1
|
Budicini MR, Rodriguez-Irizarry VJ, Maples RW, Pfeiffer JK. Murine norovirus mutants adapted to replicate in human cells reveal a post-entry restriction. J Virol 2024; 98:e0004724. [PMID: 38651898 PMCID: PMC11092334 DOI: 10.1128/jvi.00047-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024] Open
Abstract
RNA viruses lack proofreading in their RNA polymerases and therefore exist as genetically diverse populations. By exposing these diverse viral populations to selective pressures, viruses with mutations that confer fitness advantages can be enriched. To examine factors important for viral tropism and host restriction, we passaged murine norovirus (MNV) in a human cell line, HeLa cells, to select mutant viruses with increased fitness in non-murine cells. A major determinant of host range is expression of the MNV receptor CD300lf on mouse cells, but additional host factors may limit MNV replication in human cells. We found that viruses passaged six times in HeLa cells had enhanced replication compared with the parental virus. The passaged viruses had several mutations throughout the viral genome, which were primarily located in the viral non-structural coding regions. Although viral attachment was not altered for the passaged viruses, their replication was higher than the parental virus when the entry was bypassed, suggesting that the mutant viruses overcame a post-entry block in human cells. Three mutations in the viral NS1 protein were sufficient for enhanced post-entry replication in human cells. We found that the human cell-adapted MNV variants had reduced fitness in murine BV2 cells and infected mice, with reduced viral titers. These results suggest a fitness tradeoff, where increased fitness in a non-native host cell reduces fitness in a natural host environment. Overall, this work suggests that MNV tropism is determined by the presence of not only the viral receptor but also post-entry factors. IMPORTANCE Viruses infect specific species and cell types, which is dictated by the expression of host factors required for viral entry as well as downstream replication steps. Murine norovirus (MNV) infects mouse cells, but not human cells. However, human cells expressing the murine CD300lf receptor support MNV replication, suggesting that receptor expression is a major determinant of MNV tropism. To determine whether other factors influence MNV tropism, we selected for variants with enhanced replication in human cells. We identified mutations that enhance MNV replication in human cells and demonstrated that these mutations enhance infection at a post-entry replication step. Therefore, MNV infection of human cells is restricted at both entry and post-entry stages. These results shed new light on factors that influence viral tropism and host range.
Collapse
Affiliation(s)
- Melissa R. Budicini
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Robert W. Maples
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Julie K. Pfeiffer
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
2
|
Budicini MR, Rodriguez-Irizarry VJ, Maples RW, Pfeiffer JK. Murine norovirus mutants adapted to replicate in human cells reveal a post-entry restriction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575274. [PMID: 38260699 PMCID: PMC10802625 DOI: 10.1101/2024.01.11.575274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
RNA viruses lack proofreading in their RNA polymerases and therefore exist as genetically diverse populations. By exposing these diverse viral populations to selective pressures, viruses with mutations that confer fitness advantages can be enriched. To examine factors important for viral tropism and host restriction, we passaged murine norovirus (MNV) in a human cell line, HeLa cells, to select for mutant viruses with increased fitness in non-murine cells. A major determinant of host range is expression of the MNV receptor CD300lf on mouse cells, but additional host factors may limit MNV replication in human cells. We found that viruses passaged six times in HeLa cells had enhanced replication compared with the parental virus. The passaged viruses had several mutations throughout the viral genome, which were primarily located in the viral non-structural coding regions. While viral attachment was not altered for the passaged viruses, their replication was higher than the parental virus when entry was bypassed, suggesting the mutant viruses overcame a post-entry block in human cells. Three mutations in the viral NS1 protein were sufficient for enhanced post-entry replication in human cells. We found that the human cell-adapted MNV variants had reduced fitness in mouse BV2 cells. Although the mutant viruses had increased fitness in HeLa cells, they did not have increased fitness in mice. Overall, this work suggests that MNV tropism is not only determined by the presence of the viral receptor but also post-entry factors.
Collapse
Affiliation(s)
- Melissa R. Budicini
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Robert W. Maples
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Julie K. Pfeiffer
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
3
|
Van Damme P, Pintó RM, Feng Z, Cui F, Gentile A, Shouval D. Hepatitis A virus infection. Nat Rev Dis Primers 2023; 9:51. [PMID: 37770459 DOI: 10.1038/s41572-023-00461-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 09/30/2023]
Abstract
Hepatitis A is a vaccine-preventable infection caused by the hepatitis A virus (HAV). Over 150 million new infections of hepatitis A occur annually. HAV causes an acute inflammatory reaction in the liver that usually resolves spontaneously without chronic sequelae. However, up to 20% of patients experience a prolonged or relapsed course and <1% experience acute liver failure. Host factors, such as immunological status, age, pregnancy and underlying hepatic diseases, can affect the severity of disease. Anti-HAV IgG antibodies produced in response to HAV infection persist for life and protect against re-infection; vaccine-induced antibodies against hepatitis A confer long-term protection. The WHO recommends vaccination for individuals at higher risk of infection and/or severe disease in countries with very low and low hepatitis A virus endemicity, and universal childhood vaccination in intermediate endemicity countries. To date, >25 countries worldwide have implemented such programmes, resulting in a reduction in the incidence of HAV infection. Improving hygiene and sanitation, rapid identification of outbreaks and fast and accurate intervention in outbreak control are essential to reducing HAV transmission.
Collapse
Affiliation(s)
- Pierre Van Damme
- Centre for the Evaluation of Vaccination, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.
| | - Rosa M Pintó
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Zongdi Feng
- Centre for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Fuqiang Cui
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Angela Gentile
- Department of Epidemiology, Hospital de Niños Ricardo Gutierrez, University of Buenos Aires, Buenos Aires, Argentina
| | - Daniel Shouval
- Institute of Hepatology, Hadassah-Hebrew University Hospital, Jerusalem, Israel
| |
Collapse
|
4
|
Karami A, El Fihry R, Haddaji A, Jadid FZ, Zaidane I, Chihab H, Ouladlahsen A, Tahiri M, Pineau P, Akarid K, Benjelloun S, Ezzikouri S. Epidemiological characteristics of acute hepatitis A, 2013-2016: a cross-sectional study in Morocco. Infect Dis (Lond) 2023; 55:625-634. [PMID: 37368360 DOI: 10.1080/23744235.2023.2228405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Hepatitis A virus (HAV) is the common cause of acute hepatitis worldwide. Indeed, hepatitis A is endemic in developing countries such in Morocco and most residents are exposed in childhood. The characterisation of circulating strains of HAV remains crucial to understand the virological evolution and geo-temporal characteristics, which are essential for controlling infections and outbreaks. The purpose of the current study was the detection and characterisation of HAV strains circulating in Morocco by performing serological test, RT-PCR, sequencing and phylogenetic analysis. METHODS In this cross-sectional study, 618 suspected acute hepatitis cases were examined by Architect HAV abIgM. Of the 162 positives, 64 underwent RNA extraction. None of the suspected cases was immune to HAV and none of them had received a blood transfusion. Samples found positive by RT-PCR using primers targeting the VP1/VP2A junction and the VP1/VP3 capsid region of HAV were subjected to sequencing and phylogenetic analyses. RESULTS HAV Acute infection rate was 26.2% [95% CI, 22.8-29.9], while viraemia reached 45% (29/64) after amplification of the VP3/VP1 region. Phylogenetic analysis of the VP1/2A segment revealed the presence of sub-genotypes IA and IB. Eighty-seven percent of the strains belonged to the subgenotype IA, while twelve percent to IB subgenotype. CONCLUSION This first molecular study of acute hepatitis A in Morocco provided information about genetic diversity of HAV, revealing the co-circulating of only two subgenotypes (IA and IB). Notably, subgenotype IA was found to be the predominant subgenotype in Morocco.
Collapse
Affiliation(s)
- Adnane Karami
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
- Santé et Environnement, Faculté des Sciences Aïn Chock, Casablanca, Morocco
| | - Raouia El Fihry
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
- Santé et Environnement, Faculté des Sciences Aïn Chock, Casablanca, Morocco
| | - Asmaa Haddaji
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Fatima-Zahra Jadid
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | | | - Hajar Chihab
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Ahd Ouladlahsen
- Service des Maladies Infectieuses, CHU Ibn Rochd, Casablanca, Morocco
- Faculté de médecine et de pharmacie, Université Hassan II, Casablanca, Morocco
| | - Mohamed Tahiri
- Faculté de médecine et de pharmacie, Université Hassan II, Casablanca, Morocco
- Service d'Hépato-Gastro-Entérologie, CHU Ibn Rochd, Casablanca, Morocco
| | - Pascal Pineau
- Unité "Organisation Nucléaire et Oncogenèse", INSERM U993, Institut Pasteur, Paris, France
| | - Khadija Akarid
- Santé et Environnement, Faculté des Sciences Aïn Chock, Casablanca, Morocco
| | - Soumaya Benjelloun
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Sayeh Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| |
Collapse
|
5
|
Ayouni K, Chouikha A, Khamessi O, Touzi H, Hammemi W, Triki H. Evidence of Circulation of Several HAV Genetic Variants and Emergence of Potential Antigenic Variants in an Endemo-Epidemic Country before Vaccine Introduction. Viruses 2021; 13:v13061056. [PMID: 34204862 PMCID: PMC8227776 DOI: 10.3390/v13061056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 11/21/2022] Open
Abstract
Similar to several other countries in the world, the epidemiology of hepatitis A virus changed from high to intermediate endemicity level in Tunisia, which led to the occurrence of outbreaks. This study aimed to determine the genetic and antigenic variability of HAV strains circulating in Tunisia during the last few years. Genotyping using complete VP1 gene and VP1-2A junction confirmed the predominance of genotype IA, with co-circulation of several genetic and antigenic variants. Phylogenetic analysis including Tunisian and strains from other regions of the world showed the presence of at least two IA-variants within IA subgenotype. Amino-acid analysis showed several mutations in or close to epitope regions in the VP1-region. This study provides a baseline on the genetic and antigenic variability of HAV circulating strains before the introduction of vaccination into the national immunization schedule.
Collapse
Affiliation(s)
- Kaouther Ayouni
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis 1002, Tunisia; (H.T.); (W.H.); (H.T.)
- Faculty of Sciences of Tunis, University of Tunis El Manar, Campus Universitaire, El Manar, Tunis 2092, Tunisia
- Correspondence: (K.A.); (A.C.); Tel.: +216-26-199-695 (K.A.); +216-98-528-682 (A.C.)
| | - Anissa Chouikha
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis 1002, Tunisia; (H.T.); (W.H.); (H.T.)
- Correspondence: (K.A.); (A.C.); Tel.: +216-26-199-695 (K.A.); +216-98-528-682 (A.C.)
| | - Oussema Khamessi
- Institut Pasteur de Tunis, Université de Tunis El Manar, LR11IPT08 Venins et Biomolecules Therapeutiques, Tunis 1002, Tunisia;
| | - Henda Touzi
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis 1002, Tunisia; (H.T.); (W.H.); (H.T.)
| | - Walid Hammemi
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis 1002, Tunisia; (H.T.); (W.H.); (H.T.)
| | - Henda Triki
- Laboratory of Clinical Virology, WHO Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar (UTM), Tunis 1002, Tunisia; (H.T.); (W.H.); (H.T.)
- Faculty of Medicine of Tunis, University of Tunis El Manar, 15 Rue Djebel Lakhdhar, La Rabta, Tunis 1007, Tunisia
| |
Collapse
|
6
|
Pintó RM, Pérez-Rodríguez FJ, Costafreda MI, Chavarria-Miró G, Guix S, Ribes E, Bosch A. Pathogenicity and virulence of hepatitis A virus. Virulence 2021; 12:1174-1185. [PMID: 33843464 PMCID: PMC8043188 DOI: 10.1080/21505594.2021.1910442] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Hepatitis A is an acute infection of the liver, which is mostly asymptomatic in children and increases the severity with age. Although in most patients the infection resolves completely, in a few of them it may follow a prolonged or relapsed course or even a fulminant form. The reason for these different outcomes is unknown, but it is generally accepted that host factors such as the immunological status, age and the occurrence of underlaying hepatic diseases are the main determinants of the severity. However, it cannot be ruled out that some virus traits may also contribute to the severe clinical outcomes. In this review, we will analyze which genetic determinants of the virus may determine virulence, in the context of a paradigmatic virus in terms of its genomic, molecular, replicative, and evolutionary features.
