1
|
Bick MV, Puig E, Beauparlant D, Nedellec R, Burton I, Ardaghi K, Zalunardo TR, Bastidas R, Li X, Guenaga J, Lee WH, Wyatt R, Zhu W, Crispin M, Ozorowski G, Ward AB, Burton DR, Hangartner L. Molecular parameters governing antibody FcγR signaling and effector functions in the context of HIV envelope. Cell Rep 2025; 44:115331. [PMID: 40158219 DOI: 10.1016/j.celrep.2025.115331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 10/29/2024] [Accepted: 01/28/2025] [Indexed: 04/02/2025] Open
Abstract
Antibody effector functions contribute to the immune response to pathogens and can influence the efficacy of antibodies as therapeutics. To date, however, there is limited information on the molecular parameters that govern fragment crystallizable (Fc) effector functions. In this study, using AI-assisted protein design, the influences of binding kinetics, epitope location, and stoichiometry of binding on cellular Fc effector functions were investigated using engineered HIV-1 envelope as a model antigen. For this antigen, stoichiometry of binding was found to be the primary molecular determinant of FcγRIIIa signaling, antibody-dependent cellular cytotoxicity, and antibody-dependent cellular phagocytosis, while epitope location and antibodybinding kinetics, at least in the ranges investigated, were of no substantial impact. These findings are of importance for informing the development of vaccination strategies against HIV-1 and, possibly, other viral pathogens.
Collapse
Affiliation(s)
- Michael V Bick
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - Eduard Puig
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - David Beauparlant
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - Rebecca Nedellec
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - Iszac Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - Keihvan Ardaghi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - Thea R Zalunardo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - Raiza Bastidas
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - Xuduo Li
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - Javier Guenaga
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - Richard Wyatt
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wenwen Zhu
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92109, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B Ward
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92109, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Lars Hangartner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
2
|
Grunst MW, Ladd RA, Clark NM, Gil HM, Klenchin VA, Mason R, Franchini G, Roederer M, Evans DT. Antibody-dependent cellular cytotoxicity, infected cell binding and neutralization by antibodies to the SIV envelope glycoprotein. PLoS Pathog 2023; 19:e1011407. [PMID: 37253062 PMCID: PMC10256149 DOI: 10.1371/journal.ppat.1011407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/09/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
Antibodies specific for diverse epitopes of the simian immunodeficiency virus envelope glycoprotein (SIV Env) have been isolated from rhesus macaques to provide physiologically relevant reagents for investigating antibody-mediated protection in this species as a nonhuman primate model for HIV/AIDS. With increasing interest in the contribution of Fc-mediated effector functions to protective immunity, we selected thirty antibodies representing different classes of SIV Env epitopes for a comparison of antibody-dependent cellular cytotoxicity (ADCC), binding to Env on the surface of infected cells and neutralization of viral infectivity. These activities were measured against cells infected with neutralization-sensitive (SIVmac316 and SIVsmE660-FL14) and neutralization-resistant (SIVmac239 and SIVsmE543-3) viruses representing genetically distinct isolates. Antibodies to the CD4-binding site and CD4-inducible epitopes were identified with especially potent ADCC against all four viruses. ADCC correlated well with antibody binding to virus-infected cells. ADCC also correlated with neutralization. However, several instances of ADCC without detectable neutralization or neutralization without detectable ADCC were observed. The incomplete correspondence between ADCC and neutralization shows that some antibody-Env interactions can uncouple these antiviral activities. Nevertheless, the overall correlation between neutralization and ADCC implies that most antibodies that are capable of binding to Env on the surface of virions to block infectivity are also capable of binding to Env on the surface of virus-infected cells to direct their elimination by ADCC.
Collapse
Affiliation(s)
- Michael W. Grunst
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ruby A. Ladd
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Natasha M. Clark
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Hwi Min Gil
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Vadim A. Klenchin
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Rosemarie Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
3
|
Abstract
OBJECTIVES Despite suppressive antiretroviral therapy (ART), HIV can persist in a diverse range of CD4+ T-cell subsets. Through longitudinal env sampling from people with HIV (PWH) on ART, we characterized the persistence and phenotypic properties of HIV envs over two time-points (T1 and T2). METHODS Longitudinal blood and lymphoid tissue samples were obtained from eight PWH on suppressive ART. Single genome amplification (SGA) was performed on env to understand the genetic diversity and degree of clonal expansions over time. A subset of envs were used to generate pseudovirus particles to assess sensitivity to autologous plasma IgG and broadly neutralizing antibodies (bNAbs). RESULTS Identical env sequences indicating clonal expansion persisted between T1 and T2 and within multiple T-cell subsets. At both time-points, CXCR4-tropic (X4) Envs were more prevalent in naive and central memory cells; the proportion of X4 Envs did not significantly change in each subset between T1 and T2. Autologous purified plasma IgG showed variable neutralization of Envs, with no significant difference in neutralization between R5 and X4 Envs. X4 Envs were more sensitive to neutralization with clinical bNAbs, with CD4-binding site bNAbs demonstrating high breadth and potency against Envs. CONCLUSION Our data suggest the viral reservoir in PWH on ART was predominantly maintained over time through proliferation and potentially differentiation of infected cells. We found the humoral immune response to Envs within the latent reservoir was variable between PWH. Finally, we identified coreceptor usage can influence bNAb sensitivity and may need to be considered for future bNAb immunotherapy approaches.
