1
|
Charman M, Weitzman MD. Mysteries of adenovirus packaging. J Virol 2025:e0018025. [PMID: 40243339 DOI: 10.1128/jvi.00180-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
It is conventionally held that most DNA viruses package their genomes by one of two fundamental mechanisms: described by the sequential or concurrent models of assembly and packaging. Sequential packaging involves the translocation of a viral genome into a pre-formed capsid, often referred to as the pro-capsid. In contrast, concurrent packaging does not require the assembly of a pro-capsid. Instead, the genome is condensed, and the capsid shell is formed around the genome. The accumulation of empty particles in adenovirus infected cells has led to the assumption that adenovirus packaging may be best described by the sequential model. However, existing models fail to adequately explain all experimental observations, leaving many mysteries of adenovirus genome packaging unresolved. In this review, we describe key findings in adenovirus assembly and packaging, and we discuss them in the context of the competing models of sequential versus concurrent packaging. We discuss recent findings that have redefined our understanding of adenovirus packaging, including the role of viral biomolecular condensates and visualization of viral assembly and packaging in situ. These advances have renewed interest in the concurrent model of packaging. We anticipate that lessons learned from adenovirus packaging will be highly valuable for the advancement of viral vectors and gene-delivery technologies. In reviewing this topic, we hope to stimulate discussion and facilitate future investigation that will ultimately resolve gaps in knowledge and expand our understanding of DNA virus genome packaging.
Collapse
Affiliation(s)
- Matthew Charman
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Matthew D Weitzman
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Penn Center for Genome Integrity, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Mudrick HE, Lu SC, Bhandari J, Barry ME, Hemsath JR, Andres FGM, Ma OX, Barry MA, Reddy VS. Structure-derived insights from blood factors binding to the surfaces of different adenoviruses. Nat Commun 2024; 15:9768. [PMID: 39528527 PMCID: PMC11555213 DOI: 10.1038/s41467-024-54049-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
The tropism of adenoviruses (Ads) is significantly influenced by the binding of various blood factors. To investigate differences in their binding, we conducted cryo-EM analysis on complexes of several human adenoviruses with human platelet factor-4 (PF4), coagulation factors FII (Prothrombin), and FX. While we observed EM densities for FII and FX bound to all the species-C adenoviruses examined, no densities were seen for PF4, even though PF4 can co-pellet with various Ads. Similar to FX, the γ-carboxyglutamic acid (Gla) domain of FII binds within the surface cavity of hexon trimers. While FII binds equally to species-C Ads: Ad5, Ad6, and Ad657, FX exhibits significantly better binding to Ad5 and Ad657 compared to Ad6. Although only the FX-Gla domain is observed at high-resolution (3.7 Å), the entire FX is visible at low-resolution bound to Ad5 in three equivalent binding modes consistent with the 3-fold symmetric hexon. Only the Gla and kringle-1 domains of FII are visible on all the species-C adenoviruses, where the rigid FII binds in an upright fashion, in contrast to the flexible and bent FX. These data suggest that differential binding of FII and FX may shield certain species-C adenoviruses differently against immune molecules, thereby modulating their tropism.
Collapse
Affiliation(s)
- Haley E Mudrick
- Molecular Pharmacology and Experimental Therapeutics Graduate Program, Mayo Clinic, Rochester, MN, 55905, USA
| | - Shao-Chia Lu
- Department of Internal Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, MN, 55905, USA
| | - Janarjan Bhandari
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Mary E Barry
- Department of Internal Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jack R Hemsath
- Department of Internal Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, MN, 55905, USA
| | - Felix G M Andres
- Department of Internal Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Immunology, Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Olivia X Ma
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Michael A Barry
- Department of Internal Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Immunology, Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Vijay S Reddy
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA.
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, 92037, USA.
| |
Collapse
|
3
|
Kulanayake S, Singh B, Dar F, Tikoo SK. Role of Protein VII in the Production of Infectious Bovine Adenovirus-3 Virion. Viruses 2024; 16:1323. [PMID: 39205297 PMCID: PMC11359501 DOI: 10.3390/v16081323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Bovine adenovirus (BAdV)-3 genome encodes a 26 kDa core protein designated as protein VII, which localizes to the nucleus/nucleolus. The requirement of a protein VII-complementing cell line for the replication of VII-deleted BAdV-3 suggests that protein VII is required for the production of infectious progeny virions. An analysis of the BAV.VIId+ virus (only phenotypically positive for protein VII) detected no noticeable differences in the expression and incorporation of viral proteins in the virions. Moreover, protein VII does not appear to be essential for the formation of mature BAV.VIId+. However, protein VII appeared to be required for the efficient assembly of mature BAV.VIId- virions. An analysis of the BAV.VIId- virus (genotypically and phenotypically negative for protein VII) in non-complementing cells detected the inefficient release of virions from endosomes, which affected the expression of viral proteins or DNA replication. Moreover, the absence of protein VII altered the proteolytic cleavage of protein VI of BAV.VIId-. Our results suggest that BAdV-3 protein VII appears to be required for efficient production of mature virions. Moreover, the absence of protein VII produces non-infectious BAdV-3 by altering the release of BAdV-3 from endosomes/vesicles.
Collapse
Affiliation(s)
- Shermila Kulanayake
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (S.K.); (F.D.)
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Barinder Singh
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Faryal Dar
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (S.K.); (F.D.)
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Suresh K. Tikoo
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (S.K.); (F.D.)
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
- Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
4
|
Datler J, Hansen JM, Thader A, Schlögl A, Bauer LW, Hodirnau VV, Schur FKM. Multi-modal cryo-EM reveals trimers of protein A10 to form the palisade layer in poxvirus cores. Nat Struct Mol Biol 2024; 31:1114-1123. [PMID: 38316877 PMCID: PMC11257981 DOI: 10.1038/s41594-023-01201-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 12/06/2023] [Indexed: 02/07/2024]
Abstract
Poxviruses are among the largest double-stranded DNA viruses, with members such as variola virus, monkeypox virus and the vaccination strain vaccinia virus (VACV). Knowledge about the structural proteins that form the viral core has remained sparse. While major core proteins have been annotated via indirect experimental evidence, their structures have remained elusive and they could not be assigned to individual core features. Hence, which proteins constitute which layers of the core, such as the palisade layer and the inner core wall, has remained enigmatic. Here we show, using a multi-modal cryo-electron microscopy (cryo-EM) approach in combination with AlphaFold molecular modeling, that trimers formed by the cleavage product of VACV protein A10 are the key component of the palisade layer. This allows us to place previously obtained descriptions of protein interactions within the core wall into perspective and to provide a detailed model of poxvirus core architecture. Importantly, we show that interactions within A10 trimers are likely generalizable over members of orthopox- and parapoxviruses.
Collapse
Affiliation(s)
- Julia Datler
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Jesse M Hansen
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Andreas Thader
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Alois Schlögl
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Lukas W Bauer
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | | | - Florian K M Schur
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
| |
Collapse
|
5
|
Kulanayake S, Dar F, Tikoo SK. Regions of Bovine Adenovirus-3 Protein VII Involved in Interactions with Viral and Cellular Proteins. Viruses 2024; 16:732. [PMID: 38793614 PMCID: PMC11125828 DOI: 10.3390/v16050732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
The L 1 region of bovine adenovirus (BAdV)-3 encodes a multifunctional protein named protein VII. Anti-protein VII sera detected a protein of 26 kDa in transfected or BAdV-3-infected cells, which localizes to nucleus and nucleolus of infected/transfected cells. Analysis of mutant protein VII identified four redundant overlapping nuclear/nucleolar localization signals as deletion of all four potential nuclear/nucleolar localization signals localizes protein VII predominantly to the cytoplasm. The nuclear import of protein VII appears to use importin α (α-1), importin-β (β-1) and transportin-3 nuclear transport receptors. In addition, different nuclear transport receptors also require part of protein VII outside nuclear localization sequences for efficient interaction. Proteomic analysis of protein complexes purified from recombinant BAdV-3 expressing protein VII containing Strep Tag II identified potential viral and cellular proteins interacting with protein VII. Here, we confirm that protein VII interacts with IVa2 and protein VIII in BAdV-3-infected cells. Moreover, amino acids 91-101 and 126-137, parts of non-conserved region of protein VII, are required for interaction with IVa2 and protein VIII, respectively.
Collapse
Affiliation(s)
- Shermila Kulanayake
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (S.K.); (F.D.)
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Faryal Dar
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (S.K.); (F.D.)
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Suresh K. Tikoo
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (S.K.); (F.D.)
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
6
|
Kolb AW, Chau VQ, Miller DL, Yannuzzi NA, Brandt CR. Phylogenetic and Recombination Analysis of Clinical Vitreous Humor-Derived Adenovirus Isolates Reveals Discordance Between Serotype and Phylogeny. Invest Ophthalmol Vis Sci 2024; 65:12. [PMID: 38319669 PMCID: PMC10854415 DOI: 10.1167/iovs.65.2.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
Purpose To sequence, identify, and perform phylogenetic and recombination analysis on three clinical adenovirus samples taken from the vitreous humor at the Bascom Palmer Eye Institute. Methods The PacBio Sequel II was used to sequence the genomes of the three clinical adenovirus isolates. To identify the isolates, a full genome-based multiple sequence alignment (MSA) of 722 mastadenoviruses was generated using multiple alignment using fast Fourier transform (MAFFT). MAFFT was also used to generate genome-based human adenovirus B (HAdV-B) MSAs, as well as HAdV-B fiber, hexon, and penton protein-based MSAs. To examine recombination within HAdV-B, RF-Net 2 and Bootscan software programs were used. Results In the course of classifying three new atypical ocular adenovirus samples, taken from the vitreous humor, we found that all three isolates were HAdV-B species. The three Bascom Palmer HAdV-B genomes were then combined with over 300 HAdV-B genome sequences, including nine ocular HAdV-B genome sequences. Attempts to categorize the penton, hexon, and fiber serotypes using phylogeny of the three Bascom Palmer samples were inconclusive due to incongruence between serotype and phylogeny in the dataset. Recombination analysis using a subset of HAdV-B strains to generate a hybridization network detected recombination between nonhuman primate and human-derived strains, recombination between one HAdV-B strain and the HAdV-E outgroup, and limited recombination between the B1 and B2 clades. Conclusions The discordance between serotype and phylogeny detected in this study suggests that the current classification system does not accurately describe the natural history and phylogenetic relationships among adenoviruses.
