. CONCLUSIONS Breast milk from HIV-infected women showed homotypic and cross-subtype neutralization of HIV by IgG-dependent and -independent mechanisms. These data direct further investigations into mechanisms of resistance against postnatal transmission of HIV to infants from their mothers.
Collapse
Affiliation(s)
- Jana M Palaia
- Mucosal and Vaccine Research Colorado (MAVRC), University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Denver Veterans Affairs Medical Center, Denver, CO 80220, USA
| | | | - Jenna E Achenbach
- Mucosal and Vaccine Research Colorado (MAVRC), University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Claire E Gustafson
- Mucosal and Vaccine Research Colorado (MAVRC), University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Denver Veterans Affairs Medical Center, Denver, CO 80220, USA
| | - Kristina A Stoermer
- Mucosal and Vaccine Research Colorado (MAVRC), University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Monica Nolan
- Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Laura A Guay
- Makerere University - Johns Hopkins University, Kampala, Uganda
| | | | - Flavia Matovu
- Makerere University - Johns Hopkins University, Kampala, Uganda
| | - Allan W Taylor
- Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | | | - Edward N Janoff
- Mucosal and Vaccine Research Colorado (MAVRC), University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Denver Veterans Affairs Medical Center, Denver, CO 80220, USA.
| |
Collapse
|
12
|
Braibant M, Barin F. The role of neutralizing antibodies in prevention of HIV-1 infection: what can we learn from the mother-to-child transmission context? Retrovirology 2013; 10:103. [PMID: 24099103 PMCID: PMC3851888 DOI: 10.1186/1742-4690-10-103] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 09/10/2013] [Indexed: 01/12/2023] Open
Abstract
In most viral infections, protection through existing vaccines is linked to the presence of vaccine-induced neutralizing antibodies (NAbs). However, more than 30 years after the identification of AIDS, the design of an immunogen able to induce antibodies that would neutralize the highly diverse HIV-1 variants remains one of the most puzzling challenges of the human microbiology. The role of antibodies in protection against HIV-1 can be studied in a natural situation that is the mother-to-child transmission (MTCT) context. Indeed, at least at the end of pregnancy, maternal antibodies of the IgG class are passively transferred to the fetus protecting the neonate from new infections during the first weeks or months of life. During the last few years, strong data, presented in this review, have suggested that some NAbs might confer protection toward neonatal HIV-1 infection. In cases of transmission, it has been shown that the viral population that is transmitted from the mother to the infant is usually homogeneous, genetically restricted and resistant to the maternal HIV-1-specific antibodies. Although the breath of neutralization was not associated with protection, it has not been excluded that NAbs toward specific HIV-1 strains might be associated with a lower rate of MTCT. A better identification of the antibody specificities that could mediate protection toward MTCT of HIV-1 would provide important insights into the antibody responses that would be useful for vaccine development. The most convincing data suggesting that NAbs migh confer protection against HIV-1 infection have been obtained by experiments of passive immunization of newborn macaques with the first generation of human monoclonal broadly neutralizing antibodies (HuMoNAbs). However, these studies, which included only a few selected subtype B challenge viruses, provide data limited to protection against a very restricted number of isolates and therefore have limitations in addressing the hypervariability of HIV-1. The recent identification of highly potent second-generation cross-clade HuMoNAbs provides a new opportunity to evaluate the efficacy of passive immunization to prevent MTCT of HIV-1.
Collapse
Affiliation(s)
- Martine Braibant
- Université François-Rabelais, UFR Médecine, Inserm U966 10 bld Tonnellé, cedex, 37032 Tours, France.
| | | |
Collapse
|
13
|
Lack of B cell dysfunction is associated with functional, gp120-dominant antibody responses in breast milk of simian immunodeficiency virus-infected African green monkeys. J Virol 2013; 87:11121-34. [PMID: 23926338 DOI: 10.1128/jvi.01887-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The design of an effective vaccine to reduce the incidence of mother-to-child transmission (MTCT) of human immunodeficiency virus (HIV) via breastfeeding will require identification of protective immune responses that block postnatal virus acquisition. Natural hosts of simian immunodeficiency virus (SIV) sustain nonpathogenic infection and rarely transmit the virus to their infants despite high milk virus RNA loads. This is in contrast to HIV-infected women and SIV-infected rhesus macaques (RhMs), nonnatural hosts which exhibit higher rates of postnatal virus transmission. In this study, we compared the systemic and mucosal B cell responses of lactating, SIV-infected African green monkeys (AGMs), a natural host species, to that of SIV-infected RhMs and HIV-infected women. AGMs did not demonstrate hypergammaglobulinemia or accumulate circulating memory B cells during chronic SIV infection. Moreover, the milk of SIV-infected AGMs contained higher proportions of naive B cells than RhMs. Interestingly, AGMs exhibited robust milk and plasma Env binding antibody responses that were one to two logs higher than those in RhMs and humans and demonstrated autologous neutralizing responses in milk at 1 year postinfection. Furthermore, the plasma and milk Env gp120-binding antibody responses were equivalent to or predominant over Env gp140-binding antibody responses in AGMs, in contrast to that in RhMs and humans. The strong gp120-specific, functional antibody responses in the milk of SIV-infected AGMs may contribute to the rarity of postnatal transmission observed in natural SIV hosts.
