1
|
Al Akiki Dit Al Mazraani R, Malys N, Maliene V. Itaconate and its derivatives as anti-pathogenic agents. RSC Adv 2025; 15:4408-4420. [PMID: 39931396 PMCID: PMC11808480 DOI: 10.1039/d4ra08298b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/24/2025] [Indexed: 02/13/2025] Open
Abstract
Pathogenic microorganisms and viruses cause outbreaks and pandemics that affect millions of people worldwide. Despite recent advances in pharmacology and medicine, the ability of infectious diseases to spread in the modern era is accelerating due to various factors contributing to increased human-to-human and human-animal contacts. With the global rise of drug resistance among pathogens and frequently occurring viral outbreaks, alternative drugs and therapies that specifically inhibit microbial virulence or regulate immune responses are attracting growing interest. The present review focuses on itaconate and its derivatives as potential anti-pathogenic agents. It summarizes the current state of research on itaconate metabolism in bacteria, fungi and mammals. This is followed by a comprehensive review of recent advances studying itaconate and its derivatives as anti-inflammatory, immunoregulatory, antimicrobial and antiviral compounds, along with their mechanisms of action. Finally, the review emphasises the existing challenges and future research directions for the application of itaconate and its derivatives as anti-pathogenic agents.
Collapse
Affiliation(s)
| | - Naglis Malys
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology Radvilėnų st. 19 Kaunas LT-50254 Lithuania
- Department of Organic Chemistry, Faculty of Chemical Technology, Kaunas University of Technology Radvilėnų st. 19 Kaunas LT-50254 Lithuania
| | - Vida Maliene
- Built Environment and Sustainable Technologies Research Institute, Faculty of Health, Innovation, Technology and Science, Liverpool John Moores University Byrom Street Liverpool L3 3AF UK
| |
Collapse
|
2
|
Thakur N, Chakraborty P, Tufariello JM, Basler CF. SARS-CoV-2 Nsp14 binds Tollip and activates pro-inflammatory pathways while downregulating interferon-α and interferon-γ receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.12.628214. [PMID: 39713296 PMCID: PMC11661139 DOI: 10.1101/2024.12.12.628214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
SARS coronavirus 2 (SARS-CoV-2) non-structural protein 14 (Nsp14) possesses an N-terminal exonuclease (ExoN) domain that provides a proofreading function for the viral RNA-dependent RNA polymerase and a C-terminal N7-methyltransferase (N7-MTase) domain that methylates viral mRNA caps. Nsp14 also modulates host functions. This includes the activation of NF-κB and downregulation of interferon alpha/beta receptor 1 (IFNAR1). Here we demonstrate that Nsp14 exerts broader effects, activating not only NF-κB responses but also ERK, p38 and JNK MAP kinase (MAPK) signaling, promoting cytokine production. Further, Nsp14 downregulates not only IFNAR1 but also IFN-γ receptor 1 (IFNGR1), impairing cellular responses to both IFNα and IFNγ. IFNAR1 and IFNGR1 downregulation is via a lysosomal pathway and also occurs in SARS-CoV-2 infected cells. Analysis of a panel of Nsp14 mutants reveals a consistent pattern. Mutants that disable ExoN function remain active, whereas N7-MTase mutations impair both pro-inflammatory pathway activation and IFN receptor downregulation. Innate immune modulating functions also require the presence of both the ExoN and N7-MTase domains likely reflecting the need for the ExoN domain for N7-MTase activity. We further identify multi-functional host protein Tollip as an Nsp14 interactor. Interaction requires the phosphoinositide-binding C2 domain of Tollip and sequences C-terminal to the C2 domain. Full length Tollip or regions encompassing the Nsp14 interaction domain are sufficient to counteract both Nsp14-mediated and Nsp14-independent activation of NF-κB. Knockdown of Tollip partially reverses IFNAR1 and IFNGR1 downregulation in SARS-CoV-2 infected cells, suggesting relevance of Nsp14-Tollip interaction for Nsp14 innate immune evasion functions.
Collapse
Affiliation(s)
- Naveen Thakur
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Poushali Chakraborty
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - JoAnn M. Tufariello
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Christopher F. Basler
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
3
|
Wang M, Valadez-Ingersoll M, Gilmore TD. Control of nuclear localization of the nucleocapsid protein of SARS-CoV-2. Virology 2024; 600:110232. [PMID: 39265446 DOI: 10.1016/j.virol.2024.110232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
The nucleocapsid (N) protein of coronaviruses is a structural protein that binds viral RNA for assembly into the mature virion, a process that occurs in the cytoplasm. Several coronavirus N proteins also localize to the nucleus. Herein, we identify that two sequences (NLSs) are required for nuclear localization of the SARS-CoV-2 N protein. Deletion or mutation of these two sequences creates an N protein that does not localize to the nucleus in HEK293T cells. Overexpression of both wild-type and NLS-mutated N proteins dysregulate a largely overlapping set of mRNAs in HEK293T cells, suggesting that these N proteins do not have direct nuclear effects on transcription. Consistent with that hypothesis, both N proteins induce nuclear localization of NF-κB p65 and dysregulate a set of previously identified NF-κB-dependent genes. The effects of N on nuclear properties are proposed to alter host cell functions that contribute to viral pathogenesis or replication.
Collapse
Affiliation(s)
- Mengrui Wang
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | | | - Thomas D Gilmore
- Department of Biology, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
4
|
Hua F, Hao W, Wang L, Song K, Hasan A, Wu Y, Li K, Lin Z, Sun Y, Li S. Linear ubiquitination mediates coronavirus NSP14-induced NF-κB activation. Cell Commun Signal 2024; 22:573. [PMID: 39616385 PMCID: PMC11607897 DOI: 10.1186/s12964-024-01949-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 11/16/2024] [Indexed: 01/26/2025] Open
Abstract
Human coronaviruses exhibit a spectrum of symptoms, ranging from mild seasonal colds to severe respiratory manifestations. Despite progress in understanding the host's innate defense mechanisms against coronaviruses, how these viruses manipulate the immune response to promote inflammation remains elusive. In this study, we unveil the role of the coronavirus nonstructural protein 14 (NSP14) in leveraging the host's linear ubiquitin chain assembly complex (LUBAC) to instigate NF-κB activation, thereby triggering proinflammatory responses. Our findings uncover that HOIL-1-interacting protein (HOIP) directly engages with NSP14, conferring linear polyubiquitin chains onto NSP14. Consequently, ubiquitinated NSP14 recruits NEMO and initiates the activation of the IKK complex. This NSP14-induced NF-κB activation stimulates the expression of proinflammatory factors but not type I interferon, leading to a skewed host innate immune response tilting to inflammation. Collectively, our study sheds light on a virus-initiated linear ubiquitination pathway that induces NF-κB signaling and provokes proinflammatory responses.
Collapse
Affiliation(s)
- Fang Hua
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, 70112, USA
| | - Wenzhuo Hao
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, 70112, USA
| | - Lingyan Wang
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, 70112, USA.
| | - Kun Song
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, 70112, USA
| | - Abdul Hasan
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, 70112, USA
| | - Yakun Wu
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, 70112, USA
| | - Kevin Li
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, 70112, USA
| | - Zhen Lin
- Health Sciences Center and Cancer Center, Tulane University, New Orleans, LA, 70112, USA
| | - Yiwen Sun
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, 70112, USA
| | - Shitao Li
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
5
|
Rivera-Toledo E, Fernández-Rojas MA, Santiago-Olivares C, Cruz-Rivera M, Hernández-Bautista V, Ávila-Horta F, Flisser A, Mendlovic F. Transcriptome profiling of macrophages persistently infected with human respiratory syncytial virus and effect of recombinant Taenia solium calreticulin on immune-related genes. Front Microbiol 2024; 15:1402589. [PMID: 39296294 PMCID: PMC11408361 DOI: 10.3389/fmicb.2024.1402589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/05/2024] [Indexed: 09/21/2024] Open
Abstract
Introduction Human respiratory syncytial virus (hRSV) is a main cause of bronchiolitis in infants and its persistence has been described in immunocompromised subjects. However, limited evidence has been reported on the gene expression triggered by the hRSV and the effect of recombinant Taenia solium-derived calreticulin (rTsCRT). Methods Using a comprehensive microarray approach, we analyzed the transcriptome profile of a macrophage cell line that has supported hRSV persistence for over 150 passages. We compared the gene expression of persistently infected and non-infected macrophages. We also evaluated the effect of rTsCRT on hRSV-infected macrophage gene transcription, as well as on cytokine production and number of copies of the persistent hRSV genome. Results Our analysis showed that hRSV long-term virus infection significantly alters mRNA expression of antiviral, inflammatory, as well as arginine and lipid metabolism-associated genes, revealing a transcriptional signature that suggests a mixed M1/M2 phenotype. The resulting host-virus equilibrium allows for the regulation of viral replication, while evading the antiviral and proinflammatory responses. Interestingly, rTsCRT stimulus upregulated Tnfα, Il6 and Nos2 mRNA. We found increased levels of both proinflammatory cytokines and nitrite levels in the conditioned media of persistent macrophages treated with rTsCRT. This increase was associated with a significant reduction in viral genome copies. Discussion hRSV persistently infected macrophages retain responsiveness to external stimuli and demonstrate that the profound changes induced by viral persistence are potentially reversible. Our observations contribute to the understanding of the mechanisms related to hRSV persistence in macrophages and have implications for the development of targeted therapies to eliminate persistent infections or reduce the negative effects related with chronic inflammatory diseases associated with hRSV infection.
Collapse
Affiliation(s)
- Evelyn Rivera-Toledo
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Miguel A Fernández-Rojas
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Carlos Santiago-Olivares
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Mayra Cruz-Rivera
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Vania Hernández-Bautista
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Fernanda Ávila-Horta
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Ana Flisser
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Fela Mendlovic
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, Huixquilucan de Degollado, Mexico
| |
Collapse
|
6
|
Vu Manh TP, Gouin C, De Wolf J, Jouneau L, Pascale F, Bevilacqua C, Ar Gouilh M, Da Costa B, Chevalier C, Glorion M, Hannouche L, Urien C, Estephan J, Magnan A, Le Guen M, Marquant Q, Descamps D, Dalod M, Schwartz-Cornil I, Sage E. SARS-CoV2 infection in whole lung primarily targets macrophages that display subset-specific responses. Cell Mol Life Sci 2024; 81:351. [PMID: 39147987 PMCID: PMC11335275 DOI: 10.1007/s00018-024-05322-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 08/17/2024]
Abstract
Deciphering the initial steps of SARS-CoV-2 infection, that influence COVID-19 outcomes, is challenging because animal models do not always reproduce human biological processes and in vitro systems do not recapitulate the histoarchitecture and cellular composition of respiratory tissues. To address this, we developed an innovative ex vivo model of whole human lung infection with SARS-CoV-2, leveraging a lung transplantation technique. Through single-cell RNA-seq, we identified that alveolar and monocyte-derived macrophages (AMs and MoMacs) were initial targets of the virus. Exposure of isolated lung AMs, MoMacs, classical monocytes and non-classical monocytes (ncMos) to SARS-CoV-2 variants revealed that while all subsets responded, MoMacs produced higher levels of inflammatory cytokines than AMs, and ncMos contributed the least. A Wuhan lineage appeared to be more potent than a D614G virus, in a dose-dependent manner. Amidst the ambiguity in the literature regarding the initial SARS-CoV-2 cell target, our study reveals that AMs and MoMacs are dominant primary entry points for the virus, and suggests that their responses may conduct subsequent injury, depending on their abundance, the viral strain and dose. Interfering on virus interaction with lung macrophages should be considered in prophylactic strategies.
Collapse
Affiliation(s)
- Thien-Phong Vu Manh
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, 13009, Marseille, France.
| | - Carla Gouin
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Julien De Wolf
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Department of Thoracic Surgery and Lung Transplantation, Foch Hospital, 92150, Suresnes, France
| | - Luc Jouneau
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, UVSQ, BREED, 78350, Jouy-en-Josas, France
| | - Florentina Pascale
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Department of Thoracic Surgery and Lung Transplantation, Foch Hospital, 92150, Suresnes, France
| | - Claudia Bevilacqua
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Meriadeg Ar Gouilh
- Department of Virology, Univ Caen Normandie, Dynamicure INSERM UMR 1311, CHU Caen, 14000, Caen, France
| | - Bruno Da Costa
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | | | - Matthieu Glorion
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Department of Thoracic Surgery and Lung Transplantation, Foch Hospital, 92150, Suresnes, France
| | - Laurent Hannouche
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, 13009, Marseille, France
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Céline Urien
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Jérôme Estephan
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Antoine Magnan
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Department of Pulmonology, Foch Hospital, 92150, Suresnes, France
| | - Morgan Le Guen
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Department of Anesthesiology, Foch Hospital, 92150, Suresnes, France
| | - Quentin Marquant
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Department of Pulmonology, Foch Hospital, 92150, Suresnes, France
- Delegation to Clinical Research and Innovation, Foch Hospital, 92150, Suresnes, France
| | - Delphyne Descamps
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Marc Dalod
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, 13009, Marseille, France
| | | | - Edouard Sage
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
- Department of Thoracic Surgery and Lung Transplantation, Foch Hospital, 92150, Suresnes, France
| |
Collapse
|
7
|
Guarnieri JW, Lie T, Albrecht YES, Hewin P, Jurado KA, Widjaja GA, Zhu Y, McManus MJ, Kilbaugh TJ, Keith K, Potluri P, Taylor D, Angelin A, Murdock DG, Wallace DC. Mitochondrial antioxidants abate SARS-COV-2 pathology in mice. Proc Natl Acad Sci U S A 2024; 121:e2321972121. [PMID: 39008677 PMCID: PMC11287122 DOI: 10.1073/pnas.2321972121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/07/2024] [Indexed: 07/17/2024] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection inhibits mitochondrial oxidative phosphorylation (OXPHOS) and elevates mitochondrial reactive oxygen species (ROS, mROS) which activates hypoxia-inducible factor-1alpha (HIF-1α), shifting metabolism toward glycolysis to drive viral biogenesis but also causing the release of mitochondrial DNA (mtDNA) and activation of innate immunity. To determine whether mitochondrially targeted antioxidants could mitigate these viral effects, we challenged mice expressing human angiotensin-converting enzyme 2 (ACE2) with SARS-CoV-2 and intervened using transgenic and pharmacological mitochondrially targeted catalytic antioxidants. Transgenic expression of mitochondrially targeted catalase (mCAT) or systemic treatment with EUK8 decreased weight loss, clinical severity, and circulating levels of mtDNA; as well as reduced lung levels of HIF-1α, viral proteins, and inflammatory cytokines. RNA-sequencing of infected lungs revealed that mCAT and Eukarion 8 (EUK8) up-regulated OXPHOS gene expression and down-regulated HIF-1α and its target genes as well as innate immune gene expression. These data demonstrate that SARS-CoV-2 pathology can be mitigated by catalytically reducing mROS, potentially providing a unique host-directed pharmacological therapy for COVID-19 which is not subject to viral mutational resistance.
