1
|
Radić L, Offersgaard A, Kadavá T, Zon I, Capella-Pujol J, Mulder F, Koekkoek S, Spek V, Chumbe A, Bukh J, van Gils MJ, Sanders RW, Yin VC, Heck AJR, Gottwein JM, Sliepen K, Schinkel J. Bispecific antibodies against the hepatitis C virus E1E2 envelope glycoprotein. Proc Natl Acad Sci U S A 2025; 122:e2420402122. [PMID: 40193609 PMCID: PMC12012487 DOI: 10.1073/pnas.2420402122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/19/2025] [Indexed: 04/09/2025] Open
Abstract
Hepatitis C virus (HCV) currently causes about one million infections and 240,000 deaths worldwide each year. To reach the goal set by the World Health Organization of global HCV elimination by 2030, it is critical to develop a prophylactic vaccine. Broadly neutralizing antibodies (bNAbs) target the E1E2 envelope glycoproteins on the viral surface, can neutralize a broad range of the highly diverse circulating HCV strains, and are essential tools to inform vaccine design. However, bNAbs targeting a single E1E2 epitope might be limited in neutralization breadth, which can be enhanced by using combinations of bNAbs that target different envelope epitopes. We have generated 60 immunoglobulin G (IgG)-like bispecific antibodies (bsAbs) that can simultaneously target two distinct epitopes on E1E2. We combine non- or partially overlapping E1E2 specificities into three types of bsAbs, each containing a different hinge length. The majority of bsAbs shows retained or increased potency and breadth against a diverse panel of HCV pseudoparticles and HCV produced in cell culture compared to monospecific and cocktail controls. Additionally, we demonstrate that changes in the hinge length of bsAbs can alter the binding stoichiometry to E1E2. These results provide insights into the binding modes and the role of avidity in bivalent targeting of diverse E1E2 epitopes.This study illustrates how potential cooperative effects of HCV bNAbs can be utilized by strategically designing bispecific constructs. These HCV bsAbs can guide vaccine development and unlock novel therapeutic and prophylactic strategies against HCV and other (flavi)viruses.
Collapse
Affiliation(s)
- Laura Radić
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam1105 AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam1105 AZ, the Netherlands
| | - Anna Offersgaard
- Copenhagen Hepatitis C Program, Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, Hvidovre2650, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N2200, Denmark
| | - Tereza Kadavá
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht3584 CH, the Netherlands
| | - Ian Zon
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam1105 AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam1105 AZ, the Netherlands
| | - Joan Capella-Pujol
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam1105 AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam1105 AZ, the Netherlands
| | - Fabian Mulder
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam1105 AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam1105 AZ, the Netherlands
| | - Sylvie Koekkoek
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam1105 AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam1105 AZ, the Netherlands
| | - Vera Spek
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam1105 AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam1105 AZ, the Netherlands
| | - Ana Chumbe
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam1105 AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam1105 AZ, the Netherlands
| | - Jens Bukh
- Copenhagen Hepatitis C Program, Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, Hvidovre2650, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N2200, Denmark
| | - Marit J. van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam1105 AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam1105 AZ, the Netherlands
| | - Rogier W. Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam1105 AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam1105 AZ, the Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY10065
| | - Victor C. Yin
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht3584 CH, the Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht3584 CH, the Netherlands
| | - Judith M. Gottwein
- Copenhagen Hepatitis C Program, Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, Hvidovre2650, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N2200, Denmark
| | - Kwinten Sliepen
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam1105 AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam1105 AZ, the Netherlands
| | - Janke Schinkel
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam1105 AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam1105 AZ, the Netherlands
| |
Collapse
|
2
|
Nagarathinam K, Scheck A, Labuhn M, Ströh LJ, Herold E, Veselkova B, Tune S, Cramer JT, Rosset S, Vollers SS, Bankwitz D, Ballmaier M, Böning H, Roth E, Khera T, Ahsendorf-Abidi HP, Dittrich-Breiholz O, Obleser J, Nassal M, Jäck HM, Pietschmann T, Correia BE, Krey T. Epitope-focused immunogens targeting the hepatitis C virus glycoproteins induce broadly neutralizing antibodies. SCIENCE ADVANCES 2024; 10:eado2600. [PMID: 39642219 PMCID: PMC11623273 DOI: 10.1126/sciadv.ado2600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 11/04/2024] [Indexed: 12/08/2024]
Abstract
Hepatitis C virus (HCV) infection causes ~290,000 annual human deaths despite the highly effective antiviral treatment available. Several viral immune evasion mechanisms have hampered the development of an effective vaccine against HCV, among them the remarkable conformational flexibility within neutralization epitopes in the HCV antigens. Here, we report the design of epitope-focused immunogens displaying two distinct HCV cross-neutralization epitopes. We show that these immunogens induce a pronounced, broadly neutralizing antibody response in laboratory and transgenic human antibody mice. Monoclonal human antibodies isolated from immunized human antibody mice specifically recognized the grafted epitopes and neutralized four diverse HCV strains. Our results highlight a promising strategy for developing HCV immunogens and provide an encouraging paradigm for targeting structurally flexible epitopes to improve the induction of neutralizing antibodies.
