1
|
Moschidi D, Fourkiotis NK, Sideras-Bisdekis C, Tsika AC, Spyroulias GA. 1H, 13C and 15N chemical shift assignments of Rubella virus macro domain in the free and in the ADPr bound state. BIOMOLECULAR NMR ASSIGNMENTS 2025; 19:117-125. [PMID: 40186845 PMCID: PMC12116708 DOI: 10.1007/s12104-025-10227-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/20/2025] [Indexed: 04/07/2025]
Abstract
Prokaryotes, eukaryotes, and certain viruses with positive single-stranded RNA genomes are among the forms of life that have been found to possess macro domains (MDs). There are claims that viral MDs inhibit the immune response mediated by PARPs, such as PARP12 and PARP14, and are involved in the formation of the viral replication transcription complex (RTC). Rubella virus (RuV) is included in this group of viruses. Its MD acts as an "eraser" of the posttranslation modification (PTM) ADP-ribosylation by binding to and hydrolyzing ADP-ribose (ADPr) from ADP-ribosylated substrates including proteins and nucleic acids. Consequently, it represents an attractive pharmacological target. Currently, no inhibitors exist for RuV MD's de-ADP-ribosylation activity, which may play a crucial role in viral replication and pathogenesis, as observed in severe acute respiratory syndrome coronavirus (SARS-CoV) and Chikungunya virus (CHIKV). RuV remains a serious threat, particularly to unvaccinated children, with approximately 10,000 of the 18,000 global cases in 2022 reported in Africa. Alarmingly, no FDA-approved drugs are available for RuV treatment. In this study, we present the almost complete NMR backbone and side-chain resonance assignment of RuV MD in both free and ADPr bound forms, along with the NMR chemical shift-based secondary structure element prediction. These findings will support the efficient screening of fragments or chemical libraries using NMR spectroscopy to identify compounds that are strong binders and potentially exhibit antiviral activity.
Collapse
Affiliation(s)
- Danai Moschidi
- Department of Pharmacy, University of Patras, Patras, 26504, Greece
| | | | | | | | | |
Collapse
|
2
|
Pfannenstiel JJ, Duong MTH, Cluff D, Sherrill LM, Colquhoun I, Cadoux G, Thorne D, Pääkkönen J, Schemmel NF, O'Connor J, Saenjamsai P, Feng M, Parthasarathy S, Hageman MJ, Johnson DK, Roy A, Lehtiö L, Ferraris DV, Fehr AR. Identification of a series of pyrrolo-pyrimidine-based SARS-CoV-2 Mac1 inhibitors that repress coronavirus replication. mBio 2025:e0386524. [PMID: 40407321 DOI: 10.1128/mbio.03865-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/29/2025] [Indexed: 05/28/2025] Open
Abstract
Coronaviruses (CoVs) can emerge from zoonotic sources and cause severe diseases in humans and animals. CoVs encode for a macrodomain (Mac1) that binds to and removes ADP-ribose from target proteins. SARS-CoV-2 Mac1 promotes virus replication in the presence of interferon (IFN) and blocks the production of IFN, although the mechanisms by which it mediates these functions remain unknown. Mac1 inhibitors could help elucidate these mechanisms and serve as therapeutic agents against CoV-induced diseases. We previously identified compound 4a (a.k.a. MCD-628), a pyrrolo-pyrimidine that inhibited Mac1 activity in vitro at low micromolar levels. Here, we determined the binding mode of 4a by crystallography, further defining its interaction with Mac1. However, 4a did not reduce CoV replication, which we hypothesized was due to its acidic side chain limiting permeability. To test this hypothesis, we developed several hydrophobic derivatives of 4a. We identified four compounds that both inhibited Mac1 in vitro and inhibited murine hepatitis virus (MHV) replication: 5a, 5c, 6d, and 6e. Furthermore, 5c and 6e inhibited SARS-CoV-2 replication only in the presence of IFNγ, similar to a Mac1 deletion virus. To confirm their specificity, we passed MHV in the presence of 5a to identify drug-resistant mutations and identified an alanine-to-threonine and glycine-to-valine double mutation in Mac1. Recombinant virus with these mutations had enhanced replication compared with the WT virus when treated with 5a, demonstrating the specificity of these compounds during infection. However, this virus is highly attenuated in vivo, indicating that drug resistance emerged at the expense of viral fitness.IMPORTANCECoronaviruses (CoVs) present significant threats to human and animal health, as evidenced by recent outbreaks of MERS-CoV and SARS-CoV-2. CoVs encode for a highly conserved macrodomain protein (Mac1) that binds to and removes ADP-ribose from proteins, which promotes virus replication and blocks IFN production, although the exact mechanisms remain unclear. Inhibiting Mac1 could provide valuable insights into these mechanisms and offer new therapeutic avenues for CoV-induced diseases. We have identified several unique pyrrolo-pyrimidine-based compounds as Mac1 inhibitors. Notably, at least two of these compounds inhibited both murine hepatitis virus (MHV) and SARS-CoV-2 replication. Furthermore, we identified a drug-resistant mutation in Mac1, confirming target specificity during infection. However, this mutant is highly attenuated in mice, indicating that drug resistance appears to come at a fitness cost. These results emphasize the potential of Mac1 as a drug target and the promise of structure-based inhibitor design in combating CoV infections.
Collapse
Affiliation(s)
| | - Men Thi Hoai Duong
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Northern Ostrobothnia, Finland
| | - Daniel Cluff
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | | | - Iain Colquhoun
- Department of Chemistry, McDaniel College, Westminster, Maryland, USA
| | - Gabrielle Cadoux
- Department of Chemistry, McDaniel College, Westminster, Maryland, USA
| | - Devyn Thorne
- Department of Chemistry, McDaniel College, Westminster, Maryland, USA
| | - Johan Pääkkönen
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Northern Ostrobothnia, Finland
| | - Nathaniel F Schemmel
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Joseph O'Connor
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Pradtahna Saenjamsai
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Mei Feng
- Biopharmaceutical Innovation & Optimization Center, University of Kansas, Lawrence, Kansas, USA
| | | | - Michael J Hageman
- Biopharmaceutical Innovation & Optimization Center, University of Kansas, Lawrence, Kansas, USA
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - David K Johnson
- Computational Chemical Biology Laboratory, University of Kansas, Lawrence, Kansas, USA
| | - Anuradha Roy
- Infectious Disease Assay Development Laboratory, University of Kansas, Lawrence, Kansas, USA
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Northern Ostrobothnia, Finland
| | - Dana V Ferraris
- Department of Chemistry, McDaniel College, Westminster, Maryland, USA
| | - Anthony R Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
3
|
Keep S, Foldes K, Dowgier G, Freimanis G, Tennakoon C, Chowdhury S, Rayment A, Kirk J, Bakshi T, Stevenson-Leggett P, Chen Y, Britton P, Bickerton E. Recombinant infectious bronchitis virus containing mutations in non-structural proteins 10, 14, 15, and 16 and within the macrodomain provides complete protection against homologous challenge. J Virol 2025; 99:e0166324. [PMID: 40013770 PMCID: PMC11998542 DOI: 10.1128/jvi.01663-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/26/2025] [Indexed: 02/28/2025] Open
Abstract
Infectious bronchitis virus (IBV) is the etiological agent of infectious bronchitis, an acute highly contagious economically important disease of chickens. Vaccination uses live attenuated vaccines (LAVs) that are generated via serial passage of a virulent field isolate through embryonated hens' eggs, typically 80-100 times. The molecular basis of attenuation is unknown and varies with each attenuation procedure. To investigate specifically targeted attenuation, we utilized reverse genetics to target the macrodomain 1 (Mac1) domain within non-structural protein 3 of the virulent M41 strain. Macrodomains are found in a variety of viruses, including coronaviruses, and have been associated with the modulation of the host's innate response. Two recombinant IBVs (rIBVs) were generated with specific single point mutations, either Asn42Ala (N42A) or Gly49Ser (G49S), within the Mac1 domain generating rIBVs M41K-N42A and M41K-G49S, respectively. Replication in vitro was unaffected, and the mutations were stably maintained during passaging in vitro and in ovo. While M41K-N42A exhibited an attenuated phenotype in vivo, M41K-G49S was only partially attenuated. The attenuated in vivo phenotypes observed do not appear to be linked to a reduction in viral replication and additionally M41K-N42A highlighted the N42A mutation as a method of rational attenuation. Vaccination of chickens with either rIBV M41K-N42A or a rIBV containing the Mac1 N42A mutation and our previously identified attenuating Nsp10 and 14 mutations, Pro85Leu and Val393Leu respectively, offered complete protection from homologous challenge. The presence of multiple attenuating mutations did not appear to negatively impact vaccine efficacy. IMPORTANCE Infection of chickens with the Gammacoronavirus infectious bronchitis virus (IBV) causes an acute respiratory disease, resulting in reduced weight gain and reductions in egg laying making it a global concern for poultry industries and food security. Vaccination against IBV uses live attenuated viruses (LAVs), generated by multiple passages of a virulent virus through embryonated hens' eggs. The molecular basis of attenuation is unknown and unpredictable requiring a fine balance between loss of virulence and vaccine efficacy. In this study, we targeted the macrodomain of IBV for rational attenuation demonstrating a single point mutation can result in loss of pathogenicity. An IBV vaccine candidate was subsequently generated containing three specific attenuating mutations, to reduce the risk of reversion, which completely protected chickens. The targets in this study are conserved among IBV strains and the coronavirus family offering a potential method of rational attenuation that can be universally applied for vaccine development.
Collapse
Affiliation(s)
- Sarah Keep
- The Pirbright Institute, Pirbright, United Kingdom
| | | | | | | | | | | | - Adam Rayment
- The Pirbright Institute, Pirbright, United Kingdom
| | - James Kirk
- The Pirbright Institute, Pirbright, United Kingdom
| | | | | | - Yana Chen
- The Pirbright Institute, Pirbright, United Kingdom
| | - Paul Britton
- The Pirbright Institute, Pirbright, United Kingdom
| | | |
Collapse
|
4
|
Garcia Lopez V, Plate L. Comparative Interactome Profiling of Nonstructural Protein 3 Across SARS-CoV-2 Variants Emerged During the COVID-19 Pandemic. Viruses 2025; 17:447. [PMID: 40143373 PMCID: PMC11946765 DOI: 10.3390/v17030447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
SARS-CoV-2 virus and its variants remain a global health threat, due to their capacity for rapid evolution. Variants throughout the COVID-19 pandemic exhibited variations in virulence, impacting vaccine protection and disease severity. Investigating nonstructural protein variants is critical to understanding viral evolution and manipulation of host protein interactions. We focus on nonstructural protein 3 (nsp3), with multiple domains with different activities, including viral polyprotein cleavage, host deubiquitylation, de-ISGylation, and double-membrane vesicle formation. Using affinity purification-mass spectrometry (AP-MS), we identify differential protein interactions in nsp3 caused by mutations found in variants identified between 2019 and 2024: Alpha 20I, Beta 20H, Delta 21I, Delta 21J, Gamma 20J, Kappa 21B, Lambda 21G, Omicron 21K, and Omicron 21L. A small set of amino acid substitutions in the N-terminal region of nsp3 (nsp3.1) could be traced to increased interactions with RNA-binding proteins, which are vital in viral replication. Meanwhile, variants of the central region of nsp3 (nsp3.2) were found to share interactions with protein quality control machinery, including ER-associated degradation. In this construct, shared trends in interactor enrichment are observed between Omicron 21K and Delta 21I. These results underscore how minor mutations reshape host interactions, emphasizing the evolutionary arms race between the host and virus. We provide a roadmap to track the interaction changes driven by SARS-CoV-2 variant evolution.
