1
|
Chen XD, Li F, Zuo H, Zhu F. Trends in Prevalent Cases and Disability-Adjusted Life-Years of Depressive Disorders Worldwide: Findings From the Global Burden of Disease Study From 1990 to 2021. Depress Anxiety 2025; 2025:5553491. [PMID: 40313474 PMCID: PMC12045679 DOI: 10.1155/da/5553491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 03/28/2025] [Indexed: 05/03/2025] Open
Abstract
Background: Depression is a primary public health challenge that affects individuals of all ages. This study aims to reveal information on spatial and temporal changes in depression by describing temporal trend differences, regional differences, and gender differences. Materials and Methods: Utilizing data from the Global Burden of Disease Study 2021 (GBD2021) from 1990 to 2021, we outlined the prevalence and burden of depression among 204 countries in 21 regions, including age and sex disparities, and explored the correlation between depressive burden and the sociodemographic index (SDI). The age-standardized rates of prevalence (ASPR), disability-adjusted life years (DALYs, age-standardized DALY rate, ASDR), and estimated annual percentage change (EAPC) were employed to evaluate the global burden of depression. Results: Our study revealed a greater than 1.8-fold increase in prevalent cases and DALYs for global depressive disorder from 1990 to 2021. Globally, the age-standardized rates (ASRs) slightly declined, with a 1.32% decrease in the ASPR and a 1.84% decrease in the ASDR from 1990 to 2019. The main decline occurred from 2005 to 2010 (4.86% decrease in the ASPR and 6.09% decrease in the ASDR), with the majority of the contributions occurring in the low-middle-SDI and low-SDI regions. The global ASPR and ASDR experienced astonishing jumps from 2019 to 2021, resulting in increases of nearly 11% in the ASPR and 13% in the ASDR. Notably, the ASPR and ASDR of depression decreased in females but increased in males from 1990 to 2019 and reversed thereafter. From 1990 to 2021, among the 21 regions, the EAPCs in most regions were >0, with the only exceptional decline occurring in East Asia in the ASPR -0.06 [95% Cl:-0.10 to -0.03]) and ASDR -0.09 [95% Cl:-0.13 to -0.05]). Compared with those in other regions, the ASPR (0.42 [95% Cl: 0.34-0.49]) and ASDR (0.53 [95% Cl: 0.46-0.61]) were greater in high-income North America. Among the five SDI regions, the largest increases in ASPR (0.25 [95% Cl: 0.21-0.30]) and ASDR (0.31 [95% Cl: 0.26-0.37]) occurred in the high-SDI region, with the majority of the contributions occurring from 2019 to 2021. Worldwide, a decreasing trend and significant associations between the ASPR and the SDI (R = -0.22, p=0.0013) and between the ASDR and the SDI (R = -0.28, p < 0.001) were observed. Conclusion: Depression remains a serious challenge worldwide. The trends in depression burden varied across regions and groups. A vibrant socioeconomic environment could have a positive impact on the disease burden. Mental health should be incorporated into public health preparedness and emergency plans in practical ways on the basis of the national conditions of each country.
Collapse
Affiliation(s)
- Xiao-dan Chen
- Pharmaceutical Department, Guangzhou Twelfth People's Hospital, Guangzhou, China
| | - Feng Li
- Pharmaceutical Department, Guangzhou Twelfth People's Hospital, Guangzhou, China
| | - Hui Zuo
- Prevention and Health Department, Guangzhou Twelfth People's Hospital, Guangzhou, China
| | - Feng Zhu
- Central Laboratory, Guangzhou Twelfth People's Hospital, Guangzhou, China
| |
Collapse
|
2
|
Nguyen THV, Ferron F, Murakami K. Neurotoxic Implications of Human Coronaviruses in Neurodegenerative Diseases: A Perspective from Amyloid Aggregation. ACS Chem Biol 2025. [PMID: 40272376 DOI: 10.1021/acschembio.5c00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Human coronaviruses (HCoVs) include seven species: HCoV-229E, HCoV-NL63, HCoV-OC43, HCoV-HKU1, MERS-CoV, SARS-CoV-1, and SARS-CoV-2. The last three, classified as Betacoronaviruses, are highly transmissible and have caused severe pandemics. HCoV infections primarily affect the respiratory system, leading to symptoms such as dry cough, fever, and breath shortness, which can progress to acute respiratory failure and death. Beyond respiratory effects, increasing evidence links HCoVs to neurological dysfunction. However, distinguishing direct neural complications from preexisting disorders, particularly in the elderly, remains challenging. This study examines the association between HCoVs and neurodegenerative diseases like Alzheimer disease, Parkinson disease, Lewy body dementia, amyotrophic lateral sclerosis, and Creutzfeldt-Jakob disease. It also presents the long-term neurological effects of HCoV infections and their differential impact across age groups and sexes. A key aspect of this study is the investigation of the sequence and structural similarities between amyloidogenic and HCoV spike proteins, which can provide insights into potential neuropathomechanisms.
Collapse
Affiliation(s)
- Thi Hong Van Nguyen
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Francois Ferron
- Aix Marseille Univ, CNRS-Architecture et Fonction des Macromolécules Biologiques (AFMB) UMR7257, Marseille 13288, France
- European Virus Bioinformatics Center, Jena 07743, Germany
| | - Kazuma Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
3
|
Pons-Grífols A, Tarrés-Freixas F, Pérez M, Riveira-Muñoz E, Raïch-Regué D, Perez-Zsolt D, Muñoz-Basagoiti J, Tondelli B, Pradenas E, Izquierdo-Useros N, Capdevila S, Vergara-Alert J, Urrea V, Carrillo J, Ballana E, Forrow S, Clotet B, Segalés J, Trinité B, Blanco J. A human-ACE2 knock-in mouse model for SARS-CoV-2 infection recapitulates respiratory disorders but avoids neurological disease associated with the transgenic K18-hACE2 model. mBio 2025:e0072025. [PMID: 40272151 DOI: 10.1128/mbio.00720-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
Animal models have been instrumental in elucidating the pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and in testing coronavirus disease 2019 (COVID-19) vaccines and therapeutics. Wild-type (WT) mice are not susceptible to many SARS-CoV-2 variants, and therefore, transgenic K18-hACE2 mice have emerged as a standard model system. However, this model is characterized by a severe disease, particularly associated with neuroinfection, which leads to early humane endpoint euthanasia. Here, we established a novel knock-in (KI) mouse model by inserting the original K18-hACE2 transgene into the collagen type I alpha chain (COL1A1) locus using a recombinase-mediated cassette exchange (RMCE) system. Once the Col1a1-K18-hACE2 mouse colony was established, animals were challenged with a B.1 SARS-CoV-2 (D614G) isolate and were monitored for up to 14 days. Col1a1-K18-hACE2 mice exhibited an initial weight loss similar to the K18-hACE2 transgenic model but did not develop evident neurologic clinical signs. The majority of Col1a1-K18-hACE2 mice did not reach the pre-established humane endpoint, showing a progressive weight gain 9 days postinfection (dpi). Importantly, despite this apparent milder pathogenicity of the virus in this mouse model compared to the K18-hACE2 transgenic model, high levels of viral RNA were detected in the lungs, oropharyngeal swab, and nasal turbinates. Moreover, the remaining lesions and inflammation in the lungs were still observed 14 dpi. In contrast, although low-level viral RNA could be detected in a minority of Col1a1-K18-hACE2 animals, no brain lesions were observed at any timepoint. Overall, Col1a1-K18-hACE2 mice constitute a new model for investigating SARS-CoV-2 pathogenesis and treatments, with potential implications for studying long-term COVID-19 sequelae.IMPORTANCEK18-hACE2 mice express high levels of the human protein angiotensin-converting enzyme 2 (ACE2), the receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and are therefore susceptible to infection by this virus. These animals have been crucial to understanding viral pathogenesis and to testing coronavirus disease 2019 (COVID-19) vaccines and antiviral drugs. However, K18-hACE2 often dies after infection with initial SARS-CoV-2 variants, likely due to a massive brain infection that does not occur in humans. Here, we used a technology known as knock-in (KI) that allows for the targeted insertion of a gene into a mouse, and we have generated a new human ACE2 (hACE2) mouse. We have characterized this new animal model demonstrating that, upon challenge with SARS-CoV-2, the virus replicates in the respiratory tract, damaging lung tissue and causing inflammation. In contrast to K18-hACE2 mice, only limited or no brain infection could be detected in this new model. After 14 days, most animals recovered from the infection, although lung tissue lesions were still observed. This new model could be instrumental for the study of specific disease aspects such as post-COVID-19 condition, sequelae, and susceptibility to reinfection.
Collapse
Affiliation(s)
| | - Ferran Tarrés-Freixas
- IrsiCaixa, Can Ruti Campus, Badalona, Spain
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Mònica Pérez
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | | | | | | | | | - Barbara Tondelli
- Mouse Mutant Core Facility, Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Nuria Izquierdo-Useros
- IrsiCaixa, Can Ruti Campus, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- CIBER Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Madrid, Spain
| | - Sara Capdevila
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Júlia Vergara-Alert
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | | | - Jorge Carrillo
- IrsiCaixa, Can Ruti Campus, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- CIBER Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Madrid, Spain
| | - Ester Ballana
- IrsiCaixa, Can Ruti Campus, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Stephen Forrow
- Mouse Mutant Core Facility, Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Bonaventura Clotet
- IrsiCaixa, Can Ruti Campus, Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Joaquim Segalés
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Bellaterra, Spain
| | | | - Julià Blanco
- IrsiCaixa, Can Ruti Campus, Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- CIBER Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
4
|
Zhang C, Luo H, Deng Y, Li H, Yu X, Liu J, Huang L, Yang X, Jiang Q. The clinical risk and post-COVID-19 sequelae in patients with myasthenia gravis: a retrospective observational study. Front Neurol 2025; 16:1513649. [PMID: 40264651 PMCID: PMC12012726 DOI: 10.3389/fneur.2025.1513649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 03/17/2025] [Indexed: 04/24/2025] Open
Abstract
Background There are indeed several studies addressing the severity of Coronavirus disease 2019 (COVID-19) infection in myasthenia gravis (MG) patients. However, data on post-COVID-19 sequelae in MG patients remain limited. To address this gap, we collected clinical data on the condition and prognosis of MG patients with COVID-19 infection, aiming to investigate factors influencing both the severity of the infection and the occurrence of post-COVID-19 sequelae at 1 and 12 months after recovery. Method This was a retrospective analysis of 150 MG patients with COVID-19 infection from November 1, 2022 to March 1, 2023 at the First Affiliated Hospital of Guangzhou University of Chinese Medicine, including patient demographics, clinical characteristics, and post-COVID-19 sequelae. Multivariable binary logistic and linear regression models were employed to ascertain the variables influencing the severity. The evolution of the post-COVID-19 sequelae was analyzed using McNemar's test. Result In 150 MG patients, 128 (85.3%) patients were presented with COVID-19 infection, and 23 (18%) patients were hospitalized. The severity was associated with the daily corticosteroid dose (OR = 1.08, p = 0.02) and the frequency of myasthenia crises pre-COVID-19 (b = 7.8, t = 2.14, p = 0.035). Compared to normal patients, MG patients are more likely to experience post-COVID-19 sequelae such as insomnia, myalgia, dizziness, cough, expectoration, and sore throat at 12 months after recovery. Among these, the prevalence of myalgia, dizziness, rash, and vision impairment was significantly higher. Conclusion Compared to normal patients, MG patients are prone to developing severe COVID-19 infection, which is associated with the daily corticosteroid dose and the frequency of myasthenia crises pre-COVID-19. Additionally, they are prone to experiencing post-COVID-19 sequelae, including insomnia, myalgia, dizziness, cough, expectoration, and sore throat, at 12 months after recovery.
Collapse
Affiliation(s)
- Chaoyue Zhang
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haocheng Luo
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yufei Deng
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongjin Li
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiang Yu
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaxin Liu
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Linqi Huang
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaojun Yang
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qilong Jiang
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Borrego-Ruiz A, Borrego JJ. Involvement of virus infections and antiviral agents in schizophrenia. Psychol Med 2025; 55:e73. [PMID: 40059820 DOI: 10.1017/s0033291725000467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
BACKGROUND Schizophrenia is a chronic and complex mental disorder resulting from interactions between cumulative and synergistic genetic and environmental factors. Viral infection during the prenatal stage constitutes one of the most relevant risk factors for the development of schizophrenia later in adulthood. METHODS A narrative review was conducted to explore the link between viral infections and schizophrenia, as well as the neuropsychiatric effects of antiviral drugs, particularly in the context of this specific mental condition. Literature searches were performed using the PubMed, Scopus, and Web of Science databases. RESULTS Several viral infections, such as herpesviruses, influenza virus, Borna disease virus, and coronaviruses, can directly or indirectly disrupt normal fetal brain development by modifying gene expression in the maternal immune system, thereby contributing to the pathophysiological symptoms of schizophrenia. In addition, neuropsychiatric effects caused by antiviral drugs are frequent and represent significant adverse outcomes for viral treatment. CONCLUSIONS Epidemiological evidence suggests a potential relationship between viruses and schizophrenia. Increases in inflammatory cytokine levels and changes in the expression of key genes observed in several viral infections may constitute potential links between these viral infections and schizophrenia. Furthermore, antivirals may affect the central nervous system, although for most drugs, their mechanisms of action are still unclear, and a strong relationship between antivirals and schizophrenia has not yet been established.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Juan J Borrego
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA, Plataforma BIONAND, Málaga, Spain
| |
Collapse
|
6
|
Acioglu C, Elkabes S. Innate immune sensors and regulators at the blood brain barrier: focus on toll-like receptors and inflammasomes as mediators of neuro-immune crosstalk and inflammation. J Neuroinflammation 2025; 22:39. [PMID: 39955600 PMCID: PMC11829548 DOI: 10.1186/s12974-025-03360-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/27/2025] [Indexed: 02/17/2025] Open
Abstract
Cerebral endothelial cells (CEC) that form the brain capillaries are the principal constituents of the blood brain barrier (BBB), the main active interface between the blood and the brain which plays a protective role by restricting the infiltration of pathogens, harmful substances and immune cells into the brain while allowing the entry of essential nutrients. Aberrant CEC function often leads to increased permeability of the BBB altering the bidirectional communication between the brain and the bloodstream and facilitating the extravasation of immune cells into the brain. In addition to their role as essential gatekeepers of the BBB, CEC exhibit immune cell properties as they can receive and transmit signals between the blood and the brain partly via release of inflammatory effectors in pathological conditions. Cerebral endothelial cells express innate immune receptors, including toll like receptors (TLRs) and inflammasomes which are the first sensors of exogenous or endogenous dangers and initiators of immune and inflammatory responses which drive neural dysfunction and degeneration. Accumulating evidence indicates that activation of TLRs and inflammasomes in CEC compromises BBB integrity, promotes aberrant neuroimmune interactions and modulates both systemic and neuroinflammation, common pathological features of neurodegenerative and psychiatric diseases and central nervous system (CNS) infections and injuries. The goal of the present review is to provide an overview of the pivotal roles played by TLRs and inflammasomes in CEC function and discuss the molecular and cellular mechanisms by which they contribute to BBB disruption and neuroinflammation especially in the context of traumatic and ischemic brain injuries and brain infections. We will especially focus on the most recent advances and literature reports in the field to highlight the knowledge gaps. We will discuss future research directions that can advance our understanding of the central contribution of innate immune receptors to CEC and BBB dysfunction and the potential of innate immune receptors at the BBB as promising therapeutic targets in a wide variety of pathological conditions of the brain.