Collapse
Affiliation(s)
- Kumar Nagarathinam
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, 23562 Lübeck, Germany
| | - Andreas Scheck
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland
| | - Maurice Labuhn
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany
| | - Luisa J. Ströh
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
| | - Elisabeth Herold
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, 23562 Lübeck, Germany
| | - Barbora Veselkova
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, 23562 Lübeck, Germany
| | - Sarah Tune
- Department of Psychology, University of Lübeck, 23562 Lübeck, Germany
- Center of Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | | | - Stéphane Rosset
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland
| | - Sabrina S. Vollers
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland
| | - Dorothea Bankwitz
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany
| | - Matthias Ballmaier
- Central Research Facility Cell Sorting, Hannover Medical School, 30625 Hannover, Germany
| | - Heike Böning
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
| | - Edith Roth
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Tanvi Khera
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany
| | | | | | - Jonas Obleser
- Department of Psychology, University of Lübeck, 23562 Lübeck, Germany
- Center of Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Michael Nassal
- Department of Internal Medicine 2/Molecular Biology, University Hospital Freiburg, 79106 Freiburg, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Thomas Pietschmann
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, 30625 Hannover, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, 30625 Hannover, Germany
| | - Bruno E. Correia
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland
| | - Thomas Krey
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, 23562 Lübeck, Germany
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, 30625 Hannover, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, 38124 Braunschweig, Germany
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany
| |
Collapse
|
3
|
Meshram R, Kolte B, Gacche R. Reverse vaccinology approach for identification of epitopes from E1 protein as peptide vaccine against HCV: A proof of concept. Vaccine 2024; 42:126106. [PMID: 38971664 DOI: 10.1016/j.vaccine.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/09/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
The development of effective vaccines against Hepatitis C Virus (HCV) remains a global health priority and challenge. In this study, we employed an integrative approach combining computational epitope prediction with experimental validation to identify immunogenic peptides targeting the E1 glycoprotein of HCV. In the present report, computational data from various epitope prediction algorithms such as IEDB and SYFPEITHI, followed by molecular dynamics (MD) simulations and immuno-informatics analysis is presented. Through computational screening, we identified potential epitope candidates, with QVRNSSGLY (P3) and QLFTFSPRH (P7) emerging as promising candidates. MD simulations revealed stable interactions between these epitopes and MHC molecule, further validated by free energy estimations using MMPBSA method. Immuno-informatics analysis supported these findings, showing high binding potential and immunogenicity scores for the selected peptides. Subsequent synthesis and characterization of epitope peptides confirmed their structural integrity and purity required for conducting immune activation assays. Experimental immunological assays carried out in this study involved epitope peptide induced activation of CD8 + and CD4 + T cells from healthy human subjects and HCV- recovered patients. Data from experimental validation revealed significant cytokine release upon exposure to epitope peptides, particularly TNF-a, IL-6, and GM-CSF, indicative of robust immune responses. Notably, peptides P3 and P7 exhibited the most pronounced cytokine induction profiles, underscoring their potential as vaccine candidates. Further investigations addressing the mechanism of action of these epitope peptides under preclinical and clinical settings may help in developing effective vaccine against HCV.