Collapse
Affiliation(s)
- Joseph W. Guarnieri
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA19104
| | - Timothy Lie
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA19104
- University of Pennsylvania, Philadelphia, PA19104
| | - Yentli E. Soto Albrecht
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA19104
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Peter Hewin
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Kellie A. Jurado
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Gabrielle A. Widjaja
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA19104
| | - Yi Zhu
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA19104
| | - Meagan J. McManus
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA19104
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA19104
| | - Todd J. Kilbaugh
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA19104
| | - Kelsey Keith
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA19104
| | - Prasanth Potluri
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA19104
| | - Deanne Taylor
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA19104
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA19104
| | - Alessia Angelin
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA19104
| | - Deborah G. Murdock
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA19104
- Division of Human Genetics, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Douglas C. Wallace
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA19104
- Division of Human Genetics, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
8
|
Simoneau CR, Chen PY, Xing GK, Hayashi JM, Chen IP, Khalid MM, Meyers NL, Taha TY, Leon KE, Suryawanshi RK, McCavitt-Malvido M, Ashuach T, Fontaine KA, Rodriguez L, Joehnk B, Walcott K, Vasudevan S, Fang X, Maishan M, Schultz S, Roose JP, Matthay MA, Sil A, Arjomandi M, Yosef N, Ott M. NF-κB inhibitor alpha controls SARS-CoV-2 infection in ACE2-overexpressing human airway organoids. Sci Rep 2024; 14:15351. [PMID: 38961189 PMCID: PMC11222426 DOI: 10.1038/s41598-024-66003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024] Open
Abstract
As SARS-CoV-2 continues to spread worldwide, tractable primary airway cell models that recapitulate the cell-intrinsic response to arising viral variants are needed. Here we describe an adult stem cell-derived human airway organoid model overexpressing the ACE2 receptor (ACE2-OE) that supports robust viral replication while maintaining 3D architecture and cellular diversity of the airway epithelium. ACE2-OE organoids were infected with SARS-CoV-2 variants and subjected to single-cell RNA-sequencing. Interferon-lambda was upregulated in cells with low-level infection while the NF-kB inhibitor alpha gene (encoding IkBa) was consistently upregulated in infected cells, and its expression positively correlated with infection levels. Confocal microscopy showed more IkBa expression in infected than bystander cells, but found concurrent nuclear translocation of NF-kB that IkBa usually prevents. Overexpressing a nondegradable IkBa mutant reduced NF-kB translocation and increased viral infection. These data demonstrate the functionality of ACE2-OE organoids in SARS-CoV-2 research and underscore that the strength of the NF-kB feedback loop in infected cells controls viral replication.
Collapse
Affiliation(s)
- Camille R Simoneau
- Gladstone Institute of Virology, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Pei-Yi Chen
- Gladstone Institute of Virology, San Francisco, CA, USA
| | - Galen K Xing
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | | | - Irene P Chen
- Gladstone Institute of Virology, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Mir M Khalid
- Gladstone Institute of Virology, San Francisco, CA, USA
| | | | - Taha Y Taha
- Gladstone Institute of Virology, San Francisco, CA, USA
| | - Kristoffer E Leon
- Gladstone Institute of Virology, San Francisco, CA, USA
- Medical Scientist Training Program, University of California San Francisco, San Francisco, CA, USA
| | | | | | - Tal Ashuach
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | | | - Lauren Rodriguez
- ImmunoX CoLabs, University of California San Francisco, San Francisco, CA, USA
| | - Bastian Joehnk
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Keith Walcott
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | | | - Xiaohui Fang
- Department of Medicine and Department of Anesthesia, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Mazharul Maishan
- Department of Medicine and Department of Anesthesia, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Shawn Schultz
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Jeroen P Roose
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Michael A Matthay
- Department of Medicine and Department of Anesthesia, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Anita Sil
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Mehrdad Arjomandi
- Medical Service, San Francisco VA Healthcare System, San Francisco, CA, USA
- Division of Pulmonary and Critical Care, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Nir Yosef
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA.
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - Melanie Ott
- Gladstone Institute of Virology, San Francisco, CA, USA.
- Chan-Zuckerberg Biohub, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
9
|
Lundrigan E, Toudic C, Pennock E, Pezacki JP. SARS-CoV-2 Protein Nsp9 Is Involved in Viral Evasion through Interactions with Innate Immune Pathways. ACS OMEGA 2024; 9:26428-26438. [PMID: 38911767 PMCID: PMC11191075 DOI: 10.1021/acsomega.4c02631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 06/25/2024]
Abstract
The suppression of the host's innate antiviral immune response by SARS-CoV-2, a contributing factor to the severity of disease, has been considerably studied in recent years. Many of these studies have focused on the actions of the structural proteins of the virus because of their accessibility to host immunological components. However, less is known about SARS-CoV-2 nonstructural and accessory proteins in relation to viral evasion. Herein, we study SARS-CoV-2 nonstructural proteins Orf3a, Orf6, and Nsp9 in a mimicked virus-infected state using poly(I:C), a synthetic analog of viral dsRNA, that elicits the antiviral immune response. Through genome-wide expression profiling, we determined that Orf3a, Orf6, and Nsp9 all modulate the host antiviral signaling transcriptome to varying extents, uniquely suppressing aspects of innate immune signaling. Our data suggest that SARS-CoV-2 Nsp9 hinders viral detection through suppression of RIG-I expression and antagonizes the interferon antiviral cascade by downregulating NF-kB and TBK1. Our data point to unique molecular mechanisms through which the different SARS-CoV-2 proteins suppress immune signaling and promote viral evasion. Nsp9 in particular acts on major elements of the host antiviral pathways to impair the antiviral immune response.
Collapse
Affiliation(s)
- Eryn Lundrigan
- Department of Chemistry and
Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Caroline Toudic
- Department of Chemistry and
Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Emily Pennock
- Department of Chemistry and
Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada
| | - John Paul Pezacki
- Department of Chemistry and
Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada
| |
Collapse
|
10
|
Guarnieri JW, Haltom JA, Albrecht YES, Lie T, Olali AZ, Widjaja GA, Ranshing SS, Angelin A, Murdock D, Wallace DC. SARS-CoV-2 mitochondrial metabolic and epigenomic reprogramming in COVID-19. Pharmacol Res 2024; 204:107170. [PMID: 38614374 DOI: 10.1016/j.phrs.2024.107170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
To determine the effects of SARS-CoV-2 infection on cellular metabolism, we conducted an exhaustive survey of the cellular metabolic pathways modulated by SARS-CoV-2 infection and confirmed their importance for SARS-CoV-2 propagation by cataloging the effects of specific pathway inhibitors. This revealed that SARS-CoV-2 strongly inhibits mitochondrial oxidative phosphorylation (OXPHOS) resulting in increased mitochondrial reactive oxygen species (mROS) production. The elevated mROS stabilizes HIF-1α which redirects carbon molecules from mitochondrial oxidation through glycolysis and the pentose phosphate pathway (PPP) to provide substrates for viral biogenesis. mROS also induces the release of mitochondrial DNA (mtDNA) which activates innate immunity. The restructuring of cellular energy metabolism is mediated in part by SARS-CoV-2 Orf8 and Orf10 whose expression restructures nuclear DNA (nDNA) and mtDNA OXPHOS gene expression. These viral proteins likely alter the epigenome, either by directly altering histone modifications or by modulating mitochondrial metabolite substrates of epigenome modification enzymes, potentially silencing OXPHOS gene expression and contributing to long-COVID.
Collapse
Affiliation(s)
- Joseph W Guarnieri
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jeffrey A Haltom
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yentli E Soto Albrecht
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Timothy Lie
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arnold Z Olali
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Gabrielle A Widjaja
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sujata S Ranshing
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alessia Angelin
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Deborah Murdock
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Division of Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
11
|
Peñaranda Figueredo FA, Vicente J, Barquero AA, Bueno CA. Aesculus hippocastanum extract and the main bioactive constituent β-escin as antivirals agents against coronaviruses, including SARS-CoV-2. Sci Rep 2024; 14:6418. [PMID: 38494515 PMCID: PMC10944838 DOI: 10.1038/s41598-024-56759-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/11/2024] [Indexed: 03/19/2024] Open
Abstract
Respiratory viruses can cause life-threatening illnesses. The focus of treatment is on supportive therapies and direct antivirals. However, antivirals may cause resistance by exerting selective pressure. Modulating the host response has emerged as a viable therapeutic approach for treating respiratory infections. Additionally, considering the probable future respiratory virus outbreaks emphasizes the need for broad-spectrum therapies to be prepared for the next pandemics. One of the principal bioactive constituents found in the seed extract of Aesculus hippocastanum L. (AH) is β-escin. The clinical therapeutic role of β-escin and AH has been associated with their anti-inflammatory effects. Regarding their mechanism of action, we and others have shown that β-escin and AH affect NF-κB signaling. Furthermore, we have reported the virucidal and broad-spectrum antiviral properties of β-escin and AH against enveloped viruses such as RSV, in vitro and in vivo. In this study, we demonstrate that β-escin and AH have antiviral and virucidal activities against SARS-CoV-2 and CCoV, revealing broad-spectrum antiviral activity against coronaviruses. Likewise, they exhibited NF-κB and cytokine modulating activities in epithelial and macrophage cell lines infected with coronaviruses in vitro. Hence, β-escin and AH are promising broad-spectrum antiviral, immunomodulatory, and virucidal drugs against coronaviruses and respiratory viruses, including SARS-CoV-2.
Collapse
Affiliation(s)
- Freddy Armando Peñaranda Figueredo
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, C-1428GBA, Buenos Aires, Argentina
| | - Josefina Vicente
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, C-1428GBA, Buenos Aires, Argentina
| | - Andrea Alejandra Barquero
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, C-1428GBA, Buenos Aires, Argentina
| | - Carlos Alberto Bueno
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, C-1428GBA, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Baldaccini M, Gaucherand L, Chane-Woon-Ming B, Messmer M, Gucciardi F, Pfeffer S. The helicase domain of human Dicer prevents RNAi-independent activation of antiviral and inflammatory pathways. EMBO J 2024; 43:806-835. [PMID: 38287188 PMCID: PMC10907635 DOI: 10.1038/s44318-024-00035-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 01/31/2024] Open
Abstract
In mammalian somatic cells, the relative contribution of RNAi and the type I interferon response during viral infection is unclear. The apparent inefficiency of antiviral RNAi might be due to self-limiting properties and mitigating co-factors of the key enzyme Dicer. In particular, the helicase domain of human Dicer appears to be an important restriction factor of its activity. Here, we study the involvement of several helicase-truncated mutants of human Dicer in the antiviral response. All deletion mutants display a PKR-dependent antiviral phenotype against certain viruses, and one of them, Dicer N1, acts in a completely RNAi-independent manner. Transcriptomic analyses show that many genes from the interferon and inflammatory response pathways are upregulated in Dicer N1 expressing cells. We show that some of these genes are controlled by NF-kB and that blocking this pathway abrogates the antiviral phenotype of Dicer N1. Our findings highlight the crosstalk between Dicer, PKR, and the NF-kB pathway, and suggest that human Dicer may have repurposed its helicase domain to prevent basal activation of antiviral and inflammatory pathways.
Collapse
Affiliation(s)
- Morgane Baldaccini
- Université de Strasbourg, Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67000, Strasbourg, France
| | - Léa Gaucherand
- Université de Strasbourg, Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67000, Strasbourg, France
| | - Béatrice Chane-Woon-Ming
- Université de Strasbourg, Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67000, Strasbourg, France
| | - Mélanie Messmer
- Université de Strasbourg, Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67000, Strasbourg, France
| | - Floriane Gucciardi
- Université de Strasbourg, Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67000, Strasbourg, France
| | - Sébastien Pfeffer
- Université de Strasbourg, Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67000, Strasbourg, France.
| |
Collapse
|
13
|
Moshawih S, Jarrar Q, Bahrin AA, Lim AF, Ming L, Goh HP. Evaluating NSAIDs in SARS-CoV-2: Immunomodulatory mechanisms and future therapeutic strategies. Heliyon 2024; 10:e25734. [PMID: 38356603 PMCID: PMC10864964 DOI: 10.1016/j.heliyon.2024.e25734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely recognized for their analgesic and anti-inflammatory properties. Amidst the SARS-CoV-2 pandemic, the role of NSAIDs in modulating viral and bacterial infections has become a critical area of research, sparking debates and necessitating a thorough review. This review examines the multifaceted interactions between NSAIDs, immune responses, and infections. Focusing on the immunomodulatory mechanisms of NSAIDs in SARS-CoV-2 and their implications for other viral and bacterial infections, we aim to provide clarity and direction for future therapeutic strategies. NSAIDs demonstrate a dual role in infectious diseases. They reduce inflammation by decreasing neutrophil recruitment and cytokine release, yet potentially compromise antiviral defense mechanisms. They also modulate cytokine storms in SARS-CoV-2 and exhibit the potential to enhance anti-tumor immunity by inhibiting tumor-induced COX-2/PGE2 signaling. Specific NSAIDs have shown efficacy in inhibiting viral replication. The review highlights NSAIDs' synergy with other medications, like COX inhibitors and immunotherapy agents, in augmenting therapeutic effects. Notably, the World Health Organization's analysis found no substantial link between NSAIDs and the worsening of viral respiratory infections. The findings underscore NSAIDs' complex role in infection management. Understanding these interactions is crucial for optimizing therapeutic approaches in current and future pandemics. However, their dual nature warrants cautious application, particularly in vulnerable populations. NSAIDs present a paradoxical impact on immune responses in viral and bacterial infections. While offering potential benefits, their usage in infectious diseases, especially SARS-CoV-2, demands a nuanced understanding to balance therapeutic advantages against possible adverse effects.