Collapse
Affiliation(s)
- Valeria Garcia Lopez
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37240, USA;
| | - Lars Plate
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37240, USA;
- Department of Chemistry, Vanderbilt University, Nashville, TN 37240, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
5
|
Ribeiro VC, Russo LC, González Duré DM, Hoch NC. Interferon-induced ADP-ribosylation: technical developments driving ICAB discovery. Biosci Rep 2025; 45:BSR20240986. [PMID: 40014063 PMCID: PMC12096948 DOI: 10.1042/bsr20240986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/19/2025] [Accepted: 02/26/2025] [Indexed: 02/28/2025] Open
Abstract
Cells respond to a variety of internal and external stimuli by regulating the activities of different signalling cascades and cellular processes, often via chemical modifications of biological macromolecules that modulate their overall levels, biochemical activities or biophysical interactions. One such modification, termed ADP-ribosylation (ADPr), is emerging as an important player in the interferon (IFN) response, but the molecular targets and functions of ADP-ribosyltransferases within this core component of innate immunity still remains unclear. We and others have recently identified that stimulation of IFN signalling cascades promotes the formation of a novel cytosolic structure in human cells that is enriched in ADP-ribosyl modifications. Here, we propose to name these structures 'interferon-induced cytosolic ADPr bodies' (ICABs) and discuss their known components and potential functions. We also review methods to detect ICABs (and cellular ADPr in general) using a range of recently developed reagents. This lays the foundation for future studies aimed at elucidating the molecular functions of ICABs and ADPr in innate immune responses, which is a central unanswered question in the field.
Collapse
Affiliation(s)
| | - Lilian Cristina Russo
- Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo, Brazil
| | | | - Nícolas Carlos Hoch
- Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Kerr CM, Proctor-Roser MA, Parthasarathy S, O’Connor JJ, Pfannenstiel JJ, Orozco RC, Fehr AR. IFN- γ signaling is required for the efficient replication of murine hepatitis virus (MHV) strain JHM in the brains of infected mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.01.631031. [PMID: 39803452 PMCID: PMC11722247 DOI: 10.1101/2025.01.01.631031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Neurotropic viruses are a major public health concern as they can cause encephalitis and other severe brain diseases. Many of these viruses, including flaviviruses, herpesviruses, rhabdoviruses and alphaviruses enter the brain through the olfactory neuroepithelium (ONE) in the olfactory bulbs (OB). Due to the low percentage of encephalitis that occurs following these infections, it's thought that the OBs have specialized innate immune responses to eliminate viruses. Murine hepatitis virus strain JHM (JHMV) is a model coronavirus that causes severe encephalitis in mice and can access the brain through olfactory sensory neurons. We've shown that a JHMV Mac1-mutant virus, N1347A, has decreased replication and disease in the brains of mice. Here we further show that this virus replicates poorly in the OB. However, it is unknown which innate immune factors restrict N1347A replication in the OB. RNA seq analysis of infected olfactory bulbs showed that IFNγ was upregulated in the OB while IFN-β was barely detectable at 5 days post-infection. To determine if IFN-γ restricts JHMV N1347A replication, we utilized IFN-γ and IFN-γ receptor (IFN-γR) knockout (KO) mice. Surprisingly we found that JHMV WT and N1347A replicated very poorly in the OB and whole brains of both IFN-γ and IFN-γR KO mice following intranasal infection, though survival and weight loss were unaltered. Furthermore, we determined that microglia were the primary cells producing IFN-γ during the early stages of this infection. We conclude that IFN-γ is required for the efficient replication of JHMV in the brains of infected mice.
Collapse
Affiliation(s)
- Catherine M. Kerr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | | | | | - Joseph J. O’Connor
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | | | - Robin C. Orozco
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Anthony R. Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
7
|
Kerr CM, Pfannenstiel JJ, Alhammad YM, O'Connor JJ, Ghimire R, Shrestha R, Khattabi R, Saenjamsai P, Parthasarathy S, McDonald PR, Gao P, Johnson DK, More S, Roy A, Channappanavar R, Fehr AR. Mutation of a highly conserved isoleucine residue in loop 2 of several β-coronavirus macrodomains indicates that enhanced ADP-ribose binding is detrimental for replication. J Virol 2024; 98:e0131324. [PMID: 39387584 PMCID: PMC11575489 DOI: 10.1128/jvi.01313-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/18/2024] [Indexed: 10/13/2024] Open
Abstract
All coronaviruses (CoVs) encode for a conserved macrodomain (Mac1) located in non-structural protein 3. Mac1 is an ADP-ribosylhydrolase that binds and hydrolyzes mono-ADP-ribose from target proteins. Previous work has shown that Mac1 is important for virus replication and pathogenesis. Within Mac1, there are several regions that are highly conserved across CoVs, including the glycine-isoleucine-phenylalanine motif. While we previously demonstrated the importance of the glycine residue for CoV replication and pathogenesis, the impact of the isoleucine and phenylalanine residues remains unknown. To determine how the biochemical activities of these residues impact CoV replication, the isoleucine and the phenylalanine residues were mutated to alanine (I-A/F-A) in both recombinant Mac1 proteins and recombinant CoVs, including murine hepatitis virus, Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The F-A mutant proteins had ADP-ribose binding and/or hydrolysis defects that correlated with attenuated replication and pathogenesis of F-A mutant MERS-CoV and SARS-CoV-2 viruses in cell culture and mice. In contrast, the I-A mutant proteins had normal enzyme activity and enhanced ADP-ribose binding. Despite only demonstrating increased ADP-ribose binding, I-A mutant MERS-CoV and SARS-CoV-2 viruses were highly attenuated in both cell culture and mice, indicating that this isoleucine residue acts as a gate that controls ADP-ribose binding for efficient virus replication. These results highlight the function of this highly conserved residue and provide unique insight into how macrodomains control ADP-ribose binding and hydrolysis to promote viral replication. IMPORTANCE The conserved coronavirus (CoV) macrodomain (Mac1) counters the activity of host ADP-ribosyltransferases and is critical for CoV replication and pathogenesis. As such, Mac1 is a potential therapeutic target for CoV-induced disease. However, we lack a basic knowledge of how several residues in its ADP-ribose binding pocket contribute to its biochemical and virological functions. We engineered mutations into two highly conserved residues in the ADP-ribose binding pocket of Mac1, both as recombinant proteins and viruses for Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Interestingly, a Mac1 isoleucine-to-alanine mutant protein had enhanced ADP-ribose binding which proved to be detrimental for virus replication, indicating that this isoleucine controls ADP-ribose binding and is beneficial for virus replication and pathogenesis. These results provide unique insight into how macrodomains control ADP-ribose binding and will be critical for the development of novel inhibitors targeting Mac1 that could be used to treat CoV-induced disease.
Collapse
Affiliation(s)
- Catherine M. Kerr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | | | - Yousef M. Alhammad
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Joseph J. O'Connor
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Roshan Ghimire
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Rakshya Shrestha
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Reem Khattabi
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Pradtahna Saenjamsai
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | | | - Peter R. McDonald
- High Throughput Screening Laboratory, University of Kansas, Lawrence, Kansas, USA
| | - Philip Gao
- Protein Production Group, University of Kansas, Lawrence, Kansas, USA
| | - David K. Johnson
- Molecular Graphics and Modeling Laboratory and the Computational Chemical Biology Core, University of Kansas, Lawrence, Kansas, USA
| | - Sunil More
- High Throughput Screening Laboratory, University of Kansas, Lawrence, Kansas, USA
- Oklahoma Center for Respiratory and Infectious Diseases, College of Veterinary Medicine, Stillwater, Oklahoma, USA
| | - Anuradha Roy
- High Throughput Screening Laboratory, University of Kansas, Lawrence, Kansas, USA
| | - Rudragouda Channappanavar
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma, USA
- Oklahoma Center for Respiratory and Infectious Diseases, College of Veterinary Medicine, Stillwater, Oklahoma, USA
| | - Anthony R. Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
8
|
Pfannenstiel JJ, Duong MTH, Cluff D, Sherrill LM, Colquhoun I, Cadoux G, Thorne D, Pääkkönen J, Schemmel NF, O’Connor J, Saenjamsai P, Feng M, Hageman MJ, Johnson DK, Roy A, Lehtiö L, Ferraris DV, Fehr AR. Identification of a series of pyrrolo-pyrimidine based SARS-CoV-2 Mac1 inhibitors that repress coronavirus replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620664. [PMID: 39554145 PMCID: PMC11565749 DOI: 10.1101/2024.10.28.620664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Coronaviruses (CoVs) can emerge from zoonotic sources and cause severe diseases in humans and animals. All CoVs encode for a macrodomain (Mac1) that binds to and removes ADP-ribose from target proteins. SARS-CoV-2 Mac1 promotes virus replication in the presence of interferon (IFN) and blocks the production of IFN, though the mechanisms by which it mediates these functions remain unknown. Mac1 inhibitors could help elucidate these mechanisms and serve as therapeutic agents against CoV-induced diseases. We previously identified compound 4a (a.k.a. MCD-628), a pyrrolo-pyrimidine that inhibited Mac1 activity in vitro at low micromolar levels. Here, we determined the binding mode of 4a by crystallography, further defining its interaction with Mac1. However, 4a did not reduce CoV replication, which we hypothesized was due to its acidic side chain limiting permeability. To test this hypothesis, we developed several hydrophobic derivatives of 4a. We identified four compounds that both inhibited Mac1 in vitro and inhibited murine hepatitis virus (MHV) replication: 5a, 5c, 6d, and 6e. Furthermore, 5c and 6e inhibited SARS-CoV-2 replication only in the presence of IFNγ, similar to a Mac1 deletion virus. To confirm their specificity, we passaged MHV in the presence of 5a to identify drug-resistant mutations and identified an alanine-to-threonine and glycine-to-valine double mutation in Mac1. Recombinant virus with these mutations had enhanced replication compared to WT virus when treated with 5a, demonstrating the specificity of these compounds during infection. However, this virus is highly attenuated in vivo, indicating that drug-resistance emerged at the expense of viral fitness.