Collapse
Affiliation(s)
- Cigdem Acioglu
- New Jersey Medical School, The Genomics Center, Rutgers the State University of New Jersey, Newark, NJ, USA
| | - Stella Elkabes
- Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue MSB F-667, Newark, NJ, 07103, USA.
| |
Collapse
|
7
|
Miller A, Song N, Sivan M, Chowdhury R, Burke MR. Exploring the experiences of cognitive symptoms in Long COVID: a mixed-methods study in the UK. BMJ Open 2025; 15:e084999. [PMID: 39863405 PMCID: PMC11784330 DOI: 10.1136/bmjopen-2024-084999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
OBJECTIVE To explore the lived experiences and extent of cognitive symptoms in Long COVID (LC) in a UK-based sample. DESIGN This study implemented a mixed-methods design. Eight focus groups were conducted to collect qualitative data, and the Framework Analysis was used to reveal the experiences and impact of cognitive symptoms. A self-report questionnaire was used to collect the quantitative data to assess the perceived change and extent of symptomology post COVID-19. SETTING Focus groups were conducted in April 2023 online via Zoom and in-person at the University of Leeds, UK. PARTICIPANTS 25 people with LC living in the UK participated in the study. Participants were aged 19-76 years (M=43.6 years, SD=14.7) and included 17 women and 8 men. RESULTS Reduced cognitive ability was among the most prevalent symptoms reported by the study participants. Three key themes were identified from the qualitative data: (1) rich accounts of cognitive symptoms; (2) the impact on physical function and psychological well-being and (3) symptom management. Descriptions of cognitive symptoms included impairments in memory, attention, language, executive function and processing speed. Cognitive symptoms had a profound impact on physical functioning and psychological well-being, including reduced ability to work and complete activities of daily living. Strategies used for symptom management varied in effectiveness. CONCLUSION Cognitive dysfunction in LC appears to be exacerbated by vicious cycle of withdrawal from daily life including loss of employment, physical inactivity and social isolation driving low mood, anxiety and poor cognitive functioning. Previous evidence has revealed the anatomical and physiological biomarkers in the brain affecting cognition in LC. To synthesise these contributing factors, we propose the Long-COVID Interacting Network of factors affecting Cognitive Symptoms. This framework is designed to inform clinicians and researchers to take a comprehensive approach towards LC rehabilitation, targeting the neural, individual and lifestyle factors.
Collapse
|
8
|
Cáceres E, Divani AA, Viñan-Garces AE, Olivella-Gomez J, Quintero-Altare A, Pérez S, Reyes LF, Sasso N, Biller J. Tackling persistent neurological symptoms in patients following acute COVID-19 infection: an update of the literature. Expert Rev Neurother 2025; 25:67-83. [PMID: 39715694 DOI: 10.1080/14737175.2024.2440543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 12/06/2024] [Indexed: 12/25/2024]
Abstract
INTRODUCTION The COVID-19 pandemic has taught myriad lessons and left several questions we are yet to comprehend. Initially, the scientific community was concerned with the management of acute disease and immunization. Once the peak of the pandemic receded, it became clear that a proportion of patients were far from fully recovered. Researchers started to recognize those persisting symptoms as a new entity termed 'Long COVID,' where neurological symptoms are evident and have a major impact on quality of life. AREAS COVERED The main purpose of this narrative review is to analyze and synthesize the current literature regarding Long COVID, its relation to the nervous system, and to explore the evidence on treatments for persistent neurological symptoms. The most common reported and observed neurologic manifestations include fatigue, cognitive impairment, pain, polyneuropathy, and neuropsychiatric disorders. A variety of pharmacologic and non-pharmacologic therapies have been evaluated and yielded mixed results. Many of them focused on immunomodulation and none currently have U.S. FDA approval. EXPERT OPINION Challenges remain in terms of clinical characterization and prognosis of Long COVID, besides understanding its pathophysiology. Standardization of biomarkers and diagnostic criteria will allow the use of common nomenclature and data elements in the design of future clinical studies.
Collapse
Affiliation(s)
- Eder Cáceres
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chía, Colombia
- School of Engineering, Universidad de La Sabana, Chía, Colombia
- Department of Critical Care, Clínica Universidad de La Sabana, Chía, Colombia
| | - Afshin A Divani
- Department of Neurology, The University of New Mexico, Albuquerque, NM, USA
| | | | - Juan Olivella-Gomez
- Department of Critical Care, Clínica Universidad de La Sabana, Chía, Colombia
| | | | - Sebastián Pérez
- Department of Critical Care, Clínica Universidad de La Sabana, Chía, Colombia
| | - Luis F Reyes
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chía, Colombia
- Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | - Nicholas Sasso
- Department of Neurology, Loyola University Stritch School of Medicine, Loyola University Health System, Maywood, IL, USA
| | - Jose Biller
- Department of Neurology, Loyola University Stritch School of Medicine, Loyola University Health System, Maywood, IL, USA
| |
Collapse
|
9
|
Hasbun R, George M. SARS-CoV-2 and nervous system: From pathogenesis of disease to clinical manifestations. NEUROBIOLOGY OF INFECTIOUS DISEASES 2025:363-370. [DOI: 10.1016/b978-0-443-19130-5.00022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Shrestha BK, Sujakhu E, Karale S, Telagarapu VML. COVID-19 in patients with multiple sclerosis-A narrative review. Mult Scler Relat Disord 2025; 93:106221. [PMID: 39675123 DOI: 10.1016/j.msard.2024.106221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/02/2024] [Accepted: 12/07/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is a complex neurodegenerative disease characterized by immune dysregulation, affecting over 2.5 million people worldwide. Interestingly, COVID-19 infection can cause neurodegeneration through demyelination similar to that of MS, and COVID-19 infection can lead to long-term neurological sequelae, post-COVID-19 neurological syndrome. These overlapping neurological mechanisms suggest that patients with MS (PwMS) may have a unique and potentially more complex relationship with COVID-19. DISCUSSION AND CONCLUSION The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) can enter the central nervous system via the olfactory nerve or through interactions with angiotensin-converting enzyme-2 receptors in the blood-brain barrier, potentially initiating or enhancing neurodegenerative processes through demyelination. The risk of SARS-CoV-2 infection among PwMS is similar to that of the general population; however, PwMS with higher Expanded Disability Status Scale scores, longer MS duration, or progressive forms of MS are at an increased risk for developing severe COVID-19 outcomes. Most disease-modifying therapies (DMT), such as interferon, glatiramer, teriflunomide, and cladribine, do not appear to affect the risk of COVID-19 infection, the severity of COVID-19 illness, or the response to COVID-19 vaccines. As a result, these therapies should be continued during COVID-19 infection in PwMS. Rituximab, however, has been shown to increase the risk of severe COVID-19 outcomes. For managing symptomatic COVID-19 infection in PwMS, remdesivir and neutralizing monoclonal antibodies are shown to be effective. COVID-19-associated cytokine release syndrome can be managed with corticosteroids. Importantly, COVID-19 infection does not increase susceptibility to MS relapses or exacerbate the progression of MS symptoms. Furthermore, COVID-19 vaccination is encouraged for all MS patients, particularly those at greater risk of severe outcomes, as it does not trigger relapses, exacerbate MS symptoms, or diminish the efficacy of DMT. Despite these findings, high-quality evidence remains lacking to fully establish the relationship between COVID-19 and MS, highlighting the need for further research in this area.
Collapse
Affiliation(s)
- Bijay Kumar Shrestha
- University of South Alabama Children's and Women's Hospital, Mobile, AL, United States.
| | - Eru Sujakhu
- University of South Alabama Children's and Women's Hospital, Mobile, AL, United States
| | - Smruti Karale
- Government Medical College, Kolhapur, Maharashtra, India
| | | |
Collapse
|
11
|
Sadhu S, Goswami S, Khatri R, Lohiya B, Singh V, Yadav R, Das V, Tripathy MR, Dwivedi P, Srivastava M, Mani S, Asthana S, Samal S, Awasthi A. Berbamine prevents SARS-CoV-2 entry and transmission. iScience 2024; 27:111347. [PMID: 39640591 PMCID: PMC11618033 DOI: 10.1016/j.isci.2024.111347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/17/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Effective antiviral drugs are essential to combat COVID-19 and future pandemics. Although many compounds show antiviral in vitro activity, only a few retain effectiveness in vivo against SARS-CoV-2. Here, we show that berbamine (Berb) is effective against SARS-CoV, MER-CoV, SARS-CoV-2 and its variants, including the XBB.1.16 variant. In hACE2.Tg mice, Berb suppresses SARS-CoV-2 replication through two distinct mechanisms: inhibiting spike-mediated viral entry and enhancing antiviral gene expression during infection. The administration of Berb, in combination with remdesivir (RDV), clofazimine (Clof) and fangchinoline (Fcn), nearly eliminated viral load and promoted recovery from acute SARS-CoV-2 infection and its variants. Co-housed mice in direct contact with either pre-treated or untreated infected mice exhibited negligible viral loads, reduced lung pathology, and decreased viral shedding, suggesting that Berb may effectively hinder virus transmission. This broad-spectrum activity positions Berb as a promising preventive or therapeutic option against betacoronaviruses.
Collapse
Affiliation(s)
- Srikanth Sadhu
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Sandeep Goswami
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Ritika Khatri
- Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Bharat Lohiya
- Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Virendra Singh
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Rahul Yadav
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Vinayaka Das
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Manas Ranjan Tripathy
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Prabhanjan Dwivedi
- Small Animal Facility, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Mitul Srivastava
- Non-communicable Disease Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Shailendra Mani
- Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Shailendra Asthana
- Non-communicable Disease Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Sweety Samal
- Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Amit Awasthi
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana 121001, India
| |
Collapse
|
12
|
Nyarko JA, Dogbe PM, Ativi LAE, Wutsika J, Agyenim EB, Awere-Duodu A, Botaeng AT, Ntim NAA. Pathological Sequelae of SARS-CoV-2: A Review for Clinicians. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2024; 97:431-445. [PMID: 39703609 PMCID: PMC11650917 DOI: 10.59249/dqjh2274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic, driven by the novel coronavirus and its variants, has caused over 518 million infections and 6.25 million deaths globally, leading to a significant health crisis. Beyond its primary respiratory impact, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has been implicated in various extra-pulmonary complications. Research studies reveal that the virus affects multiple organs, including the kidneys, liver, pancreas, and central nervous system (CNS), largely due to the widespread expression of Angiotensin Converting Enzyme-2 (ACE-2) receptors. Clinical evidence shows that the virus can induce diabetes by disrupting pancreatic and liver functions as well as cause acute kidney injury. Additionally, neurological complications, including cognitive impairments and neuroinflammation, have been observed in a significant number of COVID-19 patients. This review discusses the mechanisms linking SARS-CoV-2 to acute kidney injury, Type 1 and Type 2 Diabetes Mellitus (T1DM and T2DM), emphasizing its effects on pancreatic beta cells, insulin resistance, and the regulation of gluconeogenesis. We also explore how SARS-CoV-2 induces neurological complications, detailing the intricate pathways of neuro-invasion and the potential to trigger conditions such as Alzheimer's disease (AD). By elucidating the metabolic and neurological manifestations of COVID-19 and the underlying pathogenic mechanisms, this review underscores the imperative for continued research and the development of effective therapeutic interventions to mitigate the long-term and short-term impacts of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Joseph Asuam Nyarko
- National Influenza Centre, Noguchi Memorial Institute
for Medical Research, Accra, Ghana
| | - Patience Mawuena Dogbe
- Department of Environmental Science, Kwame Nkrumah
University of Science and Technology, Kumasi, Ghana
| | | | - Jennifer Wutsika
- National Influenza Centre, Noguchi Memorial Institute
for Medical Research, Accra, Ghana
| | | | - Aaron Awere-Duodu
- Department of Medical Microbiology, University of Ghana
Medical School, Accra, Ghana
| | - Anthony Twumasi Botaeng
- Department of Environmental Science, Kwame Nkrumah
University of Science and Technology, Kumasi, Ghana
| | - Nana Afia Asante Ntim
- National Influenza Centre, Noguchi Memorial Institute
for Medical Research, Accra, Ghana
| |
Collapse
|
13
|
Pawlik MT, Rinneberg G, Koch A, Meyringer H, Loew TH, Kjellberg A. Is there a rationale for hyperbaric oxygen therapy in the patients with Post COVID syndrome? : A critical review. Eur Arch Psychiatry Clin Neurosci 2024; 274:1797-1817. [PMID: 39545965 PMCID: PMC11579208 DOI: 10.1007/s00406-024-01911-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/16/2024] [Indexed: 11/17/2024]
Abstract
The SARS-CoV-2 pandemic has resulted in 762 million infections worldwide from 2020 to date, of which approximately ten percent are suffering from the effects after infection in 2019 (COVID-19) [1, 40]. In Germany, it is now assumed that at least one million people suffer from post-COVID condition with long-term consequences. These have been previously reported in diseases like Myalgic Encephalomyelitis (ME) and Chronic Fatigue Syndrome (CFS). Symptoms show a changing variability and recent surveys in the COVID context indicate that 10-30 % of outpatients, 50 to 70% of hospitalised patients suffer from sequelae. Recent data suggest that only 13% of all ill people were completely free of symptoms after recovery [3, 9]. Current hypotheses consider chronic inflammation, mitochondrial dysfunction, latent viral persistence, autoimmunity, changes of the human microbiome or multilocular sequelae in various organ system after infection. Hyperbaric oxygen therapy (HBOT) is applied since 1957 for heart surgery, scuba dive accidents, CO intoxication, air embolisms and infections with anaerobic pathogens. Under hyperbaric pressure, oxygen is physically dissolved in the blood in higher concentrations and reaches levels four times higher than under normobaric oxygen application. Moreover, the alternation of hyperoxia and normoxia induces a variety of processes at the cellular level, which improves oxygen supply in areas of locoregional hypoxia. Numerous target gene effects on new vessel formation, anti-inflammatory and anti-oedematous effects have been demonstrated [74]. The provision of intermittently high, local oxygen concentrations increases repair and regeneration processes and normalises the predominance of hyperinflammation. At present time only one prospective, randomized and placebo-controlled study exists with positive effects on global cognitive function, attention and executive function, psychiatric symptoms and pain interference. In conclusion, up to this date HBO is the only scientifically proven treatment in a prospective randomized controlled trial to be effective for cognitive improvement, regeneration of brain network and improvement of cardiac function. HBOT may have not only theoretical but also potential impact on targets of current pathophysiology of Post COVID condition, which warrants further scientific studies in patients.