Collapse
|
14
|
Moussa S, Jenabian MA, Gody JC, Léal J, Grésenguet G, Le Faou A, Bélec L. Adaptive HIV-specific B cell-derived humoral immune defenses of the intestinal mucosa in children exposed to HIV via breast-feeding. PLoS One 2013; 8:e63408. [PMID: 23704905 PMCID: PMC3660449 DOI: 10.1371/journal.pone.0063408] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 04/01/2013] [Indexed: 11/30/2022] Open
Abstract
Background We evaluated whether B cell-derived immune defenses of the gastro-intestinal tract are activated to produce HIV-specific antibodies in children continuously exposed to HIV via breast-feeding. Methods Couples of HIV-1-infected mothers (n = 14) and their breastfed non HIV-infected (n = 8) and HIV-infected (n = 6) babies, and healthy HIV-negative mothers and breastfed babies (n = 10) as controls, were prospectively included at the Complexe Pédiatrique of Bangui, Central African Republic. Immunoglobulins (IgA, IgG and IgM) and anti-gp160 antibodies from mother’s milk and stools of breastfed children were quantified by ELISA. Immunoaffinity purified anti-gp160 antibodies were characterized functionally regarding their capacity to reduce attachment and/or infection of R5- and X4- tropic HIV-1 strains on human colorectal epithelial HT29 cells line or monocyte-derived-macrophages (MDM). Results The levels of total IgA and IgG were increased in milk of HIV-infected mothers and stools of HIV-exposed children, indicating the activation of B cell-derived mucosal immunity. Breast milk samples as well as stool samples from HIV-negative and HIV-infected babies exposed to HIV by breast-feeding, contained high levels of HIV-specific antibodies, mainly IgG antibodies, less frequently IgA antibodies, and rarely IgM antibodies. Relative ratios of excretion by reference to lactoferrin calculated for HIV-specific IgA, IgG and IgM in stools of HIV-exposed children were largely superior to 1, indicating active production of HIV-specific antibodies by the intestinal mucosa. Antibodies to gp160 purified from pooled stools of HIV-exposed breastfed children inhibited the attachment of HIV-1NDK on HT29 cells by 63% and on MDM by 77%, and the attachment of HIV-1JRCSF on MDM by 40%; and the infection of MDM by HIV-1JRCSF by 93%. Conclusions The intestinal mucosa of children exposed to HIV by breast-feeding produces HIV-specific antibodies harbouring in vitro major functional properties against HIV. These observations lay the conceptual basis for the design of a prophylactic vaccine against HIV in exposed children.
Collapse
Affiliation(s)
- Sandrine Moussa
- Institut Pasteur de Bangui, Laboratoire des Rétrovirus-VIH, Bangui, Central African Republic.
| | | | | | | | | | | | | |
Collapse
|
15
|
Mucosal immunization of lactating female rhesus monkeys with a transmitted/founder HIV-1 envelope induces strong Env-specific IgA antibody responses in breast milk. J Virol 2013; 87:6986-99. [PMID: 23596289 DOI: 10.1128/jvi.00528-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We previously demonstrated that vaccination of lactating rhesus monkeys with a DNA prime/vector boost strategy induces strong T-cell responses but limited envelope (Env)-specific humoral responses in breast milk. To improve vaccine-elicited antibody responses in milk, hormone-induced lactating rhesus monkeys were vaccinated with a transmitted/founder (T/F) HIV Env immunogen in a prime-boost strategy modeled after the moderately protective RV144 HIV vaccine. Lactating rhesus monkeys were intramuscularly primed with either recombinant DNA (n = 4) or modified vaccinia virus Ankara (MVA) poxvirus vector (n = 4) expressing the T/F HIV Env C.1086 and then boosted twice intramuscularly with C.1086 gp120 and the adjuvant MF59. The vaccines induced Env-binding IgG and IgA as well as neutralizing and antibody-dependent cellular cytotoxicity (ADCC) responses in plasma and milk of most vaccinated animals. Importantly, plasma neutralization titers against clade C HIV variants MW965 (P = 0.03) and CAP45 (P = 0.04) were significantly higher in MVA-primed than in DNA-primed animals. The superior systemic prime-boost regimen was then compared to a mucosal-boost regimen, in which animals were boosted twice intranasally with C.1086 gp120 and the TLR 7/8 agonist R848 following the same systemic prime. While the systemic and mucosal vaccine regimens elicited comparable levels of Env-binding IgG antibodies, mucosal immunization induced significantly stronger Env-binding IgA responses in milk (P = 0.03). However, the mucosal regimen was not as potent at inducing functional IgG responses. This study shows that systemic MVA prime followed by either intranasal or systemic protein boosts can elicit strong humoral responses in breast milk and may be a useful strategy to interrupt postnatal HIV-1 transmission.