Collapse
Affiliation(s)
- Aaron W. Kolb
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Viet Q. Chau
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States
| | - Darlene L. Miller
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States
| | - Nicolas A. Yannuzzi
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States
| | - Curtis R. Brandt
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States
| |
Collapse
|
7
|
Yao J, Atasheva S, Wagner N, Di Paolo NC, Stewart PL, Shayakhmetov DM. Targeted, safe, and efficient gene delivery to human hematopoietic stem and progenitor cells in vivo using the engineered AVID adenovirus vector platform. Mol Ther 2024; 32:103-123. [PMID: 37919899 PMCID: PMC10787117 DOI: 10.1016/j.ymthe.2023.10.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/10/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
Targeted delivery and cell-type-specific expression of gene-editing proteins in various cell types in vivo represent major challenges for all viral and non-viral delivery platforms developed to date. Here, we describe the development and analysis of artificial vectors for intravascular delivery (AVIDs), an engineered adenovirus-based gene delivery platform that allows for highly targeted, safe, and efficient gene delivery to human hematopoietic stem and progenitor cells (HSPCs) in vivo after intravenous vector administration. Due to a set of refined structural modifications, intravenous administration of AVIDs did not trigger cytokine storm, hepatotoxicity, or thrombocytopenia. Single intravenous administration of AVIDs to humanized mice, grafted with human CD34+ cells, led to up to 20% transduction of CD34+CD38-CD45RA- HSPC subsets in the bone marrow. Importantly, targeted in vivo transduction of CD34+CD38-CD45RA-CD90-CD49f+ subsets, highly enriched for human hematopoietic stem cells (HSCs), reached up to 19%, which represented a 1,900-fold selectivity in gene delivery to HSC-enriched over lineage-committed CD34-negative cell populations. Because the AVID platform allows for regulated, cell-type-specific expression of gene-editing technologies as well as expression of immunomodulatory proteins to ensure persistence of corrected HSCs in vivo, the HSC-targeted AVID platform may enable development of curative therapies through in vivo gene correction in human HSCs after a single intravenous administration.
Collapse
Affiliation(s)
- Jia Yao
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Svetlana Atasheva
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nicole Wagner
- Cleveland Center for Membrane and Structural Biology, Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nelson C Di Paolo
- AdCure Bio, LLC, Century Spring West, 6000 Lake Forrest Drive, Atlanta, GA 30328, USA
| | - Phoebe L Stewart
- Cleveland Center for Membrane and Structural Biology, Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Dmitry M Shayakhmetov
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA; Discovery and Developmental Therapeutics Program, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
8
|
Athukorala A, Donnelly CM, Pavan S, Nematollahzadeh S, Djossou VA, Nath B, Helbig KJ, Di Iorio E, McSharry BP, Alvisi G, Forwood JK, Sarker S. Structural and functional characterization of siadenovirus core protein VII nuclear localization demonstrates the existence of multiple nuclear transport pathways. J Gen Virol 2024; 105. [PMID: 38261399 DOI: 10.1099/jgv.0.001928] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024] Open
Abstract
Adenovirus protein VII (pVII) plays a crucial role in the nuclear localization of genomic DNA following viral infection and contains nuclear localization signal (NLS) sequences for the importin (IMP)-mediated nuclear import pathway. However, functional analysis of pVII in adenoviruses to date has failed to fully determine the underlying mechanisms responsible for nuclear import of pVII. Therefore, in the present study, we extended our analysis by examining the nuclear trafficking of adenovirus pVII from a non-human species, psittacine siadenovirus F (PsSiAdV). We identified a putative classical (c)NLS at pVII residues 120-128 (120PGGFKRRRL128). Fluorescence polarization and electrophoretic mobility shift assays demonstrated direct, high-affinity interaction with both IMPα2 and IMPα3 but not IMPβ. Structural analysis of the pVII-NLS/IMPα2 complex confirmed a classical interaction, with the major binding site of IMPα occupied by K124 of pVII-NLS. Quantitative confocal laser scanning microscopy showed that PsSiAdV pVII-NLS can confer IMPα/β-dependent nuclear localization to GFP. PsSiAdV pVII also localized in the nucleus when expressed in the absence of other viral proteins. Importantly, in contrast to what has been reported for HAdV pVII, PsSiAdV pVII does not localize to the nucleolus. In addition, our study demonstrated that inhibition of the IMPα/β nuclear import pathway did not prevent PsSiAdV pVII nuclear targeting, indicating the existence of alternative pathways for nuclear localization, similar to what has been previously shown for human adenovirus pVII. Further examination of other potential NLS signals, characterization of alternative nuclear import pathways, and investigation of pVII nuclear targeting across different adenovirus species is recommended to fully elucidate the role of varying nuclear import pathways in the nuclear localization of pVII.
Collapse
Affiliation(s)
- Ajani Athukorala
- Department of Microbiology, Anatomy, Physiology, and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3086, Australia
| | - Camilla M Donnelly
- School of Dentistry and Medical Sciences, Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Silvia Pavan
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, 35121 Padua, Italy
| | - Sepehr Nematollahzadeh
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, 35121 Padua, Italy
| | | | - Babu Nath
- School of Dentistry and Medical Sciences, Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Karla J Helbig
- Department of Microbiology, Anatomy, Physiology, and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3086, Australia
| | - Enzo Di Iorio
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, 35121 Padua, Italy
| | - Brian P McSharry
- School of Dentistry and Medical Sciences, Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Gualtiero Alvisi
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, 35121 Padua, Italy
| | - Jade K Forwood
- School of Dentistry and Medical Sciences, Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Subir Sarker
- Department of Microbiology, Anatomy, Physiology, and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3086, Australia
- Biomedical Sciences & Molecular Biology, College of Public Health Medical, and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
9
|
Grand RJ. Pathogenicity and virulence of human adenovirus F41: Possible links to severe hepatitis in children. Virulence 2023; 14:2242544. [PMID: 37543996 PMCID: PMC10405776 DOI: 10.1080/21505594.2023.2242544] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023] Open
Abstract
Over 100 human adenoviruses (HAdVs) have been isolated and allocated to seven species, A-G. Species F comprises two members-HAdV-F40 and HAdV-F41. As their primary site of infection is the gastrointestinal tract they have been termed, with species A, enteric adenoviruses. HAdV-F40 and HAdV-F41 are a common cause of gastroenteritis and diarrhoea in children. Partly because of difficulties in propagating the viruses in the laboratory, due to their restrictions on growth in many cell lines, our knowledge of the properties of individual viral proteins is limited. However, the structure of HAdV-F41 has recently been determined by cryo-electron microscopy. The overall structure is similar to those of HAdV-C5 and HAdV-D26 although with some differences. The sequence and arrangement of the hexon hypervariable region 1 (HVR1) and the arrangement of the C-terminal region of protein IX differ. Variations in the penton base and hexon HVR1 may play a role in facilitating infection of intestinal cells by HAdV-F41. A unique feature of HAdV-F40 and F41, among human adenoviruses, is the presence and expression of two fibre genes, giving long and short fibre proteins. This may also contribute to the tropism of these viruses. HAdV-F41 has been linked to a recent outbreak of severe acute hepatitis "of unknown origin" in young children. Further investigation has shown a very high prevalence of adeno-associated virus-2 in the liver and/or plasma of some cohorts of patients. These observations have proved controversial as HAdV-F41 had not been reported to infect the liver and AAV-2 has generally been considered harmless.
Collapse
Affiliation(s)
- Roger J. Grand
- Institute for Cancer and Genomic Science, the Medical School, University of Birmingham, Birmingham, UK
| |
Collapse
|
10
|
Fernández-Giménez E, Martínez MM, Marabini R, Strelak D, Sánchez-García R, Carazo JM, Sorzano COS. A new algorithm for particle weighted subtraction to decrease signals from unwanted components in single particle analysis. J Struct Biol 2023; 215:108024. [PMID: 37704013 DOI: 10.1016/j.jsb.2023.108024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Abstract
Single particle analysis (SPA) in cryo-electron microscopy (cryo-EM) is highly used to obtain the near-atomic structure of biological macromolecules. The current methods allow users to produce high-resolution maps from many samples. However, there are still challenging cases that require extra processing to obtain high resolution. This is the case when the macromolecule of the sample is composed of different components and we want to focus just on one of them. For example, if the macromolecule is composed of several flexible subunits and we are interested in a specific one, if it is embedded in a viral capsid environment, or if it has additional components to stabilize it, such as nanodiscs. The signal from these components, which in principle we are not interested in, can be removed from the particles using a projection subtraction method. Currently, there are two projection subtraction methods used in practice and both have some limitations. In fact, after evaluating their results, we consider that the problem is still open to new solutions, as they do not fully remove the signal of the components that are not of interest. Our aim is to develop a new and more precise projection subtraction method, improving the performance of state-of-the-art methods. We tested our algorithm with data from public databases and an in-house data set. In this work, we show that the performance of our algorithm improves the results obtained by others, including the localization of small ligands, such as drugs, whose binding location is unknown a priori.
Collapse
Affiliation(s)
- E Fernández-Giménez
- Centro Nac. Biotecnología (CSIC), c/Darwin, 3, 28049 Cantoblanco, Madrid, Spain; Univ. Autonoma de Madrid, 28049 Cantoblanco, Madrid, Spain
| | - M M Martínez
- Centro Nac. Biotecnología (CSIC), c/Darwin, 3, 28049 Cantoblanco, Madrid, Spain
| | - R Marabini
- Centro Nac. Biotecnología (CSIC), c/Darwin, 3, 28049 Cantoblanco, Madrid, Spain; Univ. Autonoma de Madrid, 28049 Cantoblanco, Madrid, Spain
| | - D Strelak
- Institute of Computer Science, Masaryk University, Botanická 68a, 60200 Brno, Czech Republic
| | - R Sánchez-García
- Department of Statistics, University of Oxford, 24-29 St Giles', Oxford OX1 3LB, United Kingdom; Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge CB4 0QA, UK
| | - J M Carazo
- Centro Nac. Biotecnología (CSIC), c/Darwin, 3, 28049 Cantoblanco, Madrid, Spain
| | - C O S Sorzano
- Centro Nac. Biotecnología (CSIC), c/Darwin, 3, 28049 Cantoblanco, Madrid, Spain.
| |
Collapse
|
11
|
Wagner N, Shayakhmetov DM, Stewart PL. Structural Model for Factor X Inhibition of IgM and Complement-Mediated Neutralization of Adenovirus. Viruses 2023; 15:1343. [PMID: 37376642 PMCID: PMC10305487 DOI: 10.3390/v15061343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Adenovirus has strong therapeutic potential as an oncolytic virus and gene therapy vector. However, injecting human species C serotype 5 adenovirus, HAdv-C5, into the bloodstream leads to numerous interactions with plasma proteins that affect viral tropism and biodistribution, and can lead to potent immune responses and viral neutralization. The HAdv/factor X (FX) interaction facilitates highly efficient liver transduction and protects virus particles from complement-mediated neutralization after intravenous delivery. Ablating the FX interaction site on the HAdv-C5 capsid leaves the virus susceptible to neutralization by natural IgM followed by activation of the complement cascade and covalent binding of complement components C4b and C3b to the viral capsid. Here we present structural models for IgM and complement components C1, C4b, and C3b in complex with HAdv-C5. Molecular dynamics simulations indicate that when C3b binds near the vertex, multiple stabilizing interactions can be formed between C3b, penton base, and fiber. These interactions may stabilize the vertex region of the capsid and prevent release of the virally encoded membrane lytic factor, protein VI, which is packaged inside of the viral capsid, thus effectively neutralizing the virus. In a situation where FX and IgM are competing for binding to the capsid, IgM may not be able to form a bent conformation in which most of its Fab arms interact with the capsid. Our structural modeling of the competitive interaction of FX and IgM with HAdv-C5 allows us to propose a mechanistic model for FX inhibition of IgM-mediated virus neutralization. According to this model, although IgM may bind to the capsid, in the presence of FX it will likely retain a planar conformation and thus be unable to promote activation of the complement cascade at the virus surface.