Collapse
Affiliation(s)
- Rosa M Pintó
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, and Institute of Nutrition and Safety, University of Barcelona, Barcelona, Spain
| | - Francisco-Javier Pérez-Rodríguez
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, and Institute of Nutrition and Safety, University of Barcelona, Barcelona, Spain.,Present Address: Division of Infectious Diseases, Laboratory of Virology, University of Geneva Hospitals, Geneva, Switzerland
| | - Maria-Isabel Costafreda
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, and Institute of Nutrition and Safety, University of Barcelona, Barcelona, Spain
| | - Gemma Chavarria-Miró
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, and Institute of Nutrition and Safety, University of Barcelona, Barcelona, Spain
| | - Susana Guix
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, and Institute of Nutrition and Safety, University of Barcelona, Barcelona, Spain
| | - Enric Ribes
- Enteric Virus Laboratory, Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
| | - Albert Bosch
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, and Institute of Nutrition and Safety, University of Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
Oladunni FS, Park JG, Chiem K, Ye C, Pipenbrink M, Walter MR, Kobie J, Martinez-Sobrido L. Selection, identification, and characterization of SARS-CoV-2 monoclonal antibody resistant mutants. J Virol Methods 2021; 290:114084. [PMID: 33513380 PMCID: PMC7837211 DOI: 10.1016/j.jviromet.2021.114084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/10/2021] [Accepted: 01/23/2021] [Indexed: 12/17/2022]
Abstract
The use of monoclonal neutralizing antibodies (mNAbs) is being actively pursued as a viable intervention for the treatment of Severe Acute Respiratory Syndrome CoV-2 (SARS-CoV-2) infection and associated coronavirus disease 2019 (COVID-19). While highly potent mNAbs have great therapeutic potential, the ability of the virus to mutate and escape recognition and neutralization of mNAbs represents a potential problem in their use for the therapeutic management of SARS-CoV-2. Studies investigating natural or mNAb-induced antigenic variability in the receptor binding domain (RBD) of SARS-CoV-2 Spike (S) glycoprotein, and their effects on viral fitness are still rudimentary. In this manuscript we described experimental approaches for the selection, identification, and characterization of SARS-CoV-2 monoclonal antibody resistant mutants (MARMs) in cultured cells. The ability to study SARS-CoV-2 antigenic drift under selective immune pressure by mNAbs is important for the optimal implementation of mNAbs for the therapeutic management of COVID-19. This will help to identify essential amino acid residues in the viral S glycoprotein required for mNAb-mediated inhibition of viral infection, to predict potential natural drift variants that could emerge upon implementation of therapeutic mNAbs, as well as vaccine prophylactic treatments for SARS-CoV-2 infection. Additionally, it will also enable the assessment of MARM viral fitness and its potential to induce severe infection and associated COVID-19 disease.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/pharmacology
- Antibodies, Neutralizing/therapeutic use
- Antigenic Variation/genetics
- Binding Sites/genetics
- Binding Sites/immunology
- COVID-19/virology
- Chlorocebus aethiops
- Drug Resistance, Viral/genetics
- Humans
- Phenotype
- SARS-CoV-2/drug effects
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- Selection, Genetic
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Vero Cells
- COVID-19 Drug Treatment
Collapse
Affiliation(s)
- Fatai S Oladunni
- Texas Biomedical Research Institute, San Antonio, TX, USA; Department of Veterinary Microbiology, University of Ilorin, Nigeria
| | - Jun-Gyu Park
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Kevin Chiem
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Michael Pipenbrink
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mark R Walter
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James Kobie
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, USA
| | | |
Collapse
|
8
|
Fuentes C, Pérez-Rodríguez FJ, Sabrià A, Beguiristain N, Pintó RM, Guix S, Bosch A. Inactivation of Hepatitis A Virus and Human Norovirus in Clams Subjected to Heat Treatment. Front Microbiol 2021; 11:578328. [PMID: 33510715 PMCID: PMC7835484 DOI: 10.3389/fmicb.2020.578328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/17/2020] [Indexed: 02/01/2023] Open
Abstract
Bivalve mollusk contamination by enteric viruses, especially human noroviruses (HuNoV) and hepatitis A virus (HAV), is a problem with health and economic implications. The aim of the study was the evaluation of the effect of heat treatment in clams (Tawera gayi) experimentally contaminated with HuNoV using a PMA-viability RTqPCR assay to minimize measurement of non-infectious viruses, and used HAV as a model to estimate infectivity loss. Spiked clams were immersed in water at 90°C to ensure that internal meat temperature was maintained above 90°C for at least 5 min. The treatment resulted in >3.89 ± 0.24 log10 TCID50/g reduction of infectious HAV, confirming inactivation. For HuNoV, RTqPCR assays showed log10 reductions of 2.96 ± 0.79 and 2.56 ± 0.56, for GI and GII, respectively, and the use of PMA resulted in an additional log10 reduction for GII, providing a better correlation with risk reduction. In the absence of a cell culture system which could be used to determine HuNoV infectivity reduction, a performance criteria based on PMA-RTqPCR log reduction could be used to evaluate food product safety. According to data from this study, heat treatments of clams which cause reductions >3.5 log10 for GII as measured by PMA-RTqPCR assay may be regarded as an acceptable inactivation treatment, and could be set as a performance criterion to test the effectiveness of other time-temperature inactivation processes.
Collapse
Affiliation(s)
- Cristina Fuentes
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA⋅UB), University of Barcelona, Barcelona, Spain
| | - Francisco J. Pérez-Rodríguez
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA⋅UB), University of Barcelona, Barcelona, Spain
| | - Aurora Sabrià
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA⋅UB), University of Barcelona, Barcelona, Spain
| | - Nerea Beguiristain
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA⋅UB), University of Barcelona, Barcelona, Spain
| | - Rosa M. Pintó
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA⋅UB), University of Barcelona, Barcelona, Spain
| | - Susana Guix
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA⋅UB), University of Barcelona, Barcelona, Spain
| | - Albert Bosch
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA⋅UB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Rachida S, Taylor MB. Potentially Infectious Novel Hepatitis A Virus Strains Detected in Selected Treated Wastewater Discharge Sources, South Africa. Viruses 2020; 12:E1468. [PMID: 33352751 PMCID: PMC7765943 DOI: 10.3390/v12121468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 01/26/2023] Open
Abstract
Hepatitis A virus (HAV) is a waterborne pathogen of public health importance. In South Africa (SA), unique HAV subgenotype IB strains have been detected in surface and wastewater samples, as well as on fresh produce at the point of retail. However, due to the use of molecular-based assays, the infectivity of the detected strains was unknown. Considering the potential shift of HAV endemicity from high to intermediate, which could increase the risk of severe symptomatic disease, this study investigated the identity of HAV strains detected before and after viability treatment of selected wastewater discharge samples. For one year, 118 samples consisting of sewage, treated wastewater discharge and downstream dam water were collected from five wastewater treatment plants (WWTP 1, 2, 3, 4 and 5). Unique HAV IB strains were detected in samples from all five WWTPs, with 11 of these strains carrying amino acid mutations at the immunodominant and neutralisation epitopes. A quasispecies dynamic of HAV has also been detected in sewage samples. The subsequent application of viability PCR revealed that potentially infectious HAV strains were discharged from WWTP 1, 2, 4 and 5 into the dam. Therefore, there is a potential risk of HAV exposure to communities using water sources downstream the WWTPs.
Collapse
Affiliation(s)
- Saïd Rachida
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, 0031 Pretoria, South Africa;
| | - Maureen Beatrice Taylor
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, 0031 Pretoria, South Africa;
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, 0002 Pretoria, South Africa
- National Health Laboratory Service, Tshwane Academic Division, 0002 Pretoria, South Africa
| |
Collapse
|
10
|
Enkirch T, Severi E, Vennema H, Thornton L, Dean J, Borg ML, Ciccaglione AR, Bruni R, Christova I, Ngui SL, Balogun K, Němeček V, Kontio M, Takács M, Hettmann A, Korotinska R, Löve A, Avellón A, Muñoz-Chimeno M, de Sousa R, Janta D, Epštein J, Klamer S, Suin V, Aberle SW, Holzmann H, Mellou K, Ederth JL, Sundqvist L, Roque-Afonso AM, Filipović SK, Poljak M, Vold L, Stene-Johansen K, Midgley S, Fischer TK, Faber M, Wenzel JJ, Takkinen J, Leitmeyer K. Improving preparedness to respond to cross-border hepatitis A outbreaks in the European Union/European Economic Area: towards comparable sequencing of hepatitis A virus. Euro Surveill 2019; 24:1800397. [PMID: 31311618 PMCID: PMC6636214 DOI: 10.2807/1560-7917.es.2019.24.28.1800397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 02/18/2019] [Indexed: 12/13/2022] Open
Abstract
IntroductionSequence-based typing of hepatitis A virus (HAV) is important for outbreak detection, investigation and surveillance. In 2013, sequencing was central to resolving a large European Union (EU)-wide outbreak related to frozen berries. However, as the sequenced HAV genome regions were only partly comparable between countries, results were not always conclusive.AimThe objective was to gather information on HAV surveillance and sequencing in EU/European Economic Area (EEA) countries to find ways to harmonise their procedures, for improvement of cross-border outbreak responses.MethodsIn 2014, the European Centre for Disease Prevention and Control (ECDC) conducted a survey on HAV surveillance practices in EU/EEA countries. The survey enquired whether a referral system for confirming primary diagnostics of hepatitis A existed as well as a central collection/storage of hepatitis A cases' samples for typing. Questions on HAV sequencing procedures were also asked. Based on the results, an expert consultation proposed harmonised procedures for cross-border outbreak response, in particular regarding sequencing. In 2016, a follow-up survey assessed uptake of suggested methods.ResultsOf 31 EU/EEA countries, 23 (2014) and 27 (2016) participated. Numbers of countries with central collection and storage of HAV positive samples and of those performing sequencing increased from 12 to 15 and 12 to 14 respectively in 2016, with all countries typing an overlapping fragment of 218 nt. However, variation existed in the sequenced genomic regions and their lengths.ConclusionsWhile HAV sequences in EU/EEA countries are comparable for surveillance, collaboration in sharing and comparing these can be further strengthened.