Collapse
Affiliation(s)
- Said Moshawih
- PAP Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Qais Jarrar
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, Isra University, Amman, Jordan
| | - Abdul Alim Bahrin
- PAP Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Ai Fern Lim
- PAP Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Long Ming
- School of Medical and Life Sciences, Sunway University, Sunway City, 47500, Malaysia
| | - Hui Poh Goh
- PAP Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| |
Collapse
|
14
|
Kesika P, Thangaleela S, Sisubalan N, Radha A, Sivamaruthi BS, Chaiyasut C. The Role of the Nuclear Factor-Kappa B (NF-κB) Pathway in SARS-CoV-2 Infection. Pathogens 2024; 13:164. [PMID: 38392902 PMCID: PMC10892479 DOI: 10.3390/pathogens13020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
COVID-19 is a global health threat caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is associated with a significant increase in morbidity and mortality. The present review discusses nuclear factor-kappa B (NF-κB) activation and its potential therapeutical role in treating COVID-19. COVID-19 pathogenesis, the major NF-κB pathways, and the involvement of NF-κB in SARS-CoV-2 have been detailed. Specifically, NF-κB activation and its impact on managing COVID-19 has been discussed. As a central player in the immune and inflammatory responses, modulating NF-κB activation could offer a strategic avenue for managing SARS-CoV-2 infection. Understanding the NF-κB pathway's role could aid in developing treatments against SARS-CoV-2. Further investigations into the intricacies of NF-κB activation are required to reveal effective therapeutic strategies for managing and combating the SARS-CoV-2 infection and COVID-19.
Collapse
Affiliation(s)
- Periyanaina Kesika
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (N.S.)
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Subramanian Thangaleela
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Natarajan Sisubalan
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (N.S.)
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Arumugam Radha
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | | | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
15
|
Kaur J, Rana P, Matta T, Sodhi RK, Pathania K, Pawar SV, Kuhad A, Kondepudi KK, Kaur T, Dhingra N, Sah SP. Protective effect of olopatadine hydrochloride against LPS-induced acute lung injury: via targeting NF-κB signaling pathway. Inflammopharmacology 2024; 32:603-627. [PMID: 37847473 DOI: 10.1007/s10787-023-01353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/21/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Morbidity and mortality rates associated with acute lung injury/acute respiratory distress syndrome (ALI/ARDS) are high (30-40%). Nuclear factor-kappa B (NF-κB) is a transcription factor, associated with transcription of numerous cytokines leading to cytokine storm, and thereby, plays a major role in ALI/ARDS and in advanced COVID-19 syndrome. METHODS Considering the role of NF-κB in ALI, cost-effective in silico approaches were utilized in the study to identify potential NF-κB inhibitor based on the docking and pharmacokinetic results. The identified compound was then pharmacologically validated in lipopolysaccharide (LPS) rodent model of acute lung injury. LPS induces ALI by altering alveolar membrane permeability, recruiting activated neutrophils and macrophages to the lungs, and compromising the alveolar membrane integrity and ultimately impairs the gaseous exchange. Furthermore, LPS exposure is associated with exaggerated production of various proinflammatory cytokines in lungs. RESULTS Based on in silico studies Olopatadine Hydrochloride (Olo), an FDA-approved drug was found as a potential NF-κB inhibitor which has been reported for the first time, and considered further for the pharmacological validation. Intraperitoneal LPS administration resulted in ALI/ARDS by fulfilling 3 out of the 4 criteria described by ATS committee (2011) published workshop report. However, treatment with Olo attenuated LPS-induced elevation of proinflammatory markers (IL-6 and NF-κB), oxidative stress, neutrophil infiltration, edema, and damage in lungs. Histopathological studies also revealed that Olo treatment significantly ameliorated LPS-induced lung injury, thus conferring improvement in survival. Especially, the effects produced by Olo medium dose (1 mg/kg) were comparable to dexamethasone standard. CONCLUSION In nutshell, inhibition of NF-κB pathway by Olo resulted in protection and reduced mortality in LPS- induced ALI and thus has potential to be used clinically to arrest disease progression in ALI/ARDS, since the drug is already in the market. However, the findings warrant further extensive studies, and also future studies can be planned to elucidate its role in COVID-19-associated ARDS or cytokine storm.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Priyanka Rana
- Pharmaceutical Chemistry Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Tushar Matta
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
- Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Rupinder Kaur Sodhi
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Khushboo Pathania
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Sandip V Pawar
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Anurag Kuhad
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Kanthi Kiran Kondepudi
- Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Tanzeer Kaur
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Neelima Dhingra
- Pharmaceutical Chemistry Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| | - Sangeeta Pilkhwal Sah
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
16
|
Tofaute M, Weller B, Graß C, Halder H, Dohai B, Falter-Braun P, Krappmann D. SARS-CoV-2 NSP14 MTase activity is critical for inducing canonical NF-κB activation. Biosci Rep 2024; 44:BSR20231418. [PMID: 38131452 PMCID: PMC10776897 DOI: 10.1042/bsr20231418] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/07/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023] Open
Abstract
Upon SARS-CoV-2 infection, patients with severe forms of COVID-19 often suffer from a dysregulated immune response and hyperinflammation. Aberrant expression of cytokines and chemokines is associated with strong activation of the immunoregulatory transcription factor NF-κB, which can be directly induced by the SARS-CoV-2 protein NSP14. Here, we use NSP14 mutants and generated cells with host factor knockouts (KOs) in the NF-κB signaling pathways to characterize the molecular mechanism of NSP14-induced NF-κB activation. We demonstrate that full-length NSP14 requires methyltransferase (MTase) activity to drive NF-κB induction. NSP14 WT, but not an MTase-defective mutant, is poorly expressed and inherent post-translational instability is mediated by proteasomal degradation. Binding of SARS-CoV-2 NSP10 or addition of the co-factor S-adenosylmethionine (SAM) stabilizes NSP14 and augments its potential to activate NF-κB. Using CRISPR/Cas9-engineered KO cells, we demonstrate that NSP14 stimulation of canonical NF-κB activation relies on NF-κB factor p65/RELA downstream of the NEMO/IKK complex, while c-Rel or non-canonical RelB are not required to induce NF-κB transcriptional activity. However, NSP14 overexpression is unable to induce canonical IκB kinase β (IKKβ)/NF-κB signaling and in co-immunoprecipitation assays we do not detect stable associations between NSP14 and NEMO or p65, suggesting that NSP14 activates NF-κB indirectly through its methyltransferase activity. Taken together, our data provide a framework how NSP14 can augment basal NF-κB activation, which may enhance cytokine expression in SARS-CoV-2 infected cells.
Collapse
Affiliation(s)
- Marie J. Tofaute
- Research Unit Signaling and Translation, Group Signaling and Immunity, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | - Benjamin Weller
- Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Carina Graß
- Research Unit Signaling and Translation, Group Signaling and Immunity, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | - Hridi Halder
- Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Bushra Dohai
- Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Pascal Falter-Braun
- Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- Microbe-Host Interactions, Faculty of Biology, Ludwig-Maximilians-Universität (LMU) München, Planegg-Martinsried, Germany
| | - Daniel Krappmann
- Research Unit Signaling and Translation, Group Signaling and Immunity, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
17
|
Lee JD, Menasche BL, Mavrikaki M, Uyemura MM, Hong SM, Kozlova N, Wei J, Alfajaro MM, Filler RB, Müller A, Saxena T, Posey RR, Cheung P, Muranen T, Heng YJ, Paulo JA, Wilen CB, Slack FJ. Differences in syncytia formation by SARS-CoV-2 variants modify host chromatin accessibility and cellular senescence via TP53. Cell Rep 2023; 42:113478. [PMID: 37991919 PMCID: PMC10785701 DOI: 10.1016/j.celrep.2023.113478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/13/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) remains a significant public health threat due to the ability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants to evade the immune system and cause breakthrough infections. Although pathogenic coronaviruses such as SARS-CoV-2 and Middle East respiratory syndrome (MERS)-CoV lead to severe respiratory infections, how these viruses affect the chromatin proteomic composition upon infection remains largely uncharacterized. Here, we use our recently developed integrative DNA And Protein Tagging methodology to identify changes in host chromatin accessibility states and chromatin proteomic composition upon infection with pathogenic coronaviruses. SARS-CoV-2 infection induces TP53 stabilization on chromatin, which contributes to its host cytopathic effect. We mapped this TP53 stabilization to the SARS-CoV-2 spike and its propensity to form syncytia, a consequence of cell-cell fusion. Differences in SARS-CoV-2 spike variant-induced syncytia formation modify chromatin accessibility, cellular senescence, and inflammatory cytokine release via TP53. Our findings suggest that differences in syncytia formation alter senescence-associated inflammation, which varies among SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Jonathan D Lee
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | - Bridget L Menasche
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Maria Mavrikaki
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Madison M Uyemura
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Su Min Hong
- Department of Genetics, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Nina Kozlova
- Department of Genetics, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Jin Wei
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mia M Alfajaro
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Renata B Filler
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Arne Müller
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Tanvi Saxena
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Ryan R Posey
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Priscilla Cheung
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Taru Muranen
- Department of Genetics, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Yujing J Heng
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Craig B Wilen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Frank J Slack
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Department of Genetics, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
18
|
Len JS, Koh CWT, Chan KR. The Functional Roles of MDSCs in Severe COVID-19 Pathogenesis. Viruses 2023; 16:27. [PMID: 38257728 PMCID: PMC10821470 DOI: 10.3390/v16010027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Severe COVID-19 is a major cause of morbidity and mortality worldwide, especially among those with co-morbidities, the elderly, and the immunocompromised. However, the molecular determinants critical for severe COVID-19 progression remain to be fully elucidated. Meta-analyses of transcriptomic RNAseq and single-cell sequencing datasets comparing severe and mild COVID-19 patients have demonstrated that the early expansion of myeloid-derived suppressor cells (MDSCs) could be a key feature of severe COVID-19 progression. Besides serving as potential early prognostic biomarkers for severe COVID-19 progression, several studies have also indicated the functional roles of MDSCs in severe COVID-19 pathogenesis and possibly even long COVID. Given the potential links between MDSCs and severe COVID-19, we examine the existing literature summarizing the characteristics of MDSCs, provide evidence of MDSCs in facilitating severe COVID-19 pathogenesis, and discuss the potential therapeutic avenues that can be explored to reduce the risk and burden of severe COVID-19. We also provide a web app where users can visualize the temporal changes in specific genes or MDSC-related gene sets during severe COVID-19 progression and disease resolution, based on our previous study.
Collapse
Affiliation(s)
- Jia Soon Len
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore;
| | - Clara W. T. Koh
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore;
| | - Kuan Rong Chan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore;
| |
Collapse
|
19
|
Bhargava A, Szachnowski U, Chazal M, Foretek D, Caval V, Aicher SM, Pipoli da Fonseca J, Jeannin P, Beauclair G, Monot M, Morillon A, Jouvenet N. Transcriptomic analysis of sorted lung cells revealed a proviral activity of the NF-κB pathway toward SARS-CoV-2. iScience 2023; 26:108449. [PMID: 38213785 PMCID: PMC10783605 DOI: 10.1016/j.isci.2023.108449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/30/2023] [Accepted: 11/10/2023] [Indexed: 01/13/2024] Open
Abstract
Investigations of cellular responses to viral infection are commonly performed on mixed populations of infected and uninfected cells or using single-cell RNA sequencing, leading to inaccurate and low-resolution gene expression interpretations. Here, we performed deep polyA+ transcriptome analyses and novel RNA profiling of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infected lung epithelial cells, sorted based on the expression of the viral spike (S) protein. Infection caused a massive reduction in mRNAs and long non-coding RNAs (lncRNAs), including transcripts coding for antiviral factors, such as interferons (IFNs). This absence of IFN signaling probably explained the poor transcriptomic response of bystander cells co-cultured with S+ ones. NF-κB pathway and the inflammatory response escaped the global shutoff in S+ cells. Functional investigations revealed the proviral function of the NF-κB pathway and the antiviral activity of CYLD, a negative regulator of the pathway. Thus, our transcriptomic analysis on sorted cells revealed additional genes that modulate SARS-CoV-2 replication in lung cells.
Collapse
Affiliation(s)
- Anvita Bhargava
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus sensing and signaling Unit, 75015 Paris, France
| | - Ugo Szachnowski
- CNRS UMR3244, Sorbonne University, PSL University, Institut Curie, Centre de Recherche, 75005 Paris, France
| | - Maxime Chazal
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus sensing and signaling Unit, 75015 Paris, France
| | - Dominika Foretek
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus sensing and signaling Unit, 75015 Paris, France
- CNRS UMR3244, Sorbonne University, PSL University, Institut Curie, Centre de Recherche, 75005 Paris, France
| | - Vincent Caval
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus sensing and signaling Unit, 75015 Paris, France
| | - Sophie-Marie Aicher
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus sensing and signaling Unit, 75015 Paris, France
| | | | - Patricia Jeannin
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Unité Épidémiologie et Physiopathologie des Virus Oncogènes, 75015 Paris, France
| | - Guillaume Beauclair
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91190 Gif-sur-Yvette, France
| | - Marc Monot
- Institut Pasteur, Université de Paris, Biomics Platform, C2RT, 75015 Paris, France
| | - Antonin Morillon
- CNRS UMR3244, Sorbonne University, PSL University, Institut Curie, Centre de Recherche, 75005 Paris, France
| | - Nolwenn Jouvenet
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Virus sensing and signaling Unit, 75015 Paris, France
| |
Collapse
|
20
|
Magalhães VG, Lukassen S, Drechsler M, Loske J, Burkart SS, Wüst S, Jacobsen EM, Röhmel J, Mall MA, Debatin KM, Eils R, Autenrieth S, Janda A, Lehmann I, Binder M. Immune-epithelial cell cross-talk enhances antiviral responsiveness to SARS-CoV-2 in children. EMBO Rep 2023; 24:e57912. [PMID: 37818799 DOI: 10.15252/embr.202357912] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
The risk of developing severe COVID-19 rises dramatically with age. Schoolchildren are significantly less likely than older people to die from SARS-CoV-2 infection, but the molecular mechanisms underlying this age-dependence are unknown. In primary infections, innate immunity is critical due to the lack of immune memory. Children, in particular, have a significantly stronger interferon response due to a primed state of their airway epithelium. In single-cell transcriptomes of nasal turbinates, we find increased frequencies of immune cells and stronger cytokine-mediated interactions with epithelial cells, resulting in increased epithelial expression of viral sensors (RIG-I, MDA5) via IRF1. In vitro, adolescent peripheral blood mononuclear cells produce more cytokines, priming A549 cells for stronger interferon responses to SARS-CoV-2. Taken together, our findings suggest that increased numbers of immune cells in the airways of children and enhanced cytokine-based interactions with epithelial cells tune the setpoint of the epithelial antiviral system. Our findings shed light on the molecular basis of children's remarkable resistance to COVID-19 and may suggest a novel concept for immunoprophylactic treatments.