Collapse
Affiliation(s)
| | - Men Thi Hoai Duong
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Daniel Cluff
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Lavania M. Sherrill
- McDaniel College Department of Chemistry, 2 College Hill, McDaniel College, Westminster, Maryland 21157, USA
| | - Iain Colquhoun
- McDaniel College Department of Chemistry, 2 College Hill, McDaniel College, Westminster, Maryland 21157, USA
| | - Gabrielle Cadoux
- McDaniel College Department of Chemistry, 2 College Hill, McDaniel College, Westminster, Maryland 21157, USA
| | - Devyn Thorne
- McDaniel College Department of Chemistry, 2 College Hill, McDaniel College, Westminster, Maryland 21157, USA
| | - Johan Pääkkönen
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | | | - Joseph O’Connor
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Pradtahna Saenjamsai
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Mei Feng
- Biopharmaceutical Innovation & Optimization Center, University of Kansas, Lawrence, Kansas 66047, USA
| | - Michael J. Hageman
- Biopharmaceutical Innovation & Optimization Center, University of Kansas, Lawrence, Kansas 66047, USA
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, USA
| | - David K. Johnson
- Molecular Graphics and Modeling Laboratory and the Computational Chemical Biology Core, University of Kansas, Lawrence, Kansas, USA
| | - Anuradha Roy
- Infectious Disease Assay Development Laboratory/HTS, University of Kansas, Lawrence, Kansas, USA
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Dana V. Ferraris
- McDaniel College Department of Chemistry, 2 College Hill, McDaniel College, Westminster, Maryland 21157, USA
| | - Anthony R. Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
9
|
Suryawanshi RK, Jaishankar P, Correy GJ, Rachman MM, O’Leary PC, Taha TY, Zapatero-Belinchón FJ, McCavittMalvido M, Doruk YU, Stevens MGV, Diolaiti ME, Jogalekar MP, Richards AL, Montano M, Rosecrans J, Matthay M, Togo T, Gonciarz RL, Gopalkrishnan S, Neitz RJ, Krogan NJ, Swaney DL, Shoichet BK, Ott M, Renslo AR, Ashworth A, Fraser JS. The Mac1 ADP-ribosylhydrolase is a Therapeutic Target for SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.606661. [PMID: 39149230 PMCID: PMC11326214 DOI: 10.1101/2024.08.08.606661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
SARS-CoV-2 continues to pose a threat to public health. Current therapeutics remain limited to direct acting antivirals that lack distinct mechanisms of action and are already showing signs of viral resistance. The virus encodes an ADP-ribosylhydrolase macrodomain (Mac1) that plays an important role in the coronaviral lifecycle by suppressing host innate immune responses. Genetic inactivation of Mac1 abrogates viral replication in vivo by potentiating host innate immune responses. However, it is unknown whether this can be achieved by pharmacologic inhibition and can therefore be exploited therapeutically. Here we report a potent and selective lead small molecule, AVI-4206, that is effective in an in vivo model of SARS-CoV-2 infection. Cellular models indicate that AVI-4206 has high target engagement and can weakly inhibit viral replication in a gamma interferon- and Mac1 catalytic activity-dependent manner; a stronger antiviral effect for AVI-4206 is observed in human airway organoids. In an animal model of severe SARS-CoV-2 infection, AVI-4206 reduces viral replication, potentiates innate immune responses, and leads to a survival benefit. Our results provide pharmacological proof of concept that Mac1 is a valid therapeutic target via a novel immune-restoring mechanism that could potentially synergize with existing therapies targeting distinct, essential aspects of the coronaviral life cycle. This approach could be more widely used to target other viral macrodomains to develop antiviral therapeutics beyond COVID-19.
Collapse
Affiliation(s)
| | - Priyadarshini Jaishankar
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Galen J. Correy
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
| | - Moira M. Rachman
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Patrick C. O’Leary
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Taha Y. Taha
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA
| | | | | | - Yagmur U. Doruk
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Maisie G. V. Stevens
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Morgan E. Diolaiti
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Manasi P. Jogalekar
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Alicia L. Richards
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA
- Data Science and Biotechnology Institute, Gladstone Institutes, San Francisco, CA
| | - Mauricio Montano
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA
| | - Julia Rosecrans
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA
| | - Michael Matthay
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Takaya Togo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Ryan L. Gonciarz
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Saumya Gopalkrishnan
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA
| | - R. Jeffrey Neitz
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
- Small Molecule Discovery Center, University of California San Francisco, San Francisco, CA
| | - Nevan J. Krogan
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA
- Data Science and Biotechnology Institute, Gladstone Institutes, San Francisco, CA
| | - Danielle L. Swaney
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA
- Data Science and Biotechnology Institute, Gladstone Institutes, San Francisco, CA
| | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Melanie Ott
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA
- Department of Medicine, University of California San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub- San Francisco, San Francisco, CA
| | - Adam R. Renslo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
| |
Collapse
|
10
|
Lee AA, Amick I, Aschenbrenner JC, Barr HM, Benjamin J, Brandis A, Cohen G, Diaz-Tapia R, Duberstein S, Dixon J, Cousins D, Fairhead M, Fearon D, Frick J, Gayvert J, Godoy AS, Griffin EJ, Huber K, Koekemoer L, Lahav N, Marples PG, McGovern BL, Mehlman T, Robinson MC, Singh U, Szommer T, Tomlinson CWE, Vargo T, von Delft F, Wang S, White K, Williams E, Winokan M. Discovery of potent SARS-CoV-2 nsp3 macrodomain inhibitors uncovers lack of translation to cellular antiviral response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608619. [PMID: 39229055 PMCID: PMC11370477 DOI: 10.1101/2024.08.19.608619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
A strategy for pandemic preparedness is the development of antivirals against a wide set of viral targets with complementary mechanisms of action. SARS-CoV-2 nsp3-mac1 is a viral macrodomain with ADP-ribosylhydrolase activity, which counteracts host immune response. Targeting the virus' immunomodulatory functionality offers a differentiated strategy to inhibit SARS-CoV-2 compared to approved therapeutics, which target viral replication directly. Here we report a fragment-based lead generation campaign guided by computational approaches. We discover tool compounds which inhibit nsp3-mac1 activity at low nanomolar concentrations, and with responsive structure-activity relationships, high selectivity, and drug-like properties. Using our inhibitors, we show that inhibition of nsp3-mac1 increases ADP-ribosylation, but surprisingly does not translate to demonstrable antiviral activity in cell culture and iPSC-derived pneumocyte models. Further, no synergistic activity is observed in combination with interferon gamma, a main protease inhibitor, nor a papain-like protease inhibitor. Our results question the extent to which targeting modulation of innate immunity-driven ADP-ribosylation can influence SARS-CoV-2 replication. Moreover, these findings suggest that nsp3-mac1 might not be a suitable target for antiviral therapeutics development.
Collapse
Affiliation(s)
- Alpha A Lee
- ASAP Discovery Consortium
- PostEra Inc, 1 Broadway, Cambridge MA 02142
| | - Isabelle Amick
- ASAP Discovery Consortium
- PostEra Inc, 1 Broadway, Cambridge MA 02142
| | - Jasmin C Aschenbrenner
- ASAP Discovery Consortium
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
- Research Centre at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
| | - Haim M Barr
- ASAP Discovery Consortium
- The Wohl Drug Discovery Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jared Benjamin
- ASAP Discovery Consortium
- Icahn School of Medicine, Mount Sinai, New York, New York, United States of America
| | - Alexander Brandis
- ASAP Discovery Consortium
- Life Sciences Core Facilities, The Weizmann Institute of Science Rehovot 7610001, Israel
| | - Galit Cohen
- The Wohl Drug Discovery Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Randy Diaz-Tapia
- ASAP Discovery Consortium
- Icahn School of Medicine, Mount Sinai, New York, New York, United States of America
| | - Shirly Duberstein
- ASAP Discovery Consortium
- The Wohl Drug Discovery Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jessica Dixon
- ASAP Discovery Consortium
- Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, UK
| | - David Cousins
- ASAP Discovery Consortium
- MedChemica Consultancy Ltd, Macclesfield, Cheshire, SK11 6DU, UK
| | - Michael Fairhead
- ASAP Discovery Consortium
- Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, UK
| | - Daren Fearon
- ASAP Discovery Consortium
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
- Research Centre at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
| | - James Frick
- ASAP Discovery Consortium
- PostEra Inc, 1 Broadway, Cambridge MA 02142
| | - James Gayvert
- ASAP Discovery Consortium
- PostEra Inc, 1 Broadway, Cambridge MA 02142
| | - Andre S Godoy
- ASAP Discovery Consortium
- São Carlos Institute of Physics, University of São Paulo, Av. Joao Dagnone, 1100 - Jardim Santa Angelina, Sao Carlos, 13563-120, Brazil
| | - Ed J Griffin
- ASAP Discovery Consortium
- MedChemica Consultancy Ltd, Macclesfield, Cheshire, SK11 6DU, UK
| | - Kilian Huber
- ASAP Discovery Consortium
- Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, UK
| | - Lizbé Koekemoer
- ASAP Discovery Consortium
- Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, UK
| | - Noa Lahav
- ASAP Discovery Consortium
- The Wohl Drug Discovery Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Peter G Marples
- ASAP Discovery Consortium
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
- Research Centre at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
| | - Briana L McGovern
- ASAP Discovery Consortium
- Icahn School of Medicine, Mount Sinai, New York, New York, United States of America
| | - Tevie Mehlman
- ASAP Discovery Consortium
- Life Sciences Core Facilities, The Weizmann Institute of Science Rehovot 7610001, Israel
| | | | - Usha Singh
- ASAP Discovery Consortium
- Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, UK
| | - Tamas Szommer
- ASAP Discovery Consortium
- Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, UK
| | - Charles W E Tomlinson
- ASAP Discovery Consortium
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
- Research Centre at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
| | - Thomas Vargo
- ASAP Discovery Consortium
- PostEra Inc, 1 Broadway, Cambridge MA 02142
| | - Frank von Delft
- ASAP Discovery Consortium
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
- Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, UK
- Research Centre at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
| | - SiYi Wang
- ASAP Discovery Consortium
- Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, UK
| | - Kris White
- ASAP Discovery Consortium
- Icahn School of Medicine, Mount Sinai, New York, New York, United States of America
| | - Eleanor Williams
- ASAP Discovery Consortium
- Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, UK
| | - Max Winokan
- ASAP Discovery Consortium
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
- Research Centre at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
| |
Collapse
|
11
|
Kerr CM, Pfannenstiel JJ, Alhammad YM, O’Connor JJ, Ghimire R, Shrestha R, Khattabi R, Saenjamsai P, Parthasarathy S, McDonald PR, Gao P, Johnson DK, More S, Roy A, Channappanavar R, Fehr AR. Mutation of a highly conserved isoleucine residue in loop 2 of several β-coronavirus macrodomains indicates that enhanced ADP-ribose binding is detrimental to infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.574082. [PMID: 38260573 PMCID: PMC10802294 DOI: 10.1101/2024.01.03.574082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
All coronaviruses (CoVs) encode for a conserved macrodomain (Mac1) located in nonstructural protein 3 (nsp3). Mac1 is an ADP-ribosylhydrolase that binds and hydrolyzes mono-ADP-ribose from target proteins. Previous work has shown that Mac1 is important for virus replication and pathogenesis. Within Mac1, there are several regions that are highly conserved across CoVs, including the GIF (glycine-isoleucine-phenylalanine) motif. To determine how the biochemical activities of these residues impact CoV replication, the isoleucine and the phenylalanine residues were mutated to alanine (I-A/F-A) in both recombinant Mac1 proteins and recombinant CoVs, including murine hepatitis virus (MHV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The F-A mutant proteins had ADP-ribose binding and/or hydrolysis defects that led to attenuated replication and pathogenesis in cell culture and mice. In contrast, the I-A mutations had normal enzyme activity and enhanced ADP-ribose binding. Despite increased ADP-ribose binding, I-A mutant MERS-CoV and SARS-CoV-2 were highly attenuated in both cell culture and mice, indicating that this isoleucine residue acts as a gate that controls ADP-ribose binding for efficient virus replication. These results highlight the function of this highly conserved residue and provide unique insight into how macrodomains control ADP-ribose binding and hydrolysis to promote viral replication.