Collapse
Affiliation(s)
- M T Pawlik
- Department of Anesthesiology and Intensive Care Medicine, Caritas-Hospital St. Joseph, University of Regensburg, Regensburg, Germany.
- Institute of Experimental Medicine, Christian-Albrechts-University of Kiel c/o German Naval Medical Institute, Kronshagen, Germany.
| | - G Rinneberg
- Department of Anesthesiology and Intensive Care Medicine, Caritas-Hospital St. Joseph, University of Regensburg, Regensburg, Germany
| | - A Koch
- Institute of Experimental Medicine, Christian-Albrechts-University of Kiel c/o German Naval Medical Institute, Kronshagen, Germany
| | - H Meyringer
- Department of Anesthesiology and Intensive Care Medicine, Caritas-Hospital St. Joseph, University of Regensburg, Regensburg, Germany
| | - T H Loew
- Department of Psychosomatic Medicine, University Hospital Regensburg, Regensburg, Germany
| | - A Kjellberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
- Perioperative Medicine and Intensive Care, Medical Unit Intensive Care and Thoracic surgery, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
14
|
Hass RM, Benarroch EE. What Are the Central Mechanisms of Cough and Their Neurologic Implications? Neurology 2024; 103:e210064. [PMID: 39509665 DOI: 10.1212/wnl.0000000000210064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
|
15
|
Zheng JR, Chang JL, Hu J, Lin ZJ, Lin KH, Lu BH, Chen XH, Liu ZG. Myelin oligodendrocyte glycoprotein-associated transverse myelitis after SARS-CoV-2 infection: A case report. World J Radiol 2024; 16:446-452. [PMID: 39355395 PMCID: PMC11440270 DOI: 10.4329/wjr.v16.i9.446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/23/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND Cases of myelin oligodendrocyte glycoprotein (MOG) antibody-related disease have a history of coronavirus disease 2019 infection or its vaccination before disease onset. Severe acute respiratory syndrome virus 2 (SARS-CoV-2) infection has been considered to be a trigger of central nervous system autoimmune diseases. CASE SUMMARY Here we report a 20-year male with MOG-associated transverse myelitis after a SARS-CoV-2 infection. The patient received a near-complete recovery after standard immunological treatments. CONCLUSION Attention should be paid to the evaluation of typical or atypical neurological symptoms that may be triggered by SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jian-Rong Zheng
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen 518000, Guangdong Province, China
- Department of Neurology, Shenzhen Xinhua Hospital, Shenzhen 518000, Guangdong Province, China
| | - Jun-Lei Chang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, Guangdong Province, China
| | - Jun Hu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen 518000, Guangdong Province, China
| | - Zhi-Jian Lin
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen 518000, Guangdong Province, China
| | - Kai-Hua Lin
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen 518000, Guangdong Province, China
| | - Bi-Hua Lu
- Department of Neurology, The Sixth People’s Hospital of Foshan Nanhai District, Foshan 528000, Guangdong Province, China
| | - Xu-Hui Chen
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen 518000, Guangdong Province, China
| | - Zhi-Gang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| |
Collapse
|
16
|
Sato T, Takenaka Y, Takeuchi M. Bilateral Perivascular Chorioretinal Atrophy Resembling Pigmented Paravenous Chorioretinal Atrophy Post COVID-19 Infection: A Case Report and Comprehensive Immune Profiling. Vaccines (Basel) 2024; 12:878. [PMID: 39204003 PMCID: PMC11360358 DOI: 10.3390/vaccines12080878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
The pandemic of COVID-19 caused by the SARS-CoV-2 virus is ongoing and a serious menace to global public health. An ocular manifestation is an initial sign of the infection. To date, a comprehensive immune profile of patients with mild COVID-19 has not been well developed. Here, we report a 53-year-old female who noticed a sudden decrease in visual acuity (VA) in both eyes on the fourth day after COVID-19 infection. At presentation (acute phase), the best-corrected VA (BCVA) on the decimal chart was 0.5 in both the right and left eyes. Color fundus photography showed perivascular chorioretinal atrophy with peripheral pigment loss, similar to the fundus appearance of pigmented paravenous chorioretinal atrophy (PPCRA) in the inferior arcade vessels of both eyes. Optical coherence tomography indicated thinning and blurred boundaries of the outer retina in the lesion sites, implying anatomical destruction. She was followed up without any systemic medications. After approximately 15 weeks (remission phase), the BCVA recovered to 0.6 in the right eye and 0.8 in the left. Systemic immune profiles were analyzed using mass cytometry. In the acute phase, monocytes and basophils were dominantly elevated, which suggested the activation of innate immune responses to SARS-CoV-2 and allergic inflammation. In the remission phase, Th2-like cells, plasmablasts, and neutrophils increased predominantly, implying the maturation of adaptive immunity and the preparedness of innate immunity to combat the infection. Our findings indicate that perivascular chorioretinal atrophy resembling PPCRA is a clinical feature of the ocular phenotype of COVID-19, caused by systemic immune responses.
Collapse
Affiliation(s)
| | | | - Masaru Takeuchi
- Department of Ophthalmology, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Saitama, Japan; (T.S.); (Y.T.)
| |
Collapse
|
17
|
Parmar UPS, Surico PL, Singh RB, Musa M, Scarabosio A, Surico G, Maniaci A, Lavalle S, D’Esposito F, Longo A, Russo A, Gagliano C, Zeppieri M. Ocular Implications of COVID-19 Infection and Vaccine-Related Adverse Events. J Pers Med 2024; 14:780. [PMID: 39201972 PMCID: PMC11355216 DOI: 10.3390/jpm14080780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 09/03/2024] Open
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, has significantly impacted various organ systems, including the eyes. Initially considered a primarily respiratory disease, it is now evident that COVID-19 can induce a range of ocular symptoms. Recognizing these ocular manifestations is crucial for eye care practitioners as they can serve as early indicators of the disease. This review consolidates current evidence on the ocular effects of COVID-19, identifying manifestations such as conjunctivitis, scleritis, uveitis, and retinopathy. The increasing prevalence of these symptoms highlights the importance of thorough eye examinations and detailed patient histories in COVID-19 cases. Potential routes of viral entry into ocular tissues and the underlying mechanisms, including direct infection, immune responses, and vascular involvement, are explored. Additionally, this review addresses ocular side effects associated with COVID-19 vaccines, such as corneal graft rejection, uveitis, and retinal issues. These findings emphasize the need for ongoing surveillance and research to ensure vaccine safety.
Collapse
Affiliation(s)
- Uday Pratap Singh Parmar
- Department of Ophthalmology, Government Medical College and Hospital, Chandigarh 160047, India;
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Pier Luigi Surico
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy
| | - Rohan Bir Singh
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Nigeria
| | - Anna Scarabosio
- Department of Plastic Surgery, University Hospital of Udine, 33100 Udine, Italy
| | - Giorgio Surico
- Medicine and Surgery Department, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Antonino Maniaci
- Department of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
| | - Salvatore Lavalle
- Department of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
| | - Fabiana D’Esposito
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, 153-173 Marylebone Rd., London NW1 5QH, UK
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Via Pansini 5, 80131 Napoli, Italy
| | - Antonio Longo
- Faculty of Medicine, University of Catania, Piazza Università, 95123 Catania, Italy
| | - Andrea Russo
- Faculty of Medicine, University of Catania, Piazza Università, 95123 Catania, Italy
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
- Eye Clinic Catania University San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
18
|
Drozd M, Ritter JM, Samuelson JP, Parker M, Wang L, Sander SJ, Yoshicedo J, Wright L, Odani J, Shrader T, Lee E, Lockhart SR, Ghai RR, Terio KA. Mortality associated with SARS-CoV-2 in nondomestic felids. Vet Pathol 2024; 61:609-620. [PMID: 38323378 DOI: 10.1177/03009858231225500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Between September and November 2021, 5 snow leopards (Panthera uncia) and 1 lion (Panthera leo) were naturally infected with severe acute respiratory coronavirus 2 (SARS-CoV-2) and developed progressive respiratory disease that resulted in death. Severe acute respiratory syndrome coronavirus 2 sequencing identified the delta variant in all cases sequenced, which was the predominant human variant at that time. The time between initial clinical signs and death ranged from 3 to 45 days. Gross lesions in all 6 cats included nasal turbinate hyperemia with purulent discharge and marked pulmonary edema. Ulcerative tracheitis and bronchitis were noted in 4 cases. Histologically, there was necrotizing and ulcerative rhinotracheitis and bronchitis with fibrinocellular exudates and fibrinosuppurative to pyogranulomatous bronchopneumonia. The 4 cats that survived longer than 8 days had fungal abscesses. Concurrent bacteria were noted in 4 cases, including those with more acute disease courses. Severe acute respiratory syndrome coronavirus 2 was detected by in situ hybridization using probes against SARS-CoV-2 spike and nucleocapsid genes and by immunohistochemistry. Viral nucleic acid and protein were variably localized to mucosal and glandular epithelial cells, pneumocytes, macrophages, and fibrinocellular debris. Based on established criteria, SARS-CoV-2 was considered a contributing cause of death in all 6 cats. While mild clinical infections are more common, these findings suggest that some SARS-CoV-2 variants may cause more severe disease and that snow leopards may be more severely affected than other felids.
Collapse
Affiliation(s)
- Mary Drozd
- University of Nebraska-Lincoln, Lincoln, NE
| | - Jana M Ritter
- Centers for Disease Control and Prevention, Atlanta, GA
| | | | | | - Leyi Wang
- University of Illinois Urbana-Champaign, Urbana, IL
| | | | | | - Louden Wright
- Great Plain Zoo, Sioux Falls, SD
- Nashville Zoo at Grassmere, Nashville, TN
| | - Jenee Odani
- University of Hawai'i at Mānoa, Honolulu, HI
| | | | - Elizabeth Lee
- Centers for Disease Control and Prevention, Atlanta, GA
| | | | - Ria R Ghai
- Centers for Disease Control and Prevention, Atlanta, GA
| | | |
Collapse
|
19
|
Wellford SA, Moseman EA. Olfactory immunology: the missing piece in airway and CNS defence. Nat Rev Immunol 2024; 24:381-398. [PMID: 38097777 PMCID: PMC11560121 DOI: 10.1038/s41577-023-00972-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2023] [Indexed: 12/23/2023]
Abstract
The olfactory mucosa is a component of the nasal airway that mediates the sense of smell. Recent studies point to an important role for the olfactory mucosa as a barrier to both respiratory pathogens and to neuroinvasive pathogens that hijack the olfactory nerve and invade the CNS. In particular, the COVID-19 pandemic has demonstrated that the olfactory mucosa is an integral part of a heterogeneous nasal mucosal barrier critical to upper airway immunity. However, our insufficient knowledge of olfactory mucosal immunity hinders attempts to protect this tissue from infection and other diseases. This Review summarizes the state of olfactory immunology by highlighting the unique immunologically relevant anatomy of the olfactory mucosa, describing what is known of olfactory immune cells, and considering the impact of common infectious diseases and inflammatory disorders at this site. We will offer our perspective on the future of the field and the many unresolved questions pertaining to olfactory immunity.
Collapse
Affiliation(s)
- Sebastian A Wellford
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - E Ashley Moseman
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
20
|
Pandey S, Bapat V, Abraham JN, Abraham NM. Long COVID: From olfactory dysfunctions to viral Parkinsonism. World J Otorhinolaryngol Head Neck Surg 2024; 10:137-147. [PMID: 38855289 PMCID: PMC11156689 DOI: 10.1002/wjo2.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/20/2024] [Accepted: 03/08/2024] [Indexed: 06/11/2024] Open
Abstract
Neurological and psychiatric complications continue to be a public health concern in long coronavirus disease 2019 (COVID-19). This varies from olfactory dysfunctions such as parosmia to cognitive and emotional challenges. Historically, the surge of neurological disorders followed the viral pandemics, for example, the emergence of Encephalitis Lethargica after the outbreak of Spanish Influenza. During and after COVID-19 infection, the problems associated with the sense of smell and the reports of affected olfactory and limbic brain areas are leading to a growing concern about the similarity with the symptoms and the pattern of degeneration observed at the onset of Parkinson's disease and Alzheimer's disease. These reports reveal the essentiality of long-term studies of olfactory and cognitive functions in the post-COVID era and the experiments using animal models to dissect the neural basis of these complications. In this manuscript, we summarize the research reporting the potential correlation between neurological disorders and viral pandemic outbreaks with a historical perspective. Further, we discuss the studies providing evidence of neurodegeneration due to severe acute respiratory syndrome coronavirus 2 infection by focusing on viral Parkinsonism.