Collapse
|
4
|
Hvilsom CT, Søgaard OS. TLR-Agonist Mediated Enhancement of Antibody-Dependent Effector Functions as Strategy For an HIV-1 Cure. Front Immunol 2021; 12:704617. [PMID: 34630386 PMCID: PMC8495198 DOI: 10.3389/fimmu.2021.704617] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/03/2021] [Indexed: 11/29/2022] Open
Abstract
Background The current treatment for HIV-1 is based on blocking various stages in the viral replication cycle using combination antiretroviral therapy (ART). Even though ART effectively controls the infection, it is not curative, and patients must therefore continue treatment life-long. Aim Here we review recent literature investigating the single or combined effect of toll-like receptor (TLR) agonists and broadly neutralizing antibodies (bNAbs) with the objective to evaluate the evidence for this combination as a means towards an HIV-1 cure. Results Multiple preclinical studies found significantly enhanced killing of HIV-1 infected cells by TLR agonist-induced innate immune activation or by Fc-mediated effector functions following bNAb administration. However, monotherapy with either agent did not lead to sustained HIV-1 remission in clinical trials among individuals on long-term ART. Notably, findings in non-human primates suggest that a combination of TLR agonists and bNAbs may be able to induce long-term remission after ART cessation and this approach is currently being further investigated in clinical trials. Conclusion Preclinical findings show beneficial effects of either TLR agonist or bNAb administration for enhancing the elimination of HIV-1 infected cells. Further, TLR agonist-mediated stimulation of innate effector functions in combination with bNAbs may enhance antibody-dependent cellular cytotoxicity and non-human primate studies have shown promising results for this combination strategy. Factors such as immune exhaustion, proviral bNAb sensitivity and time of intervention might impact the clinical success.
Collapse
Affiliation(s)
| | - Ole Schmeltz Søgaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Infectious Disease, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
5
|
Wilson A, Shakhtour L, Ward A, Ren Y, Recarey M, Stevenson E, Korom M, Kovacs C, Benko E, Jones RB, Lynch RM. Characterizing the Relationship Between Neutralization Sensitivity and env Gene Diversity During ART Suppression. Front Immunol 2021; 12:710327. [PMID: 34603284 PMCID: PMC8479156 DOI: 10.3389/fimmu.2021.710327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/18/2021] [Indexed: 11/30/2022] Open
Abstract
Although antiretroviral therapy (ART) successfully suppresses HIV-1 replication, ART-treated individuals must maintain therapy to avoid rebound from an integrated viral reservoir. Strategies to limit or clear this reservoir are urgently needed. Individuals infected for longer periods prior to ART appear to harbor more genetically diverse virus, but the roles of duration of infection and viral diversity in the humoral immune response remain to be studied. We aim to clarify a role, if any, for autologous and heterologous antibodies in multi-pronged approaches to clearing infection. To that end, we have characterized the breadths and potencies of antibody responses in individuals with varying durations of infection and HIV-1 envelope (env) gene diversity as well as the sensitivity of their inducible virus reservoir to broadly neutralizing antibodies (bNAbs). Plasma was collected from 8 well-characterized HIV-1+ males on ART with varied durations of active infection. HIV envs from reservoir-derived outgrowth viruses were amplified and single genome sequenced in order to measure genetic diversity in each participant. IgG from plasma was analyzed for binding titers against gp41 and gp120 proteins, and for neutralizing titers against a global HIV-1 reference panel as well as autologous outgrowth viruses. The sensitivity to bNAbs of these same autologous viruses was measured. Overall, we observed that greater env diversity was associated with higher neutralizing titers against the global panel and also increased resistance to certain bNAbs. Despite the presence of robust anti-HIV-1 antibody titers, we did not observe potent neutralization against autologous viruses. In fact, 3 of 8 participants harbored viruses that were completely resistant to the highest tested concentration of autologous IgG. That this lack of neutralization was observed regardless of ART duration or viral diversity suggests that the inducible reservoir harbors 'escaped' viruses (that co-evolved with autologous antibody responses), rather than proviruses archived from earlier in infection. Finally, we observed that viruses resistant to autologous neutralization remained sensitive to bNAbs, especially CD4bs and MPER bNAbs. Overall, our data suggest that the inducible reservoir is relatively resistant to autologous antibodies and that individuals with limited virus variation in the env gene, such as those who start ART early in infection, are more likely to be sensitive to bNAb treatment.