Collapse
Affiliation(s)
- Vladimir G Magalhães
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sören Lukassen
- Center for Digital Health, Berlin Institute of Health at the Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Maike Drechsler
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jennifer Loske
- Molecular Epidemiology Unit, Center for Digital Health, Berlin Institute of Health at the Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sandy S Burkart
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Sandra Wüst
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eva-Maria Jacobsen
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Jobst Röhmel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research, Associated Partner, Berlin, Germany
- Berlin Institute of Health at the Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Roland Eils
- Center for Digital Health, Berlin Institute of Health at the Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research, Associated Partner, Berlin, Germany
- Health Data Science Unit, Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Stella Autenrieth
- Research Group "Dendritic Cells in Infection and Cancer" (F171), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Aleš Janda
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Irina Lehmann
- Molecular Epidemiology Unit, Center for Digital Health, Berlin Institute of Health at the Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research, Associated Partner, Berlin, Germany
| | - Marco Binder
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
21
|
Pham NT, Phan LT, Seo J, Kim Y, Song M, Lee S, Jeon YJ, Manavalan B. Advancing the accuracy of SARS-CoV-2 phosphorylation site detection via meta-learning approach. Brief Bioinform 2023; 25:bbad433. [PMID: 38058187 PMCID: PMC10753650 DOI: 10.1093/bib/bbad433] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 12/08/2023] Open
Abstract
The worldwide appearance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has generated significant concern and posed a considerable challenge to global health. Phosphorylation is a common post-translational modification that affects many vital cellular functions and is closely associated with SARS-CoV-2 infection. Precise identification of phosphorylation sites could provide more in-depth insight into the processes underlying SARS-CoV-2 infection and help alleviate the continuing COVID-19 crisis. Currently, available computational tools for predicting these sites lack accuracy and effectiveness. In this study, we designed an innovative meta-learning model, Meta-Learning for Serine/Threonine Phosphorylation (MeL-STPhos), to precisely identify protein phosphorylation sites. We initially performed a comprehensive assessment of 29 unique sequence-derived features, establishing prediction models for each using 14 renowned machine learning methods, ranging from traditional classifiers to advanced deep learning algorithms. We then selected the most effective model for each feature by integrating the predicted values. Rigorous feature selection strategies were employed to identify the optimal base models and classifier(s) for each cell-specific dataset. To the best of our knowledge, this is the first study to report two cell-specific models and a generic model for phosphorylation site prediction by utilizing an extensive range of sequence-derived features and machine learning algorithms. Extensive cross-validation and independent testing revealed that MeL-STPhos surpasses existing state-of-the-art tools for phosphorylation site prediction. We also developed a publicly accessible platform at https://balalab-skku.org/MeL-STPhos. We believe that MeL-STPhos will serve as a valuable tool for accelerating the discovery of serine/threonine phosphorylation sites and elucidating their role in post-translational regulation.
Collapse
Affiliation(s)
- Nhat Truong Pham
- Department of Integrative Biotechnology and of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Le Thi Phan
- Department of Integrative Biotechnology and of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Jimin Seo
- Department of Integrative Biotechnology and of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Yeonwoo Kim
- Department of Integrative Biotechnology and of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Minkyung Song
- Department of Integrative Biotechnology and of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology and of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Young-Jun Jeon
- Department of Integrative Biotechnology and of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Balachandran Manavalan
- Department of Integrative Biotechnology and of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| |
Collapse
|
22
|
Jiao S, Ye X, Ao C, Sakurai T, Zou Q, Xu L. Adaptive learning embedding features to improve the predictive performance of SARS-CoV-2 phosphorylation sites. Bioinformatics 2023; 39:btad627. [PMID: 37847658 PMCID: PMC10628388 DOI: 10.1093/bioinformatics/btad627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/11/2023] [Accepted: 10/16/2023] [Indexed: 10/19/2023] Open
Abstract
MOTIVATION The rapid and extensive transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to an unprecedented global health emergency, affecting millions of people and causing an immense socioeconomic impact. The identification of SARS-CoV-2 phosphorylation sites plays an important role in unraveling the complex molecular mechanisms behind infection and the resulting alterations in host cell pathways. However, currently available prediction tools for identifying these sites lack accuracy and efficiency. RESULTS In this study, we presented a comprehensive biological function analysis of SARS-CoV-2 infection in a clonal human lung epithelial A549 cell, revealing dramatic changes in protein phosphorylation pathways in host cells. Moreover, a novel deep learning predictor called PSPred-ALE is specifically designed to identify phosphorylation sites in human host cells that are infected with SARS-CoV-2. The key idea of PSPred-ALE lies in the use of a self-adaptive learning embedding algorithm, which enables the automatic extraction of context sequential features from protein sequences. In addition, the tool uses multihead attention module that enables the capturing of global information, further improving the accuracy of predictions. Comparative analysis of features demonstrated that the self-adaptive learning embedding features are superior to hand-crafted statistical features in capturing discriminative sequence information. Benchmarking comparison shows that PSPred-ALE outperforms the state-of-the-art prediction tools and achieves robust performance. Therefore, the proposed model can effectively identify phosphorylation sites assistant the biomedical scientists in understanding the mechanism of phosphorylation in SARS-CoV-2 infection. AVAILABILITY AND IMPLEMENTATION PSPred-ALE is available at https://github.com/jiaoshihu/PSPred-ALE and Zenodo (https://doi.org/10.5281/zenodo.8330277).
Collapse
Affiliation(s)
- Shihu Jiao
- Department of Computer Science, University of Tsukuba, Tsukuba 3058577, Japan
| | - Xiucai Ye
- Department of Computer Science, University of Tsukuba, Tsukuba 3058577, Japan
| | - Chunyan Ao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Tetsuya Sakurai
- Department of Computer Science, University of Tsukuba, Tsukuba 3058577, Japan
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, No. 4089 Shahexi Road, Shenzhen 518000, China
| |
Collapse
|
23
|
Sunshine S, Puschnik AS, Replogle JM, Laurie MT, Liu J, Zha BS, Nuñez JK, Byrum JR, McMorrow AH, Frieman MB, Winkler J, Qiu X, Rosenberg OS, Leonetti MD, Ye CJ, Weissman JS, DeRisi JL, Hein MY. Systematic functional interrogation of SARS-CoV-2 host factors using Perturb-seq. Nat Commun 2023; 14:6245. [PMID: 37803001 PMCID: PMC10558542 DOI: 10.1038/s41467-023-41788-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/15/2023] [Indexed: 10/08/2023] Open
Abstract
Genomic and proteomic screens have identified numerous host factors of SARS-CoV-2, but efficient delineation of their molecular roles during infection remains a challenge. Here we use Perturb-seq, combining genetic perturbations with a single-cell readout, to investigate how inactivation of host factors changes the course of SARS-CoV-2 infection and the host response in human lung epithelial cells. Our high-dimensional data resolve complex phenotypes such as shifts in the stages of infection and modulations of the interferon response. However, only a small percentage of host factors showed such phenotypes upon perturbation. We further identified the NF-κB inhibitor IκBα (NFKBIA), as well as the translation factors EIF4E2 and EIF4H as strong host dependency factors acting early in infection. Overall, our study provides massively parallel functional characterization of host factors of SARS-CoV-2 and quantitatively defines their roles both in virus-infected and bystander cells.
Collapse
Affiliation(s)
- Sara Sunshine
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | | | - Joseph M Replogle
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Matthew T Laurie
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Jamin Liu
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- University of California, Berkeley-UCSF Joint Graduate Program in Bioengineering, San Francisco, CA, USA
| | - Beth Shoshana Zha
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - James K Nuñez
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Janie R Byrum
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA
| | | | - Matthew B Frieman
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Juliane Winkler
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Xiaojie Qiu
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Oren S Rosenberg
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Chun Jimmie Ye
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA.
| | - Marco Y Hein
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA.
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria.
- Medical University of Vienna, Center for Medical Biochemistry, Vienna, Austria.
| |
Collapse
|
24
|
Al-Sanea MM, Abdel-Maksoud MS, El-Behairy MF, Hamdi A, Ur Rahman H, Parambi DGT, Elbargisy RM, Mohamed AAB. Anti-inflammatory effect of 3-fluorophenyl pyrimidinylimidazo[2,1-b]thiazole derivatives as p38α inhibitors. Bioorg Chem 2023; 139:106716. [PMID: 37459825 DOI: 10.1016/j.bioorg.2023.106716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/21/2023] [Accepted: 07/06/2023] [Indexed: 08/13/2023]
Abstract
In the present work, the anti-inflammatory effect of 30 compounds containing 3-fluorophenyl pyrimidinylimidazo[2,1-b]thiazole was investigated. All final target compounds showed significant Inhibitory effect on p38α. P38α is considered one of the key kinases in the inflammatory process due to its regulatory effect on pro-inflammatory mediators. The final target compounds divided into four group based on the type of terminal moiety (amide and sulfonamide) and the linker between pyrimidine ring and terminal moiety (ethyl and propyl). Most compounds with terminal sulfonamide moiety and propyl linker between the sulfonamide and pyrimidine ring were the most potent among all synthesized final target compounds with sub-micromolar IC50s. Compound 24g (with p-Cl benzene sulfonamide and propyl linker) exhibited the highest activity over P38α with IC50 0.68 µM. All final target compounds were tested for their ability to inhibit nitric oxide release and prostaglandin E2 production. Compounds having amide terminal moiety with ethyl linker showed higher inhibitory activity for nitric oxide release and compound 21d exhibited the highest activity for nitric oxide release with IC50 1.21 µM. Compounds with terminal sulfonamide moiety and propyl linker showed the highest activity for inhibiting PGE2 production and compounds 24i and 24g had the lowest IC50s with value 0.87 and 0.89 µM, respectively. Compounds 21d, 22d and 24g were tested for their ability to inhibit over expression of iNOS, COX1, and COX2. In addition the ability of compounds 21d, 22d and 24g to inhibit inflammatory cytokines were determined. Finally molecular docking of the three compounds were performed on P38α crystal structure to expect their mode of binding.
Collapse
Affiliation(s)
- Mohammad M Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia.
| | - Mohammed S Abdel-Maksoud
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), Dokki, Giza, Egypt.
| | - Mohammed Farrag El-Behairy
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufiya 32897, Egypt
| | - Abdelrahman Hamdi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Hidayat Ur Rahman
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Della G T Parambi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Rehab M Elbargisy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Ahmed A B Mohamed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
25
|
Eberhardt N, Noval MG, Kaur R, Amadori L, Gildea M, Sajja S, Das D, Cilhoroz B, Stewart O, Fernandez DM, Shamailova R, Guillen AV, Jangra S, Schotsaert M, Newman JD, Faries P, Maldonado T, Rockman C, Rapkiewicz A, Stapleford KA, Narula N, Moore KJ, Giannarelli C. SARS-CoV-2 infection triggers pro-atherogenic inflammatory responses in human coronary vessels. NATURE CARDIOVASCULAR RESEARCH 2023; 2:899-916. [PMID: 38076343 PMCID: PMC10702930 DOI: 10.1038/s44161-023-00336-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/23/2023] [Indexed: 12/19/2023]
Abstract
Patients with coronavirus disease 2019 (COVID-19) present increased risk for ischemic cardiovascular complications up to 1 year after infection. Although the systemic inflammatory response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection likely contributes to this increased cardiovascular risk, whether SARS-CoV-2 directly infects the coronary vasculature and attendant atherosclerotic plaques remains unknown. Here we report that SARS-CoV-2 viral RNA is detectable and replicates in coronary lesions taken at autopsy from severe COVID-19 cases. SARS-CoV-2 targeted plaque macrophages and exhibited a stronger tropism for arterial lesions than adjacent perivascular fat, correlating with macrophage infiltration levels. SARS-CoV-2 entry was increased in cholesterol-loaded primary macrophages and dependent, in part, on neuropilin-1. SARS-CoV-2 induced a robust inflammatory response in cultured macrophages and human atherosclerotic vascular explants with secretion of cytokines known to trigger cardiovascular events. Our data establish that SARS-CoV-2 infects coronary vessels, inducing plaque inflammation that could trigger acute cardiovascular complications and increase the long-term cardiovascular risk.
Collapse
Affiliation(s)
- Natalia Eberhardt
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York University School of Medicine, New York, NY, USA
| | - Maria Gabriela Noval
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Ravneet Kaur
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York University School of Medicine, New York, NY, USA
| | - Letizia Amadori
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York University School of Medicine, New York, NY, USA
| | - Michael Gildea
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York University School of Medicine, New York, NY, USA
| | - Swathy Sajja
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York University School of Medicine, New York, NY, USA
| | - Dayasagar Das
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York University School of Medicine, New York, NY, USA
| | - Burak Cilhoroz
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York University School of Medicine, New York, NY, USA
| | - O’Jay Stewart
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dawn M. Fernandez
- Department of Medicine, Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roza Shamailova
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York University School of Medicine, New York, NY, USA
| | - Andrea Vasquez Guillen
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York University School of Medicine, New York, NY, USA
| | - Sonia Jangra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonathan D. Newman
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York University School of Medicine, New York, NY, USA
| | - Peter Faries
- Department of Surgery, Vascular Division, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas Maldonado
- Department of Surgery, Vascular Division, New York University Langone Health, New York, NY, USA
| | - Caron Rockman
- Department of Surgery, Vascular Division, New York University Langone Health, New York, NY, USA
| | - Amy Rapkiewicz
- Department of Pathology, NYU Winthrop Hospital, Long Island School of Medicine, New York, NY, USA
| | - Kenneth A. Stapleford
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Navneet Narula
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Kathryn J. Moore
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York University School of Medicine, New York, NY, USA
| | - Chiara Giannarelli
- Department of Medicine, Division of Cardiology, NYU Cardiovascular Research Center, New York University School of Medicine, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
26
|
Yuan C, Ma Z, Xie J, Li W, Su L, Zhang G, Xu J, Wu Y, Zhang M, Liu W. The role of cell death in SARS-CoV-2 infection. Signal Transduct Target Ther 2023; 8:357. [PMID: 37726282 PMCID: PMC10509267 DOI: 10.1038/s41392-023-01580-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/09/2023] [Accepted: 07/31/2023] [Indexed: 09/21/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), showing high infectiousness, resulted in an ongoing pandemic termed coronavirus disease 2019 (COVID-19). COVID-19 cases often experience acute respiratory distress syndrome, which has caused millions of deaths. Apart from triggering inflammatory and immune responses, many viral infections can cause programmed cell death in infected cells. Cell death mechanisms have a vital role in maintaining a suitable environment to achieve normal cell functionality. Nonetheless, these processes are dysregulated, potentially contributing to disease pathogenesis. Over the past decades, multiple cell death pathways are becoming better understood. Growing evidence suggests that the induction of cell death by the coronavirus may significantly contributes to viral infection and pathogenicity. However, the interaction of SARS-CoV-2 with cell death, together with its associated mechanisms, is yet to be elucidated. In this review, we summarize the existing evidence concerning the molecular modulation of cell death in SARS-CoV-2 infection as well as viral-host interactions, which may shed new light on antiviral therapy against SARS-CoV-2.