Collapse
Affiliation(s)
- Sanyukta Pandey
- Department of Biology, Laboratory of Neural Circuits and Behaviour (LNCB)Indian Institute of Science Education and Research (IISER)PuneMaharashtraIndia
| | - Vibha Bapat
- Department of Biology, Laboratory of Neural Circuits and Behaviour (LNCB)Indian Institute of Science Education and Research (IISER)PuneMaharashtraIndia
| | - Jancy Nixon Abraham
- Department of Biology, Laboratory of Neural Circuits and Behaviour (LNCB)Indian Institute of Science Education and Research (IISER)PuneMaharashtraIndia
- Department of Life Sciences, Centre of Excellence in EpigeneticsShiv Nadar Institution of EminenceGautam Buddha NagarUttar PradeshIndia
| | - Nixon M. Abraham
- Department of Biology, Laboratory of Neural Circuits and Behaviour (LNCB)Indian Institute of Science Education and Research (IISER)PuneMaharashtraIndia
| |
Collapse
|
21
|
Clark JJ, Penrice-Randal R, Sharma P, Dong X, Pennington SH, Marriott AE, Colombo S, Davidson A, Kavanagh Williamson M, Matthews DA, Turtle L, Prince T, Hughes GL, Patterson EI, Shawli G, Mega DF, Subramaniam K, Sharp J, Turner JD, Biagini GA, Owen A, Kipar A, Hiscox JA, Stewart JP. Sequential Infection with Influenza A Virus Followed by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Leads to More Severe Disease and Encephalitis in a Mouse Model of COVID-19. Viruses 2024; 16:863. [PMID: 38932155 PMCID: PMC11209060 DOI: 10.3390/v16060863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
COVID-19 is a spectrum of clinical symptoms in humans caused by infection with SARS-CoV-2. The coalescence of SARS-CoV-2 with seasonal respiratory viruses, particularly influenza viruses, is a global health concern. To understand this, transgenic mice expressing the human ACE2 receptor (K18-hACE2) were infected with influenza A virus (IAV) followed by SARS-CoV-2 and the host response and effect on virus biology was compared to K18-hACE2 mice infected with IAV or SARS-CoV-2 alone. The sequentially infected mice showed reduced SARS-CoV-2 RNA synthesis, yet exhibited more rapid weight loss, more severe lung damage and a prolongation of the innate response compared to the singly infected or control mice. Sequential infection also exacerbated the extrapulmonary encephalitic manifestations associated with SARS-CoV-2 infection. Conversely, prior infection with a commercially available, multivalent live-attenuated influenza vaccine (Fluenz Tetra) elicited the same reduction in SARS-CoV-2 RNA synthesis, albeit without the associated increase in disease severity. This suggests that the innate immune response stimulated by IAV inhibits SARS-CoV-2. Interestingly, infection with an attenuated, apathogenic influenza vaccine does not result in an aberrant immune response and enhanced disease severity. Taken together, the data suggest coinfection ('twinfection') is deleterious and mitigation steps should be instituted as part of the comprehensive public health and management strategy of COVID-19.
Collapse
Affiliation(s)
- Jordan J. Clark
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK (R.P.-R.); (P.S.); (T.P.); (G.S.); (A.K.)
| | - Rebekah Penrice-Randal
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK (R.P.-R.); (P.S.); (T.P.); (G.S.); (A.K.)
| | - Parul Sharma
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK (R.P.-R.); (P.S.); (T.P.); (G.S.); (A.K.)
| | - Xiaofeng Dong
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK (R.P.-R.); (P.S.); (T.P.); (G.S.); (A.K.)
| | - Shaun H. Pennington
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK (J.D.T.)
| | - Amy E. Marriott
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK (J.D.T.)
| | - Stefano Colombo
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK (J.D.T.)
| | - Andrew Davidson
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol BS8 1QU, UK; (A.D.); (D.A.M.)
| | - Maia Kavanagh Williamson
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol BS8 1QU, UK; (A.D.); (D.A.M.)
| | - David A. Matthews
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol BS8 1QU, UK; (A.D.); (D.A.M.)
| | - Lance Turtle
- Department of Clinical Infection Microbiology and Immunology and NIHR Health Protection Research Unit for Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK
- Tropical & Infectious Disease Unit, Royal Liverpool University Hospital, Liverpool L7 8YE, UK
| | - Tessa Prince
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK (R.P.-R.); (P.S.); (T.P.); (G.S.); (A.K.)
| | - Grant L. Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (G.L.H.)
| | - Edward I. Patterson
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (G.L.H.)
| | - Ghada Shawli
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK (R.P.-R.); (P.S.); (T.P.); (G.S.); (A.K.)
| | - Daniele F. Mega
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK (R.P.-R.); (P.S.); (T.P.); (G.S.); (A.K.)
| | - Krishanthi Subramaniam
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK (R.P.-R.); (P.S.); (T.P.); (G.S.); (A.K.)
| | - Jo Sharp
- Department of Pharmacology and Therapeutics, Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L69 3BX, UK; (J.S.); (A.O.)
| | - Joseph D. Turner
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK (J.D.T.)
| | - Giancarlo A. Biagini
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK (J.D.T.)
| | - Andrew Owen
- Department of Pharmacology and Therapeutics, Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L69 3BX, UK; (J.S.); (A.O.)
| | - Anja Kipar
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK (R.P.-R.); (P.S.); (T.P.); (G.S.); (A.K.)
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zürich, Switzerland
| | - Julian A. Hiscox
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK (R.P.-R.); (P.S.); (T.P.); (G.S.); (A.K.)
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
- Infectious Diseases Horizontal Technology Centre (ID HTC), Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore
| | - James P. Stewart
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK (R.P.-R.); (P.S.); (T.P.); (G.S.); (A.K.)
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
- Department of Infectious Disease, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
22
|
Ariza D, Castellar-Visbal L, Marquina M, Rivera-Porras D, Galbán N, Santeliz R, Gutiérrez-Rey M, Parra H, Vargas-Manotas J, Torres W, Quintana-Espinosa L, Manzano A, Cudris-Torres L, Bermúdez V. COVID-19: Unveiling the Neuropsychiatric Maze-From Acute to Long-Term Manifestations. Biomedicines 2024; 12:1147. [PMID: 38927354 PMCID: PMC11200893 DOI: 10.3390/biomedicines12061147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
The SARS-CoV-2 virus has spread rapidly despite implementing strategies to reduce its transmission. The disease caused by this virus has been associated with a diverse range of symptoms, including common neurological manifestations such as dysgeusia, anosmia, and myalgias. Additionally, numerous cases of severe neurological complications associated with this disease have been reported, including encephalitis, stroke, seizures, and Guillain-Barré syndrome, among others. Given the high prevalence of neurological manifestations in this disease, the objective of this review is to analyze the mechanisms by which this virus can affect the nervous system, from its direct invasion to aberrant activation of the immune system and other mechanisms involved in the symptoms, including neuropsychiatric manifestations, to gain a better understanding of the disease and thus facilitate the search for effective therapeutic strategies.
Collapse
Affiliation(s)
- Daniela Ariza
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (D.A.); (M.M.); (N.G.); (R.S.); (H.P.); (W.T.); (A.M.)
| | - Lily Castellar-Visbal
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla 080001, Colombia; (L.C.-V.); (M.G.-R.); (J.V.-M.); (L.Q.-E.)
| | - Maria Marquina
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (D.A.); (M.M.); (N.G.); (R.S.); (H.P.); (W.T.); (A.M.)
| | - Diego Rivera-Porras
- Universidad Simón Bolívar, Facultad de Ciencias Jurídicas y Sociales, Centro de Investigación en Estudios Fronterizos, Cúcuta 540001, Colombia;
| | - Nestor Galbán
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (D.A.); (M.M.); (N.G.); (R.S.); (H.P.); (W.T.); (A.M.)
| | - Raquel Santeliz
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (D.A.); (M.M.); (N.G.); (R.S.); (H.P.); (W.T.); (A.M.)
| | - Melissa Gutiérrez-Rey
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla 080001, Colombia; (L.C.-V.); (M.G.-R.); (J.V.-M.); (L.Q.-E.)
| | - Heliana Parra
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (D.A.); (M.M.); (N.G.); (R.S.); (H.P.); (W.T.); (A.M.)
| | - José Vargas-Manotas
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla 080001, Colombia; (L.C.-V.); (M.G.-R.); (J.V.-M.); (L.Q.-E.)
| | - Wheeler Torres
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (D.A.); (M.M.); (N.G.); (R.S.); (H.P.); (W.T.); (A.M.)
| | - Laura Quintana-Espinosa
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla 080001, Colombia; (L.C.-V.); (M.G.-R.); (J.V.-M.); (L.Q.-E.)
| | - Alexander Manzano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, Universidad del Zulia, Maracaibo 4002, Venezuela; (D.A.); (M.M.); (N.G.); (R.S.); (H.P.); (W.T.); (A.M.)
| | - Lorena Cudris-Torres
- Departamento de Ciencias Sociales, Universidad de la Costa, Barranquilla 080001, Colombia;
| | - Valmore Bermúdez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla 080001, Colombia; (L.C.-V.); (M.G.-R.); (J.V.-M.); (L.Q.-E.)
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Centro de Investigaciones en Ciencias de la Vida, Barranquilla 080001, Colombia
| |
Collapse
|
23
|
Barker-Haliski M, DePaula-Silva AB, Pitsch J, Sontheimer H, Hirsch LJ, Galanopoulou AS, Kearney JA. Brain on Fire: How Brain Infection and Neuroinflammation Drive Worldwide Epilepsy Burden. Epilepsy Curr 2024:15357597241242238. [PMID: 39554268 PMCID: PMC11562294 DOI: 10.1177/15357597241242238] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Roughly 80% of the global burden of epilepsy resides in low- and middle-income countries (LMICs; WHO, 2022). Despite numerous new therapies for the treatment of epilepsy, the number of patients who remain resistant to available medications is unchanged. Additionally, no therapy has yet been clinically proven to prevent or attenuate the development of epilepsy in at-risk individuals. Unfortunately, access to next generation therapies in LMICs is low, the stigma associated with epilepsy remains high, and access to adequate resources is unchanged. Thus, the global epilepsy burden disproportionately falls on LMICs such that strategies to conscientiously integrate global epilepsy risk factors into preclinical research may meaningfully advance 21st century epilepsy therapies. Brain infections are one of the main risk factors for epilepsy in resource-poor settings. Further, both infection- and autoimmune-associated encephalitis contribute to worldwide epilepsy risk and remain relatively understudied. For example, clinical SARS CoV-2 infection can induce rare instances of encephalopathy and acute seizures. Among viruses known to cause acute brain infection, enteroviruses increase risk for encephalitis-induced epilepsy, but are not associated with risk for other neurodevelopmental disorders (eg, autism spectrum or attentional deficit hyperactivity disorders). Naturally occurring models of viral infection-induced epilepsy therefore provide an exquisite opportunity to uncover novel contributors to epileptogenesis. Moreover, the convergent neuroinflammatory pathways that are associated with viral infection-induced encephalitis and autoimmune encephalitis reflect an untapped therapeutic opportunity to meaningfully reduce the global burden of epilepsy. This review summarizes the latest advances in translational research integrating encephalitis-induced seizure and epilepsy models, in tandem with progress in clinical diagnosis of inflammation and virally mediated epilepsy. This improved awareness of the shared biological underpinnings of epileptogenesis following brain infection or autoimmune encephalitis is anticipated to beneficially impact the global burden of epilepsy.
Collapse
Affiliation(s)
| | | | - Julika Pitsch
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Harald Sontheimer
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Lawrence J. Hirsch
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA
| | - Aristea S. Galanopoulou
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jennifer A. Kearney
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
24
|
Yan B, Liao P, Wang C, Han Z, Cheng F, Lei P. Genetic causal association between varicella-zoster virus infection and psychiatric disorders: A 2-sample Mendelian randomization study. Behav Brain Res 2024; 464:114927. [PMID: 38428645 DOI: 10.1016/j.bbr.2024.114927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/17/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Psychiatric disorders, such as schizophrenia (SCZ), major depressive (MDD), and bipolar disorder (BD) have a profound impact on millions of individuals worldwide. The critical step toward developing effective preventive and treatment strategies lies in comprehending the causal mechanisms behind these diseases and identifying modifiable risk factors associated with them. METHODS In this study, we conducted a 2-sample Mendelian randomization analysis to explore the potential links between chickenpox(varicella-zoster virus infection) and three major psychiatric disorders(SCZ, MDD, BD). RESULTS In our MR study, among the three major psychiatric disorders, chickenpox was shown to be causally related to BD, indicating that infection with chickenpox may increase the risk of developing BD (IVW: OR = 1.064, 95% CI =1.025-1.104, P=0.001; RAPS: OR=1.066, 95% CI=1.024-1.110, P=0.002), while there was no causal relationship between SCZ and MDD. Similar estimated causal effects were observed consistently across the various MR models. The robustness of the identified causal relationship between chickenpox and BD holds true regardless of the statistical methods employed, as confirmed by extensive sensitivity analyses that address violations in model assumptions. The MR-Egger regression test failed to reveal any signs of directional pleiotropy (intercept = -0.042, standard error (SE) = 0.029, p = 0.236). Similarly, the MR-PRESSO analysis revealed no evidence of directional pleiotropy or outliers among the chickenpox-related instrumental variables (global test p = 0.653). Furthermore, a leave-one-out sensitivity analysis yielded consistent results, further underscoring the credibility and stability of the causal relationship. CONCLUSIONS Our findings provide compelling evidence of a causal effect of chickenpox on the risk of BD. To gain a more comprehensive understanding of this association and its underlying mechanisms, additional research is needed. Such investigations are pivotal in identifying effective interventions for promoting BD prevention.
Collapse
Affiliation(s)
- Bo Yan
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Neurological Institute, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Pan Liao
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Conglin Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Neurological Institute, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Zhaoli Han
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Fangyuan Cheng
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Neurological Institute, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Neurological Institute, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China.
| |
Collapse
|
25
|
Sun Z, Shi C, Jin L. Mechanisms by Which SARS-CoV-2 Invades and Damages the Central Nervous System: Apart from the Immune Response and Inflammatory Storm, What Else Do We Know? Viruses 2024; 16:663. [PMID: 38793545 PMCID: PMC11125732 DOI: 10.3390/v16050663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/29/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Initially reported as pneumonia of unknown origin, COVID-19 is increasingly being recognized for its impact on the nervous system, despite nervous system invasions being extremely rare. As a result, numerous studies have been conducted to elucidate the mechanisms of nervous system damage and propose appropriate coping strategies. This review summarizes the mechanisms by which SARS-CoV-2 invades and damages the central nervous system, with a specific focus on aspects apart from the immune response and inflammatory storm. The latest research findings on these mechanisms are presented, providing new insights for further in-depth research.