Collapse
Affiliation(s)
- Andrew Wilson
- Lynch Lab, Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Leyn Shakhtour
- Lynch Lab, Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Adam Ward
- Jones Lab, Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, United States
- PhD Program in Epidemiology, The George Washington University Milken Institute School of Public Health, Washington, DC, United States
| | - Yanqin Ren
- Jones Lab, Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, United States
| | - Melina Recarey
- Lynch Lab, Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Eva Stevenson
- Jones Lab, Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, United States
| | - Maria Korom
- Lynch Lab, Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Colin Kovacs
- Department of Internal Medicine, Maple Leaf Medical Clinic, Toronto, ON, Canada
| | - Erika Benko
- Department of Internal Medicine, Maple Leaf Medical Clinic, Toronto, ON, Canada
| | - R. Brad Jones
- Jones Lab, Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, United States
| | - Rebecca M. Lynch
- Lynch Lab, Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
6
|
Rossignol E, Alter G, Julg B. Antibodies for Human Immunodeficiency Virus-1 Cure Strategies. J Infect Dis 2021; 223:22-31. [PMID: 33586772 DOI: 10.1093/infdis/jiaa165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human immunodeficiency virus (HIV) infection leads to the establishment of a long-lived latent cellular reservoir. One strategy to eliminate quiescent reservoir cells is to reactivate virus replication to induce HIV envelope glycoprotein (Env) expression on the cell surface exposing them to subsequent antibody targeting. Via the interactions between the antibody Fc domain and Fc-γ receptors (FcγRs) that are expressed on innate effector cells, such as natural killer cells, monocytes, and neutrophils, antibodies can mediate the elimination of infected cells. Over the last decade, a multitude of human monoclonal antibodies that are broadly neutralizing across many HIV-1 subtypes have been identified and are currently being explored for HIV eradication strategies. Antibody development also includes novel Fc engineering approaches to increase engagement of effector cells and optimize antireservoir efficacy. In this review, we discuss the usefulness of antibodies for HIV eradication approaches specifically focusing on antibody-mediated strategies to target latently infected cells and options to increase antibody efficacy.
Collapse
Affiliation(s)
- Evan Rossignol
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Boris Julg
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA.,Massachusetts General Hospital, Infectious Disease Unit, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Roles of fragment crystallizable-mediated effector functions in broadly neutralizing antibody activity against HIV. Curr Opin HIV AIDS 2021; 15:316-323. [PMID: 32732552 DOI: 10.1097/coh.0000000000000644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW 'Broadly neutralizing antibodies' (bNAbs), are rare HIV-specific antibodies which exhibit the atypical ability to potently neutralize diverse viral isolates. While efforts to elicit bNAbs through vaccination have yet to succeed, recent years have seen remarkable preclinical and clinical advancements of passive immunization approaches targeting both HIV prevention and cure. We focus here on the potential to build upon this success by moving beyond neutralization to additionally harness the diverse effector functionalities available to antibodies via fragment crystallizable-effector (Fc) functions. RECENT FINDINGS Recent studies have leveraged the ability to engineer bNAb Fc domains to either enhance or abrogate particular effector functions to demonstrate that activities such as antibody-dependent cell-mediated cytotoxicity contribute substantially to in-vivo antiviral activity. Intriguingly, recent studies in both nonhuman primates and in humans have suggested that passive bNAb infusion can lead to durable immunity by enhancing virus-specific T-cell responses through a 'vaccinal effect'. SUMMARY The combination of antibody engineering strategies designed to enhance effector functions, with the broad and potent antigen recognition profile of bNAbs, has the potential to give rise to powerful new therapeutics for HIV. We aim to provide a timely review of recent advances to catalyze this development.
Collapse
|
8
|
Duerr R, Crosse KM, Valero-Jimenez AM, Dittmann M. SARS-CoV-2 Portrayed against HIV: Contrary Viral Strategies in Similar Disguise. Microorganisms 2021; 9:1389. [PMID: 34198973 PMCID: PMC8307803 DOI: 10.3390/microorganisms9071389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
SARS-CoV-2 and HIV are zoonotic viruses that rapidly reached pandemic scale, causing global losses and fear. The COVID-19 and AIDS pandemics ignited massive efforts worldwide to develop antiviral strategies and characterize viral architectures, biological and immunological properties, and clinical outcomes. Although both viruses have a comparable appearance as enveloped viruses with positive-stranded RNA and envelope spikes mediating cellular entry, the entry process, downstream biological and immunological pathways, clinical outcomes, and disease courses are strikingly different. This review provides a systemic comparison of both viruses' structural and functional characteristics, delineating their distinct strategies for efficient spread.