Collapse
Affiliation(s)
- Nicole Wagner
- Cleveland Center for Membrane and Structural Biology, Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Dmitry M. Shayakhmetov
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Discovery and Developmental Therapeutics Program, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Phoebe L. Stewart
- Cleveland Center for Membrane and Structural Biology, Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA;
| |
Collapse
|
12
|
Zhao Z, Huang Y, Liu C, Zhu D, Gao S, Liu S, Peng R, Zhang Y, Huang X, Qi J, Wong CCL, Zhang X, Wang P, Qin Q, Gao GF. Near-atomic architecture of Singapore grouper iridovirus and implications for giant virus assembly. Nat Commun 2023; 14:2050. [PMID: 37041173 PMCID: PMC10090177 DOI: 10.1038/s41467-023-37681-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 03/28/2023] [Indexed: 04/13/2023] Open
Abstract
Singapore grouper iridovirus (SGIV), one of the nucleocytoviricota viruses (NCVs), is a highly pathogenic iridovirid. SGIV infection results in massive economic losses to the aquaculture industry and significantly threatens global biodiversity. In recent years, high morbidity and mortality in aquatic animals have been caused by iridovirid infections worldwide. Effective control and prevention strategies are urgently needed. Here, we present a near-atomic architecture of the SGIV capsid and identify eight types of capsid proteins. The viral inner membrane-integrated anchor protein colocalizes with the endoplasmic reticulum (ER), supporting the hypothesis that the biogenesis of the inner membrane is associated with the ER. Additionally, immunofluorescence assays indicate minor capsid proteins (mCPs) could form various building blocks with major capsid proteins (MCPs) before the formation of a viral factory (VF). These results expand our understanding of the capsid assembly of NCVs and provide more targets for vaccine and drug design to fight iridovirid infections.
Collapse
Affiliation(s)
- Zhennan Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Youhua Huang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Congcong Liu
- Cryo-EM Center, Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Dongjie Zhu
- School of Life Science, University of Science and Technology of China, Hefei, 230026, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuaixin Gao
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
- Department of Human Sciences & James Comprehensive Cancer Center, The Ohio State University, Columbus, 43210, USA
| | - Sheng Liu
- Cryo-EM Center, Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ruchao Peng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Ya Zhang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Xiaohong Huang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Life Science Academy, Beijing, 102209, China.
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Peiyi Wang
- Cryo-EM Center, Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - George F Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
13
|
Martín-González N, Gómez-González A, Hernando-Pérez M, Bauer M, Greber UF, San Martín C, de Pablo PJ. Adenovirus core protein V reinforces the capsid and enhances genome release from disrupted particles. SCIENCE ADVANCES 2023; 9:eade9910. [PMID: 37027464 PMCID: PMC10081844 DOI: 10.1126/sciadv.ade9910] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
Out of the three core proteins in human adenovirus, protein V is believed to connect the inner capsid surface to the outer genome layer. Here, we explored mechanical properties and in vitro disassembly of particles lacking protein V (Ad5-ΔV). Ad5-ΔV particles were softer and less brittle than the wild-type ones (Ad5-wt), but they were more prone to release pentons under mechanical fatigue. In Ad5-ΔV, core components did not readily diffuse out of partially disrupted capsids, and the core appeared more condensed than in Ad5-wt. These observations suggest that instead of condensing the genome, protein V antagonizes the condensing action of the other core proteins. Protein V provides mechanical reinforcement and facilitates genome release by keeping DNA connected to capsid fragments that detach during disruption. This scenario is in line with the location of protein V in the virion and its role in Ad5 cell entry.
Collapse
Affiliation(s)
- Natalia Martín-González
- Departament of Condensed Matter Physics, Universidad Autónoma de Madrid and Institute of Condensed Matter Physics (IFIMAC), 28049 Madrid, Spain
| | - Alfonso Gómez-González
- Department of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Mercedes Hernando-Pérez
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Michael Bauer
- Department of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Urs F. Greber
- Department of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Carmen San Martín
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Pedro J. de Pablo
- Departament of Condensed Matter Physics, Universidad Autónoma de Madrid and Institute of Condensed Matter Physics (IFIMAC), 28049 Madrid, Spain
| |
Collapse
|
14
|
Jennings MR, Parks RJ. Human Adenovirus Gene Expression and Replication Is Regulated through Dynamic Changes in Nucleoprotein Structure throughout Infection. Viruses 2023; 15:161. [PMID: 36680201 PMCID: PMC9863843 DOI: 10.3390/v15010161] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Human adenovirus (HAdV) is extremely common and can rapidly spread in confined populations such as daycare centers, hospitals, and retirement homes. Although HAdV usually causes only minor illness in otherwise healthy patients, HAdV can cause significant morbidity and mortality in certain populations, such as the very young, very old, or immunocompromised individuals. During infection, the viral DNA undergoes dramatic changes in nucleoprotein structure that promote the rapid expression of viral genes, replication of the DNA, and generation of thousands of new infectious virions-each process requiring a distinct complement of virus and host-encoded proteins. In this review, we summarize our current understanding of the nucleoprotein structure of HAdV DNA during the various phases of infection, the cellular proteins implicated in mediating these changes, and the role of epigenetics in HAdV gene expression and replication.
Collapse
Affiliation(s)
- Morgan R. Jennings
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Robin J. Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Medicine, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
15
|
MacNeil KM, Dodge MJ, Evans AM, Tessier TM, Weinberg JB, Mymryk JS. Adenoviruses in medicine: innocuous pathogen, predator, or partner. Trends Mol Med 2023; 29:4-19. [PMID: 36336610 PMCID: PMC9742145 DOI: 10.1016/j.molmed.2022.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/09/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
The consequences of human adenovirus (HAdV) infections are generally mild. However, despite the perception that HAdVs are harmless, infections can cause severe disease in certain individuals, including newborns, the immunocompromised, and those with pre-existing conditions, including respiratory or cardiac disease. In addition, HAdV outbreaks remain relatively common events and the recent emergence of more pathogenic genomic variants of various genotypes has been well documented. Coupled with evidence of zoonotic transmission, interspecies recombination, and the lack of approved AdV antivirals or widely available vaccines, HAdVs remain a threat to public health. At the same time, the detailed understanding of AdV biology garnered over nearly 7 decades of study has made this group of viruses a molecular workhorse for vaccine and gene therapy applications.
Collapse
Affiliation(s)
- Katelyn M MacNeil
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Mackenzie J Dodge
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Andris M Evans
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Tanner M Tessier
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Jason B Weinberg
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
| | - Joe S Mymryk
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada; Department of Otolaryngology, Head & Neck Surgery, The University of Western Ontario, London, ON, Canada; Department of Oncology, The University of Western Ontario, London, ON, Canada; London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|
16
|
Wang WC, Sayedahmed EE, Mittal SK. Significance of Preexisting Vector Immunity and Activation of Innate Responses for Adenoviral Vector-Based Therapy. Viruses 2022; 14:v14122727. [PMID: 36560730 PMCID: PMC9787786 DOI: 10.3390/v14122727] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
An adenoviral (AdV)-based vector system is a promising platform for vaccine development and gene therapy applications. Administration of an AdV vector elicits robust innate immunity, leading to the development of humoral and cellular immune responses against the vector and the transgene antigen, if applicable. The use of high doses (1011-1013 virus particles) of an AdV vector, especially for gene therapy applications, could lead to vector toxicity due to excessive levels of innate immune responses, vector interactions with blood factors, or high levels of vector transduction in the liver and spleen. Additionally, the high prevalence of AdV infections in humans or the first inoculation with the AdV vector result in the development of vector-specific immune responses, popularly known as preexisting vector immunity. It significantly reduces the vector efficiency following the use of an AdV vector that is prone to preexisting vector immunity. Several approaches have been developed to overcome this problem. The utilization of rare human AdV types or nonhuman AdVs is the primary strategy to evade preexisting vector immunity. The use of heterologous viral vectors, capsid modification, and vector encapsulation are alternative methods to evade vector immunity. The vectors can be optimized for clinical applications with comprehensive knowledge of AdV vector immunity, toxicity, and circumvention strategies.
Collapse
|
17
|
Greber UF, Suomalainen M. Adenovirus entry: Stability, uncoating, and nuclear import. Mol Microbiol 2022; 118:309-320. [PMID: 35434852 PMCID: PMC9790413 DOI: 10.1111/mmi.14909] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 12/30/2022]
Abstract
Adenoviruses (AdVs) are widespread in vertebrates. They infect the respiratory and gastrointestinal tracts, the eyes, heart, liver, and kidney, and are lethal to immunosuppressed people. Mastadenoviruses infecting mammals comprise several hundred different types, and many specifically infect humans. Human adenoviruses are the most widely used vectors in clinical applications, including cancer treatment and COVID-19 vaccination. AdV vectors are physically and genetically stable and generally safe in humans. The particles have an icosahedral coat and a nucleoprotein core with a DNA genome. We describe the concept of AdV cell entry and highlight recent advances in cytoplasmic transport, uncoating, and nuclear import of the viral DNA. We highlight a recently discovered "linchpin" function of the virion protein V ensuring cytoplasmic particle stability, which is relaxed at the nuclear pore complex by cues from the E3 ubiquitin ligase Mind bomb 1 (MIB1) and the proteasome triggering disruption. Capsid disruption by kinesin motor proteins and microtubules exposes the linchpin and renders protein V a target for MIB1 ubiquitination, which dissociates V from viral DNA and enhances DNA nuclear import. These advances uncover mechanisms controlling capsid stability and premature uncoating and provide insight into nuclear transport of nucleic acids.
Collapse
Affiliation(s)
- Urs F. Greber
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
| | - Maarit Suomalainen
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
| |
Collapse
|
18
|
Marco-Dufort B, Janczy JR, Hu T, Lütolf M, Gatti F, Wolf M, Woods A, Tetter S, Sridhar BV, Tibbitt MW. Thermal stabilization of diverse biologics using reversible hydrogels. SCIENCE ADVANCES 2022; 8:eabo0502. [PMID: 35930644 PMCID: PMC9355364 DOI: 10.1126/sciadv.abo0502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Improving the thermal stability of biologics, including vaccines, is critical to reduce the economic costs and health risks associated with the cold chain. Here, we designed a versatile, safe, and easy-to-use reversible PEG-based hydrogel platform formed via dynamic covalent boronic ester cross-linking for the encapsulation, stabilization, and on-demand release of biologics. Using these reversible hydrogels, we thermally stabilized a wide range of biologics up to 65°C, including model enzymes, heat-sensitive clinical diagnostic enzymes (DNA gyrase and topoisomerase I), protein-based vaccines (H5N1 hemagglutinin), and whole viruses (adenovirus type 5). Our data support a generalized protection mechanism for the thermal stabilization of diverse biologics using direct encapsulation in reversible hydrogels. Furthermore, preliminary toxicology data suggest that the components of our hydrogel are safe for in vivo use. Our reversible hydrogel platform offers a simple material solution to mitigate the costs and risks associated with reliance on a continuous cold chain for biologic transport and storage.