Collapse
Affiliation(s)
- Catherine M. Kerr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | | | - Yousef M. Alhammad
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Joseph J. O’Connor
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Roshan Ghimire
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Rakshya Shrestha
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Reem Khattabi
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Pradtahna Saenjamsai
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | | | - Peter R. McDonald
- High Throughput Screening Laboratory, University of Kansas, Lawrence, Kansas 66047, USA
| | - Philip Gao
- Protein Production Group, University of Kansas, Lawrence, Kansas 66047, USA
| | - David K. Johnson
- Molecular Graphics and Modeling Laboratory and the Computational Chemical Biology Core, University of Kansas, Lawrence, Kansas 66047, USA
| | - Sunil More
- High Throughput Screening Laboratory, University of Kansas, Lawrence, Kansas 66047, USA
- Oklahoma Center for Respiratory and Infectious Diseases, College of Veterinary Medicine, Stillwater, Oklahoma 74078, USA
| | - Anuradha Roy
- High Throughput Screening Laboratory, University of Kansas, Lawrence, Kansas 66047, USA
| | - Rudragouda Channappanavar
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma 74078, USA
- Oklahoma Center for Respiratory and Infectious Diseases, College of Veterinary Medicine, Stillwater, Oklahoma 74078, USA
| | - Anthony R. Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
12
|
Kar P, Chatrin C, Đukić N, Suyari O, Schuller M, Zhu K, Prokhorova E, Bigot N, Baretić D, Ahel J, Elsborg JD, Nielsen ML, Clausen T, Huet S, Niepel M, Sanyal S, Ahel D, Smith R, Ahel I. PARP14 and PARP9/DTX3L regulate interferon-induced ADP-ribosylation. EMBO J 2024; 43:2929-2953. [PMID: 38834853 PMCID: PMC11251020 DOI: 10.1038/s44318-024-00126-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 06/06/2024] Open
Abstract
PARP-catalysed ADP-ribosylation (ADPr) is important in regulating various cellular pathways. Until recently, PARP-dependent mono-ADP-ribosylation has been poorly understood due to the lack of sensitive detection methods. Here, we utilised an improved antibody to detect mono-ADP-ribosylation. We visualised endogenous interferon (IFN)-induced ADP-ribosylation and show that PARP14 is a major enzyme responsible for this modification. Fittingly, this signalling is reversed by the macrodomain from SARS-CoV-2 (Mac1), providing a possible mechanism by which Mac1 counteracts the activity of antiviral PARPs. Our data also elucidate a major role of PARP9 and its binding partner, the E3 ubiquitin ligase DTX3L, in regulating PARP14 activity through protein-protein interactions and by the hydrolytic activity of PARP9 macrodomain 1. Finally, we also present the first visualisation of ADPr-dependent ubiquitylation in the IFN response. These approaches should further advance our understanding of IFN-induced ADPr and ubiquitin signalling processes and could shed light on how different pathogens avoid such defence pathways.
Collapse
Affiliation(s)
- Pulak Kar
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
- Department of Biological Sciences, SRM University-AP, Amaravati, 522502, India
| | - Chatrin Chatrin
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Nina Đukić
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Osamu Suyari
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Marion Schuller
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Kang Zhu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Evgeniia Prokhorova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Nicolas Bigot
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSIT - UMS3480, F-35000, Rennes, France
| | - Domagoj Baretić
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Juraj Ahel
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - Jonas Damgaard Elsborg
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Michael L Nielsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Tim Clausen
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| | - Sébastien Huet
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSIT - UMS3480, F-35000, Rennes, France
| | | | - Sumana Sanyal
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Dragana Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Rebecca Smith
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.
| |
Collapse
|
13
|
Xie S, Cao S, Wu J, Xie Z, Liu YT, Fu W, Zhao Q, Liu L, Yang L, Li J. In silico-based screening of natural products as potential inhibitors of SARS-CoV-2 macrodomain 1. J Biomol Struct Dyn 2024; 42:5229-5237. [PMID: 37349935 DOI: 10.1080/07391102.2023.2226745] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) worldwide has led to over 600 million cases of coronavirus disease 2019 (COVID-19). Identifying effective molecules that can counteract the virus is imperative. SARS-CoV-2 macrodomain 1 (Mac1) represents a promising antiviral drug target. In this study, we predicted potential inhibitors of SARS-CoV-2 Mac1 from natural products using in silico-based screening. Based on the high-resolution crystal structure of Mac1 bound to its endogenous ligand ADP-ribose (ADPr), we first performed a docking-based virtual screening of Mac1 inhibitors against a natural product library and obtained five representative compounds (MC1-MC5) by clustering analysis. All five compounds were stably bound to Mac1 during 500 ns long molecular dynamics simulations. The binding free energy of these compounds to Mac1 was calculated using molecular mechanics generalized Born surface area and further refined with localized volume-based metadynamics. The results demonstrated that both MC1 (-9.8 ± 0.3 kcal/mol) and MC5 (-9.6 ± 0.3 kcal/mol) displayed more favorable affinities to Mac1 with respect to ADPr (-8.9 ± 0.3 kcal/mol), highlighting their potential as potent SARS-CoV-2 Mac1 inhibitors. Overall, this study provides potential SARS-CoV-2 Mac1 inhibitors, which may pave the way for developing effective therapeutics for COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Song Xie
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Shoujing Cao
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Juhong Wu
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Zhinuo Xie
- College of Chemistry, Fuzhou University, Fuzhou, China
| | | | - Wei Fu
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Qianqian Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Lin Liu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lin Yang
- Department of Pharmacy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou, China
| |
Collapse
|
14
|
Parthasarathy S, Saenjamsai P, Hao H, Ferkul A, Pfannenstiel JJ, Suder EL, Bejan DS, Chen Y, Schwarting N, Aikawa M, Muhlberger E, Orozco RC, Sullivan CS, Cohen MS, Davido DJ, Hume AJ, Fehr AR. PARP14 is pro- and anti-viral host factor that promotes IFN production and affects the replication of multiple viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591186. [PMID: 38712082 PMCID: PMC11071520 DOI: 10.1101/2024.04.26.591186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
PARP14 is a 203 kDa multi-domain protein that is primarily known as an ADP-ribosyltransferase, and is involved in a variety of cellular functions including DNA damage, microglial activation, inflammation, and cancer progression. In addition, PARP14 is upregulated by interferon (IFN), indicating a role in the antiviral response. Furthermore, PARP14 has evolved under positive selection, again indicating that it is involved in host-pathogen conflict. We found that PARP14 is required for increased IFN-I production in response to coronavirus infection lacking ADP-ribosylhydrolase (ARH) activity and poly(I:C), however, whether it has direct antiviral function remains unclear. Here we demonstrate that the catalytic activity of PARP14 enhances IFN-I and IFN-III responses and restricts ARH-deficient murine hepatitis virus (MHV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication. To determine if PARP14's antiviral functions extended beyond CoVs, we tested the ability of herpes simplex virus 1 (HSV-1) and several negative-sense RNA viruses, including vesicular stomatitis virus (VSV), Ebola virus (EBOV), and Nipah virus (NiV), to infect A549 PARP14 knockout (KO) cells. HSV-1 had increased replication in PARP14 KO cells, indicating that PARP14 restricts HSV-1 replication. In contrast, PARP14 was critical for the efficient infection of VSV, EBOV, and NiV, with EBOV infectivity at less than 1% of WT cells. A PARP14 active site inhibitor had no impact on HSV-1 or EBOV infection, indicating that its effect on these viruses was independent of its catalytic activity. These data demonstrate that PARP14 promotes IFN production and has both pro- and anti-viral functions targeting multiple viruses.
Collapse
Affiliation(s)
| | - Pradtahna Saenjamsai
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Hongping Hao
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Anna Ferkul
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | | | - Ellen L. Suder
- Department of Microbiology, Boston University School of Medicine, Boston, MA, 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02118, USA
- Center for Emerging Infectious Diseases Policy & Research, Boston University, Boston, MA, 02118, USA
| | - Daniel S. Bejan
- Department of Chemical Physiology and Biochemistry, Oregon Health Sciences University, Portland, OR, 97239, USA
| | - Yating Chen
- Department of Molecular Biosciences, University of Texas, Austin, TX, 78712, USA
| | - Nancy Schwarting
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Masanori Aikawa
- Center for Excellence in Vascular Biology (P.K.J., M.A., E.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Center for Interdisciplinary Cardiovascular Sciences (M.A., E.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Channing Division of Network Medicine (M.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Elke Muhlberger
- Department of Microbiology, Boston University School of Medicine, Boston, MA, 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02118, USA
- Center for Emerging Infectious Diseases Policy & Research, Boston University, Boston, MA, 02118, USA
| | - Robin C. Orozco
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | | | - Michael S. Cohen
- Department of Chemical Physiology and Biochemistry, Oregon Health Sciences University, Portland, OR, 97239, USA
| | - David J. Davido
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Adam J. Hume
- Department of Microbiology, Boston University School of Medicine, Boston, MA, 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02118, USA
- Center for Emerging Infectious Diseases Policy & Research, Boston University, Boston, MA, 02118, USA
| | - Anthony R. Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
15
|
Wazir S, Parviainen TAO, Pfannenstiel JJ, Duong MTH, Cluff D, Sowa ST, Galera-Prat A, Ferraris D, Maksimainen MM, Fehr AR, Heiskanen JP, Lehtiö L. Discovery of 2-Amide-3-methylester Thiophenes that Target SARS-CoV-2 Mac1 and Repress Coronavirus Replication, Validating Mac1 as an Antiviral Target. J Med Chem 2024; 67:6519-6536. [PMID: 38592023 PMCID: PMC11144470 DOI: 10.1021/acs.jmedchem.3c02451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has made it clear that further development of antiviral therapies will be needed. Here, we describe small-molecule inhibitors for SARS-CoV-2 Mac1, which counters ADP-ribosylation-mediated innate immune responses. Three high-throughput screening hits had the same 2-amide-3-methylester thiophene scaffold. We studied the compound binding mode using X-ray crystallography, allowing us to design analogues. Compound 27 (MDOLL-0229) had an IC50 of 2.1 μM and was selective for CoV Mac1 proteins after profiling for activity against a panel of viral and human proteins. The improved potency allowed testing of its effect on virus replication, and indeed, 27 inhibited replication of both murine hepatitis virus (MHV) prototypes CoV and SARS-CoV-2. Sequencing of a drug-resistant MHV identified mutations in Mac1, further demonstrating the specificity of 27. Compound 27 is the first Mac1-targeted small molecule demonstrated to inhibit coronavirus replication in a cell model.