Collapse
Affiliation(s)
- Ralf Duerr
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA; (K.M.C.); (A.M.V.-J.); (M.D.)
| | | | | | | |
Collapse
|
9
|
Rossignol ED, Dugast AS, Compere H, Cottrell CA, Copps J, Lin S, Cizmeci D, Seaman MS, Ackerman ME, Ward AB, Alter G, Julg B. Mining HIV controllers for broad and functional antibodies to recognize and eliminate HIV-infected cells. Cell Rep 2021; 35:109167. [PMID: 34038720 PMCID: PMC8196545 DOI: 10.1016/j.celrep.2021.109167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 03/27/2021] [Accepted: 05/01/2021] [Indexed: 12/11/2022] Open
Abstract
HIV monoclonal antibodies for viral reservoir eradication strategies will likely need to recognize reactivated infected cells and potently drive Fc-mediated innate effector cell activity. We systematically characterize a library of 185 HIV-envelope-specific antibodies derived from 15 spontaneous HIV controllers (HCs) that selectively exhibit robust serum Fc functionality and compared them to broadly neutralizing antibodies (bNAbs) in clinical development. Within the 10 antibodies with the broadest cell-recognition capability, seven originated from HCs and three were bNAbs. V3-loop-targeting antibodies are enriched among the top cell binders, suggesting the V3-loop may be selectively exposed and accessible on the cell surface. Fc functionality is more variable across antibodies, which is likely influenced by distinct binding topology and corresponding Fc accessibility, highlighting not only the importance of target-cell recognition but also the need to optimize for Fc-mediated elimination. Ultimately, our results demonstrate that this comprehensive selection process can identify monoclonal antibodies poised to eliminate infected cells. Rossignol et al. characterize 185 HIV-envelope-specific antibodies derived from spontaneous HIV controllers, downselecting antibodies based on their ability to broadly recognize infected cells and potently drive Fc-mediated innate effector cell activity. This comprehensive selection process can identify monoclonal antibodies poised to eliminate infected cells for viral reservoir eradication strategies.
Collapse
Affiliation(s)
- Evan D Rossignol
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Anne-Sophie Dugast
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Hacheming Compere
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Christopher A Cottrell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Shu Lin
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Deniz Cizmeci
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | | | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA.
| | - Boris Julg
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA.
| |
Collapse
|
10
|
McMahon JH, Zerbato JM, Lau JSY, Lange JL, Roche M, Tumpach C, Dantanarayana A, Rhodes A, Chang J, Rasmussen TA, Mackenzie CA, Alt K, Hagenauer M, Roney J, O'Bryan J, Carey A, McIntyre R, Beech P, O'Keefe GJ, Wichmann CW, Scott FE, Guo N, Lee ST, Liu Z, Caskey M, Nussenzweig MC, Donnelly PS, Egan G, Hagemeyer CE, Scott AM, Lewin SR. A clinical trial of non-invasive imaging with an anti-HIV antibody labelled with copper-64 in people living with HIV and uninfected controls. EBioMedicine 2021; 65:103252. [PMID: 33640794 PMCID: PMC7921458 DOI: 10.1016/j.ebiom.2021.103252] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/21/2021] [Accepted: 02/04/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND A research priority in finding a cure for HIV is to establish methods to accurately locate and quantify where and how HIV persists in people living with HIV (PLWH) receiving suppressive antiretroviral therapy (ART). Infusing copper-64 (64Cu) radiolabelled broadly neutralising antibodies targeting HIV envelope (Env) with CT scan and positron emission tomography (PET) identified HIV Env in tissues in SIV infected non-human primates . We aimed to determine if a similar approach was effective in people living with HIV (PLWH). METHODS Unmodified 3BNC117 was compared with 3BNC117 bound to the chelator MeCOSar and 64Cu (64Cu-3BNC117) in vitro to assess binding and neutralization. In a clinical trial 64Cu-3BNC117 was infused into HIV uninfected (Group 1), HIV infected and viremic (viral load, VL >1000 c/mL; Group 2) and HIV infected aviremic (VL <20 c/mL; Group 3) participants using two dosing strategies: high protein (3mg/kg unlabeled 3BNC117 combined with <5mg 64Cu-3BNC117) and trace (<5mg 64Cu-3BNC117 only). All participants were screened for 3BNC117 sensitivity from virus obtained from viral outgrowth. Magnetic resonance imaging (MRI)/PET and pharmacokinetic assessments (ELISA for serum 3BNC117 concentrations and gamma counting for 64Cu) were performed 1, 24- and 48-hours post dosing. The trial (clincialtrials.gov NCT03063788) primary endpoint was comparison of PET standard uptake values (SUVs) in regions of interest (e.g lymph node groups and gastrointestinal tract). FINDINGS Comparison of unmodified and modified 3BNC117 in vitro demonstrated no difference in HIV binding or neutralisation. 17 individuals were enrolled of which 12 were dosed including Group 1 (n=4, 2 high protein, 2 trace dose), Group 2 (n=6, 2 high protein, 4 trace) and Group 3 (n=2, trace only). HIV+ participants had a mean CD4 of 574 cells/microL and mean age 43 years. There were no drug related adverse effects and no differences in tissue uptake in regions of interest (e.g lymph node gut, pharynx) between the 3 groups. In the high protein dosing group, serum concentrations of 3BNC117 and gamma counts were highly correlated demonstrating that 64Cu-3BNC117 remained intact in vivo. INTERPRETATION In PLWH on or off ART, the intervention of infusing 64Cu-3BNC117 and MRI/PET imaging over 48 hours, was unable to detect HIV-1 env expression in vivo. Future studies should investigate alternative radiolabels such as zirconium which have a longer half-life in vivo. FUNDING Funded by the Alfred Foundation, The Australian Centre for HIV and Hepatitis Virology Research with additional support from the Division of AIDS, National Institute of Allergy and Infectious Disease, US National Institutes of Health (USAI126611). JHM and SRL are supported by the Australian National Health and Medical Research Council.