Collapse
Affiliation(s)
- Zihan Sun
- Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Chunying Shi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Lixin Jin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| |
Collapse
|
26
|
Fiorelli D, Francavilla B, Velletrani G, Maurantonio S, Passali FM, Bernardini S, Di Girolamo S, Nuccetelli M. Autoantibody profiles assessment in individuals with persistent olfactory impairment following SARS-CoV-2 infection. Int Immunopharmacol 2024; 129:111599. [PMID: 38330796 DOI: 10.1016/j.intimp.2024.111599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/14/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Olfactory impairment, particularly hyposmia and anosmia, has emerged as a distinctive early symptom of SARS-CoV-2. Drawing on the historical association of autoimmune diseases with olfactory function, this study delves into the connections between COVID-19, autoimmunity, and persistent olfactory dysfunctions, focusing on individuals experiencing long-lasting smell disorders (3-18 months post-SARS-CoV-2 infection). METHODS The study comprised 36 Long Covid patients with persistent olfactory dysfunctions, alongside two control groups. Olfactory functionality was assessed using the Sniffin' Sticks extended test. Non-invasive olfactory mucosa brushing and nasal secretions were processed for nasal samples, while serum samples were obtained through peripheral venous sampling. A panel of autoantibodies, including Immunocirculating Complexes, ANA, ENA, and AECA, was investigated in serum and brush supernatant samples. RESULTS Contrary to expectations, the absence of traditional autoantibodies challenges the proposed autoimmune etiology of Long Covid-associated olfactory dysfunction. However, the presence and potential pathogenic role of AECA suggest viral cytopathic and inflammatory involvement in specific anatomical districts. One hypothesis explores the impact of inflammation and cytokine release induced by the viral infection, altering neuronal signaling and contributing to persistent hyposmia. CONCLUSION This research contributes to our understanding of the complex relationships between autoimmunity, olfactory impairment, and COVID-19. The absence of classical autoantibodies challenges prevailing theories, while the prominence of AECA hints at unique viral-induced pathogenic mechanisms. By unraveling these complexities, this study enhances our comprehension of post-acute sequelae, offering valuable perspectives on immune-mediated responses in the aftermath of the pandemic.
Collapse
Affiliation(s)
- Denise Fiorelli
- Department of Experimental Medicine, University of Tor Vergata, Rome, Italy
| | - Beatrice Francavilla
- Department of Otorhinolaryngology, University of Rome "Tor Vergata", Rome, Italy
| | - Gianluca Velletrani
- Department of Otorhinolaryngology, University of Rome "Tor Vergata", Rome, Italy.
| | - Sara Maurantonio
- Department of Otorhinolaryngology, University of Rome "Tor Vergata", Rome, Italy
| | | | - Sergio Bernardini
- Department of Experimental Medicine, University of Tor Vergata, Rome, Italy
| | - Stefano Di Girolamo
- Department of Otorhinolaryngology, University of Rome "Tor Vergata", Rome, Italy
| | - Marzia Nuccetelli
- Department of Experimental Medicine, University of Tor Vergata, Rome, Italy
| |
Collapse
|
27
|
Pagneux Q, Garnier N, Fabregue M, Sharkaoui S, Mazzoli S, Engelmann I, Boukherroub R, Strecker M, Cruz E, Ducos P, Szunerits S, Zarubica A, Suderman R. Neutralization of SARS-CoV-2 and Intranasal Protection of Mice with a nanoCLAMP Antibody Mimetic. ACS Pharmacol Transl Sci 2024; 7:757-770. [PMID: 38481677 PMCID: PMC10928885 DOI: 10.1021/acsptsci.3c00306] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 02/03/2025]
Abstract
Intranasal treatment, combined with vaccination, has the potential to slow mutational evolution of viruses by reducing transmission and replication. Here, we illustrate the development of a SARS-CoV-2 receptor-binding domain (RBD) nanoCLAMP and demonstrate its potential as an intranasally administered therapeutic. A multi-epitope nanoCLAMP was made by fusing a pM affinity single-domain nanoCLAMP (P2710) to alternate epitope-binding nanoCLAMP, P2609. The resulting multimerized nanoCLAMP P2712 had sub-pM affinity for the Wuhan and South African (B.1.351) RBD (KD < 1 pM) and decreasing affinity for the Delta (B.1.617.2) and Omicron (B.1.1.529) variants (86 pM and 19.7 nM, respectively). P2712 potently inhibited the ACE2:RBD interaction, suggesting its utility as a therapeutic. With an IC50 = 0.4 ± 0.1 nM obtained from neutralization experiments using pseudoviral particles, nanoCLAMP P2712 protected K18-hACE2 mice from SARS-CoV-2 infection, reduced viral loads in the lungs and brains, and reduced associated upregulation of inflammatory cytokines and chemokines. Together, our findings warrant further investigation into the development of nanoCLAMPs as effective intranasally delivered COVID-19 therapeutics.
Collapse
Affiliation(s)
- Quentin Pagneux
- Univ.
Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Nathalie Garnier
- Univ.
Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
- Laboratoire
de Virologie ULR3610 , Univ. Lille, CHU
Lille, F-59000 Lille, France
| | - Manon Fabregue
- Centre
d’Immunophénomique, Aix Marseille
Université, Inserm, CNRS, PHENOMIN, 13284 Marseille, France
| | - Sarah Sharkaoui
- Centre
d’Immunophénomique, Aix Marseille
Université, Inserm, CNRS, PHENOMIN, 13284 Marseille, France
| | - Sophie Mazzoli
- Centre
d’Immunophénomique, Aix Marseille
Université, Inserm, CNRS, PHENOMIN, 13284 Marseille, France
| | - Ilka Engelmann
- Pathogenesis
and Control of Chronic and Emerging Infections, INSERM, EFS, L'Université des Antilles, Université
de Montpellier, Laboratoire de Virologie, CHU Montellier, 34295 Montpellier, France
| | - Rabah Boukherroub
- Univ.
Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Mary Strecker
- Regis
University, Denver, Colorado 80221, United States
| | - Eric Cruz
- Celerion,
Inc., 621 Rose Street, Lincoln, Nebraska 68502, United States
| | - Peter Ducos
- Department
of Biochemistry, Madison, Wisconsin 53706, United States
| | - Sabine Szunerits
- Univ.
Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Ana Zarubica
- Centre
d’Immunophénomique, Aix Marseille
Université, Inserm, CNRS, PHENOMIN, 13284 Marseille, France
| | - Richard Suderman
- Nectagen,
Inc., 2029 Becker Drive, Lawrence, Kansas 66047, United States
| |
Collapse
|
28
|
Xu Z, Wang H, Jiang S, Teng J, Zhou D, Chen Z, Wen C, Xu Z. Brain Pathology in COVID-19: Clinical Manifestations and Potential Mechanisms. Neurosci Bull 2024; 40:383-400. [PMID: 37715924 PMCID: PMC10912108 DOI: 10.1007/s12264-023-01110-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/25/2023] [Indexed: 09/18/2023] Open
Abstract
Neurological manifestations of coronavirus disease 2019 (COVID-19) are less noticeable than the respiratory symptoms, but they may be associated with disability and mortality in COVID-19. Even though Omicron caused less severe disease than Delta, the incidence of neurological manifestations is similar. More than 30% of patients experienced "brain fog", delirium, stroke, and cognitive impairment, and over half of these patients presented abnormal neuroimaging outcomes. In this review, we summarize current advances in the clinical findings of neurological manifestations in COVID-19 patients and compare them with those in patients with influenza infection. We also illustrate the structure and cellular invasion mechanisms of SARS-CoV-2 and describe the pathway for central SARS-CoV-2 invasion. In addition, we discuss direct damage and other pathological conditions caused by SARS-CoV-2, such as an aberrant interferon response, cytokine storm, lymphopenia, and hypercoagulation, to provide treatment ideas. This review may offer new insights into preventing or treating brain damage in COVID-19.
Collapse
Affiliation(s)
- Zhixing Xu
- First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hui Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Siya Jiang
- Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jiao Teng
- Affiliated Lin'an People's Hospital of Hangzhou Medical College, First People's Hospital of Hangzhou Lin'an District, Lin'an, Hangzhou, 311300, China
| | - Dongxu Zhou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhong Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chengping Wen
- Laboratory of Rheumatology and Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Zhenghao Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Laboratory of Rheumatology and Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
29
|
Jung JM, Gruber A, Heseltine P, Rajamani K, Ameriso SF, Fisher MJ. New Directions in Infection-Associated Ischemic Stroke. J Clin Neurol 2024; 20:140-152. [PMID: 38330416 PMCID: PMC10921058 DOI: 10.3988/jcn.2023.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/06/2023] [Accepted: 11/12/2023] [Indexed: 02/10/2024] Open
Abstract
The relationship between infections and stroke has not been fully characterized, probably delaying the development of specific treatments. This narrative review addresses mechanisms of stroke linked to infections, including hypercoagulability, endothelial dysfunction, vasculitis, and impaired thrombolysis. SARS-CoV-2, the virus that causes COVID-19, may promote the development of stroke, which may represent its most severe neurological complication. The development of specific therapies for infection-associated stroke remains a profound challenge. Perhaps the most important remaining issue is the distinction between infections that trigger a stroke versus infections that are truly incidental. This distinction likely requires the establishment of appropriate biomarkers, candidates of which are elevated levels of fibrin D-dimer and anticardiolipin/antiphospholipid antibodies. These candidate biomarkers might have potential use in identifying pathogenic infections preceding stroke, which is a precursor to establishing specific therapies for this syndrome.
Collapse
Affiliation(s)
- Jin-Man Jung
- Department of Neurology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea; Korea University Zebrafish, Translational Medical Research Center, Ansan, Korea
| | | | - Peter Heseltine
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Kumar Rajamani
- Department of Neurology, Wayne State University-Detroit Medical Center, Detroit, MI, USA
| | - Sebastián F Ameriso
- Division of Vascular Neurology, Department of Neurology, Fleni, Autonomous City of Buenos Aires, Argentina
| | - Mark J Fisher
- Department of Neurology, University of California Irvine Medical Center, Orange, CA, USA.
| |
Collapse
|
30
|
Zhang W, Gorelik AJ, Wang Q, Norton SA, Hershey T, Agrawal A, Bijsterbosch JD, Bogdan R. Associations between COVID-19 and putative markers of neuroinflammation: A diffusion basis spectrum imaging study. Brain Behav Immun Health 2024; 36:100722. [PMID: 38298902 PMCID: PMC10825665 DOI: 10.1016/j.bbih.2023.100722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024] Open
Abstract
COVID-19 remains a significant international public health concern. Yet, the mechanisms through which symptomatology emerges remain poorly understood. While SARS-CoV-2 infection may induce prolonged inflammation within the central nervous system, the evidence primarily stems from limited small-scale case investigations. To address this gap, our study capitalized on longitudinal UK Biobank neuroimaging data acquired prior to and following COVID-19 testing (N = 416 including n = 224 COVID-19 cases; Mage = 58.6). Putative neuroinflammation was assessed in gray matter structures and white matter tracts using non-invasive Diffusion Basis Spectrum Imaging (DBSI), which estimates inflammation-related cellularity (DBSI-restricted fraction; DBSI-RF) and vasogenic edema (DBSI-hindered fraction; DBSI-HF). We hypothesized that COVID-19 case status would be associated with increases in DBSI markers after accounting for potential confound (age, sex, race, body mass index, smoking frequency, and data acquisition interval) and multiple testing. COVID-19 case status was not significantly associated with DBSI-RF (|β|'s < 0.28, pFDR >0.05), but with greater DBSI-HF in left pre- and post-central gyri and right middle frontal gyrus (β's > 0.3, all pFDR = 0.03). Intriguingly, the brain areas exhibiting increased putative vasogenic edema had previously been linked to COVID-19-related functional and structural alterations, whereas brain regions displaying subtle differences in cellularity between COVID-19 cases and controls included regions within or functionally connected to the olfactory network, which has been implicated in COVID-19 psychopathology. Nevertheless, our study might not have captured acute and transitory neuroinflammatory effects linked to SARS-CoV-2 infection, possibly due to symptom resolution before the imaging scan. Future research is warranted to explore the potential time- and symptom-dependent neuroinflammatory relationship with COVID-19.
Collapse
Affiliation(s)
- Wei Zhang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Aaron J. Gorelik
- Department of Psychological & Brain Sciences, Washington University, St. Louis, MO, United States
| | - Qing Wang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Sara A. Norton
- Department of Psychological & Brain Sciences, Washington University, St. Louis, MO, United States
| | - Tamara Hershey
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Psychological & Brain Sciences, Washington University, St. Louis, MO, United States
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Janine D. Bijsterbosch
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Ryan Bogdan
- Department of Psychological & Brain Sciences, Washington University, St. Louis, MO, United States
| |
Collapse
|
31
|
Berhanu RD, Feyisa JW, Boru JD, Jabana DE, Senbeta BS, Tekle MG, Alemayehu Y, Aga HT. COVID-19-related dysfunctional anxiety and associated factors among adolescents in Southwest Ethiopia: a cross-sectional study. BMC Psychiatry 2024; 24:167. [PMID: 38413896 PMCID: PMC10900736 DOI: 10.1186/s12888-024-05587-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 02/05/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND COVID-19 pandemic causes serious threats to people's mental health, particularly it has huge negative mental health outcomes for adolescents. However, there is lack of studies examining COVID-19-related anxiety among adolescents in Ethiopia. Hence, this study was aimed to examine COVID-19-related dysfunctional anxiety and its associated factors among adolescents in Mettu town. METHODS Community-based cross-sectional study was conducted from September 1 to 30, 2020 among 847 adolescents selected by stratified sampling technique. IBM SPSS Statistics Version 26.0 was used for analysis. Descriptive statistics such as frequency, percentage, mean, and standard deviation were computed. Bivariate and multivariate binary logistic regression analyses were done to identify factors associated with COVID-19-related dysfunctional anxiety. The statistical significance was declared at p ≤ 0.05; and the strength of association was described in terms of adjusted odds ratio. RESULTS Out of the total sample, 819 adolescents participated in this study. The mean age of the participants was 14.9 (SD = 2.798) years. The magnitude of COVID-19-related dysfunctional anxiety was found to be 20.9% (95% CI (18.1, 23.9)). The finding indicates that sex [(AOR (95% CI)); (0.724 (0.502, 1.043))], having both parents deceased [(AOR (95% CI)); (2.981 (1.138, 7.814))], living alone [(AOR (95% CI)); (2.363 (1.050, 5.321))], having unemployed mothers [(AOR (95% CI)); (1.943 (1.194, 3.163))], absence of close friend [(AOR (95% CI)); (0.377 (0.225, 0.630))], and medical problem [(AOR (95% CI)); (0.408 (0.278, 0.597))] were significantly associated with COVID-19-related anxiety. CONCLUSION The magnitude of COVID-19-related dysfunctional anxiety was found to be high in the study area. The findings have shown that the likelihood of developing COVID-19-related dysfunctional anxiety was linked to several factors. Provision of continued psychological support for adolescents is extremely encouraged.