Collapse
Affiliation(s)
- Sarah Wazir
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Tomi A. O. Parviainen
- Research Unit of Sustainable Chemistry, University of Oulu, P.O. Box 4300, 90014 Oulu, Finland
| | - Jessica J. Pfannenstiel
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States of America
| | - Men Thi Hoai Duong
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Daniel Cluff
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States of America
| | - Sven T. Sowa
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Albert Galera-Prat
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Dana Ferraris
- McDaniel College Department of Chemistry, 2 College Hill, Westminster, MD 21157, USA
| | - Mirko M. Maksimainen
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Anthony R. Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States of America
| | - Juha P. Heiskanen
- Research Unit of Sustainable Chemistry, University of Oulu, P.O. Box 4300, 90014 Oulu, Finland
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| |
Collapse
|
16
|
Stoll GA, Nikolopoulos N, Zhai H, Zhang L, Douse CH, Modis Y. Crystal structure and biochemical activity of the macrodomain from rubella virus p150. J Virol 2024; 98:e0177723. [PMID: 38289106 PMCID: PMC10878246 DOI: 10.1128/jvi.01777-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/22/2023] [Indexed: 02/13/2024] Open
Abstract
Rubella virus encodes a nonstructural polyprotein with RNA polymerase, methyltransferase, and papain-like cysteine protease activities, along with a putative macrodomain of unknown function. Macrodomains bind ADP-ribose adducts, a post-translational modification that plays a key role in host-virus conflicts. Some macrodomains can also remove the mono-ADP-ribose adduct or degrade poly-ADP-ribose chains. Here, we report high-resolution crystal structures of the macrodomain from rubella virus nonstructural protein p150, with and without ADP-ribose binding. The overall fold is most similar to macroD-type macrodomains from various nonviral species. The specific composition and structure of the residues that coordinate ADP-ribose in the rubella virus macrodomain are most similar to those of macrodomains from alphaviruses. Isothermal calorimetry shows that the rubella virus macrodomain binds ADP-ribose in solution. Enzyme assays show that the rubella virus macrodomain can hydrolyze both mono- and poly-ADP-ribose adducts. Site-directed mutagenesis identifies Asn39 and Cys49 required for mono-ADP-ribosylhydrolase (de-MARylation) activity.IMPORTANCERubella virus remains a global health threat. Rubella infections during pregnancy can cause serious congenital pathology, for which no antiviral treatments are available. Our work demonstrates that, like alpha- and coronaviruses, rubiviruses encode a mono-ADP-ribosylhydrolase with a structurally conserved macrodomain fold to counteract MARylation by poly (ADP-ribose) polymerases (PARPs) in the host innate immune response. Our structural data will guide future efforts to develop novel antiviral therapeutics against rubella or infections with related viruses.
Collapse
Affiliation(s)
- Guido A. Stoll
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Nikos Nikolopoulos
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Haoming Zhai
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Liao Zhang
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Yorgo Modis
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
17
|
Wazir S, Parviainen TAO, Pfannenstiel JJ, Duong MTH, Cluff D, Sowa ST, Galera-Prat A, Ferraris D, Maksimainen MM, Fehr AR, Heiskanen JP, Lehtiö L. Discovery of 2-amide-3-methylester thiophenes that target SARS-CoV-2 Mac1 and repress coronavirus replication, validating Mac1 as an anti-viral target. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555062. [PMID: 38234730 PMCID: PMC10793406 DOI: 10.1101/2023.08.28.555062] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has made it clear that further development of antiviral therapies will be needed to combat additional SARS-CoV-2 variants or novel CoVs. Here, we describe small molecule inhibitors for SARS-CoV-2 Mac1, which counters ADP-ribosylation mediated innate immune responses. The compounds inhibiting Mac1 were discovered through high-throughput screening (HTS) using a protein FRET-based competition assay and the best hit compound had an IC50 of 14 μM. Three validated HTS hits have the same 2-amide-3-methylester thiophene scaffold and the scaffold was selected for structure-activity relationship (SAR) studies through commercial and synthesized analogs. We studied the compound binding mode in detail using X-ray crystallography and this allowed us to focus on specific features of the compound and design analogs. Compound 27 (MDOLL-0229) had an IC50 of 2.1 μM and was generally selective for CoV Mac1 proteins after profiling for activity against a panel of viral and human ADP-ribose binding proteins. The improved potency allowed testing of its effect on virus replication and indeed, 27 inhibited replication of both MHVa prototype CoV, and SARS-CoV-2. Furthermore, sequencing of a drug-resistant MHV identified mutations in Mac1, further demonstrating the specificity of 27. Compound 27 is the first Mac1 targeted small molecule demonstrated to inhibit coronavirus replication in a cell model. This, together with its well-defined binding mode, makes 27 a good candidate for further hit/lead-optimization efforts.
Collapse
Affiliation(s)
- Sarah Wazir
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Tomi A. O. Parviainen
- Research Unit of Sustainable Chemistry, University of Oulu, P.O. Box 4300, FI-90014 Oulu, Finland
| | - Jessica J. Pfannenstiel
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Men Thi Hoai Duong
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Daniel Cluff
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Sven T. Sowa
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Albert Galera-Prat
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Dana Ferraris
- McDaniel College Department of Chemistry, 2 College Hill, Westminster, MD, USA
| | - Mirko M. Maksimainen
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Anthony R. Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Juha P. Heiskanen
- Research Unit of Sustainable Chemistry, University of Oulu, P.O. Box 4300, FI-90014 Oulu, Finland
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| |
Collapse
|
18
|
Ortega Granda O, Alvarez K, Mate-Perez MJ, Canard B, Ferron F, Rabah N. Macro1 domain residue F156: A hallmark of SARS-CoV-2 de-MARylation specificity. Virology 2023; 587:109845. [PMID: 37517331 DOI: 10.1016/j.virol.2023.109845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
SARS-CoV-2 is a large, enveloped and positive sense single stranded RNA virus. Its genome codes for 16 non-structural proteins. The largest protein of this complex is nsp3, that contains a well conserved Macro1 domain. Viral Macro domains were shown to bind to mono-ADP-ribose (MAR) and poly-ADP-ribose (PAR) in their free form or conjugated to protein substrates. They carry ADP-ribose hydrolase activities implicated in the regulation of innate immunity. SARS-CoV-2 and SARS-CoV show widely different induction and handling of the host interferon response. Herein, we have conducted a mutational study on the key amino-acid residue F156 in SARS-CoV-2, pinpointed by bioinformatic and structural studies, and its cognate residue N157 in SARS-CoV. Our data suggest that the exchange of these residues slightly modifies ADP-ribose binding, but drastically impacts de-MARylation activity. Alanine substitutions at this position hampers PAR binding, abolishes MAR hydrolysis of SARS-CoV-2, and reduces by 70% this activity in the case of SARS-CoV.
Collapse
Affiliation(s)
| | - Karine Alvarez
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | | | - Bruno Canard
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | - François Ferron
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | - Nadia Rabah
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France; Previous Affiliation: Université de Toulon, 83130, La Garde, France.
| |
Collapse
|
19
|
Kerr CM, Parthasarathy S, Schwarting N, O'Connor JJ, Pfannenstiel JJ, Giri E, More S, Orozco RC, Fehr AR. PARP12 is required to repress the replication of a Mac1 mutant coronavirus in a cell- and tissue-specific manner. J Virol 2023; 97:e0088523. [PMID: 37695054 PMCID: PMC10537751 DOI: 10.1128/jvi.00885-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/13/2023] [Indexed: 09/12/2023] Open
Abstract
ADP-ribosyltransferases (ARTs) mediate the transfer of ADP-ribose from NAD+ to protein or nucleic acid substrates. This modification can be removed by several different types of proteins, including macrodomains. Several ARTs, also known as PARPs, are stimulated by interferon indicating ADP-ribosylation is an important aspect of the innate immune response. All coronaviruses (CoVs) encode for a highly conserved macrodomain (Mac1) that is critical for CoVs to replicate and cause disease, indicating that ADP-ribosylation can effectively control coronavirus infection. Our siRNA screen indicated that PARP12 might inhibit the replication of a murine hepatitis virus (MHV) Mac1 mutant virus in bone-marrow-derived macrophages (BMDMs). To conclusively demonstrate that PARP12 is a key mediator of the antiviral response to CoVs both in cell culture and in vivo, we produced PARP12-/-mice and tested the ability of MHV A59 (hepatotropic/neurotropic) and JHM (neurotropic) Mac1 mutant viruses to replicate and cause disease in these mice. Notably, in the absence of PARP12, Mac1 mutant replication was increased in BMDMs and mice. In addition, liver pathology was also increased in A59-infected mice. However, the PARP12 knockout did not restore Mac1 mutant virus replication to WT virus levels in all cell or tissue types and did not significantly increase the lethality of Mac1 mutant viruses. These results demonstrate that while PARP12 inhibits MHV Mac1 mutant virus infection, additional PARPs or innate immune factors must contribute to the extreme attenuation of this virus in mice. IMPORTANCE Over the last decade, the importance of ADP-ribosyltransferases (ARTs), also known as PARPs, in the antiviral response has gained increased significance as several were shown to either restrict virus replication or impact innate immune responses. However, there are few studies showing ART-mediated inhibition of virus replication or pathogenesis in animal models. We found that the CoV macrodomain (Mac1) was required to prevent ART-mediated inhibition of virus replication in cell culture. Using knockout mice, we found that PARP12, an interferon-stimulated ART, was required to repress the replication of a Mac1 mutant CoV both in cell culture and in mice, demonstrating that PARP12 represses coronavirus replication. However, the deletion of PARP12 did not fully rescue Mac1 mutant virus replication or pathogenesis, indicating that multiple PARPs function to counter coronavirus infection.
Collapse
Affiliation(s)
- Catherine M. Kerr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | | | - Nancy Schwarting
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Joseph J. O'Connor
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | | | - Emily Giri
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Sunil More
- Department of Veterinary Pathology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Robin C. Orozco
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Anthony R. Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
20
|
Đukić N, Strømland Ø, Elsborg JD, Munnur D, Zhu K, Schuller M, Chatrin C, Kar P, Duma L, Suyari O, Rack JGM, Baretić D, Crudgington DRK, Groslambert J, Fowler G, Wijngaarden S, Prokhorova E, Rehwinkel J, Schüler H, Filippov DV, Sanyal S, Ahel D, Nielsen ML, Smith R, Ahel I. PARP14 is a PARP with both ADP-ribosyl transferase and hydrolase activities. SCIENCE ADVANCES 2023; 9:eadi2687. [PMID: 37703374 PMCID: PMC10499325 DOI: 10.1126/sciadv.adi2687] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/10/2023] [Indexed: 09/15/2023]
Abstract
PARP14 is a mono-ADP-ribosyl transferase involved in the control of immunity, transcription, and DNA replication stress management. However, little is known about the ADP-ribosylation activity of PARP14, including its substrate specificity or how PARP14-dependent ADP-ribosylation is reversed. We show that PARP14 is a dual-function enzyme with both ADP-ribosyl transferase and hydrolase activity acting on both protein and nucleic acid substrates. In particular, we show that the PARP14 macrodomain 1 is an active ADP-ribosyl hydrolase. We also demonstrate hydrolytic activity for the first macrodomain of PARP9. We reveal that expression of a PARP14 mutant with the inactivated macrodomain 1 results in a marked increase in mono(ADP-ribosyl)ation of proteins in human cells, including PARP14 itself and antiviral PARP13, and displays specific cellular phenotypes. Moreover, we demonstrate that the closely related hydrolytically active macrodomain of SARS2 Nsp3, Mac1, efficiently reverses PARP14 ADP-ribosylation in vitro and in cells, supporting the evolution of viral macrodomains to counteract PARP14-mediated antiviral response.