Collapse
Affiliation(s)
- James H McMahon
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia; Department of Infectious Diseases, Monash Health, Melbourne, Australia
| | - Jennifer M Zerbato
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Jillian S Y Lau
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Jaclyn L Lange
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Michael Roche
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Carolin Tumpach
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Ashanti Dantanarayana
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Ajantha Rhodes
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Judy Chang
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Thomas A Rasmussen
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Charlene A Mackenzie
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Karen Alt
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Michelle Hagenauer
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Janine Roney
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Jessica O'Bryan
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia; Department of Infectious Diseases, Monash Health, Melbourne, Australia
| | - Alexandra Carey
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Richard McIntyre
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Paul Beech
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Graeme J O'Keefe
- Department of Molecular Imaging and Therapy, Austin Health, and University of Melbourne, Melbourne, Australia; Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Christian W Wichmann
- Department of Molecular Imaging and Therapy, Austin Health, and University of Melbourne, Melbourne, Australia; Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Fiona E Scott
- Department of Molecular Imaging and Therapy, Austin Health, and University of Melbourne, Melbourne, Australia; Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Nancy Guo
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Sze-Ting Lee
- Department of Molecular Imaging and Therapy, Austin Health, and University of Melbourne, Melbourne, Australia; Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Zhanqi Liu
- Department of Molecular Imaging and Therapy, Austin Health, and University of Melbourne, Melbourne, Australia; Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, United States
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, United States; Howard Hughes Medical Institute, The Rockefeller University, New York, NY, United States
| | - Paul S Donnelly
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia
| | - Gary Egan
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | | | - Andrew M Scott
- Department of Molecular Imaging and Therapy, Austin Health, and University of Melbourne, Melbourne, Australia; Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia; The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|
11
|
Relationships between Neutralization, Binding, and ADCC of Broadly Neutralizing Antibodies against Reservoir HIV. J Virol 2020; 95:JVI.01808-20. [PMID: 33115874 DOI: 10.1128/jvi.01808-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
Autologous IgG antibodies block outgrowth of a substantial but variable fraction of viruses in the latent reservoir for HIV-1. Proc Natl Acad Sci U S A 2020; 117:32066-32077. [PMID: 33239444 DOI: 10.1073/pnas.2020617117] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In untreated HIV-1 infection, rapid viral evolution allows escape from immune responses. Viral replication can be blocked by antiretroviral therapy. However, HIV-1 persists in a latent reservoir in resting CD4+ T cells, and rebound viremia occurs following treatment interruption. The reservoir, which is maintained in part by clonal expansion, can be measured using quantitative viral outgrowth assays (QVOAs) in which latency is reversed with T cell activation to allow viral outgrowth. Recent studies have shown that viruses detected in QVOAs prior to treatment interruption often differ from rebound viruses. We hypothesized that autologous neutralizing antibodies directed at the HIV-1 envelope (Env) protein might block outgrowth of some reservoir viruses. We modified the QVOA to reflect pressure from low concentrations of autologous antibodies and showed that outgrowth of a substantial but variable fraction of reservoir viruses is blocked by autologous contemporaneous immunoglobulin G (IgG). A reduction in outgrowth of >80% was seen in 6 of 15 individuals. This effect was due to direct neutralization. We established a phylogenetic relationship between rebound viruses and viruses growing out in vitro in the presence of autologous antibodies. Some large infected cell clones detected by QVOA carried neutralization-sensitive viruses, providing a cogent explanation for differences between rebound virus and viruses detected in standard QVOAs. Measurement of the frequency of reservoir viruses capable of outgrowth in the presence of autologous IgG might allow more accurate prediction of time to viral rebound. Ultimately, therapeutic immunization targeting the subset of variants resistant to autologous IgG might contribute to a functional cure.
Collapse
|
13
|
Ward AR, Mota TM, Jones RB. Immunological approaches to HIV cure. Semin Immunol 2020; 51:101412. [PMID: 32981836 DOI: 10.1016/j.smim.2020.101412] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
Combination antiretroviral therapy (ART) to treat human immunodeficiency virus (HIV) infection has proven remarkably successful - for those who can access and afford it - yet HIV infection persists indefinitely in a reservoir of cells, despite effective ART and despite host antiviral immune responses. An HIV cure is therefore the next aspirational goal and challenge, though approaches differ in their objectives - with 'functional cures' aiming for durable viral control in the absence of ART, and 'sterilizing cures' aiming for the more difficult to realize objective of complete viral eradication. Mechanisms of HIV persistence, including viral latency, anatomical sequestration, suboptimal immune functioning, reservoir replenishment, target cell-intrinsic immune resistance, and, potentially, target cell distraction of immune effectors, likely need to be overcome in order to achieve a cure. A small fraction of people living with HIV (PLWH) naturally control infection via immune-mediated mechanisms, however, providing both sound rationale and optimism that an immunological approach to cure is possible. Herein we review up to date knowledge and emerging evidence on: the mechanisms contributing to HIV persistence, as well as potential strategies to overcome these barriers; promising immunological approaches to achieve viral control and elimination of reservoir-harboring cells, including harnessing adaptive immune responses to HIV and engineered therapies, as well as enhancers of their functions and of complementary innate immune functioning; and combination strategies that are most likely to succeed. Ultimately, a cure must be safe, effective, durable, and, eventually, scalable in order to be widely acceptable and available.