Collapse
Affiliation(s)
- Bruno Marco-Dufort
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | | | - Tianjing Hu
- Nanoly Bioscience Inc., Denver, CO 80231, USA
| | - Marco Lütolf
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Francesco Gatti
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Morris Wolf
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Alex Woods
- Nanoly Bioscience Inc., Denver, CO 80231, USA
| | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Mark W. Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
19
|
Reddy VS, Yu X, Barry MA. Refined Capsid Structure of Human Adenovirus D26 at 3.4 Å Resolution. Viruses 2022; 14:v14020414. [PMID: 35216007 PMCID: PMC8878492 DOI: 10.3390/v14020414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/24/2022] [Accepted: 02/11/2022] [Indexed: 12/11/2022] Open
Abstract
Various adenoviruses are being used as viral vectors for the generation of vaccines against chronic and emerging diseases (e.g., AIDS, COVID-19). Here, we report the improved capsid structure for one of these vectors, human adenovirus D26 (HAdV-D26), at 3.4 Å resolution, by reprocessing the previous cryo-electron microscopy dataset and obtaining a refined model. In addition to overall improvements in the model, the highlights of the structure include (1) locating a segment of the processed peptide of VIII that was previously believed to be released from the mature virions, (2) reorientation of the helical appendage domain (APD) of IIIa situated underneath the vertex region relative to its counterpart observed in the cleavage defective (ts1) mutant of HAdV-C5 that resulted in the loss of interactions between the APD and hexon bases, and (3) the revised conformation of the cleaved N-terminal segments of pre-protein VI (pVIn), located in the hexon cavities, is highly conserved, with notable stacking interactions between the conserved His13 and Phe18 residues. Taken together, the improved model of HAdV-D26 capsid provides a better understanding of protein–protein interactions in HAdV capsids and facilitates the efforts to modify and/or design adenoviral vectors with altered properties. Last but not least, we provide some insights into clotting factors (e.g., FX and PF4) binding to AdV vectors.
Collapse
Affiliation(s)
- Vijay S Reddy
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xiaodi Yu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael A Barry
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
20
|
Structure of a Cell Entry Defective Human Adenovirus Provides Insights into Precursor Proteins and Capsid Maturation. J Mol Biol 2022; 434:167350. [PMID: 34774568 PMCID: PMC8752480 DOI: 10.1016/j.jmb.2021.167350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 02/01/2023]
Abstract
Maturation of adenoviruses is distinguished by proteolytic processing of several interior minor capsid proteins and core proteins by the adenoviral protease and subsequent reorganization of adenovirus core. We report the results derived from the icosahedrally averaged cryo-EM structure of a cell entry defective form of adenovirus, designated ts1, at a resolution of 3.7 Å as well as of the localized reconstructions of unique hexons and penton base. The virion structure revealed the structures and organization of precursors of minor capsid proteins, pIIIa, pVI and pVIII, which are closely associated with the hexons on the capsid interior. In addition to a well-ordered helical domain (a.a. 310-397) of pIIIa, highlights of the structure include the precursors of VIII display significantly different structures near the cleavage sites. Moreover, we traced residues 4-96 of the membrane lytic protein (pVI) that includes an amphipathic helix occluded deep in the hexon cavity suggesting the possibility of co-assembly of hexons with the precursors of VI. In addition, we observe a second copy of pVI ordered up to residue L40 in the peripentonal hexons and a few fragments of density corresponding to 2nd and 3rd copies of pVI in other hexons. However, we see no evidence of precursors of VII binding in the hexon cavity. These findings suggest the possibility that differently bound pVI molecules undergo processing at the N-terminal cleavage sites at varying efficiencies, subsequently creating competition between the cleaved and uncleaved forms of VI, followed by reorganization, processing, and release of VI molecules from the hexon cavities.
Collapse
|
21
|
de Pablo PJ, San Martín C. Seeing and touching adenovirus: complementary approaches for understanding assembly and disassembly of a complex virion. Curr Opin Virol 2021; 52:112-122. [PMID: 34906758 DOI: 10.1016/j.coviro.2021.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/24/2022]
Abstract
Understanding adenovirus assembly and disassembly poses many challenges due to the virion complexity. A distinctive feature of adenoviruses is the large amount of virus-encoded proteins packed together with the dsDNA genome. Cryo-electron microscopy (cryo-EM) structures are broadening our understanding of capsid variability along evolution, but little is known about the organization of the non-icosahedral nucleoproteic core and its influence in adenovirus function. Atomic force microscopy (AFM) probes the biomechanics of virus particles, while simultaneously inducing and monitoring their disassembly in real time. Synergistic combination of AFM with EM shows that core proteins play unexpected key roles in maturation and entry, and uncoating dynamics are finely tuned to ensure genome release at the appropriate time and place for successful infection.
Collapse
Affiliation(s)
- Pedro J de Pablo
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid and IFIMAC, 28049 Madrid, Spain.
| | - Carmen San Martín
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain.
| |
Collapse
|
22
|
Baker AT, Boyd RJ, Sarkar D, Teijeira-Crespo A, Chan CK, Bates E, Waraich K, Vant J, Wilson E, Truong CD, Lipka-Lloyd M, Fromme P, Vermaas J, Williams D, Machiesky L, Heurich M, Nagalo BM, Coughlan L, Umlauf S, Chiu PL, Rizkallah PJ, Cohen TS, Parker AL, Singharoy A, Borad MJ. ChAdOx1 interacts with CAR and PF4 with implications for thrombosis with thrombocytopenia syndrome. SCIENCE ADVANCES 2021; 7:eabl8213. [PMID: 34851659 PMCID: PMC8635433 DOI: 10.1126/sciadv.abl8213] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/19/2021] [Indexed: 05/09/2023]
Abstract
Vaccines derived from chimpanzee adenovirus Y25 (ChAdOx1), human adenovirus type 26 (HAdV-D26), and human adenovirus type 5 (HAdV-C5) are critical in combatting the severe acute respiratory coronavirus 2 (SARS-CoV-2) pandemic. As part of the largest vaccination campaign in history, ultrarare side effects not seen in phase 3 trials, including thrombosis with thrombocytopenia syndrome (TTS), a rare condition resembling heparin-induced thrombocytopenia (HIT), have been observed. This study demonstrates that all three adenoviruses deployed as vaccination vectors versus SARS-CoV-2 bind to platelet factor 4 (PF4), a protein implicated in the pathogenesis of HIT. We have determined the structure of the ChAdOx1 viral vector and used it in state-of-the-art computational simulations to demonstrate an electrostatic interaction mechanism with PF4, which was confirmed experimentally by surface plasmon resonance. These data confirm that PF4 is capable of forming stable complexes with clinically relevant adenoviruses, an important step in unraveling the mechanisms underlying TTS.
Collapse
Affiliation(s)
- Alexander T. Baker
- Division of Hematology and Medical Oncology, Mayo Clinic, Scottsdale, AZ 85054, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Mayo Clinic Cancer Center, Phoenix, AZ 85054, USA
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85281, USA
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Ryan J. Boyd
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85281, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85251, USA
| | - Daipayan Sarkar
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85251, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| | - Alicia Teijeira-Crespo
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Chun Kit Chan
- Computational Structural Biology and Molecular Biophysics, Beckman institute, University of Illinois, IL 61801, USA
| | - Emily Bates
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Kasim Waraich
- Institute of Infection Immunity and Inflammation, MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - John Vant
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85281, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85251, USA
| | - Eric Wilson
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85281, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85251, USA
| | - Chloe D. Truong
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85281, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85251, USA
| | - Magdalena Lipka-Lloyd
- Medicines Discovery Institute, School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Petra Fromme
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85281, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85251, USA
| | - Josh Vermaas
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| | - Dewight Williams
- Eyring Materials Center, Arizona State University, Tempe, AZ 85281, USA
| | - LeeAnn Machiesky
- Analytical Sciences, Biopharmaceutical Development, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Meike Heurich
- School of Pharmacy and Pharmaceutical Science, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF10 3NB, UK
| | - Bolni M. Nagalo
- Division of Hematology and Medical Oncology, Mayo Clinic, Scottsdale, AZ 85054, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Mayo Clinic Cancer Center, Phoenix, AZ 85054, USA
| | - Lynda Coughlan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, MD 21201, USA
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 W. Baltimore Street, MD 21201, USA
| | - Scott Umlauf
- Analytical Sciences, Biopharmaceutical Development, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Po-Lin Chiu
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85281, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85251, USA
| | - Pierre J. Rizkallah
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Taylor S. Cohen
- Microbial Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Alan L. Parker
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Abhishek Singharoy
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85281, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85251, USA
| | - Mitesh J. Borad
- Division of Hematology and Medical Oncology, Mayo Clinic, Scottsdale, AZ 85054, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Mayo Clinic Cancer Center, Phoenix, AZ 85054, USA
| |
Collapse
|
23
|
Cheng G, Dong H, Yang C, Liu Y, Wu Y, Zhu L, Tong X, Wang S. A review on the advances and challenges of immunotherapy for head and neck cancer. Cancer Cell Int 2021; 21:406. [PMID: 34332576 PMCID: PMC8325213 DOI: 10.1186/s12935-021-02024-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Head and neck cancer (HNC), which includes lip and oral cavity, larynx, nasopharynx, oropharynx, and hypopharynx malignancies, is one of the most common cancers worldwide. Due to the interaction of tumor cells with immune cells in the tumor microenvironment, immunotherapy of HNCs, along with traditional treatments such as chemotherapy, radiotherapy, and surgery, has attracted much attention. Four main immunotherapy strategies in HNCs have been developed, including oncolytic viruses, monoclonal antibodies, chimeric antigen receptor T cells (CAR-T cells), and therapeutic vaccines. Oncorine (H101), an approved oncolytic adenovirus in China, is the pioneer of immunotherapy for the treatment of HNCs. Pembrolizumab and nivolumab are mAbs against PD-L1 that have been approved for recurrent and metastatic HNC patients. To date, several clinical trials using immunotherapy agents and their combination are under investigation. In this review, we summarize current the interaction of tumor cells with immune cells in the tumor microenvironment of HNCs, the main strategies that have been applied for immunotherapy of HNCs, obstacles that hinder the success of immunotherapies in patients with HNCs, as well as solutions for overcoming the challenges to enhance the response of HNCs to immunotherapies.
Collapse
Affiliation(s)
- Gang Cheng
- Department of Stomatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China.,Department of Stomatology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Hui Dong
- Department of Stomatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China.,Department of Stomatology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Chen Yang
- Department of Ultrasonography, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Yang Liu
- Department of Ultrasonography, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Yi Wu
- Phase I Clinical Research Center, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Lifen Zhu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, People's Republic of China.,Molecular Diagnosis Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiangmin Tong
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, People's Republic of China.,Molecular Diagnosis Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Shibing Wang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, People's Republic of China. .,Molecular Diagnosis Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
24
|
Daussy CF, Pied N, Wodrich H. Understanding Post Entry Sorting of Adenovirus Capsids; A Chance to Change Vaccine Vector Properties. Viruses 2021; 13:1221. [PMID: 34202573 PMCID: PMC8310329 DOI: 10.3390/v13071221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/25/2022] Open
Abstract
Adenovirus vector-based genetic vaccines have emerged as a powerful strategy against the SARS-CoV-2 health crisis. This success is not unexpected because adenoviruses combine many desirable features of a genetic vaccine. They are highly immunogenic and have a low and well characterized pathogenic profile paired with technological approachability. Ongoing efforts to improve adenovirus-vaccine vectors include the use of rare serotypes and non-human adenoviruses. In this review, we focus on the viral capsid and how the choice of genotypes influences the uptake and subsequent subcellular sorting. We describe how understanding capsid properties, such as stability during the entry process, can change the fate of the entering particles and how this translates into differences in immunity outcomes. We discuss in detail how mutating the membrane lytic capsid protein VI affects species C viruses' post-entry sorting and briefly discuss if such approaches could have a wider implication in vaccine and/or vector development.