Collapse
Affiliation(s)
- Robera Demissie Berhanu
- School of Nursing and Midwifery, Institute of Health Sciences, Wallaga University, Nekemte, Ethiopia.
| | - Jira Wakoya Feyisa
- Department of Public Health, Institute of Health Sciences, Wallaga University, Nekemte, Ethiopia
| | - Jibril Dori Boru
- School of Nursing and Midwifery, Institute of Health Sciences, Wallaga University, Nekemte, Ethiopia
| | - Desalegn Emana Jabana
- School of Nursing and Midwifery, Institute of Health Sciences, Wallaga University, Nekemte, Ethiopia
| | | | - Million Girma Tekle
- Department of Psychiatry, College of Health Sciences, Mattu University, Mettu, Ethiopia
| | - Yadeta Alemayehu
- Department of Psychiatry, College of Health Sciences, Mattu University, Mettu, Ethiopia
| | - Hunde Tarafa Aga
- Department of Psychiatry, College of Health Sciences, Mattu University, Mettu, Ethiopia
| |
Collapse
|
32
|
Collins CP, Longo DL, Murphy WJ. The immunobiology of SARS-CoV-2 infection and vaccine responses: potential influences of cross-reactive memory responses and aging on efficacy and off-target effects. Front Immunol 2024; 15:1345499. [PMID: 38469293 PMCID: PMC10925677 DOI: 10.3389/fimmu.2024.1345499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/12/2024] [Indexed: 03/13/2024] Open
Abstract
Immune responses to both SARS-CoV-2 infection and its associated vaccines have been highly variable within the general population. The increasing evidence of long-lasting symptoms after resolution of infection, called post-acute sequelae of COVID-19 (PASC) or "Long COVID," suggests that immune-mediated mechanisms are at play. Closely related endemic common human coronaviruses (hCoV) can induce pre-existing and potentially cross-reactive immunity, which can then affect primary SARS-CoV-2 infection, as well as vaccination responses. The influence of pre-existing immunity from these hCoVs, as well as responses generated from original CoV2 strains or vaccines on the development of new high-affinity responses to CoV2 antigenic viral variants, needs to be better understood given the need for continuous vaccine adaptation and application in the population. Due in part to thymic involution, normal aging is associated with reduced naïve T cell compartments and impaired primary antigen responsiveness, resulting in a reliance on the pre-existing cross-reactive memory cell pool which may be of lower affinity, restricted in diversity, or of shorter duration. These effects can also be mediated by the presence of down-regulatory anti-idiotype responses which also increase in aging. Given the tremendous heterogeneity of clinical data, utilization of preclinical models offers the greatest ability to assess immune responses under a controlled setting. These models should now involve prior antigen/viral exposure combined with incorporation of modifying factors such as age on immune responses and effects. This will also allow for mechanistic dissection and understanding of the different immune pathways involved in both SARS-CoV-2 pathogen and potential vaccine responses over time and how pre-existing memory responses, including potential anti-idiotype responses, can affect efficacy as well as potential off-target effects in different tissues as well as modeling PASC.
Collapse
Affiliation(s)
- Craig P. Collins
- Graduate Program in Immunology, University of California (UC) Davis, Davis, CA, United States
| | - Dan L. Longo
- Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, United States
| | - William J. Murphy
- Departments of Dermatology and Internal Medicine (Hematology/Oncology), University of California (UC) Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
33
|
Yue J, Cao J, Liu L, Yin L, Li M. Clinical characteristics of 4,520 paediatric patients infected with the SARS-CoV-2 omicron variant, in Xi'an, China. Front Pediatr 2024; 12:1325562. [PMID: 38464898 PMCID: PMC10920270 DOI: 10.3389/fped.2024.1325562] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/30/2024] [Indexed: 03/12/2024] Open
Abstract
Background and objective Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has broad tissue tropism and high transmission, which are likely to perpetuate the pandemic. The study aim to analyze the clinicopathogenic characteristics in paediatric patients. Methods In this single-centre study, we retrospectively included all confirmed cases infected by SARS-CoV-2 infection at Xi'an Children's Hospital, China, from 1 December to 31 December 2022. The demographic, clinical, laboratory, and radiological features of the patients were analysed. Results A total of 4,520 paediatric patients with SARS-CoV-2 omicron variant infections were included. Of these, 3,861 (85.36%) were outpatients, 659 (14.64%) were hospitalised patients, and nine patients (0.20%) died. Of the nine patients who died, five were diagnosed with acute necrotising encephalopathy (ANE). The most common symptoms were fever in 4,275 (94.59%) patients, cough in 1,320 (29.20%) patients, convulsions in 610 (13.50%) patients, vomiting in 410 (9.07%) patients, runny nose/coryza in 277 (6.13%) patients, hoarseness of voice in 273 (6.04%) patients. A blood cell analysis showed a slight elevation of monocytes (mean: 11.14 ± 0.07%). The main diagnoses for both outpatients and inpatients were respiratory infection with multisystem manifestations. Conclusions A high incidence of convulsions is a typical characteristic of children infected with SARS-CoV-2. Five of the nine COVID-19 fatalities were associated with ANE. This indicates that nervous system damage in children with SARS-CoV-2 infection is more significant.
Collapse
Affiliation(s)
- Jingwei Yue
- Department of Emergency, Xi’an Children's Hospital (Xi'an Jiaotong University Affiliated Children’s Hospital), Xi'an, Shaanxi, China
| | - Jin Cao
- Department of Gastroenterology, Xi'an Tus-Children’s Hospital, Xi'an, Shaanxi, China
| | - Lin Liu
- Department of Emergency, Xi’an Children's Hospital (Xi'an Jiaotong University Affiliated Children’s Hospital), Xi'an, Shaanxi, China
| | - Li Yin
- Department of Emergency, Xi’an Children's Hospital (Xi'an Jiaotong University Affiliated Children’s Hospital), Xi'an, Shaanxi, China
| | - Mingyue Li
- Department of Emergency, Xi’an Children's Hospital (Xi'an Jiaotong University Affiliated Children’s Hospital), Xi'an, Shaanxi, China
| |
Collapse
|
34
|
El-Medany A, Adams ZH, Blythe HC, Hope KA, Kendrick AH, Abdala Sheikh AP, Paton JFR, Nightingale AK, Hart EC. Carotid body dysregulation contributes to Long COVID symptoms. COMMUNICATIONS MEDICINE 2024; 4:20. [PMID: 38374172 PMCID: PMC10876702 DOI: 10.1038/s43856-024-00447-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/31/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND The symptoms of long COVID, which include fatigue, breathlessness, dysregulated breathing, and exercise intolerance, have unknown mechanisms. These symptoms are also observed in heart failure and are partially driven by increased sensitivity of the carotid chemoreflex. As the carotid body has an abundance of ACE2 (the cell entry mechanism for SARS-CoV-2), we investigated whether carotid chemoreflex sensitivity was elevated in participants with long COVID. METHODS Non-hositalised participants with long-COVID (n = 14) and controls (n = 14) completed hypoxic ventilatory response (HVR; the measure of carotid chemoreflex sensitivity) and cardiopulmonary exercise tests. Parametric and normally distributed data were compared using Student's unpaired t-tests or ANOVA. Nonparametric equivalents were used where relevant. Peason's correlation coefficient was used to examine relationships between variables. RESULTS During cardiopulmonary exercise testing the VE/VCO2 slope (a measure of breathing efficiency) was higher in the long COVID group (37.8 ± 4.4) compared to controls (27.7 ± 4.8, P = 0.0003), indicating excessive hyperventilation. The HVR was increased in long COVID participants (-0.44 ± 0.23 l/min/ SpO2%, R2 = 0.77 ± 0.20) compared to controls (-0.17 ± 0.13 l/min/SpO2%, R2 = 0.54 ± 0.38, P = 0.0007). The HVR correlated with the VE/VCO2 slope (r = -0.53, P = 0.0036), suggesting that excessive hyperventilation may be related to carotid body hypersensitivity. CONCLUSIONS The carotid chemoreflex is sensitised in long COVID and may explain dysregulated breathing and exercise intolerance in these participants. Tempering carotid body excitability may be a viable treatment option for long COVID patients.
Collapse
Affiliation(s)
- Ahmed El-Medany
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
- Department of Cardiology, Southmead Hospital, North Bristol NHS Trust, Bristol, UK
- Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Zoe H Adams
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Hazel C Blythe
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Katrina A Hope
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
- Department of Anaesthetics, Southmead Hospital, North Bristol NHS Trust, Bristol, UK
| | - Adrian H Kendrick
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
- Department of Respiratory Medicine, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | | | - Julian F R Paton
- Manaaki Manawa, The Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Angus K Nightingale
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
- Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Emma C Hart
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK.
| |
Collapse
|
35
|
Drozd M, Ritter JM, Samuelson JP, Parker M, Wang L, Sander SJ, Yoshicedo J, Wright L, Odani J, Shrader T, Lee E, Lockhart SR, Ghai RR, Terio KA. Mortality associated with SARS-CoV-2 in nondomestic felids. Vet Pathol 2024. [DOI: https:/doi.org/10.1177/03009858231225500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Between September and November 2021, 5 snow leopards ( Panthera uncia) and 1 lion ( Panthera leo) were naturally infected with severe acute respiratory coronavirus 2 (SARS-CoV-2) and developed progressive respiratory disease that resulted in death. Severe acute respiratory syndrome coronavirus 2 sequencing identified the delta variant in all cases sequenced, which was the predominant human variant at that time. The time between initial clinical signs and death ranged from 3 to 45 days. Gross lesions in all 6 cats included nasal turbinate hyperemia with purulent discharge and marked pulmonary edema. Ulcerative tracheitis and bronchitis were noted in 4 cases. Histologically, there was necrotizing and ulcerative rhinotracheitis and bronchitis with fibrinocellular exudates and fibrinosuppurative to pyogranulomatous bronchopneumonia. The 4 cats that survived longer than 8 days had fungal abscesses. Concurrent bacteria were noted in 4 cases, including those with more acute disease courses. Severe acute respiratory syndrome coronavirus 2 was detected by in situ hybridization using probes against SARS-CoV-2 spike and nucleocapsid genes and by immunohistochemistry. Viral nucleic acid and protein were variably localized to mucosal and glandular epithelial cells, pneumocytes, macrophages, and fibrinocellular debris. Based on established criteria, SARS-CoV-2 was considered a contributing cause of death in all 6 cats. While mild clinical infections are more common, these findings suggest that some SARS-CoV-2 variants may cause more severe disease and that snow leopards may be more severely affected than other felids.
Collapse
Affiliation(s)
- Mary Drozd
- University of Nebraska–Lincoln, Lincoln, NE
| | | | | | | | - Leyi Wang
- University of Illinois Urbana-Champaign, Urbana, IL
| | | | | | - Louden Wright
- Great Plain Zoo, Sioux Falls, SD
- Nashville Zoo at Grassmere, Nashville, TN
| | - Jenee Odani
- University of Hawai‘i at Mānoa, Honolulu, HI
| | | | - Elizabeth Lee
- Centers for Disease Control and Prevention, Atlanta, GA
| | | | - Ria R. Ghai
- Centers for Disease Control and Prevention, Atlanta, GA
| | | |
Collapse
|
36
|
Fujii T, Rennert RC, Hurth KM, Ward PM, Campan M, Mathew AJ, Dubeau L, Wallace WD, Liu CY, Russin JJ. Neurotropism of SARS-CoV-2: A Pathological Examination of Neurosurgical Specimens. Neurosurgery 2024; 94:379-388. [PMID: 37728367 DOI: 10.1227/neu.0000000000002684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/23/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Neurological manifestations may occur in more than 80% of patients hospitalized with COVID-19 infection, including severe disruptions of the central nervous system (CNS), such as strokes, encephalitis, or seizures. Although the primary pathophysiological mechanism for the effects of COVID-19 in CNS remains unknown, evidence exists for both direct injury from neuroinvasion and indirect effects from disruptions in systemic inflammatory and coagulation pathways. In this study, we analyzed CNS tissue from living patients to better understand these processes. METHODS With institutional review board approval and patient consent, samples that would be otherwise discarded from patients with active or recent (within 6 days of surgery) COVID-19 infection undergoing neurosurgical intervention were collected and tested for the presence of SARS-CoV-2 using immunohistochemistry, in situ hybridization, electron microscopy, and reverse transcription polymerase chain reaction. RESULTS Five patients with perioperative mild-to-moderate COVID-19 infection met inclusion criteria (2 male, 3 female; mean age 38.8 ± 13.5 years). Neurosurgical diagnoses included a glioblastoma, a ruptured arteriovenous malformation, a ruptured posterior inferior cerebellar artery aneurysm, a middle cerebral artery occlusion, and a hemorrhagic pontine cavernous malformation. Samples analyzed included the frontal lobe cortex, olfactory nerve, arteriovenous malformation/temporal lobe parenchyma, middle cerebral artery, cerebellum, and cavernous malformation/brainstem parenchyma. Testing for the presence of SARS-CoV-2 was negative in all samples. CONCLUSION The CNS is likely not a significant viral reservoir during mild-to-moderate COVID-19 infection, although direct neuroinvasion is not definitively excluded. Additional testing to help elucidate the relative contributions of direct and indirect pathways for CNS injury from COVID is warranted.