Collapse
Affiliation(s)
- Adam R Ward
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA; Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA; PhD Program in Epidemiology, The George Washington University, Washington, DC, USA
| | - Talia M Mota
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - R Brad Jones
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA; Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA.
| |
Collapse
|
14
|
Patel S, Hanajiri R, Grant M, Saunders D, Van Pelt S, Keller M, Hanley PJ, Simon G, Nixon DF, Hardy D, Jones RB, Bollard CM. HIV-Specific T Cells Can Be Generated against Non-escaped T Cell Epitopes with a GMP-Compliant Manufacturing Platform. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 16:11-20. [PMID: 31720305 PMCID: PMC6838524 DOI: 10.1016/j.omtm.2019.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 10/03/2019] [Indexed: 11/01/2022]
Abstract
Although anti-retroviral therapy (ART) is successful in suppressing HIV-1 replication, HIV latently infected reservoirs are not eliminated, representing a major hurdle in efforts to eradicate the virus. Current strategies to eradicate HIV involve two steps: (1) the reactivation of latently infected cells with latency reversing agents (LRAs) to expose persisting HIV, and (2) the elimination of these cells with immune effectors while continuing ART to prevent reinfection. HIV-specific T cells (HSTs) can kill reactivated HIV-infected cells and are currently being evaluated in early-stage immunotherapy trials. HIV can mutate sequences in T cell epitopes and evade T cell-mediated killing of HIV-infected cells. However, by directing T cells to target multiple conserved, non-escaped HIV epitopes, the opportunity for viral escape can be reduced. Using a good manufacturing practice (GMP)-compliant platform, we manufactured HSTs against non-escape epitope targets (HST-NEETs) from HIV+ and HIV-seronegative donors. HST-NEETs expanded to clinically relevant numbers, lysed autologous antigen-pulsed targets, and showed a polyfunctional pro-inflammatory cytokine response. Notably, HST-NEETs recognized multiple conserved, non-escaped HIV epitopes and their common variants. We propose that HST-NEETs could be used to eliminate reactivated virus from latently infected cells in HIV+ individuals following LRA treatment. Additionally, HST-NEETs derived from HIV-negative individuals could be used post-transplant for HIV+ individuals with hematologic malignancies to augment anti-viral immunity and destroy residual infected cells.
Collapse
Affiliation(s)
- Shabnum Patel
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA.,GW Cancer Center, Department of Pediatrics, The George Washington University, Washington, DC 20037, USA
| | - Ryo Hanajiri
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA
| | - Melanie Grant
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA
| | - Devin Saunders
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA
| | - Stacey Van Pelt
- GW Cancer Center, Department of Pediatrics, The George Washington University, Washington, DC 20037, USA
| | - Michael Keller
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA
| | - Patrick J Hanley
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA
| | - Gary Simon
- Department of Medicine, The George Washington University, Washington, DC 20037, USA
| | - Douglas F Nixon
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - R Brad Jones
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY 10065, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA.,GW Cancer Center, Department of Pediatrics, The George Washington University, Washington, DC 20037, USA
| |
Collapse
|
15
|
Abstract
Neutralizing antibodies against human immunodeficiency virus subtype 1 (HIV-1) bind to its envelope glycoprotein (Env). Half of the molecular mass of Env is carbohydrate making it one of the most heavily glycosylated proteins known in nature. HIV-1 Env glycans are derived from the host and present a formidable challenge for host anti-glycan antibody induction. Anti-glycan antibody induction is challenging because anti-HIV-1 glycan antibodies should recognize Env antigen while not acquiring autoreactivity. Thus, the glycan network on HIV-1 Env is referred to as the glycan shield. Despite the challenges presented by immune recognition of host-derived glycans, neutralizing antibodies capable of binding the glycans on HIV-1 Env can be generated by the host immune system in the setting of HIV-1 infection. In particular, a cluster of high mannose glycans, including an N-linked glycan at position 332, form the high mannose patch and are targeted by a variety of broadly neutralizing antibodies. These high mannose patch-directed HIV-1 antibodies can be categorized into distinct categories based on their antibody paratope structure, neutralization activity, and glycan and peptide reactivity. Below we will compare and contrast each of these classes of HIV-1 glycan-dependent antibodies and describe vaccine design efforts to elicit each of these antibody types.