Collapse
Affiliation(s)
| | | | - Harald Wodrich
- Microbiologie Fondamentale et Pathogénicité, MFP CNRS UMR 5234, University of Bordeaux, 146 rue Leo Saignat, CEDEX, 33076 Bordeaux, France; (C.F.D.); (N.P.)
| |
Collapse
|
25
|
Atasheva S, Emerson CC, Yao J, Young C, Stewart PL, Shayakhmetov DM. Systemic cancer therapy with engineered adenovirus that evades innate immunity. Sci Transl Med 2021; 12:12/571/eabc6659. [PMID: 33239388 DOI: 10.1126/scitranslmed.abc6659] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Abstract
Oncolytic virus therapy is a cancer treatment modality that has the potential to improve outcomes for patients with currently incurable malignancies. Although intravascular delivery of therapeutic viruses provides access to disseminated tumors, this delivery route exposes the virus to opsonizing and inactivating factors in the blood, which limit the effective therapeutic virus dose and contribute to activation of systemic toxicities. When human species C adenovirus HAdv-C5 is delivered intravenously, natural immunoglobulin M (IgM) antibodies and coagulation factor X rapidly opsonize HAdv-C5, leading to virus sequestration in tissue macrophages and promoting infection of liver cells, triggering hepatotoxicity. Here, we showed that natural IgM antibody binds to the hypervariable region 1 (HVR1) of the main HAdv-C5 capsid protein hexon. Using compound targeted mutagenesis of hexon HVR1 loop and other functional sites that mediate virus-host interactions, we engineered and obtained a high-resolution cryo-electron microscopy structure of an adenovirus vector, Ad5-3M, which resisted inactivation by blood factors, avoided sequestration in liver macrophages, and failed to trigger hepatotoxicity after intravenous delivery. Systemic delivery of Ad5-3M to mice with localized or disseminated lung cancer led to viral replication in tumor cells, suppression of tumor growth, and prolonged survival. Thus, compound targeted mutagenesis of functional sites in the virus capsid represents a generalizable approach to tailor virus interactions with the humoral and cellular arms of the immune system, enabling generation of "designer" viruses with improved therapeutic properties.
Collapse
Affiliation(s)
- Svetlana Atasheva
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Corey C Emerson
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jia Yao
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Cedrick Young
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Phoebe L Stewart
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Dmitry M Shayakhmetov
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA. .,Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA.,Emory Center for Transplantation and Immune-mediated Disorders, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA.,Discovery and Developmental Therapeutics Program, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
26
|
Adenovirus Structure: What Is New? Int J Mol Sci 2021; 22:ijms22105240. [PMID: 34063479 PMCID: PMC8156859 DOI: 10.3390/ijms22105240] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
Adenoviruses are large (~950 Å) and complex non-enveloped, dsDNA icosahedral viruses. They have a pseudo-T = 25 triangulation number with at least 12 different proteins composing the virion. These include the major and minor capsid proteins, core proteins, maturation protease, terminal protein, and packaging machinery. Although adenoviruses have been studied for more than 60 years, deciphering their architecture has presented a challenge for structural biology techniques. An outstanding event was the first near-atomic resolution structure of human adenovirus type 5 (HAdV-C5), solved by cryo-electron microscopy (cryo-EM) in 2010. Discovery of new adenovirus types, together with methodological advances in structural biology techniques, in particular cryo-EM, has lately produced a considerable amount of new, high-resolution data on the organization of adenoviruses belonging to different species. In spite of these advances, the organization of the non-icosahedral core is still a great unknown. Nevertheless, alternative techniques such as atomic force microscopy (AFM) are providing interesting glimpses on the role of the core proteins in genome condensation and virion stability. Here we summarize the current knowledge on adenovirus structure, with an emphasis on high-resolution structures obtained since 2010.
Collapse
|
27
|
Johnson JE, Olson AJ. Icosahedral virus structures and the protein data bank. J Biol Chem 2021; 296:100554. [PMID: 33744290 PMCID: PMC8081926 DOI: 10.1016/j.jbc.2021.100554] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 11/30/2022] Open
Abstract
The structural study of icosahedral viruses has a long and impactful history in both crystallographic methodology and molecular biology. The evolution of the Protein Data Bank has paralleled and supported these studies providing readily accessible formats dealing with novel features associated with viral particle symmetries and subunit interactions. This overview describes the growth in size and complexity of icosahedral viruses from the first early studies of small RNA plant viruses and human picornaviruses up to the larger and more complex bacterial phage, insect, and human disease viruses such as Zika, hepatitis B, Adeno and Polyoma virus. The analysis of icosahedral viral capsid protein domain folds has shown striking similarities, with the beta jelly roll motif observed across multiple evolutionarily divergent species. The icosahedral symmetry of viruses drove the development of noncrystallographic symmetry averaging as a powerful phasing method, and the constraints of maintaining this symmetry resulted in the concept of quasi-equivalence in viral structures. Symmetry also played an important early role in demonstrating the power of cryo-electron microscopy as an alternative to crystallography in generating atomic resolution structures of these viruses. The Protein Data Bank has been a critical resource for assembling and disseminating these structures to a wide community, and the virus particle explorer (VIPER) was developed to enable users to easily generate and view complete viral capsid structures from their asymmetric building blocks. Finally, we share a personal perspective on the early use of computer graphics to communicate the intricacies, interactions, and beauty of these virus structures.
Collapse
Affiliation(s)
- John E Johnson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA.
| | - Arthur J Olson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
28
|
Marabini R, Condezo GN, Krupovic M, Menéndez-Conejero R, Gómez-Blanco J, San Martín C. Near-atomic structure of an atadenovirus reveals a conserved capsid-binding motif and intergenera variations in cementing proteins. SCIENCE ADVANCES 2021; 7:eabe6008. [PMID: 33789897 PMCID: PMC8011978 DOI: 10.1126/sciadv.abe6008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Of five known adenovirus genera, high-resolution structures are available only for mammalian-infecting mastadenoviruses. We present the first high-resolution structure of an adenovirus with nonmammalian host: lizard atadenovirus LAdV-2. We find a large conformational difference in the internal vertex protein IIIa between mast- and atadenoviruses, induced by the presence of an extended polypeptide. This polypeptide, and α-helical clusters beneath the facet, likely correspond to genus-specific proteins LH2 and p32k. Another genus-specific protein, LH3, with a fold typical of bacteriophage tailspikes, contacts the capsid surface via a triskelion structure identical to that used by mastadenovirus protein IX, revealing a conserved capsid-binding motif and an ancient gene duplication event. Our data also suggest that mastadenovirus E1B-55 K was exapted from the atadenovirus-like LH3 protein. This work provides new information on the evolution of adenoviruses, emphasizing the importance of minor coat proteins for determining specific physicochemical properties of virions and most likely their tropism.
Collapse
Affiliation(s)
- Roberto Marabini
- Escuela Politécnica Superior, Universidad Autónoma de Madrid, Francisco Tomás y Valiente 11, 28049 Madrid, Spain
| | - Gabriela N Condezo
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| | - Rosa Menéndez-Conejero
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Josué Gómez-Blanco
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Carmen San Martín
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain.
| |
Collapse
|
29
|
Kulanayake S, Tikoo SK. Adenovirus Core Proteins: Structure and Function. Viruses 2021; 13:v13030388. [PMID: 33671079 PMCID: PMC7998265 DOI: 10.3390/v13030388] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 01/04/2023] Open
Abstract
Adenoviruses have served as a model for investigating viral-cell interactions and discovering different cellular processes, such as RNA splicing and DNA replication. In addition, the development and evaluation of adenoviruses as the viral vectors for vaccination and gene therapy has led to detailed investigations about adenovirus biology, including the structure and function of the adenovirus encoded proteins. While the determination of the structure and function of the viral capsid proteins in adenovirus biology has been the subject of numerous reports, the last few years have seen increased interest in elucidating the structure and function of the adenovirus core proteins. Here, we provide a review of research about the structure and function of the adenovirus core proteins in adenovirus biology.
Collapse
Affiliation(s)
- Shermila Kulanayake
- Vaccine and Infectious Disease Organization-International Vaccine Center (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N5E3, Canada;
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N5E3, Canada
| | - Suresh K. Tikoo
- Vaccine and Infectious Disease Organization-International Vaccine Center (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N5E3, Canada;
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N5E3, Canada
- Correspondence:
| |
Collapse
|
30
|
Kiss L, Clift D, Renner N, Neuhaus D, James LC. RING domains act as both substrate and enzyme in a catalytic arrangement to drive self-anchored ubiquitination. Nat Commun 2021; 12:1220. [PMID: 33619271 PMCID: PMC7900206 DOI: 10.1038/s41467-021-21443-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/26/2021] [Indexed: 12/24/2022] Open
Abstract
Attachment of ubiquitin (Ub) to proteins is one of the most abundant and versatile of all posttranslational modifications and affects outcomes in essentially all physiological processes. RING E3 ligases target E2 Ub-conjugating enzymes to the substrate, resulting in its ubiquitination. However, the mechanism by which a ubiquitin chain is formed on the substrate remains elusive. Here we demonstrate how substrate binding can induce a specific RING topology that enables self-ubiquitination. By analyzing a catalytically trapped structure showing the initiation of TRIM21 RING-anchored ubiquitin chain elongation, and in combination with a kinetic study, we illuminate the chemical mechanism of ubiquitin conjugation. Moreover, biochemical and cellular experiments show that the topology found in the structure can be induced by substrate binding. Our results provide insights into ubiquitin chain formation on a structural, biochemical and cellular level with broad implications for targeted protein degradation.
Collapse
Affiliation(s)
- Leo Kiss
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Dean Clift
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | - Leo C James
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
31
|
Pérez-Illana M, Martínez M, Condezo GN, Hernando-Pérez M, Mangroo C, Brown M, Marabini R, San Martín C. Cryo-EM structure of enteric adenovirus HAdV-F41 highlights structural variations among human adenoviruses. SCIENCE ADVANCES 2021; 7:eabd9421. [PMID: 33627423 PMCID: PMC11425762 DOI: 10.1126/sciadv.abd9421] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/08/2021] [Indexed: 05/24/2023]
Abstract
Enteric adenoviruses, one of the main causes of viral gastroenteritis in the world, must withstand the harsh conditions found in the gut. This requirement suggests that capsid stability must be different from that of other adenoviruses. We report the 4-Å-resolution structure of a human enteric adenovirus, HAdV-F41, and compare it with that of other adenoviruses with respiratory (HAdV-C5) and ocular (HAdV-D26) tropisms. While the overall structures of hexon, penton base, and internal minor coat proteins IIIa and VIII are conserved, we observe partially ordered elements reinforcing the vertex region, which suggests their role in enhancing the physicochemical capsid stability of HAdV-F41. Unexpectedly, we find an organization of the external minor coat protein IX different from all previously characterized human and nonhuman mastadenoviruses. Knowledge of the structure of enteric adenoviruses provides a starting point for the design of vectors suitable for oral delivery or intestinal targeting.