Collapse
Affiliation(s)
- Cui Yuan
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Zhenling Ma
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Jiufeng Xie
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wenqing Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Lijuan Su
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Guozhi Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Jun Xu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yaru Wu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Min Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Wei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
27
|
Lee JD, Menasche BL, Mavrikaki M, Uyemura MM, Hong SM, Kozlova N, Wei J, Alfajaro MM, Filler RB, Müller A, Saxena T, Posey RR, Cheung P, Muranen T, Heng YJ, Paulo JA, Wilen CB, Slack FJ. Differences in syncytia formation by SARS-CoV-2 variants modify host chromatin accessibility and cellular senescence via TP53. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.31.555625. [PMID: 37693555 PMCID: PMC10491142 DOI: 10.1101/2023.08.31.555625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
COVID-19 remains a significant public health threat due to the ability of SARS-CoV-2 variants to evade the immune system and cause breakthrough infections. Although pathogenic coronaviruses such as SARS-CoV-2 and MERS-CoV lead to severe respiratory infections, how these viruses affect the chromatin proteomic composition upon infection remains largely uncharacterized. Here we used our recently developed integrative DNA And Protein Tagging (iDAPT) methodology to identify changes in host chromatin accessibility states and chromatin proteomic composition upon infection with pathogenic coronaviruses. SARS-CoV-2 infection induces TP53 stabilization on chromatin, which contributes to its host cytopathic effect. We mapped this TP53 stabilization to the SARS-CoV-2 spike and its propensity to form syncytia, a consequence of cell-cell fusion. Differences in SARS-CoV-2 spike variant-induced syncytia formation modify chromatin accessibility, cellular senescence, and inflammatory cytokine release via TP53. Our findings suggest that differences in syncytia formation alter senescence-associated inflammation, which varies among SARS-CoV-2 variants.
Collapse
|
28
|
Mhlekude B, Postmus D, Stenzel S, Weiner J, Jansen J, Zapatero-Belinchón FJ, Olmer R, Richter A, Heinze J, Heinemann N, Mühlemann B, Schroeder S, Jones TC, Müller MA, Drosten C, Pich A, Thiel V, Martin U, Niemeyer D, Gerold G, Beule D, Goffinet C. Pharmacological inhibition of bromodomain and extra-terminal proteins induces an NRF-2-mediated antiviral state that is subverted by SARS-CoV-2 infection. PLoS Pathog 2023; 19:e1011657. [PMID: 37747932 PMCID: PMC10629670 DOI: 10.1371/journal.ppat.1011657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/07/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023] Open
Abstract
Inhibitors of bromodomain and extra-terminal proteins (iBETs), including JQ-1, have been suggested as potential prophylactics against SARS-CoV-2 infection. However, molecular mechanisms underlying JQ-1-mediated antiviral activity and its susceptibility to viral subversion remain incompletely understood. Pretreatment of cells with iBETs inhibited infection by SARS-CoV-2 variants and SARS-CoV, but not MERS-CoV. The antiviral activity manifested itself by reduced reporter expression of recombinant viruses, and reduced viral RNA quantities and infectious titers in the culture supernatant. While we confirmed JQ-1-mediated downregulation of expression of angiotensin-converting enzyme 2 (ACE2) and interferon-stimulated genes (ISGs), multi-omics analysis addressing the chromatin accessibility, transcriptome and proteome uncovered induction of an antiviral nuclear factor erythroid 2-related factor 2 (NRF-2)-mediated cytoprotective response as an additional mechanism through which JQ-1 inhibits SARS-CoV-2 replication. Pharmacological inhibition of NRF-2, and knockdown of NRF-2 and its target genes reduced JQ-1-mediated inhibition of SARS-CoV-2 replication. Serial passaging of SARS-CoV-2 in the presence of JQ-1 resulted in predominance of ORF6-deficient variant, which exhibited resistance to JQ-1 and increased sensitivity to exogenously administered type I interferon (IFN-I), suggesting a minimised need for SARS-CoV-2 ORF6-mediated repression of IFN signalling in the presence of JQ-1. Importantly, JQ-1 exhibited a transient antiviral activity when administered prophylactically in human airway bronchial epithelial cells (hBAECs), which was gradually subverted by SARS-CoV-2, and no antiviral activity when administered therapeutically following an established infection. We propose that JQ-1 exerts pleiotropic effects that collectively induce an antiviral state in the host, which is ultimately nullified by SARS-CoV-2 infection, raising questions about the clinical suitability of the iBETs in the context of COVID-19.
Collapse
Affiliation(s)
- Baxolele Mhlekude
- Institute of Virology, Campus Charité Mitte, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
- Virology and Innate Immunity Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dylan Postmus
- Institute of Virology, Campus Charité Mitte, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Saskia Stenzel
- Institute of Virology, Campus Charité Mitte, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - January Weiner
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Jenny Jansen
- Institute of Virology, Campus Charité Mitte, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Francisco J. Zapatero-Belinchón
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Department of Clinical Microbiology, Virology & Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Ruth Olmer
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH—Center for Translational Regenerative Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Anja Richter
- Institute of Virology, Campus Charité Mitte, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julian Heinze
- Institute of Virology, Campus Charité Mitte, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nicolas Heinemann
- Institute of Virology, Campus Charité Mitte, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Barbara Mühlemann
- Institute of Virology, Campus Charité Mitte, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Simon Schroeder
- Institute of Virology, Campus Charité Mitte, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Terry C. Jones
- Institute of Virology, Campus Charité Mitte, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Centre for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Marcel A. Müller
- Institute of Virology, Campus Charité Mitte, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian Drosten
- Institute of Virology, Campus Charité Mitte, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Pich
- Institute of Toxicology, Hannover Medical School, Core Facility Proteomics, Hannover, Germany
| | - Volker Thiel
- Institute of Virology and Immunology (IVI), University of Bern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH—Center for Translational Regenerative Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Daniela Niemeyer
- Institute of Virology, Campus Charité Mitte, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gisa Gerold
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Department of Clinical Microbiology, Virology & Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Dieter Beule
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Christine Goffinet
- Institute of Virology, Campus Charité Mitte, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool United Kingdom
| |
Collapse
|
29
|
Higgins CA, Nilsson-Payant BE, Bonaventure B, Kurland AP, Ye C, Yaron TM, Johnson JL, Adhikary P, Golynker I, Panis M, Danziger O, Rosenberg BR, Cantley LC, Martínez-Sobrido L, tenOever B, Johnson JR. SARS-CoV-2 hijacks p38β/MAPK11 to promote virus replication. mBio 2023; 14:e0100723. [PMID: 37345956 PMCID: PMC10470746 DOI: 10.1128/mbio.01007-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) pandemic, drastically modifies infected cells to optimize virus replication. One such modification is the activation of the host p38 mitogen-activated protein kinase (MAPK) pathway, which plays a major role in inflammatory cytokine production, a hallmark of severe COVID-19. We previously demonstrated that inhibition of p38/MAPK activity in SARS-CoV-2-infected cells reduced both cytokine production and viral replication. Here, we combined quantitative genetic screening, genomics, proteomics, and phosphoproteomics to better understand mechanisms underlying the dependence of SARS-CoV-2 on the p38 pathway. We found that p38β is a critical host factor for SARS-CoV-2 replication in multiple relevant cell lines and that it functions at a step after viral mRNA expression. We identified putative host and viral p38β substrates in the context of SARS-CoV-2 infection and found that most host substrates have intrinsic antiviral activities. Taken together, this study reveals a unique proviral function for p38β and supports exploring p38β inhibitor development as a strategy toward creating a new class of COVID-19 therapies. IMPORTANCE SARS-CoV-2 is the causative agent of the COVID-19 pandemic that has claimed millions of lives since its emergence in 2019. SARS-CoV-2 infection of human cells requires the activity of several cellular pathways for successful replication. One such pathway, the p38 MAPK pathway, is required for virus replication and disease pathogenesis. Here, we applied systems biology approaches to understand how MAPK pathways benefit SARS-CoV-2 replication to inform the development of novel COVID-19 drug therapies.
Collapse
Affiliation(s)
- Christina A. Higgins
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Microbiology, New York University Langone Health, New York, New York, USA
- Vilcek Graduate School for Biomedical Sciences, New York University Langone Health, New York, New York, USA
| | | | - Boris Bonaventure
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Andrew P. Kurland
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Tomer M. Yaron
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine Weill Cornell Medicine, New York, New York, USA
- Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Jared L. Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Prithy Adhikary
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ilona Golynker
- Department of Microbiology, New York University Langone Health, New York, New York, USA
| | - Maryline Panis
- Department of Microbiology, New York University Langone Health, New York, New York, USA
| | - Oded Danziger
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Brad R. Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lewis C. Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Benjamin tenOever
- Department of Microbiology, New York University Langone Health, New York, New York, USA
| | - Jeffrey R. Johnson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
30
|
Castaneda DC, Jangra S, Yurieva M, Martinek J, Callender M, Coxe M, Choi A, García-Bernalt Diego J, Lin J, Wu TC, Marches F, Chaussabel D, Yu P, Salner A, Aucello G, Koff J, Hudson B, Church SE, Gorman K, Anguiano E, García-Sastre A, Williams A, Schotsaert M, Palucka K. Spatiotemporally organized immunomodulatory response to SARS-CoV-2 virus in primary human broncho-alveolar epithelia. iScience 2023; 26:107374. [PMID: 37520727 PMCID: PMC10374611 DOI: 10.1016/j.isci.2023.107374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/04/2023] [Accepted: 07/08/2023] [Indexed: 08/01/2023] Open
Abstract
The COVID-19 pandemic continues to be a health crisis with major unmet medical needs. The early responses from airway epithelial cells, the first target of the virus regulating the progression toward severe disease, are not fully understood. Primary human air-liquid interface cultures representing the broncho-alveolar epithelia were used to study the kinetics and dynamics of SARS-CoV-2 variants infection. The infection measured by nucleoprotein expression, was a late event appearing between day 4-6 post infection for Wuhan-like virus. Other variants demonstrated increasingly accelerated timelines of infection. All variants triggered similar transcriptional signatures, an "early" inflammatory/immune signature preceding a "late" type I/III IFN, but differences in the quality and kinetics were found, consistent with the timing of nucleoprotein expression. Response to virus was spatially organized: CSF3 expression in basal cells and CCL20 in apical cells. Thus, SARS-CoV-2 virus triggers specific responses modulated over time to engage different arms of immune response.
Collapse
Affiliation(s)
| | - Sonia Jangra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marina Yurieva
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Jan Martinek
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Megan Callender
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Matthew Coxe
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Angela Choi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Juan García-Bernalt Diego
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jianan Lin
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Te-Chia Wu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | | | - Damien Chaussabel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Peter Yu
- Hartford HealthCare Cancer Institute, Hartford, CT 06102, USA
| | - Andrew Salner
- Hartford HealthCare Cancer Institute, Hartford, CT 06102, USA
| | - Gabrielle Aucello
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Jonathan Koff
- Adult Cystic Fibrosis Program, Yale University, New Haven, CT 06519, USA
| | - Briana Hudson
- Nanostring Technologies, Translational Sciences, Seattle, WA 98109, USA
| | - Sarah E. Church
- Nanostring Technologies, Translational Sciences, Seattle, WA 98109, USA
| | - Kara Gorman
- Nanostring Technologies, Translational Sciences, Seattle, WA 98109, USA
| | | | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adam Williams
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Karolina Palucka
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| |
Collapse
|
31
|
Eberhardt N, Noval MG, Kaur R, Sajja S, Amadori L, Das D, Cilhoroz B, Stewart O, Fernandez DM, Shamailova R, Guillen AV, Jangra S, Schotsaert M, Gildea M, Newman JD, Faries P, Maldonado T, Rockman C, Rapkiewicz A, Stapleford KA, Narula N, Moore KJ, Giannarelli C. SARS-CoV-2 infection triggers pro-atherogenic inflammatory responses in human coronary vessels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.14.553245. [PMID: 37645908 PMCID: PMC10461985 DOI: 10.1101/2023.08.14.553245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
COVID-19 patients present higher risk for myocardial infarction (MI), acute coronary syndrome, and stroke for up to 1 year after SARS-CoV-2 infection. While the systemic inflammatory response to SARS-CoV-2 infection likely contributes to this increased cardiovascular risk, whether SARS-CoV-2 directly infects the coronary vasculature and attendant atherosclerotic plaques to locally promote inflammation remains unknown. Here, we report that SARS-CoV-2 viral RNA (vRNA) is detectable and replicates in coronary atherosclerotic lesions taken at autopsy from patients with severe COVID-19. SARS-CoV-2 localizes to plaque macrophages and shows a stronger tropism for arterial lesions compared to corresponding perivascular fat, correlating with the degree of macrophage infiltration. In vitro infection of human primary macrophages highlights that SARS-CoV-2 entry is increased in cholesterol-loaded macrophages (foam cells) and is dependent, in part, on neuropilin-1 (NRP-1). Furthermore, although viral replication is abortive, SARS-CoV-2 induces a robust inflammatory response that includes interleukins IL-6 and IL-1β, key cytokines known to trigger ischemic cardiovascular events. SARS-CoV-2 infection of human atherosclerotic vascular explants recapitulates the immune response seen in cultured macrophages, including pro-atherogenic cytokine secretion. Collectively, our data establish that SARS-CoV-2 infects macrophages in coronary atherosclerotic lesions, resulting in plaque inflammation that may promote acute CV complications and long-term risk for CV events.