Collapse
Affiliation(s)
- Nina Đukić
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Øyvind Strømland
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway
| | - Jonas Damgaard Elsborg
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Deeksha Munnur
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Kang Zhu
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Marion Schuller
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Chatrin Chatrin
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Pulak Kar
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Lena Duma
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Osamu Suyari
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Johannes Gregor Matthias Rack
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Domagoj Baretić
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | | | | - Gerissa Fowler
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Sven Wijngaarden
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Evgeniia Prokhorova
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Herwig Schüler
- Center for Molecular Protein Science, Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Dmitri V. Filippov
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Sumana Sanyal
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Dragana Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Michael L Nielsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Rebecca Smith
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|
21
|
Alhammad YM, Parthasarathy S, Ghimire R, Kerr CM, O’Connor JJ, Pfannenstiel JJ, Chanda D, Miller CA, Baumlin N, Salathe M, Unckless RL, Zuñiga S, Enjuanes L, More S, Channappanavar R, Fehr AR. SARS-CoV-2 Mac1 is required for IFN antagonism and efficient virus replication in cell culture and in mice. Proc Natl Acad Sci U S A 2023; 120:e2302083120. [PMID: 37607224 PMCID: PMC10468617 DOI: 10.1073/pnas.2302083120] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/30/2023] [Indexed: 08/24/2023] Open
Abstract
Several coronavirus (CoV) encoded proteins are being evaluated as targets for antiviral therapies for COVID-19. Included in these drug targets is the conserved macrodomain, or Mac1, an ADP-ribosylhydrolase and ADP-ribose binding protein encoded as a small domain at the N terminus of nonstructural protein 3. Utilizing point mutant recombinant viruses, Mac1 was shown to be critical for both murine hepatitis virus (MHV) and severe acute respiratory syndrome (SARS)-CoV virulence. However, as a potential drug target, it is imperative to understand how a complete Mac1 deletion impacts the replication and pathogenesis of different CoVs. To this end, we created recombinant bacterial artificial chromosomes (BACs) containing complete Mac1 deletions (ΔMac1) in MHV, MERS-CoV, and SARS-CoV-2. While we were unable to recover infectious virus from MHV or MERS-CoV ΔMac1 BACs, SARS-CoV-2 ΔMac1 was readily recovered from BAC transfection, indicating a stark difference in the requirement for Mac1 between different CoVs. Furthermore, SARS-CoV-2 ΔMac1 replicated at or near wild-type levels in multiple cell lines susceptible to infection. However, in a mouse model of severe infection, ΔMac1 was quickly cleared causing minimal pathology without any morbidity. ΔMac1 SARS-CoV-2 induced increased levels of interferon (IFN) and IFN-stimulated gene expression in cell culture and mice, indicating that Mac1 blocks IFN responses which may contribute to its attenuation. ΔMac1 infection also led to a stark reduction in inflammatory monocytes and neutrophils. These results demonstrate that Mac1 only minimally impacts SARS-CoV-2 replication, unlike MHV and MERS-CoV, but is required for SARS-CoV-2 pathogenesis and is a unique antiviral drug target.
Collapse
Affiliation(s)
- Yousef M. Alhammad
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS66047
| | | | - Roshan Ghimire
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK74078
| | - Catherine M. Kerr
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS66047
| | - Joseph J. O’Connor
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS66047
| | | | - Debarati Chanda
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK74078
| | - Caden A. Miller
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK74078
| | - Nathalie Baumlin
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS66160
| | - Matthias Salathe
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS66160
| | - Robert L. Unckless
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS66047
| | - Sonia Zuñiga
- Department of Molecular and Cell Biology, National Center of Biotechnology, Madrid28049, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, National Center of Biotechnology, Madrid28049, Spain
| | - Sunil More
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK74078
| | | | - Anthony R. Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS66047
| |
Collapse
|
22
|
Santinelli-Pestana DV, Aikawa E, Singh SA, Aikawa M. PARPs and ADP-Ribosylation in Chronic Inflammation: A Focus on Macrophages. Pathogens 2023; 12:964. [PMID: 37513811 PMCID: PMC10386340 DOI: 10.3390/pathogens12070964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/25/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Aberrant adenosine diphosphate-ribose (ADP)-ribosylation of proteins and nucleic acids is associated with multiple disease processes such as infections and chronic inflammatory diseases. The poly(ADP-ribose) polymerase (PARP)/ADP-ribosyltransferase (ART) family members promote mono- or poly-ADP-ribosylation. Although evidence has linked PARPs/ARTs and macrophages in the context of chronic inflammation, the underlying mechanisms remain incompletely understood. This review provides an overview of literature focusing on the roles of PARP1/ARTD1, PARP7/ARTD14, PARP9/ARTD9, and PARP14/ARTD8 in macrophages. PARPs/ARTs regulate changes in macrophages during chronic inflammatory processes not only via catalytic modifications but also via non-catalytic mechanisms. Untangling complex mechanisms, by which PARPs/ARTs modulate macrophage phenotype, and providing molecular bases for the development of new therapeutics require the development and implementation of innovative technologies.
Collapse
Affiliation(s)
- Diego V. Santinelli-Pestana
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (D.V.S.-P.); (E.A.); (S.A.S.)
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (D.V.S.-P.); (E.A.); (S.A.S.)
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sasha A. Singh
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (D.V.S.-P.); (E.A.); (S.A.S.)
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (D.V.S.-P.); (E.A.); (S.A.S.)
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
23
|
Kerr CM, Parthasarathy S, Schwarting N, O’Connor JJ, Giri E, More S, Orozco RC, Fehr AR. PARP12 is required to repress the replication of a Mac1 mutant coronavirus in a cell and tissue specific manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545351. [PMID: 37398292 PMCID: PMC10312760 DOI: 10.1101/2023.06.16.545351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
ADP-ribosyltransferases (ARTs) mediate the transfer of ADP-ribose from NAD + to protein or nucleic acid substrates. This modification can be removed by several different types of proteins, including macrodomains. Several ARTs, also known as PARPs, are stimulated by interferon, indicating ADP-ribosylation is an important aspect of the innate immune response. All coronaviruses (CoVs) encode for a highly conserved macrodomain (Mac1) that is critical for CoVs to replicate and cause disease, indicating that ADP-ribosylation can effectively control coronavirus infection. Our siRNA screen indicated that PARP12 might inhibit the replication of a MHV Mac1 mutant virus in bone-marrow derived macrophages (BMDMs). To conclusively demonstrate that PARP12 is a key mediator of the antiviral response to CoVs both in cell culture and in vivo , we produced PARP12 -/- mice and tested the ability of MHV A59 (hepatotropic/neurotropic) and JHM (neurotropic) Mac1 mutant viruses to replicate and cause disease in these mice. Notably, in the absence of PARP12, Mac1 mutant replication was increased in BMDMs and in mice. In addition, liver pathology was also increased in A59 infected mice. However, the PARP12 knockout did not restore Mac1 mutant virus replication to WT virus levels in all cell or tissue types and did not significantly increase the lethality of Mac1 mutant viruses. These results demonstrate that while PARP12 inhibits MHV Mac1 mutant virus infection, additional PARPs or innate immune factors must contribute to the extreme attenuation of this virus in mice. IMPORTANCE Over the last decade, the importance of ADP-ribosyltransferases (ARTs), also known as PARPs, in the antiviral response has gained increased significance as several were shown to either restrict virus replication or impact innate immune responses. However, there are few studies showing ART-mediated inhibition of virus replication or pathogenesis in animal models. We found that the CoV macrodomain (Mac1) was required to prevent ART-mediated inhibition of virus replication in cell culture. Here, using knockout mice, we found that PARP12, an interferon-stimulated ART, was required to repress the replication of a Mac1 mutant CoV both in cell culture and in mice, demonstrating that PARP12 represses coronavirus replication. However, the deletion of PARP12 did not fully rescue Mac1 mutant virus replication or pathogenesis, indicating that multiple PARPs function to counter coronavirus infection.
Collapse
Affiliation(s)
- Catherine M. Kerr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | | | - Nancy Schwarting
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Joseph J. O’Connor
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Emily Giri
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Sunil More
- Department of Veterinary Pathology, Oklahoma State University, Stillwater Oklahoma 74048, USA
| | - Robin C. Orozco
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Anthony R. Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
24
|
Alhammad YM, Parthasarathy S, Ghimire R, O’Connor JJ, Kerr CM, Pfannenstiel JJ, Chanda D, Miller CA, Unckless RL, Zuniga S, Enjuanes L, More S, Channappanavar R, Fehr AR. SARS-CoV-2 Mac1 is required for IFN antagonism and efficient virus replication in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535927. [PMID: 37066301 PMCID: PMC10104158 DOI: 10.1101/2023.04.06.535927] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Several coronavirus (CoV) encoded proteins are being evaluated as targets for antiviral therapies for COVID-19. Included in this set of proteins is the conserved macrodomain, or Mac1, an ADP-ribosylhydrolase and ADP-ribose binding protein. Utilizing point mutant recombinant viruses, Mac1 was shown to be critical for both murine hepatitis virus (MHV) and severe acute respiratory syndrome (SARS)-CoV virulence. However, as a potential drug target, it is imperative to understand how a complete Mac1 deletion impacts the replication and pathogenesis of different CoVs. To this end, we created recombinant bacterial artificial chromosomes (BACs) containing complete Mac1 deletions (ΔMac1) in MHV, MERS-CoV, and SARS-CoV-2. While we were unable to recover infectious virus from MHV or MERS-CoV ΔMac1 BACs, SARS-CoV-2 ΔMac1 was readily recovered from BAC transfection, indicating a stark difference in the requirement for Mac1 between different CoVs. Furthermore, SARS-CoV-2 ΔMac1 replicated at or near wild-type levels in multiple cell lines susceptible to infection. However, in a mouse model of severe infection, ΔMac1 was quickly cleared causing minimal pathology without any morbidity. ΔMac1 SARS-CoV-2 induced increased levels of interferon (IFN) and interferon-stimulated gene (ISG) expression in cell culture and mice, indicating that Mac1 blocks IFN responses which may contribute to its attenuation. ΔMac1 infection also led to a stark reduction in inflammatory monocytes and neutrophils. These results demonstrate that Mac1 only minimally impacts SARS-CoV-2 replication, unlike MHV and MERS-CoV, but is required for SARS-CoV-2 pathogenesis and is a unique antiviral drug target. SIGNIFICANCE All CoVs, including SARS-CoV-2, encode for a conserved macrodomain (Mac1) that counters host ADP-ribosylation. Prior studies with SARS-CoV-1 and MHV found that Mac1 blocks IFN production and promotes CoV pathogenesis, which has prompted the development of SARS-CoV-2 Mac1 inhibitors. However, development of these compounds into antivirals requires that we understand how SARS-CoV-2 lacking Mac1 replicates and causes disease in vitro and in vivo . Here we found that SARS-CoV-2 containing a complete Mac1 deletion replicates normally in cell culture but induces an elevated IFN response, has reduced viral loads in vivo , and does not cause significant disease in mice. These results will provide a roadmap for testing Mac1 inhibitors, help identify Mac1 functions, and open additional avenues for coronavirus therapies.
Collapse
Affiliation(s)
- Yousef M. Alhammad
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66047, USA
| | | | - Roshan Ghimire
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma, United States
| | - Joseph J. O’Connor
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66047, USA
| | - Catherine M. Kerr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66047, USA
| | | | - Debarati Chanda
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma, United States
| | - Caden A. Miller
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma, United States
| | - Robert L. Unckless
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66047, USA
| | - Sonia Zuniga
- National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Luis Enjuanes
- National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Sunil More
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma, United States
| | - Rudragouda Channappanavar
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma, United States
| | - Anthony R. Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66047, USA
| |
Collapse
|
25
|
Sherrill LM, Joya EE, Walker A, Roy A, Alhammad YM, Atobatele M, Wazir S, Abbas G, Keane P, Zhuo J, Leung AKL, Johnson DK, Lehtiö L, Fehr AR, Ferraris D. Design, synthesis and evaluation of inhibitors of the SARS-CoV-2 nsp3 macrodomain. Bioorg Med Chem 2022; 67:116788. [PMID: 35597097 PMCID: PMC9093066 DOI: 10.1016/j.bmc.2022.116788] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/25/2023]
Abstract
A series of amino acid based 7H-pyrrolo[2,3-d]pyrimidines were designed and synthesized to discern the structure activity relationships against the SARS-CoV-2 nsp3 macrodomain (Mac1), an ADP-ribosylhydrolase that is critical for coronavirus replication and pathogenesis. Structure activity studies identified compound 15c as a low-micromolar inhibitor of Mac1 in two ADP-ribose binding assays. This compound also demonstrated inhibition in an enzymatic assay of Mac1 and displayed a thermal shift comparable to ADPr in the melting temperature of Mac1 supporting binding to the target protein. A structural model reproducibly predicted a binding mode where the pyrrolo pyrimidine forms a hydrogen bonding network with Asp22 and the amide backbone NH of Ile23 in the adenosine binding pocket and the carboxylate forms hydrogen bonds to the amide backbone of Phe157 and Asp156, part of the oxyanion subsite of Mac1. Compound 15c also demonstrated notable selectivity for coronavirus macrodomains when tested against a panel of ADP-ribose binding proteins. Together, this study identified several low MW, low µM Mac1 inhibitors to use as small molecule chemical probes for this potential anti-viral target and offers starting points for further optimization.