Collapse
Affiliation(s)
- Marta Pérez-Illana
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Marta Martínez
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Gabriela N Condezo
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Mercedes Hernando-Pérez
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Casandra Mangroo
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Martha Brown
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Roberto Marabini
- Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carmen San Martín
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
32
|
Structure-Based Modeling of Complement C4 Mediated Neutralization of Adenovirus. Viruses 2021; 13:v13010111. [PMID: 33467558 PMCID: PMC7830055 DOI: 10.3390/v13010111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 01/14/2023] Open
Abstract
Adenovirus (AdV) infection elicits a strong immune response with the production of neutralizing antibodies and opsonization by complement and coagulation factors. One anti-hexon neutralizing antibody, called 9C12, is known to activate the complement cascade, resulting in the deposition of complement component C4b on the capsid, and the neutralization of the virus. The mechanism of AdV neutralization by C4b is independent of downstream complement proteins and involves the blockage of the release of protein VI, which is required for viral escape from the endosome. To investigate the structural basis underlying how C4b blocks the uncoating of AdV, we built a model for the complex of human adenovirus type-5 (HAdV5) with 9C12, together with complement components C1 and C4b. This model positions C4b near the Arg-Gly-Asp (RGD) loops of the penton base. There are multiple amino acids in the RGD loop that might serve as covalent binding sites for the reactive thioester of C4b. Molecular dynamics simulations with a multimeric penton base and C4b indicated that stabilizing interactions may form between C4b and multiple RGD loops. We propose that C4b deposition on one RGD loop leads to the entanglement of C4b with additional RGD loops on the same penton base multimer and that this entanglement blocks AdV uncoating.
Collapse
|
33
|
Reddy VS, Barry MA. Structural Organization and Protein-Protein Interactions in Human Adenovirus Capsid. Subcell Biochem 2021; 96:503-518. [PMID: 33252742 DOI: 10.1007/978-3-030-58971-4_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human adenoviruses (HAdVs) are large (150 MDa), complex, nonenveloped dsDNA viruses that cause self-limiting respiratory, ocular and enteric infections. They are significant health hazard in young, elderly and immuno-compromised populations. Moreover, various adenoviruses (AdVs) of mammalian origin are being used as vectors in gene, vaccine and cancer therapies. Multiple copies of at least 13 different proteins, all in all ~2800 protein molecules, come together to form an adenovirus virion packaging the ~36 Kbp geome. The details of structural organization of the adenovirus capsid and underlying network of protein-protein interactions provide clues into designing the modified and novel adenovirus vectors with desired functionalities and/or targeting specificities. The advancements in 3D structure determination by cryo-electron microscopy (cryo-EM) in the past decade have enabled unveiling of the complex organization of adenovirus architecture at near atomic resolution. Specifically, these studies revealed the structures and the network of interactions involving cement/minor proteins in stabilizing the AdV icosahedral architecture, which appear to be mostly conserved among human adenoviruses. In this chapter, we describe the current state of knowledge on the structure and organization of human adenoviruses.
Collapse
Affiliation(s)
- Vijay S Reddy
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| | - Michael A Barry
- Department of Internal Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, MN, 55902, USA
| |
Collapse
|
34
|
Rafie K, Lenman A, Fuchs J, Rajan A, Arnberg N, Carlson LA. The structure of enteric human adenovirus 41-A leading cause of diarrhea in children. SCIENCE ADVANCES 2021; 7:7/2/eabe0974. [PMID: 33523995 PMCID: PMC7793593 DOI: 10.1126/sciadv.abe0974] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/17/2020] [Indexed: 05/05/2023]
Abstract
Human adenovirus (HAdV) types F40 and F41 are a prominent cause of diarrhea and diarrhea-associated mortality in young children worldwide. These enteric HAdVs differ notably in tissue tropism and pathogenicity from respiratory and ocular adenoviruses, but the structural basis for this divergence has been unknown. Here, we present the first structure of an enteric HAdV-HAdV-F41-determined by cryo-electron microscopy to a resolution of 3.8 Å. The structure reveals extensive alterations to the virion exterior as compared to nonenteric HAdVs, including a unique arrangement of capsid protein IX. The structure also provides new insights into conserved aspects of HAdV architecture such as a proposed location of core protein V, which links the viral DNA to the capsid, and assembly-induced conformational changes in the penton base protein. Our findings provide the structural basis for adaptation of enteric HAdVs to a fundamentally different tissue tropism.
Collapse
Affiliation(s)
- K Rafie
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - A Lenman
- Department of Clinical Microbiology, Section of Virology, Umeå University, Umeå, Sweden
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - J Fuchs
- Proteomics Core Facility at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - A Rajan
- Department of Clinical Microbiology, Section of Virology, Umeå University, Umeå, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - N Arnberg
- Department of Clinical Microbiology, Section of Virology, Umeå University, Umeå, Sweden.
| | - L-A Carlson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden.
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| |
Collapse
|
35
|
Moscoso CG, Steer CJ. Liver targeted gene therapy: Insights into emerging therapies. DRUG DISCOVERY TODAY. TECHNOLOGIES 2020; 34:9-19. [PMID: 33357766 DOI: 10.1016/j.ddtec.2020.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 10/23/2020] [Accepted: 11/03/2020] [Indexed: 12/24/2022]
Abstract
The large number of monogenic metabolic disorders originating in the liver poses a unique opportunity for development of gene therapy modalities to pursue curative approaches. Various disorders have been successfully treated via liver-directed gene therapy, though most of the advances have been in animal models, with only limited success in clinical trials. Pre-clinical data in animals using non-viral approaches, including the Sleeping Beauty transposon system, are discussed. The various advances with viral vectors for liver-directed gene therapy are also a focus of this review, including retroviral, adenoviral, recombinant adeno-associated viral, and SV40 vectors. Genome editing techniques, including zinc finger nucleases, transcription activator-like effector nucleases and clustered regularly interspaced short palindromic repeats (CRISPR), are also described. Further, the various controversies in the field with regards to somatic vs. germline editing using CRISPR in humans are explored, while also highlighting the myriad of preclinical advances. Lastly, newer technologies are reviewed, including base editing and prime editing, which use CRISPR with exciting adjunctive properties to avoid double-stranded breaks and thus the recruitment of endogenous repair mechanisms. While encouraging results have been achieved recently, there are still significant challenges to overcome prior to the broad use of vector-based and genome editing techniques in the clinical arena. As these technologies mature, the promise of a cure for many disabling inherited metabolic disorders is within reach, and urgently needed.
Collapse
Affiliation(s)
- Carlos G Moscoso
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | - Clifford J Steer
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA; Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, Minnesota 55455 USA.
| |
Collapse
|
36
|
Boucher P, Cui X, Curiel DT. Adenoviral vectors for in vivo delivery of CRISPR-Cas gene editors. J Control Release 2020; 327:788-800. [PMID: 32891680 PMCID: PMC8091654 DOI: 10.1016/j.jconrel.2020.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022]
Abstract
Harnessing the bacterial clustered regularly interspaced short palindromic repeats (CRISPR) system for genome editing in eukaryotes has revolutionized basic biomedical research and translational sciences. The ability to create targeted alterations of the genome through this easy to design system has presented unprecedented opportunities to treat inherited disorders and other diseases such as cancer through gene therapy. A major hurdle is the lack of an efficient and safe in vivo delivery system, limiting most of the current gene therapy efforts to ex vivo editing of extracted cells. Here we discuss the unique features of adenoviral vectors that enable tissue specific and efficient delivery of the CRISPR-Cas machinery for in vivo genome editing.
Collapse
Affiliation(s)
- Paul Boucher
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA; Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - Xiaoxia Cui
- Genome Engineering & iPSC Center, Department of Genetics, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - David T Curiel
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA; Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA; Biologic Therapeutics Center, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
37
|
Dedeo CL, Teschke CM, Alexandrescu AT. Keeping It Together: Structures, Functions, and Applications of Viral Decoration Proteins. Viruses 2020; 12:v12101163. [PMID: 33066635 PMCID: PMC7602432 DOI: 10.3390/v12101163] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 12/14/2022] Open
Abstract
Decoration proteins are viral accessory gene products that adorn the surfaces of some phages and viral capsids, particularly tailed dsDNA phages. These proteins often play a "cementing" role, reinforcing capsids against accumulating internal pressure due to genome packaging, or environmental insults such as extremes of temperature or pH. Many decoration proteins serve alternative functions, including target cell recognition, participation in viral assembly, capsid size determination, or modulation of host gene expression. Examples that currently have structures characterized to high-resolution fall into five main folding motifs: β-tulip, β-tadpole, OB-fold, Ig-like, and a rare knotted α-helical fold. Most of these folding motifs have structure homologs in virus and target cell proteins, suggesting horizontal gene transfer was important in their evolution. Oligomerization states of decoration proteins range from monomers to trimers, with the latter most typical. Decoration proteins bind to a variety of loci on capsids that include icosahedral 2-, 3-, and 5-fold symmetry axes, as well as pseudo-symmetry sites. These binding sites often correspond to "weak points" on the capsid lattice. Because of their unique abilities to bind virus surfaces noncovalently, decoration proteins are increasingly exploited for technology, with uses including phage display, viral functionalization, vaccination, and improved nanoparticle design for imaging and drug delivery. These applications will undoubtedly benefit from further advances in our understanding of these versatile augmenters of viral functions.
Collapse
|
38
|
Fusion of Large Polypeptides to Human Adenovirus Type 5 Capsid Protein IX Can Compromise Virion Stability and DNA Packaging Capacity. J Virol 2020; 94:JVI.01112-20. [PMID: 32522855 DOI: 10.1128/jvi.01112-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/07/2020] [Indexed: 12/31/2022] Open
Abstract
The human adenovirus (HAdV) protein IX (pIX) is a minor component of the capsid that acts in part to stabilize the hexon-hexon interactions within the mature capsid. Virions lacking pIX have a reduced DNA packaging capacity and exhibit thermal instability. More recently, pIX has been developed as a platform for presentation of large polypeptides, such as fluorescent proteins or large targeting ligands, on the viral capsid. It is not known whether such modifications affect the natural ability of pIX to stabilize the HAdV virion. In this study, we show that addition of large polypeptides to pIX does not alter the natural stability of virions containing sub-wild-type-sized genomes. However, similar virions containing wild-type-sized genomes tend to genetically rearrange, likely due to selective pressure caused by virion instability as a result of compromised pIX function.IMPORTANCE Human adenovirus capsid protein IX (pIX) is involved in stabilizing the virion but has also been developed as a platform for presentation of various polypeptides on the surface of the virion. Whether such modifications affect the ability of pIX to stabilize the virion is unknown. We show that addition of large polypeptides to pIX can reduce both the DNA packaging capacity and the heat stability of the virion, which provides important guidance for the design of pIX-modified vectors.