Collapse
|
16
|
Duerr R, Gorny MK. V2-Specific Antibodies in HIV-1 Vaccine Research and Natural Infection: Controllers or Surrogate Markers. Vaccines (Basel) 2019; 7:vaccines7030082. [PMID: 31390725 PMCID: PMC6789775 DOI: 10.3390/vaccines7030082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 12/20/2022] Open
Abstract
Most human immunodeficiency virus (HIV) vaccine trials have lacked efficacy and empirical vaccine lead targets are scarce. Thus far, the only independent correlate of reduced risk of HIV-1 acquisition in humans is elevated levels of V2-specific antibodies identified in the modestly protective RV144 vaccine trial. Ten years after RV144, human and non-human primate vaccine studies have reassessed the potential contribution of V2-specific antibodies to vaccine efficacy. In addition, studies of natural HIV-1 infection in humans have provided insight into the development of V1V2-directed antibody responses and their impact on clinical parameters and disease progression. Functionally diverse anti-V2 monoclonal antibodies were isolated and their structurally distinct V2 epitope regions characterized. After RV144, a plethora of research studies were performed using different model systems, immunogens, protocols, and challenge viruses. These diverse studies failed to provide a clear picture regarding the contribution of V2 antibodies to vaccine efficacy. Here, we summarize the biological functions and clinical findings associated with V2-specific antibodies and discuss their impact on HIV vaccine research.
Collapse
Affiliation(s)
- Ralf Duerr
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
| | - Miroslaw K Gorny
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
17
|
von Bredow B, Andrabi R, Grunst M, Grandea AG, Le K, Song G, Berndsen ZT, Porter K, Pallesen J, Ward AB, Burton DR, Evans DT. Differences in the Binding Affinity of an HIV-1 V2 Apex-Specific Antibody for the SIV smm/mac Envelope Glycoprotein Uncouple Antibody-Dependent Cellular Cytotoxicity from Neutralization. mBio 2019; 10:e01255-19. [PMID: 31266872 PMCID: PMC6606807 DOI: 10.1128/mbio.01255-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 05/29/2019] [Indexed: 11/20/2022] Open
Abstract
As a consequence of their independent evolutionary origins in apes and Old World monkeys, human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency viruses of the SIVsmm/mac lineage express phylogenetically and antigenically distinct envelope glycoproteins. Thus, HIV-1 Env-specific antibodies do not typically cross-react with the Env proteins of SIVsmm/mac isolates. Here we show that PGT145, a broadly neutralizing antibody to a quaternary epitope at the V2 apex of HIV-1 Env, directs the lysis of SIVsmm/mac-infected cells by antibody-dependent cellular cytotoxicity (ADCC) but does not neutralize SIVsmm/mac infectivity. Amino acid substitutions in the V2 loop of SIVmac239 corresponding to the epitope for PGT145 in HIV-1 Env modulate sensitivity to this antibody. Whereas a substitution in a conserved N-linked glycosylation site (N171Q) eliminates sensitivity to ADCC, a lysine-to-serine substitution in this region (K180S) increases ADCC and renders the virus susceptible to neutralization. These differences in function correlate with an increase in the affinity of PGT145 binding to Env on the surface of virus-infected cells and to soluble Env trimers. To our knowledge, this represents the first instance of an HIV-1 Env-specific antibody that cross-reacts with SIVsmm/mac Env and illustrates how differences in antibody binding affinity for Env can differentiate sensitivity to ADCC from neutralization.IMPORTANCE Here we show that PGT145, a potent broadly neutralizing antibody to HIV-1, directs the lysis of SIV-infected cells by antibody-dependent cellular cytotoxicity but does not neutralize SIV infectivity. This represents the first instance of cross-reactivity of an HIV-1 Env-specific antibody with SIVsmm/mac Env and reveals that antibody binding affinity can differentiate sensitivity to ADCC from neutralization.
Collapse
Affiliation(s)
- Benjamin von Bredow
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery (CHAVI-ID), The Scripps Research Institute, La Jolla, California, USA
| | - Michael Grunst
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Andres G Grandea
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Khoa Le
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery (CHAVI-ID), The Scripps Research Institute, La Jolla, California, USA
| | - Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery (CHAVI-ID), The Scripps Research Institute, La Jolla, California, USA
| | - Zachary T Berndsen
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery (CHAVI-ID), The Scripps Research Institute, La Jolla, California, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Katelyn Porter
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery (CHAVI-ID), The Scripps Research Institute, La Jolla, California, USA
| | - Jesper Pallesen
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery (CHAVI-ID), The Scripps Research Institute, La Jolla, California, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Andrew B Ward
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery (CHAVI-ID), The Scripps Research Institute, La Jolla, California, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery (CHAVI-ID), The Scripps Research Institute, La Jolla, California, USA
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
| | - David T Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
18
|
Lewis GK, Ackerman ME, Scarlatti G, Moog C, Robert-Guroff M, Kent SJ, Overbaugh J, Reeves RK, Ferrari G, Thyagarajan B. Knowns and Unknowns of Assaying Antibody-Dependent Cell-Mediated Cytotoxicity Against HIV-1. Front Immunol 2019; 10:1025. [PMID: 31134085 PMCID: PMC6522882 DOI: 10.3389/fimmu.2019.01025] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/23/2019] [Indexed: 12/15/2022] Open
Abstract
It is now well-accepted that Fc-mediated effector functions, including antibody-dependent cellular cytotoxicity (ADCC), can contribute to vaccine-elicited protection as well as post-infection control of HIV viremia. This picture was derived using a wide array of ADCC assays, no two of which are strictly comparable, and none of which is qualified at the clinical laboratory level. An earlier comparative study of assay protocols showed that while data from different ADCC assay formats were often correlated, they remained distinct in terms of target cells and the epitopes and antigen(s) available for recognition by antibodies, the effector cells, and the readout of cytotoxicity. This initial study warrants expanded analyses of the relationships among all current assay formats to determine where they detect overlapping activities and where they do not. Here we summarize knowns and unknowns of assaying ADCC against HIV-1.