Collapse
|
16
|
He X, Li D, Luo Z, Liang H, Peng H, Zhao Y, Wang N, Liu D, Qin C, Wei Q, Yan H, Shao Y. Compromised NK cell-mediated antibody-dependent cellular cytotoxicity in chronic SIV/SHIV infection. PLoS One 2013; 8:e56309. [PMID: 23424655 PMCID: PMC3570461 DOI: 10.1371/journal.pone.0056309] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 01/10/2013] [Indexed: 11/18/2022] Open
Abstract
Increasing evidence indicates that antibody-dependent cellular cytotoxicity (ADCC) contributes to the control of HIV/SIV infection. However, little is known about the ADCC function of natural killer (NK) cells in non-human primate model. Here we demonstrated that ADCC function of NK cells was significantly compromised in chronic SIV/SHIV infection, correlating closely with the expression of FcγRIIIa receptor (CD16) on NK cells. CD32, another class of IgG Fc receptors, was identified on NK cells with higher expression in the infected macaques and the blockade of CD32 impacted the ability of NK cells to respond to antibody-coated target cells. The inhibition of matrix metalloproteases (MMPs), a group of enzymes normally involved in tissue/receptor remodeling, could restore NK cell-mediated ADCC with increased CD16 expression on macaque NK cells. These data offer a clearer understanding of NK cell-mediated ADCC in rhesus macaques, which will allow us to evaluate the ADCC repertoire arising from preclinical vaccination studies in non-human primates and inform us in the future design of effective HIV vaccination strategies.
Collapse
Affiliation(s)
- Xuan He
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dan Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhenwu Luo
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hua Liang
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hong Peng
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yangyang Zhao
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Nidan Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Donghua Liu
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chuan Qin
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qiang Wei
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Huimin Yan
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- * E-mail: (HMY); (YMS)
| | - Yiming Shao
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- * E-mail: (HMY); (YMS)
| |
Collapse
|
17
|
Thakkar SV, Allegre KM, Joshi SB, Volkin DB, Middaugh CR. An Application of Ultraviolet Spectroscopy to Study Interactions in Proteins Solutions at High Concentrations. J Pharm Sci 2012; 101:3051-61. [DOI: 10.1002/jps.23188] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 04/12/2012] [Accepted: 04/24/2012] [Indexed: 11/11/2022]
|
18
|
Friedman J, Alam SM, Shen X, Xia SM, Stewart S, Anasti K, Pollara J, Fouda GG, Yang G, Kelsoe G, Ferrari G, Tomaras GD, Haynes BF, Liao HX, Moody MA, Permar SR. Isolation of HIV-1-neutralizing mucosal monoclonal antibodies from human colostrum. PLoS One 2012; 7:e37648. [PMID: 22624058 PMCID: PMC3356285 DOI: 10.1371/journal.pone.0037648] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 04/23/2012] [Indexed: 11/19/2022] Open
Abstract
Background Generation of potent anti-HIV antibody responses in mucosal compartments is a potential requirement of a transmission-blocking HIV vaccine. HIV-specific, functional antibody responses are present in breast milk, and these mucosal antibody responses may play a role in protection of the majority of HIV-exposed, breastfeeding infants. Therefore, characterization of HIV-specific antibodies produced by B cells in milk could guide the development of vaccines that elicit protective mucosal antibody responses. Methods We isolated B cells from colostrum of an HIV-infected lactating woman with a detectable neutralization response in milk and recombinantly produced and characterized the resulting HIV-1 Envelope (Env)-specific monoclonal antibodies (mAbs). Results The identified HIV-1 Env-specific colostrum mAbs, CH07 and CH08, represent two of the first mucosally-derived anti-HIV antibodies yet to be reported. Colostrum mAb CH07 is a highly-autoreactive, weakly-neutralizing gp140-specific mAb that binds to linear epitopes in the gp120 C5 region and gp41 fusion domain. In contrast, colostrum mAb CH08 is a nonpolyreactive CD4-inducible (CD4i) gp120-specific mAb with moderate breadth of neutralization. Conclusions These novel HIV-neutralizing mAbs isolated from a mucosal compartment provide insight into the ability of mucosal B cell populations to produce functional anti-HIV antibodies that may contribute to protection against virus acquisition at mucosal surfaces.