Collapse
Affiliation(s)
- Lavinia M Sherrill
- McDaniel College, Department of Chemistry, 2 College Hill, Westminster, MD 21157, USA
| | - Elva E Joya
- McDaniel College, Department of Chemistry, 2 College Hill, Westminster, MD 21157, USA
| | - AnnMarie Walker
- McDaniel College, Department of Chemistry, 2 College Hill, Westminster, MD 21157, USA
| | - Anuradha Roy
- Infectious Disease Assay Development Laboratory/HTS, University of Kansas, Lawrence, KS 66047, USA
| | - Yousef M Alhammad
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Moriama Atobatele
- Infectious Disease Assay Development Laboratory/HTS, University of Kansas, Lawrence, KS 66047, USA
| | - Sarah Wazir
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - George Abbas
- McDaniel College, Department of Chemistry, 2 College Hill, Westminster, MD 21157, USA
| | - Patrick Keane
- McDaniel College, Department of Chemistry, 2 College Hill, Westminster, MD 21157, USA
| | - Junlin Zhuo
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Oncology, McKusick-Nathans Department of Genetic Medicine and Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - David K Johnson
- Molecular Graphics and Modeling Laboratory and the Computational Chemical Biology Core, University of Kansas, Lawrence, KS 66047, USA
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Anthony R Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA.
| | - Dana Ferraris
- McDaniel College, Department of Chemistry, 2 College Hill, Westminster, MD 21157, USA.
| |
Collapse
|
26
|
Roy A, Alhammad YM, McDonald P, Johnson DK, Zhuo J, Wazir S, Ferraris D, Lehtiö L, Leung AKL, Fehr AR. Discovery of compounds that inhibit SARS-CoV-2 Mac1-ADP-ribose binding by high-throughput screening. Antiviral Res 2022; 203:105344. [PMID: 35598780 PMCID: PMC9119168 DOI: 10.1016/j.antiviral.2022.105344] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023]
Abstract
The emergence of several zoonotic viruses in the last twenty years, especially the pandemic outbreak of SARS-CoV-2, has exposed a dearth of antiviral drug therapies for viruses with pandemic potential. Developing a diverse drug portfolio will be critical to rapidly respond to novel coronaviruses (CoVs) and other viruses with pandemic potential. Here we focus on the SARS-CoV-2 conserved macrodomain (Mac1), a small domain of non-structural protein 3 (nsp3). Mac1 is an ADP-ribosylhydrolase that cleaves mono-ADP-ribose (MAR) from target proteins, protects the virus from the anti-viral effects of host ADP-ribosyltransferases, and is critical for the replication and pathogenesis of CoVs. In this study, a luminescent-based high-throughput assay was used to screen ∼38,000 small molecules for those that could inhibit Mac1-ADP-ribose binding. We identified 5 compounds amongst 3 chemotypes that inhibit SARS-CoV-2 Mac1-ADP-ribose binding in multiple assays with IC50 values less than 100 μM, inhibit ADP-ribosylhydrolase activity, and have evidence of direct Mac1 binding. These chemotypes are strong candidates for further derivatization into highly effective Mac1 inhibitors.
Collapse
Affiliation(s)
- Anu Roy
- Infectious Disease Assay Development Laboratory/HTS, University of Kansas, Lawrence, KS, 66047, USA
| | - Yousef M Alhammad
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA
| | - Peter McDonald
- Infectious Disease Assay Development Laboratory/HTS, University of Kansas, Lawrence, KS, 66047, USA
| | - David K Johnson
- Molecular Graphics and Modeling Laboratory and the Computational Chemical Biology Core, University of Kansas, Lawrence, KS, 66047, USA
| | - Junlin Zhuo
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Sarah Wazir
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Dana Ferraris
- McDaniel College Department of Chemistry, 2 College Hill, Westminster, MD, USA
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA; McKusick-Nathans Department of Genetics Medicine, Department of Oncology, And Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Anthony R Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA.
| |
Collapse
|
27
|
Lüscher B, Verheirstraeten M, Krieg S, Korn P. Intracellular mono-ADP-ribosyltransferases at the host-virus interphase. Cell Mol Life Sci 2022; 79:288. [PMID: 35536484 PMCID: PMC9087173 DOI: 10.1007/s00018-022-04290-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/15/2022] [Accepted: 04/05/2022] [Indexed: 01/22/2023]
Abstract
The innate immune system, the primary defense mechanism of higher organisms against pathogens including viruses, senses pathogen-associated molecular patterns (PAMPs). In response to PAMPs, interferons (IFNs) are produced, allowing the host to react swiftly to viral infection. In turn the expression of IFN-stimulated genes (ISGs) is induced. Their products disseminate the antiviral response. Among the ISGs conserved in many species are those encoding mono-ADP-ribosyltransferases (mono-ARTs). This prompts the question whether, and if so how, mono-ADP-ribosylation affects viral propagation. Emerging evidence demonstrates that some mono-ADP-ribosyltransferases function as PAMP receptors and modify both host and viral proteins relevant for viral replication. Support for mono-ADP-ribosylation in virus–host interaction stems from the findings that some viruses encode mono-ADP-ribosylhydrolases, which antagonize cellular mono-ARTs. We summarize and discuss the evidence linking mono-ADP-ribosylation and the enzymes relevant to catalyze this reversible modification with the innate immune response as part of the arms race between host and viruses.
Collapse
Affiliation(s)
- Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Maud Verheirstraeten
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Sarah Krieg
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Patricia Korn
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
28
|
Goławski M, Lewandowski P, Jabłońska I, Delijewski M. The Reassessed Potential of SARS-CoV-2 Attenuation for COVID-19 Vaccine Development—A Systematic Review. Viruses 2022; 14:v14050991. [PMID: 35632736 PMCID: PMC9146402 DOI: 10.3390/v14050991] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
Live-attenuated SARS-CoV-2 vaccines received relatively little attention during the COVID-19 pandemic. Despite this, several methods of obtaining attenuated coronaviruses are known. In this systematic review, the strategies of coronavirus attenuation, which may potentially be applied to SARS-CoV-2, were identified. PubMed, Scopus, Web of Science and Embase databases were searched to identify relevant articles describing attenuating mutations tested in vivo. In case of coronaviruses other than SARS-CoV-2, sequence alignment was used to exclude attenuating mutations that cannot be applied to SARS-CoV-2. Potential immunogenicity, safety and efficacy of the attenuated SARS-CoV-2 vaccine were discussed based on animal studies data. A total of 27 attenuation strategies, used to create 101 different coronaviruses, have been described in 56 eligible articles. The disruption of the furin cleavage site in the SARS-CoV-2 spike protein was identified as the most promising strategy. The replacement of core sequences of transcriptional regulatory signals, which prevents recombination with wild-type viruses, also appears particularly advantageous. Other important attenuating mutations encompassed mostly the prevention of evasion of innate immunity. Sufficiently attenuated coronaviruses typically caused no meaningful disease in susceptible animals and protected them from challenges with virulent virus. This indicates that attenuated COVID-19 vaccines may be considered as a potential strategy to fight the threat posed by SARS-CoV-2.
Collapse
Affiliation(s)
- Marcin Goławski
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland; (P.L.); (M.D.)
- Correspondence:
| | - Piotr Lewandowski
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland; (P.L.); (M.D.)
| | - Iwona Jabłońska
- Department of Biophysics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland;
| | - Marcin Delijewski
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland; (P.L.); (M.D.)
| |
Collapse
|
29
|
Soules KR, Rahe MC, Purtle L, Moeckly C, Stark P, Samson C, Knittel JP. Bovine Coronavirus Infects the Respiratory Tract of Cattle Challenged Intranasally. Front Vet Sci 2022; 9:878240. [PMID: 35573402 PMCID: PMC9100586 DOI: 10.3389/fvets.2022.878240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022] Open
Abstract
Bovine Coronavirus (BCoV) is a member of a family of viruses associated with both enteric and respiratory diseases in a wide range of hosts. BCoV has been well-established as a causative agent of diarrhea in cattle, however, its role as a respiratory pathogen is controversial. In this study, fifteen calves were challenged intranasally with virulent BCoV in order to observe the clinical manifestation of the BCoV infection for up to 8 days after initial challenge, looking specifically for indication of symptoms, pathology, and presence of viral infection in the respiratory tract, as compared to six unchallenged control calves. Throughout the study, clinical signs of disease were recorded and nasal swabs were collected daily. Additionally, bronchoalveolar lavage (BAL) was performed at 4 days Post-challenge, and blood and tissue samples were collected from calves at 4, 6, or 8 days Post-challenge to be tested for the presence of BCoV and disease pathology. The data collected support that this BCoV challenge resulted in respiratory infections as evidenced by the isolation of BCoV in BAL fluids and positive qPCR, immunohistochemistry (IHC), and histopathologic lesions in the upper and lower respiratory tissues. This study can thus be added to a growing body of data supporting that BCoV is a respiratory pathogen and contributor to respiratory disease in cattle.
Collapse
Affiliation(s)
| | - Michael C. Rahe
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Lisa Purtle
- Merck Animal Health, De Soto, KS, United States
| | | | - Paul Stark
- Merck Animal Health, De Soto, KS, United States
| | - Clay Samson
- Merck Animal Health, De Soto, KS, United States
| | | |
Collapse
|
30
|
Roy A, Alhammad YM, McDonald P, Johnson DK, Zhuo J, Wazir S, Ferraris D, Lehtiö L, Leung AKL, Fehr AR. Discovery of compounds that inhibit SARS-CoV-2 Mac1-ADP-ribose binding by high-throughput screening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.03.01.482536. [PMID: 35262075 PMCID: PMC8902866 DOI: 10.1101/2022.03.01.482536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The emergence of several zoonotic viruses in the last twenty years, especially the pandemic outbreak of SARS-CoV-2, has exposed a dearth of antiviral drug therapies for viruses with pandemic potential. Developing a diverse drug portfolio will be critical for our ability to rapidly respond to novel coronaviruses (CoVs) and other viruses with pandemic potential. Here we focus on the SARS-CoV-2 conserved macrodomain (Mac1), a small domain of non-structural protein 3 (nsp3). Mac1 is an ADP-ribosylhydrolase that cleaves mono-ADP-ribose (MAR) from target proteins, protects the virus from the anti-viral effects of host ADP-ribosyltransferases, and is critical for the replication and pathogenesis of CoVs. In this study, a luminescent-based high-throughput assay was used to screen ∼38,000 small molecules for those that could inhibit Mac1-ADP-ribose binding. We identified 5 compounds amongst 3 chemotypes that inhibit SARS-CoV-2 Mac1-ADP-ribose binding in multiple assays with IC 50 values less than 100 µ M, inhibit ADP-ribosylhydrolase activity, and have evidence of direct Mac1 binding. These chemotypes are strong candidates for further derivatization into highly effective Mac1 inhibitors.