Collapse
Affiliation(s)
- George K. Lewis
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | | | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, Department of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Christiane Moog
- INSERM U1109, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Marjorie Robert-Guroff
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institues of Health, Bethesda, MD, United States
| | - Stephen J. Kent
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - R. Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, United States
| | - Guido Ferrari
- Department of Surgery and Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, United States
| | | |
Collapse
|
19
|
Ren Y, Korom M, Truong R, Chan D, Huang SH, Kovacs CC, Benko E, Safrit JT, Lee J, Garbán H, Apps R, Goldstein H, Lynch RM, Jones RB. Susceptibility to Neutralization by Broadly Neutralizing Antibodies Generally Correlates with Infected Cell Binding for a Panel of Clade B HIV Reactivated from Latent Reservoirs. J Virol 2018; 92:e00895-18. [PMID: 30209173 PMCID: PMC6232479 DOI: 10.1128/jvi.00895-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/31/2018] [Indexed: 12/14/2022] Open
Abstract
Efforts to cure human immunodeficiency virus (HIV) infection are obstructed by reservoirs of latently infected CD4+ T cells that can reestablish viremia. HIV-specific broadly neutralizing antibodies (bNAbs), defined by unusually wide neutralization breadths against globally diverse viruses, may contribute to the elimination of these reservoirs by binding to reactivated cells, thus targeting them for immune clearance. However, the relationship between neutralization of reservoir isolates and binding to corresponding infected primary CD4+ T cells has not been determined. Thus, the extent to which neutralization breadths and potencies can be used to infer the corresponding parameters of infected cell binding is currently unknown. We assessed the breadths and potencies of bNAbs against 36 viruses reactivated from peripheral blood CD4+ T cells from antiretroviral (ARV)-treated HIV-infected individuals by using paired neutralization and infected cell binding assays. Single-antibody breadths ranged from 0 to 64% for neutralization (80% inhibitory concentration [IC80] of ≤10 μg/ml) and from 0 to 89% for binding, with two-antibody combinations (results for antibody combinations are theoretical/predicted) reaching levels of 0 to 83% and 50 to 100%, respectively. Infected cell binding correlated with virus neutralization for 10 of 14 antibodies (e.g., for 3BNC117, r = 0.82 and P < 0.0001). Heterogeneity was observed, however, with a lack of significant correlation for 2G12, CAP256.VRC26.25, 2F5, and 4E10. Our results provide guidance on the selection of bNAbs for interventional cure studies, both by providing a direct assessment of intra- and interindividual variabilities in neutralization and infected cell binding in a novel cohort and by defining the relationships between these parameters for a panel of bNAbs.IMPORTANCE Although antiretroviral therapies have improved the lives of people who are living with HIV, they do not cure infection. Efforts are being directed towards harnessing the immune system to eliminate the virus that persists, potentially resulting in virus-free remission without medication. HIV-specific antibodies hold promise for such therapies owing to their ability to both prevent the infection of new cells (neutralization) and direct the killing of infected cells. We isolated 36 HIV strains from individuals whose virus was suppressed by medication and tested 14 different antibodies for neutralization of these viruses and for binding to cells infected with the same viruses (critical for engaging natural killer cells). For both neutralization and infected cell binding, we observed variation both between individuals and amongst different viruses within an individual. For most antibodies, neutralization activity correlated with infected cell binding. These data provide guidance on the selection of antibodies for clinical trials.
Collapse
Affiliation(s)
- Yanqin Ren
- Division of Infectious Diseases, Weill Cornell Medical College, New York, New York, USA
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Maria Korom
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Ronald Truong
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Dora Chan
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Szu-Han Huang
- Division of Infectious Diseases, Weill Cornell Medical College, New York, New York, USA
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA
| | | | - Erika Benko
- Maple Leaf Medical Clinic, Toronto, Ontario, Canada
| | | | - John Lee
- NantBioScience Inc./NantKwest LLC, Culver City, California, USA
| | | | - Richard Apps
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Harris Goldstein
- Department of Pediatrics, Albert Einstein College of Medicine, New York, New York, USA
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, New York, New York, USA
| | - Rebecca M Lynch
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA
| | - R Brad Jones
- Division of Infectious Diseases, Weill Cornell Medical College, New York, New York, USA
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA
| |
Collapse
|