Collapse
Affiliation(s)
- Theresa Enkirch
- Public Health Agency of Sweden, Solna, Sweden
- European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Ettore Severi
- European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
- Karolinska Institutet, Stockholm, Sweden
| | - Harry Vennema
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Lelia Thornton
- HSE - Health Protection Surveillance Centre, Dublin, Ireland
| | - Jonathan Dean
- National Virus Reference Laboratory, Dublin, Ireland
| | | | | | | | - Iva Christova
- National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | | | - Koye Balogun
- Public Health England (PHE), London, United Kingdom
| | | | - Mia Kontio
- National Institute for Health and Welfare (THL), Helsinki, Finland
| | - Mária Takács
- National Public Health Institute, Budapest, Hungary
| | | | | | - Arthur Löve
- Landspitali- National University Hospital, Reykjavik, Iceland
| | - Ana Avellón
- Carlos III Institute of Health, Madrid, Spain
| | | | - Rita de Sousa
- National Institute of Health Dr. Ricardo Jorge (INSA), Lisbon, Portugal
| | - Denisa Janta
- National Institute of Public Health, Bucharest, Romania
| | | | - Sofieke Klamer
- Scientific Institute of Public Health, Brussels, Belgium
| | - Vanessa Suin
- Sciensano, Directorate Infectious diseases in humans, Brussels, Belgium
| | - Stephan W Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | | | - Kassiani Mellou
- Hellenic Centre for Disease Control and Prevention, Athens, Greece
| | | | | | | | | | - Mario Poljak
- Institute of Microbiology and Immunology, Ljubljana, Slovenia
| | - Line Vold
- Norwegian institute of Public Health, Oslo, Norway
| | | | | | - Thea Kølsen Fischer
- Statens Serum Institut (SSI), Copenhagen, Denmark
- Department of Infectious Diseases and Global Health, University of Southern Denmark, Odense, Denmark
| | - Mirko Faber
- Robert Koch Institute (RKI), Berlin, Germany
| | - Jürgen J Wenzel
- National Reference Laboratory for HAV, Regensburg University Medical Center, Regensburg, Germany
| | - Johanna Takkinen
- European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Katrin Leitmeyer
- European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| |
Collapse
|
11
|
Cao L, Liu P, Yang P, Gao Q, Li H, Sun Y, Zhu L, Lin J, Su D, Rao Z, Wang X. Structural basis for neutralization of hepatitis A virus informs a rational design of highly potent inhibitors. PLoS Biol 2019; 17:e3000229. [PMID: 31039149 PMCID: PMC6493668 DOI: 10.1371/journal.pbio.3000229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/28/2019] [Indexed: 02/05/2023] Open
Abstract
Hepatitis A virus (HAV), an enigmatic and ancient pathogen, is a major causative
agent of acute viral hepatitis worldwide. Although there are effective vaccines,
antivirals against HAV infection are still required, especially during fulminant
hepatitis outbreaks. A more in-depth understanding of the antigenic
characteristics of HAV and the mechanisms of neutralization could aid in the
development of rationally designed antiviral drugs targeting HAV. In this paper,
4 new antibodies—F4, F6, F7, and F9—are reported that potently neutralize HAV at
50% neutralizing concentration values (neut50) ranging from 0.1 nM to
0.85 nM. High-resolution cryo-electron microscopy (cryo-EM) structures of HAV
bound to F4, F6, F7, and F9, together with results of our previous studies on
R10 fragment of antigen binding (Fab)-HAV complex, shed light on the locations
and nature of the epitopes recognized by the 5 neutralizing monoclonal
antibodies (NAbs). All the epitopes locate within the same patch and are highly
conserved. The key structure-activity correlates based on the antigenic sites
have been established. Based on the structural data of the single conserved
antigenic site and key structure-activity correlates, one promising drug
candidate named golvatinib was identified by in silico docking studies.
Cell-based antiviral assays confirmed that golvatinib is capable of blocking HAV
infection effectively with a 50% inhibitory concentration (IC50) of
approximately 1 μM. These results suggest that the single conserved antigenic
site from complete HAV capsid is a good antiviral target and that golvatinib
could function as a lead compound for anti-HAV drug development. Structures of hepatitis A virus in complex with five neutralizing antibodies
reveal a single conserved antigenic site and pinpoint key structure-activity
correlates, allowing in silico screening to identify a potent candidate
inhibitor drug, golvatinib. Hepatitis A virus (HAV) is a unique, hepatotropic human picornavirus that infects
approximately 1.5 million people annually and continues to cause mortality
despite a successful vaccine. There are no licensed therapeutic drugs to date.
Better knowledge of HAV antigenic features and neutralizing mechanisms will
facilitate the development of HAV-targeting antiviral drugs. In this study, we
report 4 potent HAV-specific neutralizing monoclonal antibodies (NAbs), together
with our previous reported R10, that efficiently inhibit HAV infection by
blocking attachment to the host cell. All 5 epitopes are located within the same
patch and are highly conserved across 6 genotypes of human HAV, which suggests a
single antigenic site for HAV, highlighting a prime target for structure-based
drug design. Analysis of complexes with the 5 NAbs with varying neutralizing
activities pinpointed key structure-activity correlates. By using a robust in
silico docking method, one promising inhibitor named golvatinib was successfully
identified from the DrugBank Database. In vitro assays confirmed its ability to
block viral infection and revealed its neutralizing mechanism. Our approach
could be useful in the design of effective drugs for picornavirus
infections.
Collapse
Affiliation(s)
- Lei Cao
- CAS Key Laboratory of Infection and Immunity, CAS Centre for Excellence
in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences,
Beijing, China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan
University, Collaborative Innovation Center for Biotherapy, Chengdu,
China
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese
Academy of Sciences, Beijing, China
| | - Pi Liu
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese
Academy of Sciences, Tianjin, China
| | - Pan Yang
- CAS Key Laboratory of Infection and Immunity, CAS Centre for Excellence
in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences,
Beijing, China
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese
Academy of Sciences, Beijing, China
| | - Qiang Gao
- Sinovac Biotech Co., Ltd., Beijing, China
| | - Hong Li
- Tianjin International Biomedical Joint Research Institute, Tianjin,
China
| | - Yao Sun
- CAS Key Laboratory of Infection and Immunity, CAS Centre for Excellence
in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences,
Beijing, China
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese
Academy of Sciences, Beijing, China
| | - Ling Zhu
- CAS Key Laboratory of Infection and Immunity, CAS Centre for Excellence
in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences,
Beijing, China
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese
Academy of Sciences, Beijing, China
| | - Jianping Lin
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese
Academy of Sciences, Tianjin, China
| | - Dan Su
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan
University, Collaborative Innovation Center for Biotherapy, Chengdu,
China
- * E-mail:
(XW); (ZR); (DS)
| | - Zihe Rao
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese
Academy of Sciences, Beijing, China
- Tianjin International Biomedical Joint Research Institute, Tianjin,
China
- Laboratory of Structural Biology, School of Medicine, Tsinghua
University, Beijing, China
- * E-mail:
(XW); (ZR); (DS)
| | - Xiangxi Wang
- CAS Key Laboratory of Infection and Immunity, CAS Centre for Excellence
in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences,
Beijing, China
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese
Academy of Sciences, Beijing, China
- * E-mail:
(XW); (ZR); (DS)
| |
Collapse
|
12
|
Abstract
Picornaviruses are small, icosahedral, nonenveloped, positive-sense, single-stranded RNA viruses that form one of the largest and most important viral families. Numerous Picornaviridae members pose serious health or agricultural threats, causing diseases such as poliomyelitis, hepatitis A, or foot-and-mouth disease. The antigenic characterization of picornavirus capsids plays an important role in understanding the mechanism of viral neutralization and the conformational changes associated with genome release, and it can point to regions which can be targeted by small-molecule compounds to be developed as antiviral inhibitors. In a recent study, Cao and colleagues applied this strategy to hepatitis A virus (HAV) and used cryo-electron microscopy (cryo-EM) to characterize a well-conserved antigenic site recognized by several monoclonal antibodies. They further used computational approaches to identify a small-molecule drug with a strong inhibitory effect on cell attachment. This Primer explores the implications of a recent structural characterization of picornavirus capsid antigenicity, which points to regions that can be targeted by small-molecule antiviral inhibitors.
Collapse
|
13
|
Sabrià A, Gregori J, Garcia-Cehic D, Guix S, Pumarola T, Manzanares-Laya S, Caylà JA, Bosch A, Quer J, Pintó RM. Evidence for positive selection of hepatitis A virus antigenic variants in vaccinated men-having-sex-with men patients: Implications for immunization policies. EBioMedicine 2018; 39:348-357. [PMID: 30472089 PMCID: PMC6354442 DOI: 10.1016/j.ebiom.2018.11.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 01/23/2023] Open
Abstract
Background A huge outbreak in the men-having-sex-with-men (MSM) has hit Europe during the years 2016–2018. Outbreak control has been hampered by vaccine shortages in many countries, and to minimize their impact, reduction of antigen doses has been implemented. However, these measures may have consequences on the evolution of hepatitis A virus (HAV), leading to the emergence of antigenic variants. Cases in vaccinated MSM patients have been detected in Barcelona, opening the possibility to study HAV evolution under immune pressure. Methods We performed deep-sequencing analysis of ten overlapping fragments covering the complete capsid coding region of HAV. A total of 14578255 reads were obtained and used for the analysis of virus evolution in vaccinated versus non-vaccinated patients. We estimated maximum and minimum mutation frequencies, and Shannon entropy in the quasispecies of each patient. Non-synonymous (NSyn) mutations affecting residues exposed in the capsid surface were located, with respect to epitopes, using the recently described crystal structure of HAV, as an indication of its potential role in escaping to the effect of vaccines. Findings HAV evolution at the quasispecies level, in non-vaccinated and vaccinated patients, revealed higher diversity in epitope-coding regions of the vaccinated group. Although amino acid replacements occurring in and around the epitopes were observed in both groups, their abundance was significantly higher in the quasispecies of vaccinated patients, indicating ongoing processes of fixation. Interpretation Our data suggest positive selection of antigenic variants in some vaccinated patients, raising concerns for new vaccination polices directed to the MSM group.
Collapse
Affiliation(s)
- Aurora Sabrià
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, Institute of Nutrition and Food Safety, Campus Torribera, University of Barcelona, Barcelona, Spain
| | - Josep Gregori
- Liver Unit, Internal Medicine Hospital Vall d'Hebron, Autonomous University of Barcelona, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain; Roche Diagnostics, S.L., Sant Cugat del Vallés, Barcelona, Spain
| | - Damir Garcia-Cehic
- Liver Unit, Internal Medicine Hospital Vall d'Hebron, Autonomous University of Barcelona, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Susana Guix
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, Institute of Nutrition and Food Safety, Campus Torribera, University of Barcelona, Barcelona, Spain
| | - Tomàs Pumarola
- Virology Unit, Microbiology Department, Hospital Vall d'Hebron, Autonomous University of Barcelona, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Sandra Manzanares-Laya
- Epidemiology Service, Public Health Agency of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBEResp) del Instituto de Salud Carlos III, Madrid, Spain
| | - Joan A Caylà
- Epidemiology Service, Public Health Agency of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBEResp) del Instituto de Salud Carlos III, Madrid, Spain
| | - Albert Bosch
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, Institute of Nutrition and Food Safety, Campus Torribera, University of Barcelona, Barcelona, Spain
| | - Josep Quer
- Liver Unit, Internal Medicine Hospital Vall d'Hebron, Autonomous University of Barcelona, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain.
| | - Rosa M Pintó
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, Institute of Nutrition and Food Safety, Campus Torribera, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
14
|
Pintó RM, Pérez-Rodríguez FJ, D'Andrea L, de Castellarnau M, Guix S, Bosch A. Hepatitis A Virus Codon Usage: Implications for Translation Kinetics and Capsid Folding. Cold Spring Harb Perspect Med 2018. [PMID: 29530949 DOI: 10.1101/cshperspect.a031781] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Codon usage bias is universal to all genomes. Hepatitis A virus (HAV) codon usage is highly biased and deoptimized with respect to its host. Accordingly, HAV is unable to induce cellular translational shutoff and its internal ribosome entry site (IRES) is inefficient. Codon usage deoptimization may be seen as a hawk (host cell) versus dove (HAV) game strategy for accessing transfer RNA (tRNA). HAV avoids use of abundant host cell codons and thereby eludes competition for the corresponding tRNAs. Instead, codons that are abundant or rare in cellular messenger RNAs (mRNAs) are used relatively rarely in its genome, although intermediately abundant host cell codons are abundant in the viral genome. Rare codons in the capsid coding region slow down the translation elongation rate, and in doing so intrinsically modulate capsid folding, which is critical to the stability of a virus transmitted through the fecal-oral route. HAV is a paradigmatic example of what has been proposed as a codon usage "code" for protein structure.