Collapse
|
32
|
López-Ayllón BD, de Lucas-Rius A, Mendoza-García L, García-García T, Fernández-Rodríguez R, Suárez-Cárdenas JM, Santos FM, Corrales F, Redondo N, Pedrucci F, Zaldívar-López S, Jiménez-Marín Á, Garrido JJ, Montoya M. SARS-CoV-2 accessory proteins involvement in inflammatory and profibrotic processes through IL11 signaling. Front Immunol 2023; 14:1220306. [PMID: 37545510 PMCID: PMC10399023 DOI: 10.3389/fimmu.2023.1220306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/23/2023] [Indexed: 08/08/2023] Open
Abstract
SARS-CoV-2, the cause of the COVID-19 pandemic, possesses eleven accessory proteins encoded in its genome. Their roles during infection are still not completely understood. In this study, transcriptomics analysis revealed that both WNT5A and IL11 were significantly up-regulated in A549 cells expressing individual accessory proteins ORF6, ORF8, ORF9b or ORF9c from SARS-CoV-2 (Wuhan-Hu-1 isolate). IL11 is a member of the IL6 family of cytokines. IL11 signaling-related genes were also differentially expressed. Bioinformatics analysis disclosed that both WNT5A and IL11 were involved in pulmonary fibrosis idiopathic disease and functional assays confirmed their association with profibrotic cell responses. Subsequently, data comparison with lung cell lines infected with SARS-CoV-2 or lung biopsies from patients with COVID-19, evidenced altered profibrotic gene expression that matched those obtained in this study. Our results show ORF6, ORF8, ORF9b and ORF9c involvement in inflammatory and profibrotic responses. Thus, these accessory proteins could be targeted by new therapies against COVID-19 disease.
Collapse
Affiliation(s)
- Blanca D. López-Ayllón
- Molecular Biomedicine Department, Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Ana de Lucas-Rius
- Molecular Biomedicine Department, Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Laura Mendoza-García
- Molecular Biomedicine Department, Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Tránsito García-García
- Department of Genetics, Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain
| | - Raúl Fernández-Rodríguez
- Department of Genetics, Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain
| | - José M. Suárez-Cárdenas
- Department of Genetics, Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain
| | - Fátima Milhano Santos
- Functional Proteomics Laboratory, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
| | - Fernando Corrales
- Functional Proteomics Laboratory, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
| | - Natalia Redondo
- Molecular Biomedicine Department, Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
- Unit of Infectious Diseases, University Hospital ‘12 de Octubre’, Institute for Health Research Hospital ‘12 de Octubre’ (imas12), Madrid, Spain
- Centre for Biomedical Research Network on Infectious Diseases (CIBERINFEC), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Federica Pedrucci
- Molecular Biomedicine Department, Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Sara Zaldívar-López
- Department of Genetics, Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain
| | - Ángeles Jiménez-Marín
- Department of Genetics, Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain
| | - Juan J. Garrido
- Department of Genetics, Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain
| | - María Montoya
- Molecular Biomedicine Department, Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| |
Collapse
|
33
|
Carrau L, Frere JJ, Golynker I, Fajardo A, Rivera CF, Horiuchi S, Roonprapunt T, Minkoff JM, Blanco-Melo D, TenOever B. Delayed engagement of host defenses enables SARS-CoV-2 viremia and productive infection of distal organs in the hamster model of COVID-19. Sci Signal 2023; 16:eadg5470. [PMID: 37311033 DOI: 10.1126/scisignal.adg5470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/26/2023] [Indexed: 06/15/2023]
Abstract
Clinical presentations that develop in response to infection result from interactions between the pathogen and host defenses. SARS-CoV-2, the etiologic agent of COVID-19, directly antagonizes these defenses, leading to delayed immune engagement in the lungs that materializes only as cells succumb to infection and are phagocytosed. Leveraging the golden hamster model of COVID-19, we sought to understand the dynamics between SARS-CoV-2 infection in the airways and the systemic host response that ensues. We found that early SARS-CoV-2 replication was largely confined to the respiratory tract and olfactory system and, to a lesser extent, the heart and gastrointestinal tract but generated a host antiviral response in every organ as a result of circulating type I and III interferons. Moreover, we showed that diminishing the response in the airways by immunosuppression or administration of SARS-CoV-2 intravenously resulted in decreased immune priming, viremia, and increased viral tropism, including productive infection of the liver, kidney, spleen, and brain. Last, we showed that productive infection of the airways was required for mounting an effective and system-wide antiviral response. Together, these data illustrate how COVID-19 can result in diverse clinical presentations in which disease outcomes can be a by-product of the speed and strength of immune engagement. These studies provide additional evidence for the mechanistic basis of the diverse clinical presentations of COVID-19 and highlight the ability of the respiratory tract to generate a systemic immune defense after pathogen recognition.
Collapse
Affiliation(s)
- Lucia Carrau
- Department of Microbiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Justin J Frere
- Department of Microbiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Ilona Golynker
- Department of Microbiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Alvaro Fajardo
- Department of Microbiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Cristobal F Rivera
- Department of Cell Biology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Shu Horiuchi
- Department of Microbiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Tyler Roonprapunt
- Department of Microbiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Judith M Minkoff
- Department of Microbiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Daniel Blanco-Melo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98104, USA
| | - Benjamin TenOever
- Department of Microbiology, New York University Langone Medical Center, New York, NY 10016, USA
| |
Collapse
|
34
|
Matsumori A. Nuclear Factor-κB is a Prime Candidate for the Diagnosis and Control of Inflammatory Cardiovascular Disease. Eur Cardiol 2023; 18:e40. [PMID: 37456770 PMCID: PMC10345985 DOI: 10.15420/ecr.2023.10] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/17/2023] [Indexed: 07/18/2023] Open
Abstract
Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is responsible for the regulation of genes involved in inflammation and immune responses. NF-κB may play an important role in cardiovascular diseases (CVDs), atherosclerosis and diabetes. Several therapeutic agents used for the treatment of CVDs and diabetes, such as pimobendan and sodium-glucose cotransporter 2 inhibitors, exert anti-inflammatory effects by inhibiting NF-κB activation; anti-inflammatory therapy may have beneficial effects in CVDs and diabetes. Several pharmacological agents and natural compounds may inhibit NF-κB, and these agents alone or in combination may be used to treat various inflammatory diseases. Immunoglobulin-free light chains could be surrogate biomarkers of NF-κB activation and may be useful for evaluating the efficacy of these agents. This review discusses recent advances in our understanding of how the NF-κB signalling pathway controls inflammation, metabolism and immunity, and how improved knowledge of these pathways may lead to better diagnostics and therapeutics for various human diseases.
Collapse
Affiliation(s)
- Akira Matsumori
- Clinical Research Institute, National Hospital Organization, Kyoto Medical Center Kyoto, Japan
| |
Collapse
|
35
|
Bills C, Xie X, Shi PY. The multiple roles of nsp6 in the molecular pathogenesis of SARS-CoV-2. Antiviral Res 2023; 213:105590. [PMID: 37003304 PMCID: PMC10063458 DOI: 10.1016/j.antiviral.2023.105590] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/19/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve and adapt after its emergence in late 2019. As the causative agent of the coronavirus disease 2019 (COVID-19), the replication and pathogenesis of SARS-CoV-2 have been extensively studied by the research community for vaccine and therapeutics development. Given the importance of viral spike protein in viral infection/transmission and vaccine development, the scientific community has thus far primarily focused on studying the structure, function, and evolution of the spike protein. Other viral proteins are understudied. To fill in this knowledge gap, a few recent studies have identified nonstructural protein 6 (nsp6) as a major contributor to SARS-CoV-2 replication through the formation of replication organelles, antagonism of interferon type I (IFN-I) responses, and NLRP3 inflammasome activation (a major factor of severe disease in COVID-19 patients). Here, we review the most recent progress on the multiple roles of nsp6 in modulating SARS-CoV-2 replication and pathogenesis.
Collapse
Affiliation(s)
- Cody Bills
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, USA; World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, Texas, USA; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA; Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, Texas, USA.
| |
Collapse
|
36
|
Nie Y, Mou L, Long Q, Deng D, Hu R, Cheng J, Wu J. SARS-CoV-2 ORF3a positively regulates NF-κB activity by enhancing IKKβ-NEMO interaction. Virus Res 2023; 328:199086. [PMID: 36894068 PMCID: PMC10009424 DOI: 10.1016/j.virusres.2023.199086] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a global pandemic caused by SARS-CoV-2 infection. Patients with severe COVID-19 exhibit robust induction of proinflammatory cytokines, which are closely associated with the development of acute respiratory distress syndrome. However, the underlying mechanisms of the NF-κB activation mediated by SARS-CoV-2 infection remain poorly understood. Here, we screened SARS-CoV-2 genes and found that ORF3a induces proinflammatory cytokines by activating the NF-κB pathway. Moreover, we found that ORF3a interacts with IKKβ and NEMO and enhances the interaction of IKKβ-NEMO, thereby positively regulating NF-κB activity. Together, these results suggest ORF3a may play pivotal roles in the pathogenesis of SARS-CoV-2 and provide novel insights into the interaction between host immune responses and SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ying Nie
- Department of Parasitology, Provincial Key Laboratory of Modern Pathogen Biology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; These authors contributed equally: Ying Nie, Lumin Mou
| | - Lumin Mou
- Department of Parasitology, Provincial Key Laboratory of Modern Pathogen Biology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China; These authors contributed equally: Ying Nie, Lumin Mou
| | - Qizhou Long
- Department of Parasitology, Provincial Key Laboratory of Modern Pathogen Biology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Dongqing Deng
- Department of Parasitology, Provincial Key Laboratory of Modern Pathogen Biology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Rongying Hu
- The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Jinzhi Cheng
- Department of Parasitology, Provincial Key Laboratory of Modern Pathogen Biology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Jiahong Wu
- Department of Parasitology, Provincial Key Laboratory of Modern Pathogen Biology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
37
|
Sandhu HS, Lambert J, Steckler Z, Park L, Stromberg A, Ramirez J, Yang CFJ. Outpatient medications associated with protection from COVID-19 hospitalization. PLoS One 2023; 18:e0282961. [PMID: 37000808 PMCID: PMC10065249 DOI: 10.1371/journal.pone.0282961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/28/2023] [Indexed: 04/01/2023] Open
Abstract
The COVID-19 pandemic remains the pre-eminent global health problem, and yet after more than three years there is still no prophylactic agent against the disease aside from vaccines. The objective of this study was to evaluate whether pre-existing, outpatient medications approved by the US Food and Drug Administration (FDA) reduce the risk of hospitalization due to COVID-19. This was a retrospective cohort study of patients from across the United States infected with COVID-19 in the year 2020. The main outcome was adjusted odds of hospitalization for COVID-19 amongst those positive for the infection. Outcomes were adjusted for known risk factors for severe disease. 3,974,272 patients aged 18 or older with a diagnosis of COVID-19 in 2020 met our inclusion criteria and were included in the analysis. Mean age was 50.7 (SD 18). Of this group, 290,348 patients (7.3%) were hospitalized due to COVID-19, similar to the CDC's reported estimate (7.5%). Four drugs showed protective effects against COVID-19 hospitalization: rosuvastatin (aOR 0.91, p = 0.00000024), empagliflozin-metformin (aOR 0.69, p = 0.003), metformin (aOR 0.97, p = 0.017), and enoxaparin (aOR 0.88, p = 0.0048). Several pre-existing medications for outpatient use may reduce severity of disease and protect against COVID-19 hospitalization. Well-designed clinical trials are needed to assess the efficacy of these agents in a therapeutic or prophylactic setting.
Collapse
Affiliation(s)
- Harpal Singh Sandhu
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY, United States of America
| | - Joshua Lambert
- University of Cincinnati College of Nursing, Cincinnati, OH, United States of America
| | - Zach Steckler
- Dr. Bing Zhang Department of Statistics, University of Kentucky, Lexington, KY, United States of America
| | - Lee Park
- Dr. Bing Zhang Department of Statistics, University of Kentucky, Lexington, KY, United States of America
| | - Arnold Stromberg
- Norton Infectious Diseases Institute, Norton Hospital, Louisville, KY, United States of America
| | - Julio Ramirez
- Norton Infectious Diseases Institute, Norton Hospital, Louisville, KY, United States of America
| | - Chi-fu Jeffrey Yang
- Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
38
|
Castaneda DC, Jangra S, Yurieva M, Martinek J, Callender M, Coxe M, Choi A, Diego JGB, Lin J, Wu TC, Marches F, Chaussabel D, Yu P, Salner A, Aucello G, Koff J, Hudson B, Church SE, Gorman K, Anguiano E, García-Sastre A, Williams A, Schotsaert M, Palucka K. Spatiotemporally organized immunomodulatory response to SARS-CoV-2 virus in primary human broncho-alveolar epithelia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534980. [PMID: 37034597 PMCID: PMC10081226 DOI: 10.1101/2023.03.30.534980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The COVID-19 pandemic continues to be a health crisis with major unmet medical needs. The early responses from airway epithelial cells, the first target of the virus regulating the progression towards severe disease, are not fully understood. Primary human air-liquid interface cultures representing the broncho-alveolar epithelia were used to study the kinetics and dynamics of SARS-CoV-2 variants infection. The infection measured by nucleoprotein expression, was a late event appearing between day 4-6 post infection for Wuhan-like virus. Other variants demonstrated increasingly accelerated timelines of infection. All variants triggered similar transcriptional signatures, an "early" inflammatory/immune signature preceding a "late" type I/III IFN, but differences in the quality and kinetics were found, consistent with the timing of nucleoprotein expression. Response to virus was spatially organized: CSF3 expression in basal cells and CCL20 in apical cells. Thus, SARS-CoV-2 virus triggers specific responses modulated over time to engage different arms of immune response.
Collapse
|
39
|
Contreras PS, Tapia PJ, Jeong E, Ghosh S, Altan-Bonnet N, Puertollano R. Beta-coronaviruses exploit cellular stress responses by modulating TFEB and TFE3 activity. iScience 2023; 26:106169. [PMID: 36785787 PMCID: PMC9908431 DOI: 10.1016/j.isci.2023.106169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/09/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Beta-coronaviruses have emerged as a severe threat to global health. Undercovering the interplay between host and beta-coronaviruses is essential for understanding disease pathogenesis and developing efficient treatments. Here we report that the transcription factors TFEB and TFE3 translocate from the cytosol to the nucleus in response to beta-coronavirus infection by a mechanism that requires activation of calcineurin phosphatase. In the nucleus, TFEB and TFE3 bind to the promoter of multiple lysosomal and immune genes. Accordingly, MHV-induced upregulation of immune regulators is significantly decreased in TFEB/TFE3-depleted cells. Conversely, over-expression of either TFEB or TFE3 is sufficient to increase expression of several cytokines and chemokines. The reduced immune response observed in the absence of TFEB and TFE3 results in increased cellular survival of infected cells but also in reduced lysosomal exocytosis and decreased viral infectivity. These results suggest a central role of TFEB and TFE3 in cellular response to beta-coronavirus infection.