Collapse
Affiliation(s)
- Tatsuhiro Fujii
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles , California , USA
| | - Robert C Rennert
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles , California , USA
| | - Kyle M Hurth
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles , California , USA
| | - Pamela M Ward
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles , California , USA
| | - Mihaela Campan
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles , California , USA
| | - Anna J Mathew
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles , California , USA
| | - Louis Dubeau
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles , California , USA
| | - William D Wallace
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles , California , USA
| | - Charles Y Liu
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles , California , USA
| | - Jonathan J Russin
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles , California , USA
| |
Collapse
|
37
|
Wellford SA, Moseman EA. Olfactory immune response to SARS-CoV-2. Cell Mol Immunol 2024; 21:134-143. [PMID: 38143247 PMCID: PMC10806031 DOI: 10.1038/s41423-023-01119-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/04/2023] [Indexed: 12/26/2023] Open
Abstract
Numerous pathogens can infect the olfactory tract, yet the pandemic caused by SARS-CoV-2 has strongly emphasized the importance of the olfactory mucosa as an immune barrier. Situated in the nasal passages, the olfactory mucosa is directly exposed to the environment to sense airborne odorants; however, this also means it can serve as a direct route of entry from the outside world into the brain. As a result, olfactotropic infections can have serious consequences, including dysfunction of the olfactory system, CNS invasion, dissemination to the lower respiratory tract, and transmission between individuals. Recent research has shown that a distinctive immune response is needed to protect this neuronal and mucosal tissue. A better understanding of innate, adaptive, and structural immune barriers in the olfactory mucosa is needed to develop effective therapeutics and vaccines against olfactotropic microbes such as SARS-CoV-2. Here, we summarize the ramifications of SARS-CoV-2 infection of the olfactory mucosa, review the subsequent immune response, and discuss important areas of future research for olfactory immunity to infectious disease.
Collapse
Affiliation(s)
- Sebastian A Wellford
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - E Ashley Moseman
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
38
|
Luczo JM, Edwards SJ, Ardipradja K, Suen WW, Au GG, Marsh GA, Godde N, Rootes CL, Bingham J, Sundaramoorthy V. SARS-CoV and SARS-CoV-2 display limited neuronal infection and lack the ability to transmit within synaptically connected axons in stem cell-derived human neurons. J Neurovirol 2024; 30:39-51. [PMID: 38172412 PMCID: PMC11035468 DOI: 10.1007/s13365-023-01187-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/02/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024]
Abstract
Sarbecoviruses such as SARS and SARS-CoV-2 have been responsible for two major outbreaks in humans, the latter resulting in a global pandemic. While sarbecoviruses primarily cause an acute respiratory infection, they have been shown to infect the nervous system. However, mechanisms of sarbecovirus neuroinvasion and neuropathogenesis remain unclear. In this study, we examined the infectivity and trans-synaptic transmission potential of the sarbecoviruses SARS and SARS-CoV-2 in human stem cell-derived neural model systems. We demonstrated limited ability of sarbecoviruses to infect and replicate in human stem cell-derived neurons. Furthermore, we demonstrated an inability of sarbecoviruses to transmit between synaptically connected human stem cell-derived neurons. Finally, we determined an absence of SARS-CoV-2 infection in olfactory neurons in experimentally infected ferrets. Collectively, this study indicates that sarbecoviruses exhibit low potential to infect human stem cell-derived neurons, lack an ability to infect ferret olfactory neurons, and lack an inbuilt molecular mechanism to utilise retrograde axonal trafficking and trans-synaptic transmission to spread within the human nervous system.
Collapse
Affiliation(s)
- Jasmina M Luczo
- Diagnostics, Surveillance and Response, Australian Centre for Disease Preparedness, Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Sarah J Edwards
- Health and Biosecurity, Australian Centre for Disease Preparedness, Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Katie Ardipradja
- Diagnostics, Surveillance and Response, Australian Centre for Disease Preparedness, Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Willy W Suen
- Diagnostics, Surveillance and Response, Australian Centre for Disease Preparedness, Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Gough G Au
- Health and Biosecurity, Australian Centre for Disease Preparedness, Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Glenn A Marsh
- Health and Biosecurity, Australian Centre for Disease Preparedness, Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Nathan Godde
- Diagnostics, Surveillance and Response, Australian Centre for Disease Preparedness, Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Christina L Rootes
- Health and Biosecurity, Australian Centre for Disease Preparedness, Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - John Bingham
- Diagnostics, Surveillance and Response, Australian Centre for Disease Preparedness, Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Vinod Sundaramoorthy
- Diagnostics, Surveillance and Response, Australian Centre for Disease Preparedness, Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia.
- School of Medicine, Deakin University, Geelong, VIC, Australia.
| |
Collapse
|
39
|
Bruter AV, Varlamova EA, Okulova YD, Tatarskiy VV, Silaeva YY, Filatov MA. Genetically modified mice as a tool for the study of human diseases. Mol Biol Rep 2024; 51:135. [PMID: 38236499 DOI: 10.1007/s11033-023-09066-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/23/2023] [Indexed: 01/19/2024]
Abstract
Modeling a human disease is an essential part of biomedical research. The recent advances in the field of molecular genetics made it possible to obtain genetically modified animals for the study of various diseases. Not only monogenic disorders but also chromosomal and multifactorial disorders can be mimicked in lab animals due to genetic modification. Even human infectious diseases can be studied in genetically modified animals. An animal model of a disease enables the tracking of its pathogenesis and, more importantly, to test new therapies. In the first part of this paper, we review the most common DNA modification technologies and provide key ideas on specific technology choices according to the task at hand. In the second part, we focus on the application of genetically modified mice in studying human diseases.
Collapse
Affiliation(s)
- Alexandra V Bruter
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334
- Federal State Budgetary Institution "National Medical Research Center of Oncology Named After N.N. Blokhin" of the Ministry of Health of the Russian Federation, Research Institute of Carcinogenesis, Moscow, Russia, 115478
| | - Ekaterina A Varlamova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334
- Federal State Budgetary Institution "National Medical Research Center of Oncology Named After N.N. Blokhin" of the Ministry of Health of the Russian Federation, Research Institute of Carcinogenesis, Moscow, Russia, 115478
| | - Yulia D Okulova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334
| | - Victor V Tatarskiy
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334
| | - Yulia Y Silaeva
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334
| | - Maxim A Filatov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334.
| |
Collapse
|
40
|
Błażejewski G, Witkoś J, Hartman-Petrycka M. Changes in sensitivity and hedonic rating to transcutaneous electrical nerve stimulation following COVID-19. Sci Rep 2024; 14:1233. [PMID: 38216666 PMCID: PMC10786926 DOI: 10.1038/s41598-024-51596-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/07/2024] [Indexed: 01/14/2024] Open
Abstract
COVID-19 affects not only the respiratory system but also other biological systems such as the nervous system. Usually, these changes are reported based on the patient's subjective description. The aim of our study, therefore, was to objectively determine the effect that the SARS-CoV-2 virus and COVID-19 disease has on sensory threshold and the hedonic and subjective perception of an electrical stimulus. The sensory threshold was tested on the inner forearm by applying non-invasive transcutaneous electrical nerve stimulation (TENS) with 100 Hz and 100 µs parameters and a biphasic current waveform. The study involved 211 participants, aged 22-79 years, with a mean age of 56.9 ± 12.1 years. There were 131 subjects in the COVID group, while the NON-COVID group, the control group, was matched to the COVID group in terms of gender, age, body mass index and presence of chronic diseases. The research was carried out in 2022. Sensory sensitivity was highest in the group that had suffered with COVID-19. The median sensory sensitivity was 11 mA in the COVID group and 14 mA (p < 0.001) in the NON-COVID group, however, the current sensitivity threshold decreased over time (R = 0.52, p < 0.001). Post COVID-19, the electrical stimulus was more often perceived as unpleasant: COVID versus NON-COVID (23% vs. 3%, p < 0.001) and as a different sensation to tingling (27% vs. 2%, p < 0.001). Post-COVID-19 patients have a lower sensory threshold, the electrical stimulus is more often described as unpleasant and in subjective feelings it is more often described as pinching. The differences between COVID and NON-COVID decrease with time since the onset of COVID symptoms.
Collapse
Affiliation(s)
- Grzegorz Błażejewski
- Faculty of Medicine and Health Science, Andrzej Frycz Modrzewski Krakow University, Kraków, Poland.
| | - Joanna Witkoś
- Faculty of Medicine and Health Science, Andrzej Frycz Modrzewski Krakow University, Kraków, Poland
| | - Magdalena Hartman-Petrycka
- Department of Basic Biomedical Science, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
41
|
Iravanpour F, Farrokhi MR, Jafarinia M, Oliaee RT. The effect of SARS-CoV-2 on the development of Parkinson's disease: the role of α-synuclein. Hum Cell 2024; 37:1-8. [PMID: 37735344 DOI: 10.1007/s13577-023-00988-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
The current coronavirus disease 2019 (COVID-19) can lead to various neurological complications in infected people. These neurological effects include problems in both central nervous system (CNS) and peripheral nervous system (PNS). Hyposmia, a PNS symptom of COVID-19, frequently manifests in the early stages of Parkinson's disease (PD) and serves as an early warning sign of the condition. In addition, the olfactory system is recognized as an early site for the onset of α-synuclein pathology, the pathological hallmark of PD. PD is characterized by accumulation and aggregation of misfolded α-synuclein (α-Syn) into Lewy bodies and Lewy neurites, resulting in the degeneration of dopaminergic neurons in substantia nigra pars compacta (SNpc). Previous research has also shown the involvement of α-Syn in the innate immune response following viral infections. Consequently, the potential link between viral infections and development of PD has gained attention in recent years. However, it's still too early to definitively conclude whether COVID-19 can cause Parkinsonism. Nevertheless, we can explore the likelihood of this connection by examining past studies and possible mechanisms to better understand how COVID-19 might potentially lead to PD following the infection. Based on the various pieces of evidence discussed in this review, we can infer that SARS-CoV-2 promotes the aggregation of α-Syn and, ultimately, leads to PD through at least two mechanisms: the stable binding of the S1 protein to proteins prone to aggregation like α-Syn, and the upregulation of α-Syn as part of the immune response to the infection.
Collapse
Affiliation(s)
- Farideh Iravanpour
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Reza Farrokhi
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Neurosurgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Morteza Jafarinia
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Razieh Tavakoli Oliaee
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
42
|
Nagaraju S, Ramalingam S, Mani S. Pulmonary Manifestations of COVID-19. TEXTBOOK OF SARS-COV-2 AND COVID-19 2024:100-136. [DOI: 10.1016/b978-0-323-87539-4.00005-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
43
|
Zhang W, Gorelik AJ, Wang Q, Norton SA, Hershey T, Agrawal A, Bijsterbosch JD, Bogdan R. Associations between COVID-19 and putative markers of neuroinflammation: A diffusion basis spectrum imaging study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.20.549891. [PMID: 37502886 PMCID: PMC10370178 DOI: 10.1101/2023.07.20.549891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
COVID-19 remains a significant international public health concern. Yet, the mechanisms through which symptomatology emerges remain poorly understood. While SARS-CoV-2 infection may induce prolonged inflammation within the central nervous system, the evidence primarily stems from limited small-scale case investigations. To address this gap, our study capitalized on longitudinal UK Biobank neuroimaging data acquired prior to and following COVID-19 testing (N=416 including n=224 COVID-19 cases; Mage=58.6). Putative neuroinflammation was assessed in gray matter structures and white matter tracts using non-invasive Diffusion Basis Spectrum Imaging (DBSI), which estimates inflammation-related cellularity (DBSI-restricted fraction; DBSI-RF) and vasogenic edema (DBSI-hindered fraction; DBSI-HF).We hypothesized that COVID-19 case status would be associated with increases in DBSI markers after accounting for potential confound (age, sex, race, body mass index, smoking frequency, and data acquisition interval) and multiple testing. COVID-19 case status was not significantly associated with DBSI-RF (|β|'s<0.28, pFDR >0.05), but with greater DBSI-HF in left pre- and post-central gyri and right middle frontal gyrus (β's>0.3, all pFDR=0.03). Intriguingly, the brain areas exhibiting increased putative vasogenic edema had previously been linked to COVID-19-related functional and structural alterations, whereas brain regions displaying subtle differences in cellularity between COVID-19 cases and controls included regions within or functionally connected to the olfactory network, which has been implicated in COVID-19 psychopathology. Nevertheless, our study might not have captured acute and transitory neuroinflammatory effects linked to SARS-CoV-2 infection, possibly due to symptom resolution before the imaging scan. Future research is warranted to explore the potential time- and symptom-dependent neuroinflammatory relationship with COVID-19.
Collapse
Affiliation(s)
- Wei Zhang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Aaron J Gorelik
- Department of Psychological & Brain Sciences, Washington University, St. Louis, MO, United States
| | - Qing Wang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Sara A Norton
- Department of Psychological & Brain Sciences, Washington University, St. Louis, MO, United States
| | - Tamara Hershey
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Psychological & Brain Sciences, Washington University, St. Louis, MO, United States
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Janine D Bijsterbosch
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Ryan Bogdan
- Department of Psychological & Brain Sciences, Washington University, St. Louis, MO, United States
| |
Collapse
|
44
|
Tripathi SM, Vishwakarma PK, Ojha S, Mishra S. Relationship between COVID-19 and Neurological Disorder. CORONAVIRUSES 2023; 4. [DOI: 10.2174/0126667975253863230920070917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/20/2023] [Accepted: 08/18/2023] [Indexed: 01/03/2025]
Abstract
Abstract:
The COVID-19 pandemic has resulted in a socially isolating way of life, and dementia
patients are among those who are most affected. Lockdown procedures and the inability to monitor
illnesses have led to a rapid decline in cognitive function in these individuals, with neuropsychiatric
symptoms, such as agitation, delirium, and impaired motor performance being prevalent. However, the
use of antipsychotics in treating these symptoms can increase the risk of death during COVID-19. Effective
pain therapy can be used as an alternative to reduce or avoid the use of antipsychotics, given the
consistent relationship between agitation and pain in dementia patients. The importance of properly
assessing and managing pain in dementia patients is highlighted. Additionally, the article discusses
how COVID-19 can affect brain health through inflammation, blood clotting, and blood vessel damage,
leading to potential long-term effects on cognitive function. Healthcare professionals must be
aware of the increased risk of neuropsychiatric symptoms in dementia patients during the pandemic
and prioritize pain management as a viable alternative to antipsychotics. Proper care and attention are
necessary to prevent cognitive decline and potential long-term effects on brain health in these vulnerable
individuals.