Collapse
Affiliation(s)
- Rosa M Pintó
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain.,Enteric Virus Laboratory, Institute of Nutrition and Food Safety, Campus Torribera, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain
| | - Francisco-Javier Pérez-Rodríguez
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain.,Enteric Virus Laboratory, Institute of Nutrition and Food Safety, Campus Torribera, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain
| | - Lucia D'Andrea
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain.,Enteric Virus Laboratory, Institute of Nutrition and Food Safety, Campus Torribera, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain
| | - Montserrat de Castellarnau
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain.,Enteric Virus Laboratory, Institute of Nutrition and Food Safety, Campus Torribera, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain
| | - Susana Guix
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain.,Enteric Virus Laboratory, Institute of Nutrition and Food Safety, Campus Torribera, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain
| | - Albert Bosch
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain.,Enteric Virus Laboratory, Institute of Nutrition and Food Safety, Campus Torribera, University of Barcelona, 08921 Santa Coloma de Gramanet, Spain
| |
Collapse
|
15
|
The effects of codon usage on the formation of secondary structures of nucleocapsid protein of peste des petits ruminants virus. Genes Genomics 2018; 40:905-912. [DOI: 10.1007/s13258-018-0684-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/23/2018] [Indexed: 02/02/2023]
|
16
|
Ma XX, Chang QY, Ma P, Li LJ, Zhou XK, Zhang DR, Li MS, Cao X, Ma ZR. Analyses of nucleotide, codon and amino acids usages between peste des petits ruminants virus and rinderpest virus. Gene 2017; 637:115-123. [PMID: 28947301 DOI: 10.1016/j.gene.2017.09.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/03/2017] [Accepted: 09/21/2017] [Indexed: 10/18/2022]
Abstract
Peste des petits ruminants virus (PPRV) and rinderpest virus (RPV) are two causative agents of an economically important disease for ruminants (i.e., sheep, cattle and goat). In this study, the nucleotide, codon and amino acid usages for PPRV and RPV have been analyzed by multivariate statistical methods. Relative synonymous codon usage (RSCU) analysis represents that ACG for Thr and GCG for Ala are selected with under-representation in both PPRV and RPV, and AGA for Arg in PPRV and AGG for Arg in RPV are used with over-representation. The usage of nucleotide pair (CpG) tends to be removed from viral genes of the two viruses, suggesting that other evolutionary forces take part in evolutionary processes for viral genes in addition to mutation pressure from nucleotide usage at the third codon position. The overall nucleotide usage of viral gene is not major factor in shaping synonymous codon usage patterns, while the nucleotide usages at the third codon position and the nucleotide pairs play important roles in shaping synonymous codon usage patterns. Although PPRV and RPV are closely related antigenically, the codon and amino acid usage patterns for viral genes represent a significant genetic diversity between PPRV and RPV. Moreover, the overall codon usage trends for viral genes between PPRV and RPV are mainly influenced by mutation pressure from nucleotide usage at the third codon position and translation selection from hosts. Taken together, this is first comprehensive analyses for nucleotide, codon and amino acid usages of viral genes of PPRV and RPV and the findings are expected to increase our understanding of evolutionary forces influencing viral evolutionary pathway and adaptation toward hosts.
Collapse
Affiliation(s)
- Xiao-Xia Ma
- Engineering & Technology Research Center for Animal Cell, Gansu College of Life Science and Engineering, Northwest Minzu University, Gansu 730030, PR China
| | - Qiu-Yan Chang
- Engineering & Technology Research Center for Animal Cell, Gansu College of Life Science and Engineering, Northwest Minzu University, Gansu 730030, PR China
| | - Peng Ma
- Engineering & Technology Research Center for Animal Cell, Gansu College of Life Science and Engineering, Northwest Minzu University, Gansu 730030, PR China
| | - Lin-Jie Li
- Engineering & Technology Research Center for Animal Cell, Gansu College of Life Science and Engineering, Northwest Minzu University, Gansu 730030, PR China
| | - Xiao-Kai Zhou
- Engineering & Technology Research Center for Animal Cell, Gansu College of Life Science and Engineering, Northwest Minzu University, Gansu 730030, PR China
| | - De-Rong Zhang
- Engineering & Technology Research Center for Animal Cell, Gansu College of Life Science and Engineering, Northwest Minzu University, Gansu 730030, PR China
| | - Ming-Sheng Li
- Engineering & Technology Research Center for Animal Cell, Gansu College of Life Science and Engineering, Northwest Minzu University, Gansu 730030, PR China
| | - Xin Cao
- Engineering & Technology Research Center for Animal Cell, Gansu College of Life Science and Engineering, Northwest Minzu University, Gansu 730030, PR China.
| | - Zhong-Ren Ma
- Engineering & Technology Research Center for Animal Cell, Gansu College of Life Science and Engineering, Northwest Minzu University, Gansu 730030, PR China.
| |
Collapse
|
17
|
Grubaugh ND, Rückert C, Armstrong PM, Bransfield A, Anderson JF, Ebel GD, Brackney DE. Transmission bottlenecks and RNAi collectively influence tick-borne flavivirus evolution. Virus Evol 2016; 2:vew033. [PMID: 28058113 PMCID: PMC5210029 DOI: 10.1093/ve/vew033] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Arthropod-borne RNA viruses exist within hosts as heterogeneous populations of viral variants and, as a result, possess great genetic plasticity. Understanding the micro-evolutionary forces shaping these viruses can provide insights into how they emerge, adapt, and persist in new and changing ecological niches. While considerable attention has been directed toward studying the population dynamics of mosquito-borne viruses, little is known about tick-borne virus populations. Therefore, using a mouse and Ixodes scapularis tick transmission model, we examined Powassan virus (POWV; Flaviviridae, Flavivirus) populations in and between both the vertebrate host and arthropod vector. We found that genetic bottlenecks, RNAi-mediated diversification, and selective constraints collectively influence POWV evolution. Together, our data provide a mechanistic explanation for the slow, long-term evolutionary trends of POWV, and suggest that all arthropod-borne viruses encounter similar selective pressures at the molecular level (i.e. RNAi), yet evolve much differently due to their unique rates and modes of transmission.
Collapse
Affiliation(s)
- Nathan D Grubaugh
- Department of Microbiology Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Fort Collins, CO, USA
| | - Claudia Rückert
- Department of Microbiology Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Fort Collins, CO, USA
| | - Philip M Armstrong
- The Connecticut Agricultural Experiment Station, Center for Vector Biology and Zoonotic Diseases, New Haven, CT, USA
| | - Angela Bransfield
- The Connecticut Agricultural Experiment Station, Center for Vector Biology and Zoonotic Diseases, New Haven, CT, USA
| | - John F Anderson
- The Connecticut Agricultural Experiment Station, Center for Vector Biology and Zoonotic Diseases, New Haven, CT, USA
| | - Gregory D Ebel
- Department of Microbiology Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Fort Collins, CO, USA
| | - Doug E Brackney
- The Connecticut Agricultural Experiment Station, Center for Vector Biology and Zoonotic Diseases, New Haven, CT, USA
| |
Collapse
|
18
|
Fuster N, Pintó RM, Fuentes C, Beguiristain N, Bosch A, Guix S. Propidium monoazide RTqPCR assays for the assessment of hepatitis A inactivation and for a better estimation of the health risk of contaminated waters. WATER RESEARCH 2016; 101:226-232. [PMID: 27262550 DOI: 10.1016/j.watres.2016.05.086] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 05/24/2016] [Accepted: 05/27/2016] [Indexed: 05/22/2023]
Abstract
The waterborne transmission of hepatitis A virus (HAV), the main cause of acute hepatitis, is well documented. Recently, two ISO proposals for sensitive determination of this pathogen by RTqPCR in water and food have been published (ISO/TS 15216-1 and ISO/TS 15216-2), and could enable the formulation of regulatory standards for viruses in the near future. However, since detected viral genomes do not always correlate with virus infectivity, molecular approaches need to be optimized to better predict infectivity of contaminated samples. Two methods involving the use of propidium monoazide (PMA), with or without Triton X-100, prior to RTqPCR amplification were optimized and adapted to infer the performance of infectious viral inactivation upon two different water treatments: free chlorine and high temperature. Significant correlations between the decrease of genome copies and infectivity were found for both inactivation procedures. The best procedure to infer chlorine inactivation was the PMA-RTqPCR assay, in which 1, 2 or 3-log genome copies reductions corresponded to reductions of infectious viruses of 2.61 ± 0.55, 3.76 ± 0.53 and 4.92 ± 0.76 logs, respectively. For heat-inactivated viruses, the best method was the PMA/Triton-RTqPCR assay, with a 1, 2 or 3-log genome reduction corresponding to reductions of infectious viruses of 2.15 ± 1.31, 2.99 ± 0.79 and 3.83 ± 0.70 logs, respectively. Finally, the level of damaged virions was evaluated in distinct types of water naturally contaminated with HAV. While most HAV genomes quantified in sewage corresponded to undamaged capsids, the analysis of a river water sample indicated that more than 98% of viruses were not infectious. Although the PMA/Triton-RTqPCR assay may still overestimate infectivity, it is more reliable than the RTqPCR alone and it seems to be a rapid and cost-effective method that can be applied on different types of water, and that it undeniably provides a more accurate measure of the health risk associated to contaminated waters.
Collapse
Affiliation(s)
- Noemí Fuster
- Enteric Virus Group, Department of Microbiology, University of Barcelona, Avda Diagonal 643, 08028 Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA-UB), University of Barcelona, Avda Prat de la Riba 171, 08921 Santa Coloma de Gramanet, Spain
| | - Rosa M Pintó
- Enteric Virus Group, Department of Microbiology, University of Barcelona, Avda Diagonal 643, 08028 Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA-UB), University of Barcelona, Avda Prat de la Riba 171, 08921 Santa Coloma de Gramanet, Spain
| | - Cristina Fuentes
- Enteric Virus Group, Department of Microbiology, University of Barcelona, Avda Diagonal 643, 08028 Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA-UB), University of Barcelona, Avda Prat de la Riba 171, 08921 Santa Coloma de Gramanet, Spain
| | - Nerea Beguiristain
- Enteric Virus Group, Department of Microbiology, University of Barcelona, Avda Diagonal 643, 08028 Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA-UB), University of Barcelona, Avda Prat de la Riba 171, 08921 Santa Coloma de Gramanet, Spain
| | - Albert Bosch
- Enteric Virus Group, Department of Microbiology, University of Barcelona, Avda Diagonal 643, 08028 Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA-UB), University of Barcelona, Avda Prat de la Riba 171, 08921 Santa Coloma de Gramanet, Spain
| | - Susana Guix
- Enteric Virus Group, Department of Microbiology, University of Barcelona, Avda Diagonal 643, 08028 Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA-UB), University of Barcelona, Avda Prat de la Riba 171, 08921 Santa Coloma de Gramanet, Spain.
| |
Collapse
|
19
|
|
20
|
Full-length genome characterization and quasispecies distribution of hepatitis A virus isolates in China. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.virep.2015.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Generation of Live Attenuated Influenza Virus by Using Codon Usage Bias. J Virol 2015; 89:10762-73. [PMID: 26269186 DOI: 10.1128/jvi.01443-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/05/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Seasonal influenza epidemics and occasional pandemics threaten public health worldwide. New alternative strategies for generating recombinant viruses with vaccine potential are needed. Interestingly, influenza viruses circulating in different hosts have been found to have distinct codon usage patterns, which may reflect host adaptation. We therefore hypothesized that it is possible to make a human seasonal influenza virus that is specifically attenuated in human cells but not in eggs by converting its codon usage so that it is similar to that observed from avian influenza viruses. This approach might help to generate human live attenuated viruses without affecting their yield in eggs. To test this hypothesis, over 300 silent mutations were introduced into the genome of a seasonal H1N1 influenza virus. The resultant mutant was significantly attenuated in mammalian cells and mice, yet it grew well in embryonated eggs. A single dose of intranasal vaccination induced potent innate, humoral, and cellular immune responses, and the mutant could protect mice against homologous and heterologous viral challenges. The attenuated mutant could also be used as a vaccine master donor strain by introducing hemagglutinin and neuraminidase genes derived from other strains. Thus, our approach is a successful strategy to generate attenuated viruses for future application as vaccines. IMPORTANCE Vaccination has been one of the best protective measures in combating influenza virus infection. Current licensed influenza vaccines and their production have various limitations. Our virus attenuation strategy makes use of the codon usage biases of human and avian influenza viruses to generate a human-derived influenza virus that is attenuated in mammalian hosts. This method, however, does not affect virus replication in eggs. This makes the resultant mutants highly compatible with existing egg-based vaccine production pipelines. The viral proteins generated from the codon bias mutants are identical to the wild-type viral proteins. In addition, our massive genome-wide mutational approach further minimizes the concern over reverse mutations. The potential use of this kind of codon bias mutant as a master donor strain to generate other live attenuated viruses is also demonstrated. These findings put forward a promising live attenuated influenza vaccine generation strategy to control influenza.