Collapse
|
39
|
Pfitzner S, Hofmann-Sieber H, Bosse JB, Franken LE, Grünewald K, Dobner T. Fluorescent protein tagging of adenoviral proteins pV and pIX reveals 'late virion accumulation compartment'. PLoS Pathog 2020; 16:e1008588. [PMID: 32584886 PMCID: PMC7343190 DOI: 10.1371/journal.ppat.1008588] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/08/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022] Open
Abstract
The human adenovirus type 5 (HAdV5) causes disease of the upper and lower respiratory tract. The early steps of HAdV5 entry up to genome replication in the host nucleus have been extensively studied. However, late stages of infection remain poorly understood. Here, we set out to elucidate the spatiotemporal orchestration of late adenovirus nuclear remodeling in living cells. We generated virus mutants expressing fluorescently tagged protein IX (pIX) and protein V (pV), a capsid and viral genome associated protein, respectively. We found that during progeny virion production both proteins localize to a membrane-less, nuclear compartment, which is highly impermeable such that in immunofluorescence microscopy antibodies can hardly penetrate it. We termed this compartment ‘late virion accumulation compartment’ (LVAC). Correlation between light- and electron microscopy revealed that the LVAC contains paracrystalline arrays of viral capsids that arrange tightly packed within a honeycomb-like organization of viral DNA. Live-cell microscopy as well as FRAP measurements showed that the LVAC is rigid and restricts diffusion of larger molecules, indicating that capsids are trapped inside. Understanding the regulation of adenovirus morphogenesis is not only of interest to cell biologists but is also key to define novel drug targets as well as to optimize adenoviruses as tools for gene therapy. While early steps of the adenovirus ‘life cycle’ are well understood, it is currently debated how, when and where capsid components associate with viral DNA. Here we used a combination of imaging methods to detail virus-induced spatiotemporal changes at late stages of infection. We found that HAdV5 induces a structured, membrane-less nuclear compartment. In this compartment capsids are closely packed within a honeycomb-like organization of replicated DNA, such that the newly formed particles appear to be trapped and show very little motility. Interestingly, we found a clear discrepancy between immunostaining and fluorescent fusion tagging, indicating a limited penetration of immunostains into this compartment. Since other pathogens induce similar compartments during replication, interpretation of immunostaining data requires careful evaluation.
Collapse
Affiliation(s)
- Søren Pfitzner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- Center for Structural Systems Biology, Hamburg, Germany
| | - Helga Hofmann-Sieber
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Jens B. Bosse
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- Center for Structural Systems Biology, Hamburg, Germany
- RESIST Cluster of Excellence, Hannover Medical School, Germany
| | - Linda E. Franken
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- Center for Structural Systems Biology, Hamburg, Germany
| | - Kay Grünewald
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- Center for Structural Systems Biology, Hamburg, Germany
- Universität Hamburg, Institute for Biochemistry and Molecular Biology, Hamburg, Germany
| | - Thomas Dobner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- * E-mail:
| |
Collapse
|
40
|
Abstract
Both well-known and emerging viruses increasingly affect humans and cause disease, sometimes with devastating impact on society. The viruses present in the biosphere are the top predators in the life chain, virtually without enemies, except perhaps the immune system, and harsh environmental physicochemical conditions restricting their dissemination. We know a lot about viruses, but do we know enough? This series of reviews is dedicated to adenoviruses (AdVs), a family of nonenveloped DNA viruses occurring in vertebrates, including humans. AdVs have been the focus of intense research for more than 67 years. Besides causing disease, they have immensely contributed to the advance of life sciences and medicine over the past decades. Recently, AdVs have been widely used as vehicles in gene therapy and vaccination. They continue to provide fundamental insights into virus-host interactions in cells, tissues and organisms, as well as systems and metabolic networks. This special issue of FEBS Letters presents a unique collection of 23 state-of-the-art review articles by leading adenovirologists. In this prelude, I present the chapters, which provide a solid basis for further exploring the rich heritage in adenovirus molecular cell biology, structural biology, genetics, immunology, gene therapy and epidemiology. I conclude with an essential discussion of six blind spots in adenovirology.
Collapse
Affiliation(s)
- Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|
41
|
Dynamic competition for hexon binding between core protein VII and lytic protein VI promotes adenovirus maturation and entry. Proc Natl Acad Sci U S A 2020; 117:13699-13707. [PMID: 32467158 DOI: 10.1073/pnas.1920896117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Adenovirus minor coat protein VI contains a membrane-disrupting peptide that is inactive when VI is bound to hexon trimers. Protein VI must be released during entry to ensure endosome escape. Hexon:VI stoichiometry has been uncertain, and only fragments of VI have been identified in the virion structure. Recent findings suggest an unexpected relationship between VI and the major core protein, VII. According to the high-resolution structure of the mature virion, VI and VII may compete for the same binding site in hexon; and noninfectious human adenovirus type 5 particles assembled in the absence of VII (Ad5-VII-) are deficient in proteolytic maturation of protein VI and endosome escape. Here we show that Ad5-VII- particles are trapped in the endosome because they fail to increase VI exposure during entry. This failure was not due to increased particle stability, because capsid disruption happened at lower thermal or mechanical stress in Ad5-VII- compared to wild-type (Ad5-wt) particles. Cryoelectron microscopy difference maps indicated that VII can occupy the same binding pocket as VI in all hexon monomers, strongly arguing for binding competition. In the Ad5-VII- map, density corresponding to the immature amino-terminal region of VI indicates that in the absence of VII the lytic peptide is trapped inside the hexon cavity, and clarifies the hexon:VI stoichiometry conundrum. We propose a model where dynamic competition between proteins VI and VII for hexon binding facilitates the complete maturation of VI, and is responsible for releasing the lytic protein from the hexon cavity during entry and stepwise uncoating.
Collapse
|
42
|
Abstract
Viruses are obligatory parasites that take advantage of intracellular niches to replicate. During infection, their genomes are carried in capsids across the membranes of host cells to sites of virion production by exploiting cellular behaviour and resources to guide and achieve all aspects of delivery and the downstream virus manufacturing process. Successful entry hinges on execution of a precisely tuned viral uncoating program where incoming capsids disassemble in consecutive steps to ensure that genomes are released at the right time, and in the right place for replication to occur. Each step of disassembly is cell-assisted, involving individual pathways that transmit signals to regulate discrete functions, but at the same time, these signalling pathways are organized into larger networks, which communicate back and forth in complex ways in response to the presence of virus. In this review, we consider the elegant strategy by which adenoviruses (AdVs) target and navigate cellular networks to initiate the production of progeny virions. There are many remarkable aspects about the AdV entry program; for example, the virus gains targeted control of a large well-defined local network neighbourhood by coupling several interacting processes (including endocytosis, autophagy and microtubule trafficking) around a collective reference state centred on the interactional topology and multifunctional nature of protein VI. Understanding the network targeting activity of protein VI, as well as other built-in mechanisms that allow AdV particles to be efficient at navigating the subsystems of the cell, can be used to improve viral vectors, but also has potential to be incorporated for use in entirely novel delivery systems.
Collapse
Affiliation(s)
- Justin W Flatt
- Faculty of Biological and Environmental Sciences and HiLIFE-Institute of Biotechnology, University of Helsinki , 00790 Helsinki , Finland
| | - Sarah J Butcher
- Faculty of Biological and Environmental Sciences and HiLIFE-Institute of Biotechnology, University of Helsinki , 00790 Helsinki , Finland
| |
Collapse
|
43
|
Lynch KL, Gooding LR, Garnett-Benson C, Ornelles DA, Avgousti DC. Epigenetics and the dynamics of chromatin during adenovirus infections. FEBS Lett 2019; 593:3551-3570. [PMID: 31769503 DOI: 10.1002/1873-3468.13697] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 12/26/2022]
Abstract
The DNA genome of eukaryotic cells is compacted by histone proteins within the nucleus to form chromatin. Nuclear-replicating viruses such as adenovirus have evolved mechanisms of chromatin manipulation to promote infection and subvert host defenses. Epigenetic factors may also regulate persistent adenovirus infection and reactivation in lymphoid tissues. In this review, we discuss the viral proteins E1A and protein VII that interact with and alter host chromatin, as well as E4orf3, which separates host chromatin from sites of viral replication. We also highlight recent advances in chromatin technologies that offer new insights into virus-directed chromatin manipulation. Beyond the role of chromatin in the viral replication cycle, we discuss the nature of persistent viral genomes in lymphoid tissue and cell lines, and the potential contribution of epigenetic signals in maintaining adenovirus in a quiescent state. By understanding the mechanisms through which adenovirus manipulates host chromatin, we will understand new aspects of this ubiquitous virus and shed light on previously unknown aspects of chromatin biology.
Collapse
Affiliation(s)
- Kelsey L Lynch
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Linda R Gooding
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - David A Ornelles
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Daphne C Avgousti
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
44
|
Martín-González N, Hernando-Pérez M, Condezo GN, Pérez-Illana M, Šiber A, Reguera D, Ostapchuk P, Hearing P, San Martín C, de Pablo PJ. Adenovirus major core protein condenses DNA in clusters and bundles, modulating genome release and capsid internal pressure. Nucleic Acids Res 2019; 47:9231-9242. [PMID: 31396624 PMCID: PMC6755088 DOI: 10.1093/nar/gkz687] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/10/2019] [Accepted: 08/06/2019] [Indexed: 11/23/2022] Open
Abstract
Some viruses package dsDNA together with large amounts of positively charged proteins, thought to help condense the genome inside the capsid with no evidence. Further, this role is not clear because these viruses have typically lower packing fractions than viruses encapsidating naked dsDNA. In addition, it has recently been shown that the major adenovirus condensing protein (polypeptide VII) is dispensable for genome encapsidation. Here, we study the morphology and mechanics of adenovirus particles with (Ad5-wt) and without (Ad5-VII-) protein VII. Ad5-VII- particles are stiffer than Ad5-wt, but DNA-counterions revert this difference, indicating that VII screens repulsive DNA-DNA interactions. Consequently, its absence results in increased internal pressure. The core is slightly more ordered in the absence of VII and diffuses faster out of Ad5-VII– than Ad5-wt fractured particles. In Ad5-wt unpacked cores, dsDNA associates in bundles interspersed with VII-DNA clusters. These results indicate that protein VII condenses the adenovirus genome by combining direct clustering and promotion of bridging by other core proteins. This condensation modulates the virion internal pressure and DNA release from disrupted particles, which could be crucial to keep the genome protected inside the semi-disrupted capsid while traveling to the nuclear pore.