Collapse
Affiliation(s)
- Pablo S. Contreras
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Pablo J. Tapia
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eutteum Jeong
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sourish Ghosh
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nihal Altan-Bonnet
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rosa Puertollano
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
40
|
Abstract
SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has been associated with substantial global morbidity and mortality. Despite a tropism that is largely confined to the airways, COVID-19 is associated with multiorgan dysfunction and long-term cognitive pathologies. A major driver of this biology stems from the combined effects of virus-mediated interference with the host antiviral defences in infected cells and the sensing of pathogen-associated material by bystander cells. Such a dynamic results in delayed induction of type I and III interferons (IFN-I and IFN-III) at the site of infection, but systemic IFN-I and IFN-III priming in distal organs and barrier epithelial surfaces, respectively. In this Review, we examine the relationship between SARS-CoV-2 biology and the cellular response to infection, detailing how antagonism and dysregulation of host innate immune defences contribute to disease severity of COVID-19.
Collapse
Affiliation(s)
- Judith M Minkoff
- Department of Microbiology, New York University Langone Health, New York, NY, USA
| | - Benjamin tenOever
- Department of Microbiology, New York University Langone Health, New York, NY, USA.
| |
Collapse
|
41
|
Tang X, Xue D, Zhang T, Nilsson-Payant BE, Carrau L, Duan X, Gordillo M, Tan AY, Qiu Y, Xiang J, Schwartz RE, tenOever BR, Evans T, Chen S. A multi-organoid platform identifies CIART as a key factor for SARS-CoV-2 infection. Nat Cell Biol 2023; 25:381-389. [PMID: 36918693 PMCID: PMC10014579 DOI: 10.1038/s41556-023-01095-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 01/25/2023] [Indexed: 03/16/2023]
Abstract
COVID-19 is a systemic disease involving multiple organs. We previously established a platform to derive organoids and cells from human pluripotent stem cells to model SARS-CoV-2 infection and perform drug screens1,2. This provided insight into cellular tropism and the host response, yet the molecular mechanisms regulating SARS-CoV-2 infection remain poorly defined. Here we systematically examined changes in transcript profiles caused by SARS-CoV-2 infection at different multiplicities of infection for lung airway organoids, lung alveolar organoids and cardiomyocytes, and identified several genes that are generally implicated in controlling SARS-CoV-2 infection, including CIART, the circadian-associated repressor of transcription. Lung airway organoids, lung alveolar organoids and cardiomyocytes derived from isogenic CIART-/- human pluripotent stem cells were significantly resistant to SARS-CoV-2 infection, independently of viral entry. Single-cell RNA-sequencing analysis further validated the decreased levels of SARS-CoV-2 infection in ciliated-like cells of lung airway organoids. CUT&RUN, ATAC-seq and RNA-sequencing analyses showed that CIART controls SARS-CoV-2 infection at least in part through the regulation of NR4A1, a gene also identified from the multi-organoid analysis. Finally, transcriptional profiling and pharmacological inhibition led to the discovery that the Retinoid X Receptor pathway regulates SARS-CoV-2 infection downstream of CIART and NR4A1. The multi-organoid platform identified the role of circadian-clock regulation in SARS-CoV-2 infection, which provides potential therapeutic targets for protection against COVID-19 across organ systems.
Collapse
Affiliation(s)
- Xuming Tang
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| | - Dongxiang Xue
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| | - Tuo Zhang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Benjamin E Nilsson-Payant
- Department of Microbiology, New York University, New York, NY, USA
- TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Lucia Carrau
- Department of Microbiology, New York University, New York, NY, USA
| | - Xiaohua Duan
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| | - Miriam Gordillo
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| | - Adrian Y Tan
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Yunping Qiu
- Stable Isotope and Metabolomics Core Facility, The Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jenny Xiang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | | | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA.
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
42
|
Clancy J, Hoffmann CS, Pickett BE. Transcriptomics secondary analysis of severe human infection with SARS-CoV-2 identifies gene expression changes and predicts three transcriptional biomarkers in leukocytes. Comput Struct Biotechnol J 2023; 21:1403-1413. [PMID: 36785619 PMCID: PMC9908618 DOI: 10.1016/j.csbj.2023.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
SARS-CoV-2 is the causative agent of COVID-19, which has greatly affected human health since it first emerged. Defining the human factors and biomarkers that differentiate severe SARS-CoV-2 infection from mild infection has become of increasing interest to clinicians. To help address this need, we retrieved 269 public RNA-seq human transcriptome samples from GEO that had qualitative disease severity metadata. We then subjected these samples to a robust RNA-seq data processing workflow to calculate gene expression in PBMCs, whole blood, and leukocytes, as well as to predict transcriptional biomarkers in PBMCs and leukocytes. This process involved using Salmon for read mapping, edgeR to calculate significant differential expression levels, and gene ontology enrichment using Camera. We then performed a random forest machine learning analysis on the read counts data to identify genes that best classified samples based on the COVID-19 severity phenotype. This approach produced a ranked list of leukocyte genes based on their Gini values that includes TGFBI, TTYH2, and CD4, which are associated with both the immune response and inflammation. Our results show that these three genes can potentially classify samples with severe COVID-19 with accuracy of ∼88% and an area under the receiver operating characteristic curve of 92.6--indicating acceptable specificity and sensitivity. We expect that our findings can help contribute to the development of improved diagnostics that may aid in identifying severe COVID-19 cases, guide clinical treatment, and improve mortality rates.
Collapse
|
43
|
Huang HC, Wang SH, Fang GC, Chou WC, Liao CC, Sun CP, Jan JT, Ma HH, Ko HY, Ko YA, Chiang MT, Liang JJ, Kuo CT, Lee TA, Morales-Scheihing D, Shen CY, Chen SY, McCullough LD, Cui L, Wernig G, Tao MH, Lin YL, Chang YM, Wang SP, Lai YJ, Li CW. Upregulation of PD-L1 by SARS-CoV-2 promotes immune evasion. J Med Virol 2023; 95:e28478. [PMID: 36609964 PMCID: PMC10107526 DOI: 10.1002/jmv.28478] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/15/2022] [Accepted: 01/03/2023] [Indexed: 01/08/2023]
Abstract
Patients with severe COVID-19 often suffer from lymphopenia, which is linked to T-cell sequestration, cytokine storm, and mortality. However, it remains largely unknown how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces lymphopenia. Here, we studied the transcriptomic profile and epigenomic alterations involved in cytokine production by SARS-CoV-2-infected cells. We adopted a reverse time-order gene coexpression network approach to analyze time-series RNA-sequencing data, revealing epigenetic modifications at the late stage of viral egress. Furthermore, we identified SARS-CoV-2-activated nuclear factor-κB (NF-κB) and interferon regulatory factor 1 (IRF1) pathways contributing to viral infection and COVID-19 severity through epigenetic analysis of H3K4me3 chromatin immunoprecipitation sequencing. Cross-referencing our transcriptomic and epigenomic data sets revealed that coupling NF-κB and IRF1 pathways mediate programmed death ligand-1 (PD-L1) immunosuppressive programs. Interestingly, we observed higher PD-L1 expression in Omicron-infected cells than SARS-CoV-2 infected cells. Blocking PD-L1 at an early stage of virally-infected AAV-hACE2 mice significantly recovered lymphocyte counts and lowered inflammatory cytokine levels. Our findings indicate that targeting the SARS-CoV-2-mediated NF-κB and IRF1-PD-L1 axis may represent an alternative strategy to reduce COVID-19 severity.
Collapse
Affiliation(s)
- Hsiang-Chi Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shih-Han Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Guo-Chen Fang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wen-Cheng Chou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chun-Che Liao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Cheng-Pu Sun
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jia-Tsrong Jan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsiu-Hua Ma
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hui-Ying Ko
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-An Ko
- Biomedical Translational Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming-Tsai Chiang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jian-Jong Liang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chun-Tse Kuo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Te-An Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Diego Morales-Scheihing
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shih-Yu Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Lu Cui
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University Medical Center, Stanford, California, USA
| | - Gerlinde Wernig
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University Medical Center, Stanford, California, USA
| | - Mi-Hua Tao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Biomedical Translational Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Biomedical Translational Research Center, Academia Sinica, Taipei, Taiwan
| | - Yao-Ming Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shu-Ping Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yun-Ju Lai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Solomont School of Nursing, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Chia-Wei Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
44
|
Bello SO, Yunusa A, Adamu AA, Imam MU, Bello MB, Shuaibu A, Igumbor EU, Habib ZG, Popoola MA, Ochu CL, Bello AY, Deeni YY, Okoye I. Innovative, rapid, high-throughput method for drug repurposing in a pandemic-A case study of SARS-CoV-2 and COVID-19. Front Pharmacol 2023; 14:1130828. [PMID: 36937851 PMCID: PMC10014809 DOI: 10.3389/fphar.2023.1130828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Several efforts to repurpose drugs for COVID-19 treatment have largely either failed to identify a suitable agent or agents identified did not translate to clinical use. Reasons that have been suggested to explain the failures include use of inappropriate doses, that are not clinically achievable, in the screening experiments, and the use of inappropriate pre-clinical laboratory surrogates to predict efficacy. In this study, we used an innovative algorithm, that incorporates dissemination and implementation considerations, to identify potential drugs for COVID-19 using iterative computational and wet laboratory methods. The drugs were screened at doses that are known to be achievable in humans. Furthermore, inhibition of viral induced cytopathic effect (CPE) was used as the laboratory surrogate to predict efficacy. Erythromycin, pyridoxine, folic acid and retapamulin were found to inhibit SARS-CoV-2 induced CPE in Vero cells at concentrations that are clinically achievable. Additional studies may be required to further characterize the inhibitions of CPE and the possible mechanisms.
Collapse
Affiliation(s)
- Shaibu Oricha Bello
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
- Nigerian COVID-19 Research Coalition, Nigerian Institute of Medical Research Institute, Abuja, Nigeria
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria
- *Correspondence: Shaibu Oricha Bello,
| | - Abdulmajeed Yunusa
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Adamu Ahmed Adamu
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Mustapha Umar Imam
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria
- Department of Medical Biochemistry, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Muhammad Bashir Bello
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria
- Department of veterinary Microbiology, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Abdulmalik Shuaibu
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria
- Department of veterinary Microbiology, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Ehimario Uche Igumbor
- Nigerian COVID-19 Research Coalition, Nigerian Institute of Medical Research Institute, Abuja, Nigeria
- School of Public Health, University of the Western Cape, Cape Town, South Africa
| | - Zaiyad Garba Habib
- Nigerian COVID-19 Research Coalition, Nigerian Institute of Medical Research Institute, Abuja, Nigeria
- Department of Medicine, University of Abuja Teaching Hospital, Gwagwalada, Abuja, Nigeria
| | - Mustapha Ayodele Popoola
- Nigerian COVID-19 Research Coalition, Nigerian Institute of Medical Research Institute, Abuja, Nigeria
| | - Chinwe Lucia Ochu
- Nigerian COVID-19 Research Coalition, Nigerian Institute of Medical Research Institute, Abuja, Nigeria
- Nigerian Centre for Disease Control and Prevention, Abuja, Nigeria
| | - Aishatu Yahaya Bello
- Department of Clinical pharmacy and Pharmacy Practice, Faculty of Pharmaceutical sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Yusuf Yahaya Deeni
- Nigerian COVID-19 Research Coalition, Nigerian Institute of Medical Research Institute, Abuja, Nigeria
- Department of Microbiology and Biotechnology, Federal University of Dutse, Dutse, Nigeria
- Centre for Environmental and Public Health Research and Development, Kano, Nigeria
| | - Ifeoma Okoye
- University of Nigeria Centre for Clinical Trials, University of Nigeria Teaching Hospital, Enugu, Ituku Ozalla, Nigeria
| |
Collapse
|
45
|
Gedda MR, Danaher P, Shao L, Ongkeko M, Chen L, Dinh A, Thioye Sall M, Reddy OL, Bailey C, Wahba A, Dzekunova I, Somerville R, De Giorgi V, Jin P, West K, Panch SR, Stroncek DF. Longitudinal transcriptional analysis of peripheral blood leukocytes in COVID-19 convalescent donors. J Transl Med 2022; 20:587. [PMID: 36510222 PMCID: PMC9742656 DOI: 10.1186/s12967-022-03751-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND SARS-CoV2 can induce a strong host immune response. Many studies have evaluated antibody response following SARS-CoV2 infections. This study investigated the immune response and T cell receptor diversity in people who had recovered from SARS-CoV2 infection (COVID-19). METHODS Using the nCounter platform, we compared transcriptomic profiles of 162 COVID-19 convalescent donors (CCD) and 40 healthy donors (HD). 69 of the 162 CCDs had two or more time points sampled. RESULTS After eliminating the effects of demographic factors, we found extensive differential gene expression up to 241 days into the convalescent period. The differentially expressed genes were involved in several pathways, including virus-host interaction, interleukin and JAK-STAT signaling, T-cell co-stimulation, and immune exhaustion. A subset of 21 CCD samples was found to be highly "perturbed," characterized by overexpression of PLAU, IL1B, NFKB1, PLEK, LCP2, IRF3, MTOR, IL18BP, RACK1, TGFB1, and others. In addition, one of the clusters, P1 (n = 8) CCD samples, showed enhanced TCR diversity in 7 VJ pairs (TRAV9.1_TCRVA_014.1, TRBV6.8_TCRVB_016.1, TRAV7_TCRVA_008.1, TRGV9_ENST00000444775.1, TRAV18_TCRVA_026.1, TRGV4_ENST00000390345.1, TRAV11_TCRVA_017.1). Multiplexed cytokine analysis revealed anomalies in SCF, SCGF-b, and MCP-1 expression in this subset. CONCLUSIONS Persistent alterations in inflammatory pathways and T-cell activation/exhaustion markers for months after active infection may help shed light on the pathophysiology of a prolonged post-viral syndrome observed following recovery from COVID-19 infection. Future studies may inform the ability to identify druggable targets involving these pathways to mitigate the long-term effects of COVID-19 infection. TRIAL REGISTRATION https://clinicaltrials.gov/ct2/show/NCT04360278 Registered April 24, 2020.