Collapse
|
22
|
Félez-Sánchez M, Trösemeier JH, Bedhomme S, González-Bravo MI, Kamp C, Bravo IG. Cancer, Warts, or Asymptomatic Infections: Clinical Presentation Matches Codon Usage Preferences in Human Papillomaviruses. Genome Biol Evol 2015; 7:2117-35. [PMID: 26139833 PMCID: PMC4558848 DOI: 10.1093/gbe/evv129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Viruses rely completely on the hosts’ machinery for translation of viral transcripts. However, for most viruses infecting humans, codon usage preferences (CUPrefs) do not match those of the host. Human papillomaviruses (HPVs) are a showcase to tackle this paradox: they present a large genotypic diversity and a broad range of phenotypic presentations, from asymptomatic infections to productive lesions and cancer. By applying phylogenetic inference and dimensionality reduction methods, we demonstrate first that genes in HPVs are poorly adapted to the average human CUPrefs, the only exception being capsid genes in viruses causing productive lesions. Phylogenetic relationships between HPVs explained only a small proportion of CUPrefs variation. Instead, the most important explanatory factor for viral CUPrefs was infection phenotype, as orthologous genes in viruses with similar clinical presentation displayed similar CUPrefs. Moreover, viral genes with similar spatiotemporal expression patterns also showed similar CUPrefs. Our results suggest that CUPrefs in HPVs reflect either variations in the mutation bias or differential selection pressures depending on the clinical presentation and expression timing. We propose that poor viral CUPrefs may be central to a trade-off between strong viral gene expression and the potential for eliciting protective immune response.
Collapse
Affiliation(s)
- Marta Félez-Sánchez
- Infections and Cancer Laboratory, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain Virus and Cancer Laboratory. Bellvitge Institute of Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jan-Hendrik Trösemeier
- Molecular Bioinformatics, Institute of Computer Science, Johann Wolfgang Goethe University, Frankfurt am Main, Germany Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Stéphanie Bedhomme
- Infections and Cancer Laboratory, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain Virus and Cancer Laboratory. Bellvitge Institute of Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain Département d'Ecologie Evolutive Centre d'Ecologie Fonctionnelle et Evolutive, CNRS - UMR 5175, Montpellier, France
| | | | - Christel Kamp
- Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Ignacio G Bravo
- Infections and Cancer Laboratory, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain Virus and Cancer Laboratory. Bellvitge Institute of Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
23
|
Hepatitis A virus genotype distribution during a decade of universal vaccination of preadolescents. Int J Mol Sci 2015; 16:6842-54. [PMID: 25815599 PMCID: PMC4424991 DOI: 10.3390/ijms16046842] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/23/2015] [Indexed: 12/12/2022] Open
Abstract
A universal vaccination program among preadolescents was implemented in Catalonia, Spain, during the period of 1999-2013 and its effectiveness has been clearly demonstrated by an overall significant attack rate reduction. However, reductions were not constant over time, and increases were again observed in 2002-2009 due to the occurrence of huge outbreaks. In the following years, in the absence of large outbreaks, the attack rate decreased again to very low levels. However, an increase of symptomatic cases in the <5 age group has recently been observed. This is an unexpected observation since children younger than 6 are mostly asymptomatic. Such a long vaccination campaign offers the opportunity to analyze not only the effectiveness of vaccination, but also the influence of the circulating genotypes on the incidence of hepatitis A among the different age groups. This study has revealed the emergence of genotype IC during a foodborne outbreak, the short-lived circulation of vaccine-escape variants isolated during an outbreak among the men-having-sex-with-men group, and the association of genotype IIIA with the increase of symptomatic cases among the very young. From a public health perspective, two conclusions may be drawn: vaccination is better at an early age, and the vaccination schedule must be complete and include all recommended vaccine doses.
Collapse
|
24
|
Aravind S, Kamble N, Gaikwad S, Khulape S, Dey S, Dhama K, Madhan Moh C. Bioinformatics Study Involving Characterization of Synonymous Codon Usage Bias in the Duck Enteritis Virus Glycoprotein D (gD) Gene. ACTA ACUST UNITED AC 2014. [DOI: 10.3923/ajava.2014.229.242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Hepatitis A virus adaptation to cellular shutoff is driven by dynamic adjustments of codon usage and results in the selection of populations with altered capsids. J Virol 2014; 88:5029-41. [PMID: 24554668 DOI: 10.1128/jvi.00087-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Hepatitis A virus (HAV) has a highly biased and deoptimized codon usage compared to the host cell and fails to inhibit host protein synthesis. It has been proposed that an optimal combination of abundant and rare codons controls the translation speed required for the correct capsid folding. The artificial shutoff host protein synthesis results in the selection of variants containing mutations in the HAV capsid coding region critical for folding, stability, and function. Here, we show that these capsid mutations resulted in changes in their antigenicity; in a reduced stability to high temperature, low pH, and biliary salts; and in an increased efficacy of cell entry. In conclusion, the adaptation to cellular shutoff resulted in the selection of large-plaque-producing virus populations. IMPORTANCE HAV has a naturally deoptimized codon usage with respect to that of its cell host and is unable to shut down the cellular translation. This fact contributes to the low replication rate of the virus, in addition to other factors such as the highly inefficient internal ribosome entry site (IRES), and explains the outstanding physical stability of this pathogen in the environment mediated by a folding-dependent highly cohesive capsid. Adaptation to artificially induced cellular transcription shutoff resulted in a redeoptimization of its capsid codon usage, instead of an optimization. These genomic changes are related to an overall change of capsid folding, which in turn induces changes in the cell entry process. Remarkably, the adaptation to cellular shutoff allowed the virus to significantly increase its RNA uncoating efficiency, resulting in the selection of large-plaque-producing populations. However, these populations produced much-debilitated virions.
Collapse
|
26
|
Vaughan G, Goncalves Rossi LM, Forbi JC, de Paula VS, Purdy MA, Xia G, Khudyakov YE. Hepatitis A virus: host interactions, molecular epidemiology and evolution. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2014; 21:227-243. [PMID: 24200587 DOI: 10.1016/j.meegid.2013.10.023] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 10/25/2013] [Accepted: 10/26/2013] [Indexed: 12/16/2022]
Abstract
Infection with hepatitis A virus (HAV) is the commonest viral cause of liver disease and presents an important public health problem worldwide. Several unique HAV properties and molecular mechanisms of its interaction with host were recently discovered and should aid in clarifying the pathogenesis of hepatitis A. Genetic characterization of HAV strains have resulted in the identification of different genotypes and subtypes, which exhibit a characteristic worldwide distribution. Shifts in HAV endemicity occurring in different parts of the world, introduction of genetically diverse strains from geographically distant regions, genotype displacement observed in some countries and population expansion detected in the last decades of the 20th century using phylogenetic analysis are important factors contributing to the complex dynamics of HAV infections worldwide. Strong selection pressures, some of which, like usage of deoptimized codons, are unique to HAV, limit genetic variability of the virus. Analysis of subgenomic regions has been proven useful for outbreak investigations. However, sharing short sequences among epidemiologically unrelated strains indicates that specific identification of HAV strains for molecular surveillance can be achieved only using whole-genome sequences. Here, we present up-to-date information on the HAV molecular epidemiology and evolution, and highlight the most relevant features of the HAV-host interactions.
Collapse
Affiliation(s)
- Gilberto Vaughan
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, GA, United States.
| | | | - Joseph C Forbi
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Vanessa S de Paula
- Laboratory of Viral Hepatitis, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Michael A Purdy
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Guoliang Xia
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Yury E Khudyakov
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
27
|
Fuentes C, Guix S, Pérez-Rodriguez FJ, Fuster N, Carol M, Pintó RM, Bosch A. Standardized multiplex one-step qRT-PCR for hepatitis A virus, norovirus GI and GII quantification in bivalve mollusks and water. Food Microbiol 2013; 40:55-63. [PMID: 24549198 DOI: 10.1016/j.fm.2013.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/22/2013] [Accepted: 12/23/2013] [Indexed: 12/18/2022]
Abstract
A quadruplex Real-Time RT-PCR assay for the simultaneous quantitative detection of hepatitis A virus (HAV), norovirus (NoV) GI and GII, and mengovirus (used as process control for determination of the virus/nucleic acid extraction efficiency) has been developed. This multiplex assay has been comparatively evaluated with the individual monoplex assays and showed to be slightly less sensitive, with average ΔCq values of 0.90, 0.28 and 0.44 for HAV, NoV GI and NoV GII, respectively, in standard curves of viral RNA, or 0.32, 0.37 and 0.51 for the same viruses respectively, in naturally-contaminated samples. These ΔCq values were mostly negligible since it represented, in the worst case scenario, a loss of 0.43 log in genome copy numbers. The quadruplex assay shows similar theoretical detection limits than the monoplex assay for NoV GII, and 10 times higher for HAV and NoV GI. However, when naturally-contaminated food and water samples were tested, these theoretical detection thresholds were often exceeded and very low genome copy numbers (below the limit of detection) could be quantified. The quadruplex assay fulfills the requirements of the method developed by the European Committee on Standardization (CEN) for virus detection in selected foodstuffs with significant advantages in labor and reagent costs.
Collapse
Affiliation(s)
- Cristina Fuentes
- Enteric Virus Laboratory of the Department of Microbiology, University of Barcelona, Barcelona, Spain; Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - Susana Guix
- Enteric Virus Laboratory of the Department of Microbiology, University of Barcelona, Barcelona, Spain; Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - Francisco J Pérez-Rodriguez
- Enteric Virus Laboratory of the Department of Microbiology, University of Barcelona, Barcelona, Spain; Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - Noemí Fuster
- Enteric Virus Laboratory of the Department of Microbiology, University of Barcelona, Barcelona, Spain; Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - Mónica Carol
- Public Health Agency of Catalonia, Generalitat de Catalunya, Manresa, Spain
| | - Rosa M Pintó
- Enteric Virus Laboratory of the Department of Microbiology, University of Barcelona, Barcelona, Spain; Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain.
| | - Albert Bosch
- Enteric Virus Laboratory of the Department of Microbiology, University of Barcelona, Barcelona, Spain; Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
28
|
Genetic diversity of hepatitis A virus in China: VP3-VP1-2A genes and evidence of quasispecies distribution in the isolates. PLoS One 2013; 8:e74752. [PMID: 24069343 PMCID: PMC3775754 DOI: 10.1371/journal.pone.0074752] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/07/2013] [Indexed: 12/11/2022] Open
Abstract
Hepatitis A virus (HAV) is the most common cause of infectious hepatitis throughout the world, spread largely by the fecal-oral route. To characterize the genetic diversity of the virus circulating in China where HAV in endemic, we selected the outbreak cases with identical sequences in VP1-2A junction region and compiled a panel of 42 isolates. The VP3-VP1-2A regions of the HAV capsid-coding genes were further sequenced and analyzed. The quasispecies distribution was evaluated by cloning the VP3 and VP1-2A genes in three clinical samples. Phylogenetic analysis demonstrated that the same genotyping results could be obtained whether using the complete VP3, VP1, or partial VP1-2A genes for analysis in this study, although some differences did exist. Most isolates clustered in sub-genotype IA, and fewer in sub-genotype IB. No amino acid mutations were found at the published neutralizing epitope sites, however, several unique amino acid substitutions in the VP3 or VP1 region were identified, with two amino acid variants closely located to the immunodominant site. Quasispecies analysis showed the mutation frequencies were in the range of 7.22x10-4 -2.33x10-3 substitutions per nucleotide for VP3, VP1, or VP1-2A. When compared with the consensus sequences, mutated nucleotide sites represented the minority of all the analyzed sequences sites. HAV replicated as a complex distribution of closely genetically related variants referred to as quasispecies, and were under negative selection. The results indicate that diverse HAV strains and quasispecies inside the viral populations are presented in China, with unique amino acid substitutions detected close to the immunodominant site, and that the possibility of antigenic escaping mutants cannot be ruled out and needs to be further analyzed.