Collapse
Affiliation(s)
- James Friedman
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States
| | - S. Munir Alam
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States
| | - Xiaoying Shen
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States
| | - Shi-Mao Xia
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States
| | - Shelley Stewart
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States
| | - Kara Anasti
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States
| | - Justin Pollara
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States
| | - Genevieve G. Fouda
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States
| | - Guang Yang
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States
| | - Garnett Kelsoe
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States
| | - Guido Ferrari
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States
| | - Georgia D. Tomaras
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States
| | - Barton F. Haynes
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States
| | - Hua-Xin Liao
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States
| | - M. Anthony Moody
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States
| | - Sallie R. Permar
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States
- * E-mail:
| |
Collapse
|
19
|
Bélec L, Kourtis AP. B lymphocyte-derived humoral immune defenses in breast milk transmission of the HIV-1. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 743:139-60. [PMID: 22454347 DOI: 10.1007/978-1-4614-2251-8_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Laurent Bélec
- Sorbonne Paris Cité (Paris V), and Laboratoire de Virologie, Hôpital Européen Georges Pompidou, Université Paris Descartes, 15-20 rue Leblanc, 75 908, Paris Cedex 15, France.
| | | |
Collapse
|
20
|
Ehlinger EP, Webster EM, Kang HH, Cangialose A, Simmons AC, Barbas KH, Burchett SK, Gregory ML, Puopolo KM, Puopolo KP, Permar SR. Maternal cytomegalovirus-specific immune responses and symptomatic postnatal cytomegalovirus transmission in very low-birth-weight preterm infants. J Infect Dis 2011; 204:1672-82. [PMID: 21984738 DOI: 10.1093/infdis/jir632] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION Transmission of cytomegalovirus (CMV) via breast milk can lead to severe acute illness in very low-birth-weight (VLBW) preterm infants. Although the majority of CMV-seropositive women shed CMV in milk, symptomatic postnatal infection of VLBW infants occurs infrequently, suggesting that virologic or immunologic factors in milk may be associated with the risk and severity of postnatal CMV infection. METHODS We investigated the magnitude of CMV-specific cellular and humoral immune responses in milk of 30 seropositive mothers of VLWB preterm infants and assessed their relationship to milk CMV load and symptomatic CMV transmission. RESULTS Milk immunoglobulin G (IgG) avidity was inversely correlated to milk CMV load (r = -0.47; P = .009). However, milk CMV load and CMV-specific cellular and humoral immune responses were similar in mothers of VLBW infants with and those without symptomatic postnatal CMV infection. CONCLUSIONS Similar immunologic parameters in milk of CMV-seropositive mothers of VLBW infants with and without symptomatic postnatal CMV infection indicate that screening milk by these parameters may not predict disease risk. However, the inverse correlation between milk CMV IgG avidity and CMV load may suggest that enhancement of maternal CMV-specific IgG responses could aid in reduction of CMV shedding into breast milk.
Collapse
Affiliation(s)
- Elizabeth P Ehlinger
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
HIV-specific functional antibody responses in breast milk mirror those in plasma and are primarily mediated by IgG antibodies. J Virol 2011; 85:9555-67. [PMID: 21734046 DOI: 10.1128/jvi.05174-11] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite months of mucosal virus exposure, the majority of breastfed infants born to HIV-infected mothers do not become infected, raising the possibility that immune factors in milk inhibit mucosal transmission of HIV. HIV Envelope (Env)-specific antibodies are present in the milk of HIV-infected mothers, but little is known about their virus-specific functions. In this study, HIV Env-specific antibody binding, autologous and heterologous virus neutralization, and antibody-dependent cell cytotoxicity (ADCC) responses were measured in the milk and plasma of 41 HIV-infected lactating women. Although IgA is the predominant antibody isotype in milk, HIV Env-specific IgG responses were higher in magnitude than HIV Env-specific IgA responses in milk. The concentrations of anti-HIV gp120 IgG in milk and plasma were directly correlated (r = 0.75; P < 0.0001), yet the response in milk was 2 logarithm units lower than in plasma. Similarly, heterologous virus neutralization (r = 0.39; P = 0.010) and ADCC activity (r = 0.64; P < 0.0001) in milk were directly correlated with that in the systemic compartment but were 2 log units lower in magnitude. Autologous neutralization was rarely detected in milk. Milk heterologous virus neutralization titers correlated with HIV gp120 Env-binding IgG responses but not with IgA responses (r = 0.71 and P < 0.0001, and r = 0.17 and P = 0.30). Moreover, IgGs purified from milk and plasma had equal neutralizing potencies against a tier 1 virus (r = 0.65; P < 0.0001), whereas only 1 out of 35 tested non-IgG milk fractions had detectable neutralization. These results suggest that plasma-derived IgG antibodies mediate the majority of the low-level HIV neutralization and ADCC activity in breast milk.