Collapse
Affiliation(s)
- Shivendra Mani Tripathi
- Department of Pharmaceutical Science & Technology, Madan Mohan Malaviya University of Technology, Gorakhpur,
Uttar Pradesh, India
| | - Pratik Kumar Vishwakarma
- Department of Pharmaceutical Science & Technology, Madan Mohan Malaviya University of Technology, Gorakhpur,
Uttar Pradesh, India
| | - Smriti Ojha
- Department of Pharmaceutical Science & Technology, Madan Mohan Malaviya University of Technology, Gorakhpur,
Uttar Pradesh, India
| | - Sudhanshu Mishra
- Department of Pharmaceutical Science & Technology, Madan Mohan Malaviya University of Technology, Gorakhpur,
Uttar Pradesh, India
| |
Collapse
|
45
|
Ludhiadch A, Paul SR, Khan R, Munshi A. COVID-19 induced ischemic stroke and mechanisms of viral entry in brain and clot formation: a systematic review and current update. Int J Neurosci 2023; 133:1153-1166. [PMID: 35412938 DOI: 10.1080/00207454.2022.2056460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
Abstract
Background: Coronavirus disease 2019, caused by SARS-CoV-2 (SCV-2) was stated as a pandemic on March 11 2020 by World Health Organization (WHO), and since then, it has become a major health issue worldwide. It mainly attacks the respiratory system with various accompanying complications, including cardiac injury, renal failure, encephalitis and Stroke.Materials and Methods: The current systematic review has been compiled to summarize the available literature on SCV-2 induced ischemic Stroke and its subtypes. Further, the mechanisms by which the virus crosses the blood-brain barrier (BBB) to enter the brain have also been explored. The role of CRP and D-dimer as potent prognostic markers was also explored. The literature search was carried out comprehensively on Google scholar, PubMed, SCOP US, Embase and Cochrane databases by following guidelines.Results: All the studies were reviewed thoroughly by authors and disagreements were resolved by consensus and help of the senior authors. The most common subtype of the IS was found to be large artery atherosclerosis in SCV-2 induced IS. Hypertension emerged as the most significant risk factor. The mechanism resulting in elevated levels of CRP and D-dimer have also been discussed. However, there is a scarcity of definitive evidence on how SCV-2 enters the human brain. The available literature based on various studies demonstrated that SCV-2 enters through the nasopharyngeal tract via olfactory cells to olfactory neurons, astrocytes and via choroid plexus through endothelial cells. Further, disruption of gut-brain axis has been also discussed.Conclusion: Data available in the literature is not adequate to come to a conclusion. Therefore, there is a need to carry out further studies to delineate the possible association between SCV-2 induced IS.
Collapse
Affiliation(s)
- Abhilash Ludhiadch
- Department of Human Genetics and Molecular Medicine Central, University of Punjab Bathinda, Bathinda, Punjab, India
| | - Swaraj Ranjan Paul
- Department of Human Genetics and Molecular Medicine Central, University of Punjab Bathinda, Bathinda, Punjab, India
| | - Rahul Khan
- Department of Human Genetics and Molecular Medicine Central, University of Punjab Bathinda, Bathinda, Punjab, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine Central, University of Punjab Bathinda, Bathinda, Punjab, India
| |
Collapse
|
46
|
Orji FT, Akpeh JO, Okolugbo NE. Recovery Patterns of COVID-19 Related Smell Disorders: An Analysis of the Available Evidence. Indian J Otolaryngol Head Neck Surg 2023; 75:4179-4189. [PMID: 37974870 PMCID: PMC10645952 DOI: 10.1007/s12070-023-04005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 06/16/2023] [Indexed: 11/19/2023] Open
Abstract
Recently acquired olfactory dysfunction (OD) has emerged as one of hallmark manifestations of the novel Corona virus disease (COVID-19), but the evolution of its spontaneous recovery has remained inconclusive, with reports of persistence of OD beyond six months of onset. We undertook this systematic review and meta-analysis with a view to generating a pooled recovery rate of COVID-19 associated olfactory dysfunctions and attempt to examine the predictors of olfactory recovery. Systematic review and meta-analysis. A systematic search of Scopus, Google Scholar, and PubMed data bases, comprising all longitudinal studies reporting the trajectory of COVID-19 related OD was carried out. The pooled recovery rate was estimated with random-effects model, and the potential heterogeneity of the subgroup sources was analyzed using meta-regression test. After the PRISMA selection process 28 studies from 16 countries were included, with a total of 5,175 OD patients, among 11,948 COVID-19 cases. The estimated global pooled recovery rate of OD was 82.7% (95% CI, 77.46%-88.04%), with a pooled median duration of OD of 11.6 days. Only 2 out of 28 studies had recovery data beyond a period of 2 months. But no significant difference was found in the recovery rate regarding the length of follow up (P = 0.840). Studies that conducted objective olfactory assessments showed significant higher recovery rate than those with subjective assessments (P = 0.001). Although ten studies (36%) reported > 90% recovery, nine studies (32%) documented persistence of OD in > 25% of their patients. Five out of 6 studies showed that hyposmia tended to show complete recovery than anosmia. Age, co-morbidities, and intra-nasal treatments had no effects. Test of homogeneity between subgroups using the Cochran's Q test was not significant (Q = 0.69, P = 0.40). Our meta-analysis revealed high rate of early and medium term recovery of COVID-19 related OD. However, it also showed disturbing rates of persistence of OD. Anosmia tended to be predictive of residual OD than hyposmia. Age, co-morbidities, intra-nasal corticosteroid and decongestants, had no effects on OD recovery.
Collapse
|
47
|
Sompa AW, Harun H, Mimika RA, Riksanto R. Neurological manifestations of COVID-19 in Indonesia: Assessment of the role of sex and age. NARRA J 2023; 3:e277. [PMID: 38450343 PMCID: PMC10916454 DOI: 10.52225/narra.v3i3.277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/07/2023] [Indexed: 03/08/2024]
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can manifest in multiple organs. While the primary manifestations of COVID-19 occur in the respiratory system, other organ systems are also involved, including nervous systems that cause neurological symptoms. The aim of this study was to determine the neurological manifestations of COVID-19 patients and to assess the role of age and sex on neurological manifestation incidence. A cross-sectional study was conducted at Pelamonia Hospital, Makassar, Indonesia, among inpatient COVID-19 cases, using a total sampling method. Demographic data and neurological manifestations of the COVID-19 patients were collected. The associations between age and sex with the incidence of neurological symptoms were analyzed using the Chi-squared test. Out of 424 inpatients with COVID-19 cases, 62.3% were females, with the highest age group was 20-40 years (42.7%). The neurological symptoms were reported in 232 patients, accounting for approximately 54.7%. The most frequently reported neurological symptom was headache (n=104, 44.8%), followed by anosmia (n=44, 18.9%), ageusia (n=48, 20.6%), myopathy (n=14, 6%), stroke (n=10, 4.3%), seizure (n=5, 2.1%), and altered consciousness (n=7, 3%). An association was found between sex and the incidence of headache, myopathy, stroke, and altered consciousness. There was also an association between age and the incidence of headache and stroke. The study highlights that COVID-19 patients commonly exhibit neurological implications affecting the central nervous system and peripheral nervous system. Therefore, it is crucial for the early detection of neurological symptoms in COVID-19 cases to have better management.
Collapse
Affiliation(s)
- Andi W. Sompa
- Department of Neurology, Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Makassar, Makassar, Indonesia
- Department of Neurology, Pelamonia Hospital, Makassar, Indonesia
| | - Hartina Harun
- Department of Neurology, Pelamonia Hospital, Makassar, Indonesia
| | - Riska A. Mimika
- Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Makassar, Makassar, Indonesia
| | - Rolly Riksanto
- Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Makassar, Makassar, Indonesia
| |
Collapse
|
48
|
Cappelletti P, Gallo G, Marino R, Palaniappan S, Corbo M, Savoia C, Feligioni M. From cardiovascular system to brain, the potential protective role of Mas Receptors in COVID-19 infection. Eur J Pharmacol 2023; 959:176061. [PMID: 37775018 DOI: 10.1016/j.ejphar.2023.176061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has been declared a new pandemic in March 2020. Although most patients are asymptomatic, those with underlying cardiovascular comorbidities may develop a more severe systemic infection which is often associated with fatal pneumonia. Nonetheless, neurological and cardiovascular manifestations could be present even without respiratory symptoms. To date, no COVID-19-specific drugs are able for preventing or treating the infection and generally, the symptoms are relieved with general anti-inflammatory drugs. Angiotensin-converting-enzyme 2 (ACE2) may function as the receptor for virus entry within the cells favoring the progression of infection in the organism. On the other hand, ACE2 is a relevant enzyme in renin angiotensin system (RAS) cascade fostering Ang1-7/Mas receptor activation which promotes protective effects in neurological and cardiovascular systems. It is known that RAS is composed by two functional countervailing axes the ACE/AngII/AT1 receptor and the ACE/AngII/AT2 receptor which counteracts the actions mediated by AngII/AT1 receptor by inducing anti-inflammatory, antioxidant and anti-growth functions. Subsequently an "alternative" ACE2/Ang1-7/Mas receptor axis has been described with functions similar to the latter protective arm. Here, we discuss the neurological and cardiovascular effects of COVID-19 highlighting the role of the stimulation of the RAS "alternative" protective arm in attenuating pulmonary, cerebral and cardiovascular damages. In conclusion, only two clinical trials are running for Mas receptor agonists but few other molecules are in preclinical phase and if successful these drugs might represent a successful strategy for the treatment of the acute phase of COVID-19 infection.
Collapse
Affiliation(s)
- Pamela Cappelletti
- Department of Neuro-Rehabilitation Sciences, Casa di Cura Igea, Milan, Italy.
| | - Giovanna Gallo
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Rachele Marino
- European Brain Research Institute (EBRI) Rita Levi Montalcini Foundation, Rome, Italy
| | | | - Massimo Corbo
- Department of Neuro-Rehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| | - Carmine Savoia
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Marco Feligioni
- Department of Neuro-Rehabilitation Sciences, Casa di Cura Igea, Milan, Italy; European Brain Research Institute (EBRI) Rita Levi Montalcini Foundation, Rome, Italy.
| |
Collapse
|
49
|
Kumar M. Hydrogen sulfide: From a toxic gas to a potential therapy for COVID-19 and inflammatory disorders. Nitric Oxide 2023; 140-141:8-15. [PMID: 37648016 DOI: 10.1016/j.niox.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/06/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
COVID-19 has been shown to induce inflammatory disorders and CNS manifestations. Swift and efficient treatment strategies are urgently warranted for the management of COVID, inflammatory and neurological disorders. Hydrogen sulfide (H2S) has been associated with several clinical disorders due to its potential to influence a broad range of biological signalling pathways. According to recent clinical studies, COVID patients with lower physiological H2S had higher fatality rates. These findings clearly demonstrate an inverse correlation between H2S levels and the severity of COVID-19. H2S has been proposed as a protective molecule because of its antioxidant, anti-inflammatory, and antiviral properties. Various H2S-releasing prodrugs, hybrids and natural compounds have been tested for their therapeutic efficacy in viral infections and inflammatory disorders. In this review, I am highlighting the rationale for using H2S-based interventions for the management of COVID-19 and post-infection inflammatory disorders including neuroinflammation. I am also proposing therepurposing of existing H2S-releasing prodrugs, developing new NO-H2S-hybrids, targeting H2S metabolic pathways, and using H2S-producing dietary supplements as viable defensive strategies against SARS-CoV-2 infection and COVID-19 pathologies.
Collapse
Affiliation(s)
- Mohit Kumar
- Centre for Excellence in Functional Foods, Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, S.A.S Nagar, Punjab, 140306, India.
| |
Collapse
|
50
|
Garção DC, Correia AGDS, Ferreira FJS, Pereira PC, Fontes LRG, Ferreira LC. Prevalence and risk factors for seizures in adult COVID-19 patients: A meta-analysis. Epilepsy Behav 2023; 148:109501. [PMID: 39492176 DOI: 10.1016/j.yebeh.2023.109501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/05/2024]
Abstract
Seizures may be one of the neurological consequences of COVID-19. The present study aims to review the prevalence of seizures in COVID-19 patients considering sex and geographical origin. A review protocol was submitted to the PROSPERO database (CRD42021281467). PRISMA statement was used to report the meta-analysis. The authors selected studies for the meta-analysis by searching the principal databases. Studies were eligible if they reported seizures in COVID-19 patients, regardless of study design. Data were analyzed by proportion meta-analysis with a 95 % confidence interval (95 % CI). Cochran's Q and Higgins' I2 were used to measure heterogeneity. R software was used for meta-analysis. Subgroup analyses were carried out for sex, geographical origin of the subjects, and illness severity. A checklist for prevalence studies was used to assess the risk of bias in the included studies. A total of 32 studies (n = 251,997 analyzed patients) were included in this meta-analysis. A prevalence of 1.03 % (95 % CI 0.73 to 1.37, I2 = 93 %, p < 0.001) was found. No statistically significant differences were found in the analysis by geographical subgroups. Men were found to be less likely to had COVID-19 seizures (OR = 0.75, 95 % CI 0.21-2.74), while mildly ill patients were found to be more likely to had COVID-19-induced seizures (OR = 2.08, 95 % CI 0.86-5.06). Our results show a slight prevalence of seizures in COVID-19 patients. In addition, we found that the groups analyzed had differences in the odds of having COVID-19-induced seizures.
Collapse
Affiliation(s)
- Diogo Costa Garção
- Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil; Neurosciences Study Group, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil; Department of Medicine, Tiradentes University, Aracaju, Sergipe, Brazil.
| | - Alisson Guilherme da Silva Correia
- Neurosciences Study Group, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil; Department of Nursing, Federal University of Sergipe, Aracaju, Sergipe, Brazil.
| | | | | | | | | |
Collapse
|