Collapse
|
29
|
Zhou JH, You YN, Chen HT, Zhang J, Ma LN, Ding YZ, Pejsak Z, Liu YS. The effects of the synonymous codon usage and tRNA abundance on protein folding of the 3C protease of foot-and-mouth disease virus. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2013; 16:270-4. [PMID: 23499709 DOI: 10.1016/j.meegid.2013.02.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/18/2013] [Accepted: 02/22/2013] [Indexed: 11/22/2022]
Abstract
The 3C protease of foot-and-mouth disease virus (FMDV) has a conserved amino acid sequence and is responsible for most cleavage in the viral polyprotein. The effects of the synonymous codon usage of FMDV 3C gene and tRNA abundance of the hosts on shaping different folding units (α-helix, β-strand and the coil) in the 3C protease were analyzed based on the structural information of the FMDV 3C protease from Protein Data Bank (PDB: 2BHG) and 210 genes of 3C for all serotypes of FMDV. The strong correlation between some codons usage and the specific folding unit in the FMDV 3C protease is found. As for the effect of translation speed caused by tRNA abundance on the formation of folding units, the codon positions with lowly abundant tRNA scatter in the 3C gene and there is the obvious fluctuation of tRNA abundance locating in the transition boundaries from the β-strand to the α-helix and the coil, respectively. However, codon positions with lowly abundant tRNA clustering into these boundaries are not found, suggesting that the adjustment of translation speed is likely also achieved by the single codon position with low tRNA abundance rather than a cluster. The observations can provide the information for insight into the role of the synonymous codon usage in the formation of 3C protease of FMDV and effect of the tRNA abundance of the hosts on this formation of protease.
Collapse
Affiliation(s)
- Jian-hua Zhou
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 Gansu, PR China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Ma XX, Feng YP, Liu JL, Ma B, Chen L, Zhao YQ, Guo PH, Guo JZ, Ma ZR, Zhang J. The effects of the codon usage and translation speed on protein folding of 3Dpol of foot-and-mouth disease virus. Vet Res Commun 2013; 37:243-50. [DOI: 10.1007/s11259-013-9564-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2013] [Indexed: 10/26/2022]
|
31
|
Bishal AK, Mukherjee R, Chakraborty C. Synonymous codon usage pattern analysis of Hepatitis D virus. Virus Res 2013; 173:350-3. [DOI: 10.1016/j.virusres.2013.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 01/15/2013] [Accepted: 01/15/2013] [Indexed: 11/24/2022]
|
32
|
High codon adaptation in citrus tristeza virus to its citrus host. Virol J 2012; 9:113. [PMID: 22698086 PMCID: PMC3416656 DOI: 10.1186/1743-422x-9-113] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 06/14/2012] [Indexed: 01/29/2023] Open
Abstract
Background Citrus tristeza virus (CTV), a member of the genus Closterovirus within the family Closteroviridae, is the causal agent of citrus tristeza disease. Previous studies revealed that the negative selection, RNA recombination and gene flow were the most important forces that drove CTV evolution. However, the CTV codon usage was not studied and thus its role in CTV evolution remains unknown. Results A detailed comparative analysis of CTV codon usage pattern was done in this study. Results of the study show that although in general CTV does not have a high degree of codon usage bias, the codon usage of CTV has a high level of resemblance to its host codon usage. In addition, our data indicate that the codon usage resemblance is only observed for the woody plant-infecting closteroviruses but not the closteroviruses infecting the herbaceous host plants, suggesting the existence of different virus-host interactions between the herbaceous plant-infecting and woody plant-infecting closteroviruses. Conclusion Based on the results, we suggest that in addition to RNA recombination, negative selection and gene flow, host plant codon usage selection can also affect CTV evolution.
Collapse
|
33
|
Pintó RM, D'Andrea L, Pérez-Rodriguez FJ, Costafreda MI, Ribes E, Guix S, Bosch A. Hepatitis A virus evolution and the potential emergence of new variants escaping the presently available vaccines. Future Microbiol 2012; 7:331-46. [PMID: 22393888 DOI: 10.2217/fmb.12.5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hepatitis A is the most common infection of the liver worldwide and is fecal-orally transmitted. Its incidence tends to decrease with improvements in hygiene conditions but at the same time its severity increases. Hepatitis A virus is the causative agent of acute hepatitis in humans and belongs to the Hepatovirus genus in the Picornaviridae family, and it has very unique characteristics. This article reviews some molecular and biological properties that allow the virus to live in a very quiescent way and to build an extremely stable capsid that is able to persist in and out of the body. Additionally, the relationship between the genomic composition and the structural and antigenic properties of the capsid is discussed, and the potential emergence of antigenic variants is evaluated from an evolutionary perspective.
Collapse
Affiliation(s)
- Rosa M Pintó
- Enteric Virus Laboratory, School of Biology, University of Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Evolution of RNA viruses occurs through disequilibria of collections of closely related mutant spectra or mutant clouds termed viral quasispecies. Here we review the origin of the quasispecies concept and some biological implications of quasispecies dynamics. Two main aspects are addressed: (i) mutant clouds as reservoirs of phenotypic variants for virus adaptability and (ii) the internal interactions that are established within mutant spectra that render a virus ensemble the unit of selection. The understanding of viruses as quasispecies has led to new antiviral designs, such as lethal mutagenesis, whose aim is to drive viruses toward low fitness values with limited chances of fitness recovery. The impact of quasispecies for three salient human pathogens, human immunodeficiency virus and the hepatitis B and C viruses, is reviewed, with emphasis on antiviral treatment strategies. Finally, extensions of quasispecies to nonviral systems are briefly mentioned to emphasize the broad applicability of quasispecies theory.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/ Nicolás Cabrera, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
| | | | | |
Collapse
|
35
|
A single mutation in the glycophorin A binding site of hepatitis A virus enhances virus clearance from the blood and results in a lower fitness variant. J Virol 2012; 86:7887-95. [PMID: 22593170 DOI: 10.1128/jvi.00707-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hepatitis A virus (HAV) has previously been reported to bind to human red blood cells through interaction with glycophorin A. Residue K221 of VP1 and the surrounding VP3 residues are involved in such an interaction. This capsid region is specifically recognized by the monoclonal antibody H7C27. A monoclonal antibody-resistant mutant with the mutation G1217D has been isolated. In the present study, the G1217D mutant was characterized physically and biologically in comparison with the parental HM175 43c strain. The G1217D mutant is more sensitive to acid pH and binds more efficiently to human and rat erythrocytes than the parental 43c strain. In a rat model, it is eliminated from serum more rapidly and consequently reaches the liver with a certain delay compared to the parental 43c strain. In competition experiments performed in vivo in the rat model, the G1217D mutant was efficiently outcompeted by the parental 43c strain. Only in the presence of antibodies reacting specifically with the parental 43c strain could the G1217D mutant outcompete the parental 43c strain in serum, although the latter still showed a remarkable ability to reach the liver. Altogether, these results indicate that the G1217D mutation induces a low fitness phenotype which could explain the lack of natural antigenic variants of the glycophorin A binding site.
Collapse
|
36
|
Comparative the codon usage between the three main viruses in pestivirus genus and their natural susceptible livestock. Virus Genes 2012; 44:475-81. [DOI: 10.1007/s11262-012-0731-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 02/23/2012] [Indexed: 11/27/2022]
|
37
|
Ma MR, Ha XQ, Ling H, Wang ML, Zhang FX, Zhang SD, Li G, Yan W. The characteristics of the synonymous codon usage in hepatitis B virus and the effects of host on the virus in codon usage pattern. Virol J 2011; 8:544. [PMID: 22171933 PMCID: PMC3287100 DOI: 10.1186/1743-422x-8-544] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 12/15/2011] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) infection is one of the main human health problem and causes a large-scale of patients chronic infection worldwide.. As the replication of HBV depends on its host cell system, codon usage pattern for the viral gene might be susceptible to two main selections, namely mutation pressure and translation selection. In this case, a deeper investigation between HBV evolution and host adaptive response might assist control this disease. RESULT Relative synonymous codon usage (RSCU) values for the whole HBV coding sequence were studied by Principal component analysis (PCA). The characteristics of the synonymous codon usage patterns, nucleotide contents and the comparison between ENC values of the whole HBV coding sequence indicated that the interaction between virus mutation pressure and host translation selection exists in the processes of HBV evolution. The synonymous codon usage pattern of HBV is a mixture of coincidence and antagonism to that of host cell. But the difference of genetic characteristic of HBV failed to be observed to its different epidemic areas or subtypes, suggesting that geographic factor is limited to influence the evolution of this virus, while genetic characteristic based on HBV genotypes could be divided into three groups, namely (i) genotyps A and E, (ii) genotype B, (iii) genotypes C, D and G. CONCLUSION Codon usage patterns from PCA for identification of evolutionary trends in HBV provide an alternative approach to understand the evolution of HBV. Further more, a combined selection of mutation pressure with translation selection on codon usage might shed a light on understanding the evolutionary trends of HBV genotypes.
Collapse
Affiliation(s)
- Ming-ren Ma
- Experimental Center of Medicine, Lanzhou General Hospital, Lanzhou Military Area Command, Lanzhou 730000, China.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Hu JS, Wang QQ, Zhang J, Chen HT, Xu ZW, Zhu L, Ding YZ, Ma LN, Xu K, Gu YX, Liu YS. The characteristic of codon usage pattern and its evolution of hepatitis C virus. INFECTION GENETICS AND EVOLUTION 2011; 11:2098-102. [DOI: 10.1016/j.meegid.2011.08.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/22/2011] [Accepted: 08/24/2011] [Indexed: 01/29/2023]
|
39
|
Zhou JH, Zhang J, Chen HT, Ma LN, Ding YZ, Pejsak Z, Liu YS. The codon usage model of the context flanking each cleavage site in the polyprotein of foot-and-mouth disease virus. INFECTION GENETICS AND EVOLUTION 2011; 11:1815-9. [PMID: 21801856 DOI: 10.1016/j.meegid.2011.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 06/03/2011] [Accepted: 07/13/2011] [Indexed: 11/18/2022]
Abstract
To investigate the codon usage pattern of the contexts flanking 11 cleavage sites of foot-and-mouth disease virus (FMDV) polyprotein, the codon usage model of the corresponding codon position and the synonymous codon usage in the target contexts of 66 strains were characterized by two simple methods based on the relative synonymous codon usage value. The synonymous codons usage pattern was also compared between this virus and two species of hosts (cattle and domestic pig). It is indicated that FMDV bore a general resemblance to the hosts in terms of the synonymous codon usage pattern. This feature may help FMDV to utilize translational resources of host efficiently. The two amino acid residues constituting each cleavage site contain at least one conserved residue. It was noticed that the codon usage model with the strong bias appeared in some specific positions in the target contexts, and the under-represented synonymous codons, AUA for Ile, CUA for Leu, UUA for Leu and GUA for Val, are preferentially used in these positions. These under-represented synonymous codons likely play role in regulating the translation rate and influencing the secondary structure of the contexts flanking the cleavage sites.