Collapse
|
22
|
High cell-free virus load and robust autologous humoral immune responses in breast milk of simian immunodeficiency virus-infected african green monkeys. J Virol 2011; 85:9517-26. [PMID: 21734053 DOI: 10.1128/jvi.00796-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The design of immunologic interventions to prevent postnatal transmission of human immunodeficiency virus (HIV) will require identification of protective immune responses in this setting. Simian immunodeficiency virus (SIV)-infected rhesus monkeys (RMs), a species that develops an AIDS-like illness following experimental infection, transmit the virus at a high rate during breastfeeding. In contrast, postnatal transmission of SIV occurs rarely or not at all in natural, asymptomatic primate hosts of SIV. These contrasting transmission patterns provide a unique opportunity to study mechanisms that evolved to protect suckling infants from SIV infection. We compared the virologic and immunologic properties of milk of SIV-infected and uninfected natural hosts of SIV, African green monkeys (AGMs), to that of RMs. Interestingly, despite a low number of milk CD4(+) T lymphocytes in uninfected AGMs, milk virus RNA load in SIV-infected AGMs was comparable to that of SIV-infected RMs and that in AGM plasma. This observation is in contrast to the relatively low virus load in milk compared to that in plasma of SIV-infected RMs and HIV-infected women. Milk of SIV-infected AGMs also displayed robust virus-specific cellular immune responses. Importantly, an autologous challenge virus-specific neutralization response was detected in milk of five of six SIV-infected AGMs that was comparable in magnitude to that in plasma. In contrast, autologous challenge virus neutralization was not detectable in milk of SIV-infected RMs. The autologous virus-specific adaptive immune responses in breast milk of AGMs may contribute to impedance of virus transmission in the infant oral/gastrointestinal tract and the rarity of postnatal virus transmission in natural hosts of SIV.
Collapse
|
23
|
Antibody-dependent cell-mediated cytotoxicity in simian immunodeficiency virus-infected rhesus monkeys. J Virol 2011; 85:6906-12. [PMID: 21593181 DOI: 10.1128/jvi.00326-11] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
With the recent demonstration in the RV144 Thai trial that a vaccine regimen that does not elicit neutralizing antibodies or cytotoxic T lymphocytes may confer protection against human immunodeficiency virus type 1 (HIV-1) infection, attention has turned to nonneutralizing antibodies as a possible mechanism of vaccine protection. In the current study, we evaluated the kinetics of the antibody-dependent cell-mediated cytotoxicity (ADCC) response during acute and chronic SIVmac251 infection of rhesus monkeys. We first adapted a flow cytometry-based ADCC assay, evaluating the use of different target cells as well as different strategies for quantitation of activated natural killer (NK) cells. We found that the use of SIVmac251 Env gp130-coated target cells facilitates analyses of ADCC activity with a higher degree of sensitivity than the use of simian immunodeficiency virus (SIV)-infected target cells; however, the kinetics of the measured responses were the same using these different target cells. By comparing NK cell expression of CD107a with NK cell expression of other cytokines or chemokine molecules, we found that measuring CD107a expression is sufficient for evaluating the anti-SIV function of NK cells. We also showed that ADCC responses can be detected as early as 3 weeks after SIVmac251 infection and that the magnitude of this antibody response is inversely associated with plasma viral RNA levels in animals with moderate to high levels of viral replication. However, we also demonstrated an association between NK cell-mediated ADCC responses and the amount of SIVmac251 gp140 binding antibody that developed after viral infection. This final observation raises the possibility that the antibodies that mediate ADCC are a subset of the antibodies detected in a binding assay and arise within weeks of infection.
Collapse
|