Collapse
|
31
|
Sherrill LM, Joya EE, Walker A, Roy A, Alhammad YM, Atobatele M, Wazir S, Abbas G, Keane P, Zhuo J, Leung AKL, Johnson DK, Lehtiö L, Fehr AR, Ferraris D. Design, Synthesis and Evaluation of Inhibitors of the SARS-CoV2 nsp3 Macrodomain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.02.27.482176. [PMID: 35262078 PMCID: PMC8902877 DOI: 10.1101/2022.02.27.482176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A series of amino acid based 7H -pyrrolo[2,3- d ]pyrimidines were designed and synthesized to discern the structure activity relationships against the SARS-CoV-2 nsp3 macrodomain (Mac1), an ADP-ribosylhydrolase that is critical for coronavirus replication and pathogenesis. Structure activity studies identified compound 15c as a low-micromolar inhibitor of Mac1 in two ADP-ribose binding assays. This compound also demonstrated inhibition in an enzymatic assay of Mac1 and displayed a thermal shift comparable to ADPr in the melting temperature of Mac1 supporting binding to the target protein. A structural model reproducibly predicted a binding mode where the pyrrolo pyrimidine forms a hydrogen bonding network with Asp 22 and the amide backbone NH of Ile 23 in the adenosine binding pocket and the carboxylate forms hydrogen bonds to the amide backbone of Phe 157 and Asp 156 , part of the oxyanion subsite of Mac1. Compound 15c also demonstrated notable selectivity for coronavirus macrodomains when tested against a panel of ADP-ribose binding proteins. Together, this study identified several low MW, low μM Mac1 inhibitors to use as small molecule chemical probes for this potential anti-viral target and offers starting points for further optimization.
Collapse
|
32
|
Dasovich M, Zhuo J, Goodman JA, Thomas A, McPherson RL, Jayabalan AK, Busa VF, Cheng SJ, Murphy BA, Redinger KR, Alhammad YMO, Fehr AR, Tsukamoto T, Slusher BS, Bosch J, Wei H, Leung AKL. High-Throughput Activity Assay for Screening Inhibitors of the SARS-CoV-2 Mac1 Macrodomain. ACS Chem Biol 2022; 17:17-23. [PMID: 34904435 PMCID: PMC8691451 DOI: 10.1021/acschembio.1c00721] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Macrodomains are a class of conserved ADP-ribosylhydrolases expressed by viruses of pandemic concern, including coronaviruses and alphaviruses. Viral macrodomains are critical for replication and virus-induced pathogenesis; therefore, these enzymes are a promising target for antiviral therapy. However, no potent or selective viral macrodomain inhibitors currently exist, in part due to the lack of a high-throughput assay for this class of enzymes. Here we developed a high-throughput ADP-ribosylhydrolase assay using the SARS-CoV-2 macrodomain Mac1. We performed a pilot screen that identified dasatinib and dihydralazine as ADP-ribosylhydrolase inhibitors. Importantly, dasatinib inhibits SARS-CoV-2 and MERS-CoV Mac1 but not the closest human homologue, MacroD2. Our study demonstrates the feasibility of identifying selective inhibitors based on ADP-ribosylhydrolase activity, paving the way for the screening of large compound libraries to identify improved macrodomain inhibitors and to explore their potential as antiviral therapies for SARS-CoV-2 and future viral threats.
Collapse
Affiliation(s)
- Morgan Dasovich
- Department of Biochemistry and Molecular Biology,
Bloomberg School of Public Health, Johns Hopkins University,
Baltimore, Maryland 21205, United States
- Department of Chemistry, Krieger School of Arts and
Sciences, Johns Hopkins University, Baltimore, Maryland 21218,
United States
| | - Junlin Zhuo
- Department of Biochemistry and Molecular Biology,
Bloomberg School of Public Health, Johns Hopkins University,
Baltimore, Maryland 21205, United States
| | - Jack A. Goodman
- Department of Biochemistry and Molecular Biology,
Bloomberg School of Public Health, Johns Hopkins University,
Baltimore, Maryland 21205, United States
| | - Ajit Thomas
- Johns Hopkins Drug Discovery,
Baltimore, Maryland 21205, United States
- Department of Neurology, School of Medicine,
Johns Hopkins University, Baltimore, Maryland 21205,
United States
| | - Robert Lyle McPherson
- Department of Biochemistry and Molecular Biology,
Bloomberg School of Public Health, Johns Hopkins University,
Baltimore, Maryland 21205, United States
| | - Aravinth Kumar Jayabalan
- Department of Biochemistry and Molecular Biology,
Bloomberg School of Public Health, Johns Hopkins University,
Baltimore, Maryland 21205, United States
| | - Veronica F. Busa
- Department of Biochemistry and Molecular Biology,
Bloomberg School of Public Health, Johns Hopkins University,
Baltimore, Maryland 21205, United States
- McKusick-Nathans Department of Genetics Medicine,
School of Medicine, Johns Hopkins
University, Baltimore, Maryland 21205, United
States
| | - Shang-Jung Cheng
- Department of Biochemistry and Molecular Biology,
Bloomberg School of Public Health, Johns Hopkins University,
Baltimore, Maryland 21205, United States
| | - Brennan A. Murphy
- Johns Hopkins Drug Discovery,
Baltimore, Maryland 21205, United States
| | - Karli R. Redinger
- Center for Global Health and Diseases, Case
Western Reserve University, Cleveland, Ohio 44106, United
States
| | - Yousef M. O. Alhammad
- Department of Molecular Biosciences,
University of Kansas, Lawrence, Kansas 66045, United
States
| | - Anthony R. Fehr
- Department of Molecular Biosciences,
University of Kansas, Lawrence, Kansas 66045, United
States
| | - Takashi Tsukamoto
- Johns Hopkins Drug Discovery,
Baltimore, Maryland 21205, United States
- Department of Neurology, School of Medicine,
Johns Hopkins University, Baltimore, Maryland 21205,
United States
| | - Barbara S. Slusher
- Johns Hopkins Drug Discovery,
Baltimore, Maryland 21205, United States
- Department of Neurology, School of Medicine,
Johns Hopkins University, Baltimore, Maryland 21205,
United States
| | - Jürgen Bosch
- Center for Global Health and Diseases, Case
Western Reserve University, Cleveland, Ohio 44106, United
States
- InterRayBio, LLC,
Cleveland, Ohio 44106, United States
| | - Huijun Wei
- Johns Hopkins Drug Discovery,
Baltimore, Maryland 21205, United States
- Department of Neurology, School of Medicine,
Johns Hopkins University, Baltimore, Maryland 21205,
United States
| | - Anthony K. L. Leung
- Department of Biochemistry and Molecular Biology,
Bloomberg School of Public Health, Johns Hopkins University,
Baltimore, Maryland 21205, United States
- McKusick-Nathans Department of Genetics Medicine,
School of Medicine, Johns Hopkins
University, Baltimore, Maryland 21205, United
States
- Department of Oncology and Department of
Molecular Biology and Genetics, School of Medicine, Johns Hopkins
University, Baltimore, Maryland 21205, United
States
| |
Collapse
|
33
|
Leung AKL, Griffin DE, Bosch J, Fehr AR. The Conserved Macrodomain Is a Potential Therapeutic Target for Coronaviruses and Alphaviruses. Pathogens 2022; 11:pathogens11010094. [PMID: 35056042 PMCID: PMC8780475 DOI: 10.3390/pathogens11010094] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/04/2022] Open
Abstract
Emerging and re-emerging viral diseases pose continuous public health threats, and effective control requires a combination of non-pharmacologic interventions, treatment with antivirals, and prevention with vaccines. The COVID-19 pandemic has demonstrated that the world was least prepared to provide effective treatments. This lack of preparedness has been due, in large part, to a lack of investment in developing a diverse portfolio of antiviral agents, particularly those ready to combat viruses of pandemic potential. Here, we focus on a drug target called macrodomain that is critical for the replication and pathogenesis of alphaviruses and coronaviruses. Some mutations in alphavirus and coronaviral macrodomains are not tolerated for virus replication. In addition, the coronavirus macrodomain suppresses host interferon responses. Therefore, macrodomain inhibitors have the potential to block virus replication and restore the host’s protective interferon response. Viral macrodomains offer an attractive antiviral target for developing direct acting antivirals because they are highly conserved and have a structurally well-defined (druggable) binding pocket. Given that this target is distinct from the existing RNA polymerase and protease targets, a macrodomain inhibitor may complement current approaches, pre-empt the threat of resistance and offer opportunities to develop combination therapies for combating COVID-19 and future viral threats.
Collapse
Affiliation(s)
- Anthony K. L. Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- McKusick-Nathans Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Correspondence: (A.K.L.L.); (D.E.G.); (A.R.F.); Tel.: +1-(410)-5028939 (A.K.L.L.); +1-(410)-955-3459 (D.E.G.); +1-(785)-864-6626 (A.R.F.)
| | - Diane E. Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Correspondence: (A.K.L.L.); (D.E.G.); (A.R.F.); Tel.: +1-(410)-5028939 (A.K.L.L.); +1-(410)-955-3459 (D.E.G.); +1-(785)-864-6626 (A.R.F.)
| | - Jürgen Bosch
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH 44106, USA;
- InterRayBio, LLC, Cleveland, OH 44106, USA
| | - Anthony R. Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
- Correspondence: (A.K.L.L.); (D.E.G.); (A.R.F.); Tel.: +1-(410)-5028939 (A.K.L.L.); +1-(410)-955-3459 (D.E.G.); +1-(785)-864-6626 (A.R.F.)
| |
Collapse
|
34
|
Hoch NC. Host ADP-ribosylation and the SARS-CoV-2 macrodomain. Biochem Soc Trans 2021; 49:1711-1721. [PMID: 34351418 PMCID: PMC8421052 DOI: 10.1042/bst20201212] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 11/29/2022]
Abstract
The COVID-19 pandemic has prompted intense research efforts into elucidating mechanisms of coronavirus pathogenesis and to propose antiviral interventions. The interferon (IFN) response is the main antiviral component of human innate immunity and is actively suppressed by several non-structural SARS-CoV-2 proteins, allowing viral replication within human cells. Differences in IFN signalling efficiency and timing have emerged as central determinants of the variability of COVID-19 disease severity between patients, highlighting the need for an improved understanding of host-pathogen interactions that affect the IFN response. ADP-ribosylation is an underexplored post-translational modification catalyzed by ADP-ribosyl transferases collectively termed poly(ADP-ribose) polymerases (PARPs). Several human PARPs are induced by the IFN response and participate in antiviral defences by regulating IFN signalling itself, modulating host processes such as translation and protein trafficking, as well as directly modifying and inhibiting viral target proteins. SARS-CoV-2 and other viruses encode a macrodomain that hydrolyzes ADP-ribose modifications, thus counteracting antiviral PARP activity. This mini-review provides a brief overview of the known targets of IFN-induced ADP-ribosylation and the functions of viral macrodomains, highlighting several open questions in the field.
Collapse
Affiliation(s)
- Nicolas C. Hoch
- Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|