Collapse
Affiliation(s)
- Jian-Hua Zhou
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, PR China
| | | | | | | | | | | | | |
Collapse
|
40
|
Pérez-Sautu U, Costafreda MI, Caylà J, Tortajada C, Lite J, Bosch A, Pintó RM. Hepatitis a virus vaccine escape variants and potential new serotype emergence. Emerg Infect Dis 2011; 17:734-7. [PMID: 21470474 PMCID: PMC3377408 DOI: 10.3201/eid1704.101169] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Six hepatitis A virus antigenic variants that likely escaped the protective effect of available vaccines were isolated, mostly from men who have sex with men. The need to complete the proper vaccination schedules is critical, particularly in the immunocompromised population, to prevent the emergence of vaccine-escaping variants.
Collapse
|
41
|
Scientific Opinion on an update on the present knowledge on the occurrence and control of foodborne viruses. EFSA J 2011; 9:2190. [PMID: 32313582 PMCID: PMC7163696 DOI: 10.2903/j.efsa.2011.2190] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A review of the biology, epidemiology, diagnosis and public health importance of foodborne viruses was performed. Data needs to support a risk assessment were also identified. In addition possible control options and their anticipated impact to prevent or reduce the number of foodborne viral human infections were identified, including the scientific reasons for and against the establishment of food safety criteria and process hygiene criteria for viruses for certain food categories. Food may be contaminated by virus during all stages of the food supply chain, and transmission can occur by consumption of food contaminated during the production process (primary production, or during further processing), or contaminated by infected food handlers. Transmission of zoonotic viruses (e.g. HEV) can also occur by consumption of products of animal origin. Viruses do not multiply in foods, but may persist for extended periods of time as infectious particles in the environment, or in foods. At the EU-level it is unknown how much viral disease can be attributed to foodborne spread. The relative contribution of different sources (shellfish, fresh produce, food handler including asymptomatic shedders, food handling environment) to foodborne illness has not been determined. The Panel recommends focusing controls on preventive measures to avoid viral contamination rather than trying to remove/inactivate these viruses from food. Also, it is recommended to introduce a microbiological criteria for viruses in bivalve molluscs, unless they are labelled "to be cooked before consumption". The criteria could be used by food business operators to validate their control options. Furthermore, it is recommended to refine the regulatory standards and monitoring approaches in order to improve public health protection. Introduction of virus microbiological criteria for classification of bivalve molluscs production areas should be considered. A virus monitoring programme for compliance with these criteria should be risk based according to the findings of a sanitary survey.
Collapse
|
42
|
D' Andrea L, Pintó RM, Bosch A, Musto H, Cristina J. A detailed comparative analysis on the overall codon usage patterns in hepatitis A virus. Virus Res 2011; 157:19-24. [PMID: 21296111 PMCID: PMC7172775 DOI: 10.1016/j.virusres.2011.01.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 01/21/2011] [Accepted: 01/28/2011] [Indexed: 12/25/2022]
Abstract
Hepatitis A virus (HAV) is a hepatotropic member of the family Picornaviridae. HAV has several unique biological characteristics that distinguish it from other members of this family. Recent and previous studies revealed that codon usage plays a key role in HAV replication and evolution. In this study, the patterns of synonymous codon usage in HAV have been studied through multivariate statistical methods on 30 complete open reading frames (ORFs) from the available 30 full-length HAV sequences. Effective number of codons (ENC) indicates that the overall extent of codon usage bias in HAV genomes is significant. The relative dinucleotide abundances suggest that codon usage in HAV can also be strongly influenced by underlying biases in dinucleotide frequencies. These factors strongly correlated with the first major axis of correspondence analysis (COA) on relative synonymous codon usage (RSCU). The distribution of the HAV ORFs along the plane defined by the first two major axes in COA showed that different genotypes are located at different places in the plane, suggesting that HAV codon usage is also reflecting an evolutionary process. It has been very recently described that fine-tuning translation kinetics selection also contributes to codon usage bias of HAV. The results of these studies suggest that HAV genomic biases are the result of the co-evolution of genome composition, controlled translation kinetics and probably the ability to escape the antiviral cell responses.
Collapse
Affiliation(s)
- Lucía D' Andrea
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Iguá 4225, 11400 Montevideo, Uruguay
| | | | | | | | | |
Collapse
|
43
|
The characteristics of the synonymous codon usage in enterovirus 71 virus and the effects of host on the virus in codon usage pattern. INFECTION GENETICS AND EVOLUTION 2011; 11:1168-73. [PMID: 21382519 PMCID: PMC7185409 DOI: 10.1016/j.meegid.2011.02.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 02/23/2011] [Accepted: 02/24/2011] [Indexed: 01/25/2023]
Abstract
To give a new perspective on the evolutionary characteristics shaping the genetic diversity of enterovirus 71 (EV71) and the effects of natural selection from its host on the codon usage pattern of the virus, the relative synonymous codon usage (RSCU) values, codon usage bias (CUB) values, effective number of codons (ENCs) values and nucleotide contents were calculated to implement a comparative analysis to evaluate the dynamics of the virus evolution. The characteristics of the synonymous codon usage patterns and nucleotide contents of EV71 and the comparison between ENC values for the whole coding sequence of EV71 and that of coding sequences for viral proteins of EV71 all indicate that the interaction between mutation pressure from virus and natural selection from host exists in the processes of evolution of EV71. The synonymous codon usage pattern of EV71 is a mixture of coincidence and antagonism to that of host cell. In addition, the genetic diversity of EV71 strains and the preferential selection of some synonymous codons in EV71 strains based on the different epidemic areas were observed, suggesting that geographic and social factors may play roles in influencing the evolution of this virus.
Collapse
|
44
|
Gómez MM, Tort LFL, de Mello Volotao E, Recarey R, Moratorio G, Musto H, Leite JPG, Cristina J. Analysis of human P[4]G2 rotavirus strains isolated in Brazil reveals codon usage bias and strong compositional constraints. INFECTION GENETICS AND EVOLUTION 2011; 11:580-6. [PMID: 21255687 PMCID: PMC7172681 DOI: 10.1016/j.meegid.2011.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 11/25/2022]
Abstract
The Rotavirus genus belongs to the family Reoviridae and its genome consist of 11 segments of double-stranded RNA. Group A rotaviruses (RV-A) are the main etiological agent of acute viral gastroenteritis in infants and young children worldwide. Understanding the extent and causes of biases in codon usage is essential to the understanding of viral evolution. However, the factors shaping synonymous codon usage bias and nucleotide composition in human RV-A are currently unknown. In order to gain insight into these matters, we analyzed the codon usage and base composition constraints on the two genes that codify the two outer capsid proteins (VP4 [VP8*] and VP7) of 58 P[4]G2 RV-A strains isolated in Brazil and investigated the possible key evolutionary determinants of codon usage bias. The results of these studies revealed that the frequencies of codon usage in both RV-A proteins studied are significantly different than the ones used by human cells. In order to observe if similar trends of codon usage are found when RV-A complete genomes are considered, we compare these results with results found using a dataset of 10 reference strains for whom the complete codes of the 11 segments are known. Similar results were obtained using capsid proteins or complete genomes. The general correlations found between the position of each sequence on the first axis generated by correspondence analysis and the relative dinucleotide abundances indicate that codon usage in RV-A can also be strongly influenced by underlying biases in dinucleotide frequencies. CpG and GpC containing codons are markedly suppressed. Thus, the results of this study suggest that RV-A genomic biases are the result of the evolution of genome composition in relation to host adaptation and the ability to escape antiviral cell responses.
Collapse
Affiliation(s)
- Mariela Martínez Gómez
- Laboratório de Virologia Comparada e Ambiental, Instituto Oswaldo Cruz, FIOCRUZ, Av. Brasil 4365, Manguinhos, 21040-360 Rio de Janeiro, RJ, Brazil
| | - Luis Fernando Lopez Tort
- Laboratório de Virologia Comparada e Ambiental, Instituto Oswaldo Cruz, FIOCRUZ, Av. Brasil 4365, Manguinhos, 21040-360 Rio de Janeiro, RJ, Brazil
| | - Eduardo de Mello Volotao
- Laboratório de Virologia Comparada e Ambiental, Instituto Oswaldo Cruz, FIOCRUZ, Av. Brasil 4365, Manguinhos, 21040-360 Rio de Janeiro, RJ, Brazil
| | - Ricardo Recarey
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Iguá 4225, 11400 Montevideo, Uruguay
| | - Gonzalo Moratorio
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Iguá 4225, 11400 Montevideo, Uruguay
- Unidad de Biofísica de Proteínas, Instituto Pasteur-Montevideo, Mataojo 2020, 11400 Montevideo, Uruguay
| | - Héctor Musto
- Laboratorio de Organización y Evolución del Genoma, Instituto de Biología, Facultad de Ciencias, Iguá 4225, 11400 Montevideo, Uruguay
| | - José Paulo G. Leite
- Laboratório de Virologia Comparada e Ambiental, Instituto Oswaldo Cruz, FIOCRUZ, Av. Brasil 4365, Manguinhos, 21040-360 Rio de Janeiro, RJ, Brazil
| | - Juan Cristina
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Iguá 4225, 11400 Montevideo, Uruguay
- Corresponding author. Tel.: +598 2 525 09 01; fax: +598 2 525 08 95.
| |
Collapse
|
45
|
Desbois D, Couturier E, Graube A, Letort MJ, Dussaix E, Roque-Afonso AM. [Genetic diversity of a rare hepatitis A virus genotype]. ACTA ACUST UNITED AC 2010; 59:57-65. [PMID: 20822864 DOI: 10.1016/j.patbio.2010.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 08/02/2010] [Indexed: 11/19/2022]
Abstract
PURPOSE OF THE STUDY Very few is known on genotype II hepatitis A virus (HAV) since it is rarely isolated. From 2002 to 2007, the French observatory of HAV identified six sub-genotype IIA strains of which one from a patient having travelled to West Africa. To investigate the possible African origin of sub-genotype IIA, we determined its prevalence among French travellers in 2008 and characterised its genetic variability. PATIENTS AND METHODS The 2008 mandatory notification records were screened for travel to Africa. Viral genotype was determined on the nucleotide sequencing of the VP1/2A junction region. The P1 region coding for capsid proteins was used to compare the genetic diversity of IIA isolates to those of other genotypes. RESULTS In 2008, five out of 54 patients returning from West Africa were infected by IIA strains and an additional "autochthonous" case was identified. Two more African cases were identified in 2009. A total of 14 IIA isolates (eight African and six "autochthonous") were analysed. Nucleotide and amino-acid variability of IIA sequences was lower than that of the other genotypes. Phylogenetic analysis revealed the clustering of two "autochthonous" cases with African isolates whereas the other ones belonged to a different lineage. CONCLUSION Most IIA strains isolated in France are imported by travellers returning from West Africa. However, the unexplained contamination mode of some "autochthonous" cases suggests another geographical origin to discover or a French reservoir to explore.