Collapse
Affiliation(s)
- Mallikarjuna R. Gedda
- grid.94365.3d0000 0001 2297 5165Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA ,grid.280030.90000 0001 2150 6316Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Patrick Danaher
- grid.510973.90000 0004 5375 2863NanoString Technologies, Seattle, WA 98109 USA
| | - Lipei Shao
- grid.94365.3d0000 0001 2297 5165Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| | - Martin Ongkeko
- grid.94365.3d0000 0001 2297 5165Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| | - Leonard Chen
- grid.94365.3d0000 0001 2297 5165Blood Services Section, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| | - Anh Dinh
- grid.94365.3d0000 0001 2297 5165Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| | - Mame Thioye Sall
- grid.94365.3d0000 0001 2297 5165Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| | - Opal L. Reddy
- grid.94365.3d0000 0001 2297 5165Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| | - Christina Bailey
- grid.510973.90000 0004 5375 2863NanoString Technologies, Seattle, WA 98109 USA
| | - Amy Wahba
- grid.510973.90000 0004 5375 2863NanoString Technologies, Seattle, WA 98109 USA
| | - Inna Dzekunova
- grid.510973.90000 0004 5375 2863NanoString Technologies, Seattle, WA 98109 USA
| | - Robert Somerville
- grid.94365.3d0000 0001 2297 5165Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| | - Valeria De Giorgi
- grid.94365.3d0000 0001 2297 5165Infectious Disease Section, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| | - Ping Jin
- grid.94365.3d0000 0001 2297 5165Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| | - Kamille West
- grid.94365.3d0000 0001 2297 5165Blood Services Section, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| | - Sandhya R. Panch
- grid.94365.3d0000 0001 2297 5165Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA ,grid.34477.330000000122986657Department of Medicine (Hematology Division), University of Washington/Fred Hutchinson Cancer Center, Seattle, WA 98109 USA
| | - David F. Stroncek
- grid.94365.3d0000 0001 2297 5165Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
46
|
Lei S, Chen X, Wu J, Duan X, Men K. Small molecules in the treatment of COVID-19. Signal Transduct Target Ther 2022; 7:387. [PMID: 36464706 PMCID: PMC9719906 DOI: 10.1038/s41392-022-01249-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 12/11/2022] Open
Abstract
The outbreak of COVID-19 has become a global crisis, and brought severe disruptions to societies and economies. Until now, effective therapeutics against COVID-19 are in high demand. Along with our improved understanding of the structure, function, and pathogenic process of SARS-CoV-2, many small molecules with potential anti-COVID-19 effects have been developed. So far, several antiviral strategies were explored. Besides directly inhibition of viral proteins such as RdRp and Mpro, interference of host enzymes including ACE2 and proteases, and blocking relevant immunoregulatory pathways represented by JAK/STAT, BTK, NF-κB, and NLRP3 pathways, are regarded feasible in drug development. The development of small molecules to treat COVID-19 has been achieved by several strategies, including computer-aided lead compound design and screening, natural product discovery, drug repurposing, and combination therapy. Several small molecules representative by remdesivir and paxlovid have been proved or authorized emergency use in many countries. And many candidates have entered clinical-trial stage. Nevertheless, due to the epidemiological features and variability issues of SARS-CoV-2, it is necessary to continue exploring novel strategies against COVID-19. This review discusses the current findings in the development of small molecules for COVID-19 treatment. Moreover, their detailed mechanism of action, chemical structures, and preclinical and clinical efficacies are discussed.
Collapse
Affiliation(s)
- Sibei Lei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xiaohua Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jieping Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
47
|
Han Y, Tan L, Zhou T, Yang L, Carrau L, Lacko LA, Saeed M, Zhu J, Zhao Z, Nilsson-Payant BE, Lira Neto FT, Cahir C, Giani AM, Chai JC, Li Y, Dong X, Moroziewicz D, Paull D, Zhang T, Koo S, Tan C, Danziger R, Ba Q, Feng L, Chen Z, Zhong A, Wise GJ, Xiang JZ, Wang H, Schwartz RE, tenOever BR, Noggle SA, Rice CM, Qi Q, Evans T, Chen S. A human iPSC-array-based GWAS identifies a virus susceptibility locus in the NDUFA4 gene and functional variants. Cell Stem Cell 2022; 29:1475-1490.e6. [PMID: 36206731 PMCID: PMC9550219 DOI: 10.1016/j.stem.2022.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 06/09/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022]
Abstract
Population-based studies to identify disease-associated risk alleles typically require samples from a large number of individuals. Here, we report a human-induced pluripotent stem cell (hiPSC)-based screening strategy to link human genetics with viral infectivity. A genome-wide association study (GWAS) identified a cluster of single-nucleotide polymorphisms (SNPs) in a cis-regulatory region of the NDUFA4 gene, which was associated with susceptibility to Zika virus (ZIKV) infection. Loss of NDUFA4 led to decreased sensitivity to ZIKV, dengue virus, and SARS-CoV-2 infection. Isogenic hiPSC lines carrying non-risk alleles of SNPs or deletion of the cis-regulatory region lower sensitivity to viral infection. Mechanistic studies indicated that loss/reduction of NDUFA4 causes mitochondrial stress, which leads to the leakage of mtDNA and thereby upregulation of type I interferon signaling. This study provides proof-of-principle for the application of iPSC arrays in GWAS and identifies NDUFA4 as a previously unknown susceptibility locus for viral infection.
Collapse
Affiliation(s)
- Yuling Han
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Lei Tan
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA; Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ting Zhou
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA; Stem Cell Research Facility, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Liuliu Yang
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Lucia Carrau
- Department of Microbiology, New York University, 430 E 29th Street, New York, NY 10016, USA
| | - Lauretta A Lacko
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Mohsan Saeed
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA; National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
| | - Jiajun Zhu
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Zeping Zhao
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | | | | | - Clare Cahir
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA; The Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
| | - Alice Maria Giani
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Jin Chou Chai
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Yang Li
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Xue Dong
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Dorota Moroziewicz
- The New York Stem Cell Foundation Research Institute, 619 West 54th Street, 3rd Floor, New York, NY 10019, USA
| | - Daniel Paull
- The New York Stem Cell Foundation Research Institute, 619 West 54th Street, 3rd Floor, New York, NY 10019, USA
| | - Tuo Zhang
- Genomic Resource Core Facility, Weill Cornell Medical College, New York, NY 10065, USA
| | - Soyeon Koo
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA; Weill Cornell Neuroscience PhD Program, New York, NY, USA
| | - Christina Tan
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Ron Danziger
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Qian Ba
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingling Feng
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA; Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Zhengming Chen
- Department of Population Health Sciences, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Aaron Zhong
- Stem Cell Research Facility, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Gilbert J Wise
- Department of Urology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Jenny Z Xiang
- Genomic Resource Core Facility, Weill Cornell Medical College, New York, NY 10065, USA
| | - Hui Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Benjamin R tenOever
- Department of Microbiology, New York University, 430 E 29th Street, New York, NY 10016, USA
| | - Scott A Noggle
- The New York Stem Cell Foundation Research Institute, 619 West 54th Street, 3rd Floor, New York, NY 10019, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Qibin Qi
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
48
|
Frere JJ, Serafini RA, Pryce KD, Zazhytska M, Oishi K, Golynker I, Panis M, Zimering J, Horiuchi S, Hoagland DA, Møller R, Ruiz A, Kodra A, Overdevest JB, Canoll PD, Borczuk AC, Chandar V, Bram Y, Schwartz R, Lomvardas S, Zachariou V, tenOever BR. SARS-CoV-2 infection in hamsters and humans results in lasting and unique systemic perturbations after recovery. Sci Transl Med 2022; 14:eabq3059. [PMID: 35857629 PMCID: PMC9210449 DOI: 10.1126/scitranslmed.abq3059] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/27/2022] [Indexed: 12/14/2022]
Abstract
The host response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can result in prolonged pathologies collectively referred to as post-acute sequalae of COVID-19 (PASC) or long COVID. To better understand the mechanism underlying long COVID biology, we compared the short- and long-term systemic responses in the golden hamster after either SARS-CoV-2 or influenza A virus (IAV) infection. Results demonstrated that SARS-CoV-2 exceeded IAV in its capacity to cause permanent injury to the lung and kidney and uniquely affected the olfactory bulb (OB) and olfactory epithelium (OE). Despite a lack of detectable infectious virus, the OB and OE demonstrated myeloid and T cell activation, proinflammatory cytokine production, and an interferon response that correlated with behavioral changes extending a month after viral clearance. These sustained transcriptional changes could also be corroborated from tissue isolated from individuals who recovered from COVID-19. These data highlight a molecular mechanism for persistent COVID-19 symptomology and provide a small animal model to explore future therapeutics.
Collapse
Affiliation(s)
- Justin J. Frere
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Microbiology, New York University, Grossman School of Medicine, New York, NY 10016
| | - Randal A. Serafini
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Kerri D. Pryce
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Marianna Zazhytska
- Mortimer B. Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY 10027
| | - Kohei Oishi
- Department of Microbiology, New York University, Grossman School of Medicine, New York, NY 10016
| | - Ilona Golynker
- Department of Microbiology, New York University, Grossman School of Medicine, New York, NY 10016
| | - Maryline Panis
- Department of Microbiology, New York University, Grossman School of Medicine, New York, NY 10016
| | - Jeffrey Zimering
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Shu Horiuchi
- Department of Microbiology, New York University, Grossman School of Medicine, New York, NY 10016
| | | | - Rasmus Møller
- Department of Microbiology, New York University, Grossman School of Medicine, New York, NY 10016
| | - Anne Ruiz
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Albana Kodra
- Mortimer B. Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY 10027
| | - Jonathan B. Overdevest
- Department of Otolaryngology- Head and Neck Surgery, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Peter D. Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Alain C. Borczuk
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021
| | - Vasuretha Chandar
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY 10021
| | - Yaron Bram
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY 10021
| | - Robert Schwartz
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY 10021
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021
| | - Stavros Lomvardas
- Mortimer B. Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY 10027
| | - Venetia Zachariou
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Benjamin R. tenOever
- Department of Microbiology, New York University, Grossman School of Medicine, New York, NY 10016
| |
Collapse
|
49
|
Bisom TC, White LA, Lanchy JM, Lodmell JS. RIOK3 and Its Alternatively Spliced Isoform Have Disparate Roles in the Innate Immune Response to Rift Valley Fever Virus (MP12) Infection. Viruses 2022; 14:2064. [PMID: 36146870 PMCID: PMC9502082 DOI: 10.3390/v14092064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 12/14/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a pathogenic human and livestock RNA virus that poses a significant threat to public health and biosecurity. During RVFV infection, the atypical kinase RIOK3 plays important roles in the innate immune response. Although its exact functions in innate immunity are not completely understood, RIOK3 has been shown to be necessary for mounting an antiviral interferon (IFN) response to RVFV in epithelial cells. Furthermore, after immune stimulation, the splicing pattern for RIOK3 mRNA changes markedly, and RIOK3's dominant alternatively spliced isoform, RIOK3 X2, exhibits an opposite effect on the IFN response by dampening it. Here, we further investigate the roles of RIOK3 and its spliced isoform in other innate immune responses to RVFV, namely the NFκB-mediated inflammatory response. We find that while RIOK3 is important for negatively regulating this inflammatory pathway, its alternatively spliced isoform, RIOK3 X2, stimulates it. Overall, these data demonstrate that both RIOK3 and its X2 isoform have unique roles in separate innate immune pathways that respond to RVFV infection.
Collapse
Affiliation(s)
- Thomas C. Bisom
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59801, USA
| | - Luke A. White
- Division of Biological Sciences, University of Montana, Missoula, MT 59801, USA
| | - Jean-Marc Lanchy
- Division of Biological Sciences, University of Montana, Missoula, MT 59801, USA
| | - J. Stephen Lodmell
- Division of Biological Sciences, University of Montana, Missoula, MT 59801, USA
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59801, USA
| |
Collapse
|
50
|
Laurent P, Yang C, Rendeiro AF, Nilsson-Payant BE, Carrau L, Chandar V, Bram Y, tenOever BR, Elemento O, Ivashkiv LB, Schwartz RE, Barrat FJ. Sensing of SARS-CoV-2 by pDCs and their subsequent production of IFN-I contribute to macrophage-induced cytokine storm during COVID-19. Sci Immunol 2022; 7:eadd4906. [PMID: 36083891 PMCID: PMC9853436 DOI: 10.1126/sciimmunol.add4906] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Lung-infiltrating macrophages create a marked inflammatory milieu in a subset of patients with COVID-19 by producing a cytokine storm, which correlates with increased lethality. However, these macrophages are largely not infected by SARS-CoV-2, so the mechanism underlying their activation in the lung is unclear. Type I interferons (IFN-I) contribute to protecting the host against SARS-CoV-2 but may also have some deleterious effect, and the source of IFN-I in the lungs of infected patients is not well defined. Plasmacytoid dendritic cells (pDCs), a key cell type involved in antiviral responses, can produce IFN-I in response to SARS-CoV-2. We observed the infiltration of pDCs in the lungs of SARS-CoV-2-infected patients, which correlated with strong IFN-I signaling in lung macrophages. In patients with severe COVID-19, lung macrophages expressed a robust inflammatory signature, which correlated with persistent IFN-I signaling at the single-cell level. Hence, we observed the uncoupling in the kinetics of the infiltration of pDCs in the lungs and the associated IFN-I signature, with the cytokine storm in macrophages. We observed that pDCs were the dominant IFN-α-producing cells in response to the virus in the blood, whereas macrophages produced IFN-α only when in physical contact with infected epithelial cells. We also showed that IFN-α produced by pDCs, after the sensing of SARS-CoV-2 by TLR7, mediated changes in macrophages at both transcriptional and epigenetic levels, which favored their hyperactivation by environmental stimuli. Together, these data indicate that the priming of macrophages can result from the response by pDCs to SARS-CoV-2, leading to macrophage activation in patients with severe COVID-19.
Collapse
Affiliation(s)
- Paôline Laurent
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - Chao Yang
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - André F. Rendeiro
- Institute for Computational Biomedicine and Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Benjamin E. Nilsson-Payant
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Ave., New York, NY 10029, USA
- Department of Microbiology, New York University, 430 E 29th Street, New York, NY 10016, USA
| | - Lucia Carrau
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Ave., New York, NY 10029, USA
- Department of Microbiology, New York University, 430 E 29th Street, New York, NY 10016, USA
| | - Vasuretha Chandar
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yaron Bram
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Benjamin R. tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Ave., New York, NY 10029, USA
- Department of Microbiology, New York University, 430 E 29th Street, New York, NY 10016, USA
| | - Olivier Elemento
- Institute for Computational Biomedicine and Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- WorldQuant Initiative for Quantitative Prediction and Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY 10029, USA
- Department of Medicine, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA
| | - Lionel B. Ivashkiv
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA
- Department of Medicine, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA
| | - Robert E. Schwartz
- Department of Medicine, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Franck J. Barrat
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| |
Collapse
|