Collapse
Affiliation(s)
| | - Mercedes Hernando-Pérez
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| | - Gabriela N Condezo
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| | - Marta Pérez-Illana
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| | | | - David Reguera
- Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Martí i Franqués 1, 08028 Barcelona, Spain.,Universitat de Barcelona Institute of Complex Systems (UBICS), 08028 Barcelona, Spain
| | - Philomena Ostapchuk
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-5222, USA
| | - Patrick Hearing
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-5222, USA
| | - Carmen San Martín
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| | - Pedro J de Pablo
- Department of Condensed Matter Physics, Universidad Autónoma de Madrid, Madrid 28049, Spain.,Instituto de Física de la Materia Condensada (IFIMAC), Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
45
|
Liu S, Luo Y, Wang Y, Li S, Zhao Z, Bi Y, Sun J, Peng R, Song H, Zhu D, Sun Y, Li S, Zhang L, Wang W, Sun Y, Qi J, Yan J, Shi Y, Zhang X, Wang P, Qiu HJ, Gao GF. Cryo-EM Structure of the African Swine Fever Virus. Cell Host Microbe 2019; 26:836-843.e3. [PMID: 31787524 DOI: 10.1016/j.chom.2019.11.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/01/2019] [Accepted: 11/07/2019] [Indexed: 11/18/2022]
Abstract
African swine fever virus (ASFV) is a large double-stranded DNA virus with an icosahedral multilayered structure. ASFV causes a lethal swine hemorrhagic disease and is currently responsible for widespread damage to the pork industry in Asia. Neither vaccines nor antivirals are available and the molecular characterization of the ASFV particle is outstanding. Here, we describe the cryogenic electron microscopy (cryo-EM) structure of the icosahedral capsid of ASFV at 4.6-Å. The ASFV particle consists of 8,280 copies of the major capsid protein p72, 60 copies of the penton protein, and at least 8,340 minor capsid proteins, of which there might be 3 different types. Like other nucleocytoplasmic large DNA viruses, the minor capsid proteins form a hexagonal network below the outer capsid shell, functioning as stabilizers by "gluing" neighboring capsomers together. Our findings provide a comprehensive molecular model of the ASFV capsid architecture that will contribute to the future development of countermeasures, including vaccines.
Collapse
Affiliation(s)
- Sheng Liu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuzi Luo
- State Key Laboratory of Veterinary Biotechnology and National High-Containment Laboratory for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yajuan Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shihua Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhennan Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
| | - Junqing Sun
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Ruchao Peng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hao Song
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Dongjie Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuan Sun
- State Key Laboratory of Veterinary Biotechnology and National High-Containment Laboratory for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Su Li
- State Key Laboratory of Veterinary Biotechnology and National High-Containment Laboratory for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Li Zhang
- State Key Laboratory of Veterinary Biotechnology and National High-Containment Laboratory for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Wei Wang
- State Key Laboratory of Veterinary Biotechnology and National High-Containment Laboratory for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yeping Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinghua Yan
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China; Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Peiyi Wang
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China; SUSTech Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology and National High-Containment Laboratory for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - George F Gao
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China; Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China; Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China.
| |
Collapse
|
46
|
Abstract
More than 80 different adenovirus (AdV) types infect humans through the respiratory, ocular, or gastrointestinal tracts. They cause acute clinical mani-festations or persist under humoral and cell-based immunity. Immuno-suppressed individuals are at risk of death from an AdV infection. Concepts about cell entry of AdV build on strong foundations from molecular and cellular biology-and increasingly physical virology. Here, we discuss how virions enter and deliver their genome into the nucleus of epithelial cells. This process breaks open the virion at distinct sites because the particle has nonisometric mechanical strength and reacts to specific host factors along the entry pathway. We further describe how macrophages and dendritic cells resist AdV infection yet enhance productive entry into polarized epithelial cells. A deep understanding of the viral mechanisms and cell biological and biophysical principles will continue to unravel how epithelial and antigen-presenting cells respond to AdVs and control inflammation and persistence in pathology and therapy.
Collapse
Affiliation(s)
- Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland;
| | - Justin W Flatt
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, 00790 Helsinki, Finland;
| |
Collapse
|
47
|
Denning D, Bennett S, Mullen T, Moyer C, Vorselen D, Wuite GJL, Nemerow G, Roos WH. Maturation of adenovirus primes the protein nano-shell for successful endosomal escape. NANOSCALE 2019; 11:4015-4024. [PMID: 30768112 DOI: 10.1039/c8nr10182e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The ability of adenoviruses to infect a broad range of species has spurred a growing interest in nanomedicine to use adenovirus as a cargo delivery vehicle. While successful maturation of adenovirus and controlled disassembly are critical for efficient infection, the underlying mechanisms regulating these processes are not well understood. Here, we present Atomic Force Microscopy nanoindentation and fatigue studies of adenovirus capsids at different maturation stages to scrutinize their dynamic uncoating properties. Surprisingly, we find that the early intermediate immature (lacking DNA) capsid is mechanically indistinguishable in both break force and spring constant from the mature (containing DNA) capsid. However, mature and immature capsids do display distinct disassembly pathways, as revealed by our mechanically-induced fatigue analysis. The mature capsid first loses the pentons, followed by either long-term capsid stability or abrupt and complete disassembly. However, the immature capsid has a stable penton region and undergoes a stochastic disassembly mechanism, thought to be due to the absence of genomic pressure. Strikingly, the addition of the genome alone is not sufficient to achieve penton destabilization as indicated by the penton stability of the maturation-intermediate mutant, G33A. Full penton destabilization was achieved only when the genome was present in addition to the successful maturation-linked proteolytic cleavage of preprotein VI. Therefore these findings strongly indicate that maturation of adenovirus in concert with genomic pressure induces penton destabilization and thus, primes the capsid for controlled disassembly. This latter aspect is critical for efficient infection and successful cargo delivery.
Collapse
Affiliation(s)
- D Denning
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, The Netherlands and Natuur- en Sterrenkunde and LaserLaB, Vrije Universiteit Amsterdam, The Netherlands.
| | - S Bennett
- Department of Immunology and Microbiology, the Scripps Research Institute, La Jolla, CA 92037, USA.
| | - T Mullen
- Department of Immunology and Microbiology, the Scripps Research Institute, La Jolla, CA 92037, USA.
| | - C Moyer
- Department of Immunology and Microbiology, the Scripps Research Institute, La Jolla, CA 92037, USA.
| | - D Vorselen
- Natuur- en Sterrenkunde and LaserLaB, Vrije Universiteit Amsterdam, The Netherlands.
| | - G J L Wuite
- Natuur- en Sterrenkunde and LaserLaB, Vrije Universiteit Amsterdam, The Netherlands.
| | - G Nemerow
- Department of Immunology and Microbiology, the Scripps Research Institute, La Jolla, CA 92037, USA.
| | - W H Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, The Netherlands
| |
Collapse
|
48
|
Porcine Adenovirus Type 3 E3 Encodes a Structural Protein Essential for Capsid Stability and Production of Infectious Progeny Virions. J Virol 2018; 92:JVI.00680-18. [PMID: 30068639 DOI: 10.1128/jvi.00680-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/16/2018] [Indexed: 11/20/2022] Open
Abstract
The adenovirus E3 region encodes proteins that are not essential for viral replication in vitro The porcine adenovirus type 3 (PAdV-3) E3 region encodes three proteins, including 13.7K. Here, we report that 13.7K is expressed as an early protein, which localizes to the nucleus of infected cells. The 13.7K protein is a structural protein, as it is incorporated in CsCl-purified virions. The 13.7K protein appears to be essential for PAdV-3 replication, as mutant PAV13.73A expressing a mutated 13.7K could be isolated only in VIDO AS2 cells expressing the 13.7K protein. Analysis of PAV13.73A suggested that even in the presence of reduced levels of some late viral proteins, there appeared to be no effect on virus assembly and production of mature virions. Further analysis of CsCl-purified PAV13.73A by transmission electron microscopy revealed the presence of disrupted/broken capsids, suggesting that inactivation of 13.7K protein expression may produce fragile capsids. Our results suggest that the PAdV-3 E3 region-encoded 13.7K protein is a capsid protein, which appears to be essential for the formation of stable capsids and production of infectious progeny virions.IMPORTANCE Although E3 region-encoded proteins are involved in the modulation of leukocyte functions (N. Arnberg, Proc Natl Acad Sci U S A 110:19976-19977, 2013) and inducing a lytic infection of lymphocytes (V. K. Murali, D. A. Ornelles, L. R. Gooding, H. T. Wilms, W. Huang, A. E. Tollefson, W. S. Wold, and C. Garnett-Benson, J Virol 88:903-912, 2014), none of the E3 proteins appear to be a component of virion capsid or required for replication of adenovirus. Here, we demonstrate that the 13.7K protein encoded by the E3 region of porcine adenovirus type 3 is a component of progeny virion capsids and appears to be essential for maintaining the integrity of virion capsid and production of infectious progeny virions. To our knowledge, this is the first report to suggest that an adenovirus E3-encoded protein is an essential structural protein.
Collapse
|
49
|
Revised Crystal Structure of Human Adenovirus Reveals the Limits on Protein IX Quasi-Equivalence and on Analyzing Large Macromolecular Complexes. J Mol Biol 2018; 430:4132-4141. [PMID: 30121295 DOI: 10.1016/j.jmb.2018.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/19/2018] [Accepted: 08/04/2018] [Indexed: 11/23/2022]
Abstract
We report the revised crystal structure of a pseudo-typed human adenovirus at 3.8-Å resolution that is consistent with the atomic models of minor proteins determined by cryo-electron microscopy. The diffraction data from multiple crystals were rescaled and merged to increase the data completeness. The densities for the minor proteins were initially identified in the phase-refined omit maps that were further improved by the phases from docked poly-alanine models to build atomic structures. While the trimeric fiber molecules are disordered due to flexibility and imposition of 5-fold symmetry, the remaining major capsid proteins hexon and penton base are clearly ordered, with the exception of hypervariable region 1 of hexons, the RGD containing loop, and the N-termini of the penton base. The exterior minor protein IX together with the interior minor proteins IIIa and VIII stabilizes the adenovirus virion. A segment of N-terminal pro-peptide of VI is found in the interior cavities of peripentonal hexons, and the rest of VI is disordered. While the triskelion substructures formed by the N-termini of IX conform to excellent quasi 3-fold symmetry, the tetrameric coiled-coils formed by the C-termini and organized in parallel and anti-parallel arrangement do not exhibit any quasi-symmetry. This observation also conveys the pitfalls of using the quasi-equivalence as validation criteria for the structural analysis of extended (non-modular) capsid proteins such as IX. Together, these results remedy certain discrepancies in the previous X-ray model in agreement with the cryo-electron microscopy models.
Collapse
|
50
|
Progress in Adenoviral Capsid-Display Vaccines. Biomedicines 2018; 6:biomedicines6030081. [PMID: 30049954 PMCID: PMC6165093 DOI: 10.3390/biomedicines6030081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/31/2022] Open
Abstract
Adenoviral vectored vaccines against infectious diseases are currently in clinical trials due to their capacity to induce potent antigen-specific B- and T-cell immune responses. Heterologous prime-boost vaccination with adenoviral vector and, for example, adjuvanted protein-based vaccines can further enhance antigen-specific immune responses. Although leading to potent immune responses, these heterologous prime-boost regimens may be complex and impact manufacturing costs limiting efficient implementation. Typically, adenoviral vectors are engineered to genetically encode a transgene in the E1 region and utilize the host cell machinery to express the encoded antigen and thereby induce immune responses. Similarly, adenoviral vectors can be engineered to display foreign immunogenic peptides on the capsid-surface by insertion of antigens in capsid proteins hexon, fiber and protein IX. The ability to use adenoviral vectors as antigen-display particles, with or without using the genetic vaccine function, greatly increases the versatility of the adenoviral vector for vaccine development. This review describes the application of adenoviral capsid antigen-display vaccine vectors by focusing on their distinct advantages and possible limitations in vaccine development.
Collapse
|