Collapse
Affiliation(s)
- D Desbois
- Laboratoire de virologie, centre national de Référence pour les virus des hépatites à transmission entérique, hôpital Paul-Brousse, AP-HP, 94804 Villejuif, France.
| | | | | | | | | | | |
Collapse
|
46
|
Agudo R, Ferrer-Orta C, Arias A, de la Higuera I, Perales C, Pérez-Luque R, Verdaguer N, Domingo E. A multi-step process of viral adaptation to a mutagenic nucleoside analogue by modulation of transition types leads to extinction-escape. PLoS Pathog 2010; 6:e1001072. [PMID: 20865120 PMCID: PMC2928812 DOI: 10.1371/journal.ppat.1001072] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 07/26/2010] [Indexed: 01/18/2023] Open
Abstract
Resistance of viruses to mutagenic agents is an important problem for the development of lethal mutagenesis as an antiviral strategy. Previous studies with RNA viruses have documented that resistance to the mutagenic nucleoside analogue ribavirin (1-β-D-ribofuranosyl-1-H-1,2,4-triazole-3-carboxamide) is mediated by amino acid substitutions in the viral polymerase that either increase the general template copying fidelity of the enzyme or decrease the incorporation of ribavirin into RNA. Here we describe experiments that show that replication of the important picornavirus pathogen foot-and-mouth disease virus (FMDV) in the presence of increasing concentrations of ribavirin results in the sequential incorporation of three amino acid substitutions (M296I, P44S and P169S) in the viral polymerase (3D). The main biological effect of these substitutions is to attenuate the consequences of the mutagenic activity of ribavirin —by avoiding the biased repertoire of transition mutations produced by this purine analogue—and to maintain the replicative fitness of the virus which is able to escape extinction by ribavirin. This is achieved through alteration of the pairing behavior of ribavirin-triphosphate (RTP), as evidenced by in vitro polymerization assays with purified mutant 3Ds. Comparison of the three-dimensional structure of wild type and mutant polymerases suggests that the amino acid substitutions alter the position of the template RNA in the entry channel of the enzyme, thereby affecting nucleotide recognition. The results provide evidence of a new mechanism of resistance to a mutagenic nucleoside analogue which allows the virus to maintain a balance among mutation types introduced into progeny genomes during replication under strong mutagenic pressure. Viruses that have RNA as genetic material include many important human, animal and plant pathogens. A new strategy against RNA viruses consists in using mutagenic nucleotides. The objective is to provoke an excessive number of mutations, to deteriorate the viral functions to the point that the virus can not survive. One of the mutagens used in research on lethal mutagenesis is ribavirin, extensively employed in clinical practice. Unfortunately, viral mutants that are resistant to ribavirin have been selected, thus facilitating escape from lethal mutagenesis. Here we describe a new mechanism by which foot-and-mouth disease virus (FMDV) can become resistant to ribavirin. Amino acid changes in the viral polymerase, selected by ribavirin, are able to modify the types of mutations produced in the presence of ribavirin. Biochemical data indicate that the alteration of the enzyme changes the pairing behavior of ribavirin, avoiding the production of an excess of some types of mutations, supporting the hypothesis that an unbalanced mutation repertoire is detrimental to the virus. Thus, this new mechanism of resistance to ribavirin is based not as much in limiting the number of mutations in the virus genetic material but in ensuring an equilibrium among different types of mutations that favors viral survival.
Collapse
Affiliation(s)
- Rubén Agudo
- Centro de Biologia Molecular “Severo Ochoa” (CSIC-UAM), Cantoblanco, Madrid, Spain
| | - Cristina Ferrer-Orta
- Institut de Biologia Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Barcelona, Spain
| | - Armando Arias
- Centro de Biologia Molecular “Severo Ochoa” (CSIC-UAM), Cantoblanco, Madrid, Spain
| | | | - Celia Perales
- Centro de Biologia Molecular “Severo Ochoa” (CSIC-UAM), Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Rosa Pérez-Luque
- Institut de Biologia Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Barcelona, Spain
| | - Nuria Verdaguer
- Institut de Biologia Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Barcelona, Spain
| | - Esteban Domingo
- Centro de Biologia Molecular “Severo Ochoa” (CSIC-UAM), Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- * E-mail:
| |
Collapse
|
47
|
Wong EHM, Smith DK, Rabadan R, Peiris M, Poon LLM. Codon usage bias and the evolution of influenza A viruses. Codon Usage Biases of Influenza Virus. BMC Evol Biol 2010; 10:253. [PMID: 20723216 PMCID: PMC2933640 DOI: 10.1186/1471-2148-10-253] [Citation(s) in RCA: 236] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 08/19/2010] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The influenza A virus is an important infectious cause of morbidity and mortality in humans and was responsible for 3 pandemics in the 20th century. As the replication of the influenza virus is based on its host's machinery, codon usage of its viral genes might be subject to host selection pressures, especially after interspecies transmission. A better understanding of viral evolution and host adaptive responses might help control this disease. RESULTS Relative Synonymous Codon Usage (RSCU) values of the genes from segment 1 to segment 6 of avian and human influenza viruses, including pandemic H1N1, were studied via Correspondence Analysis (CA). The codon usage patterns of seasonal human influenza viruses were distinct among their subtypes and different from those of avian viruses. Newly isolated viruses could be added to the CA results, creating a tool to investigate the host origin and evolution of viral genes. It was found that the 1918 pandemic H1N1 virus contained genes with mammalian-like viral codon usage patterns, indicating that the introduction of this virus to humans was not through in toto transfer of an avian influenza virus.Many human viral genes had directional changes in codon usage over time of viral isolation, indicating the effect of host selection pressures. These changes reduced the overall GC content and the usage of G at the third codon position in the viral genome. Limited evidence of translational selection pressure was found in a few viral genes. CONCLUSIONS Codon usage patterns from CA allowed identification of host origin and evolutionary trends in influenza viruses, providing an alternative method and a tool to understand the evolution of influenza viruses. Human influenza viruses are subject to selection pressure on codon usage which might assist in understanding the characteristics of newly emerging viruses.
Collapse
Affiliation(s)
- Emily H M Wong
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | |
Collapse
|
48
|
Epidemiology and genetic characterization of hepatitis A virus genotype IIA. J Clin Microbiol 2010; 48:3306-15. [PMID: 20592136 DOI: 10.1128/jcm.00667-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Three hepatitis A virus (HAV) genotypes, I, II, and III, divided into subtypes A and B, infect humans. Genotype I is the most frequently reported, while genotype II is hardly ever isolated, and its genetic diversity is unknown. From 2002 to 2007, a French epidemiological survey of HAV identified 6 IIA isolates, mostly from patients who did not travel abroad. The possible African origin of IIA strains was investigated by screening the 2008 mandatory notification records of HAV infection: 171 HAV strains from travelers to West Africa and Morocco were identified. Genotyping was performed by sequencing of the VP1/2A junction in 68 available sera. Entire P1 and 5' untranslated regions of IIA strains were compared to reference sequences of other genotypes. The screening retrieved 5 imported IIA isolates. An additional autochthonous case and 2 more African cases were identified in 2008 and 2009, respectively. A total of 14 IIA isolates (8 African and 6 autochthonous) were analyzed. IIA sequences presented lower nucleotide and amino acid variability than other genotypes. The highest variability was observed in the N-terminal region of VP1, while for other genotypes the highest variability was observed at the VP1/2A junction. Phylogenetic analysis identified 2 clusters, one gathering all African and two autochthonous cases and a second including only autochthonous isolates. In conclusion, most IIA strains isolated in France are imported by travelers returning from West Africa. However, the unexplained contamination mode of autochthonous cases suggests another, still to be discovered geographical origin or a French reservoir to be explored.
Collapse
|
49
|
Aragonès L, Guix S, Ribes E, Bosch A, Pintó RM. Fine-tuning translation kinetics selection as the driving force of codon usage bias in the hepatitis A virus capsid. PLoS Pathog 2010; 6:e1000797. [PMID: 20221432 PMCID: PMC2832697 DOI: 10.1371/journal.ppat.1000797] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 01/27/2010] [Indexed: 01/15/2023] Open
Abstract
Hepatitis A virus (HAV), the prototype of genus Hepatovirus, has several unique biological characteristics that distinguish it from other members of the Picornaviridae family. Among these, the need for an intact eIF4G factor for the initiation of translation results in an inability to shut down host protein synthesis by a mechanism similar to that of other picornaviruses. Consequently, HAV must inefficiently compete for the cellular translational machinery and this may explain its poor growth in cell culture. In this context of virus/cell competition, HAV has strategically adopted a naturally highly deoptimized codon usage with respect to that of its cellular host. With the aim to optimize its codon usage the virus was adapted to propagate in cells with impaired protein synthesis, in order to make tRNA pools more available for the virus. A significant loss of fitness was the immediate response to the adaptation process that was, however, later on recovered and more associated to a re-deoptimization rather than to an optimization of the codon usage specifically in the capsid coding region. These results exclude translation selection and instead suggest fine-tuning translation kinetics selection as the underlying mechanism of the codon usage bias in this specific genome region. Additionally, the results provide clear evidence of the Red Queen dynamics of evolution since the virus has very much evolved to re-adapt its codon usage to the environmental cellular changing conditions in order to recover the original fitness. Each organism has a specific codon usage signature. Translational selection i.e., selection for the codon adaptation to the tRNA pools, is one of the driving forces of codon bias. In the virus world, this implies an adjustment of the virus codon usage to that of the host cell. Hepatitis A virus appears as an exception to the rule, with a highly deoptimized codon usage, suggesting that translational selection is not the underlying mechanism of its codon bias. However, since the virus lacks a mechanism of cellular protein synthesis inhibition, the deoptimized codon usage may be envisaged as a hawk (cell) and dove (hepatitis A virus) competition strategy for tRNAs and translational selection as well. To confirm this possibility, we artificially induced cell protein synthesis shut-off, thus increasing the tRNA pool availability for the virus, and we took advantage of the quasispecies dynamics to elucidate changes in its codon usage. Virus adaptation to the drug results in a re-deoptimization of codon usage in the capsid region, suggesting a requirement of a slow translation rate, i.e., a translation kinetic selection, instead of a translational selection associated with an optimization of the codon usage. Translation kinetics control is based on the right combination of codons (common and rare) that allows a regulated ribosome traffic rate ensuring the proper protein folding. Capsid folding is critical for a virus transmitted through the fecal-oral route with long extracorporeal periods.
Collapse
Affiliation(s)
- Lluís Aragonès
- Enteric Virus Laboratory, Department of Microbiology and Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - Susana Guix
- Enteric Virus Laboratory, Department of Microbiology and Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - Enric Ribes
- Enteric Virus Laboratory, Department of Cell Biology, University of Barcelona, Barcelona, Spain
| | - Albert Bosch
- Enteric Virus Laboratory, Department of Microbiology and Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - Rosa M. Pintó
- Enteric Virus Laboratory, Department of Microbiology and Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
50
|
Pintó RM, Costafreda MI, Bosch A. Risk assessment in shellfish-borne outbreaks of hepatitis A. Appl Environ Microbiol 2009; 75:7350-5. [PMID: 19820160 PMCID: PMC2786421 DOI: 10.1128/aem.01177-09] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 09/30/2009] [Indexed: 11/20/2022] Open
Abstract
In the present work, we aimed at determining the relationship between the hepatitis A virus (HAV) numbers in imported frozen coquina clams involved in two hepatitis outbreaks, as well as the risk for human health. Due to HAV unculturability, a standardized TaqMan real-time reverse transcription-PCR controlling the virus/nucleic acid extraction and enzyme efficiencies was employed to figure the exposure dose for clams responsible for hepatitis cases. HAV numbers were then employed to figure the risk of infection based on a dose-response model for echovirus 12. The estimated risk of infection after consumption of lightly cooked clams matched actual attack rates. Our data show that prospective monitoring of bivalve samples may fail to prevent the occurrence of outbreaks, since HAV was detected in 44% of samples directly associated with cases but was undetectable in samples that were randomly collected from the importers and belonged to the same batches. A correlation was nevertheless observed between the prevalence of hepatitis A cases in the harvesting areas and positive HAV isolation in clams, which points to the need to identify and prevent hazards rather than relying on random sampling of finished products to ensure safety. However, when evidence shows that a critical limit of viral contamination has been exceeded in the potential sources of contamination discharging into the shellfish-growing beds, quantitative virological analysis addressing quality assurance and quality control requirements should be performed with the bivalves. This work provides the first evidence of accurate HAV levels in shellfish involved in outbreaks that could be of use for risk assessment purposes.
Collapse
Affiliation(s)
- Rosa M. Pintó
- Enteric Virus Laboratory, Department of Microbiology and Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - M. Isabel Costafreda
- Enteric Virus Laboratory, Department of Microbiology and Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - Albert Bosch
- Enteric Virus Laboratory, Department of Microbiology and Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| |
Collapse
|