Collapse
Affiliation(s)
- Rohan Meshram
- Bioinformatics Centre, Savitribai Phule Pune University, Pune 411007, India
| | - Baban Kolte
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, India; Department of Microbial Genome Research, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig 38124, Germany; Institute of Microbiology, Technical University of Braunschweig, Braunschweig 38106, Germany
| | - Rajesh Gacche
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
4
|
Pierce BG, Felbinger N, Metcalf M, Toth EA, Ofek G, Fuerst TR. Hepatitis C Virus E1E2 Structure, Diversity, and Implications for Vaccine Development. Viruses 2024; 16:803. [PMID: 38793684 PMCID: PMC11125608 DOI: 10.3390/v16050803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Hepatitis C virus (HCV) is a major medical health burden and the leading cause of chronic liver disease and cancer worldwide. More than 58 million people are chronically infected with HCV, with 1.5 million new infections occurring each year. An effective HCV vaccine is a major public health and medical need as recognized by the World Health Organization. However, due to the high variability of the virus and its ability to escape the immune response, HCV rapidly accumulates mutations, making vaccine development a formidable challenge. An effective vaccine must elicit broadly neutralizing antibodies (bnAbs) in a consistent fashion. After decades of studies from basic research through clinical development, the antigen of choice is considered the E1E2 envelope glycoprotein due to conserved, broadly neutralizing antigenic domains located in the constituent subunits of E1, E2, and the E1E2 heterodimeric complex itself. The challenge has been elicitation of robust humoral and cellular responses leading to broad virus neutralization due to the relatively low immunogenicity of this antigen. In view of this challenge, structure-based vaccine design approaches to stabilize key antigenic domains have been hampered due to the lack of E1E2 atomic-level resolution structures to guide them. Another challenge has been the development of a delivery platform in which a multivalent form of the antigen can be presented in order to elicit a more robust anti-HCV immune response. Recent nanoparticle vaccines are gaining prominence in the field due to their ability to facilitate a controlled multivalent presentation and trafficking to lymph nodes, where they can interact with both the cellular and humoral components of the immune system. This review focuses on recent advances in understanding the E1E2 heterodimeric structure to facilitate a rational design approach and the potential for development of a multivalent nanoparticle-based HCV E1E2 vaccine. Both aspects are considered important in the development of an effective HCV vaccine that can effectively address viral diversity and escape.
Collapse
Affiliation(s)
- Brian G. Pierce
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; (B.G.P.); (N.F.); (M.M.); (E.A.T.); (G.O.)
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Nathaniel Felbinger
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; (B.G.P.); (N.F.); (M.M.); (E.A.T.); (G.O.)
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Matthew Metcalf
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; (B.G.P.); (N.F.); (M.M.); (E.A.T.); (G.O.)
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Eric A. Toth
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; (B.G.P.); (N.F.); (M.M.); (E.A.T.); (G.O.)
| | - Gilad Ofek
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; (B.G.P.); (N.F.); (M.M.); (E.A.T.); (G.O.)
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Thomas R. Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; (B.G.P.); (N.F.); (M.M.); (E.A.T.); (G.O.)
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
5
|
Casiano Matos J, Harichandran K, Tang J, Sviridov DO, Sidoti Migliore G, Suzuki M, Olano LR, Hobbs A, Kumar A, Paskel MU, Bonsignori M, Dearborn AD, Remaley AT, Marcotrigiano J. Hepatitis C virus E1 recruits high-density lipoprotein to support infectivity and evade antibody recognition. J Virol 2024; 98:e0084923. [PMID: 38174935 PMCID: PMC10804985 DOI: 10.1128/jvi.00849-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Hepatitis C virus (HCV) is a member of the Flaviviridae family; however, unlike other family members, the HCV virion has an unusually high lipid content. HCV has two envelope glycoproteins, E1 and E2. E2 contributes to receptor binding, cell membrane attachment, and immune evasion. In contrast, the functions of E1 are poorly characterized due, in part, to challenges in producing the protein. This manuscript describes the expression and purification of a soluble E1 ectodomain (eE1) that is recognized by conformational, human monoclonal antibodies. eE1 forms a complex with apolipoproteins AI and AII, cholesterol, and phospholipids by recruiting high-density lipoprotein (HDL) from the extracellular media. We show that HDL binding is a function specific to eE1 and HDL hinders recognition of E1 by a neutralizing monoclonal antibody. Either low-density lipoprotein or HDL increases the production and infectivity of cell culture-produced HCV, but E1 preferentially selects HDL, influencing both viral life cycle and antibody evasion.IMPORTANCEHepatitis C virus (HCV) infection is a significant burden on human health, but vaccine candidates have yet to provide broad protection against this infection. We have developed a method to produce high quantities of soluble E1 or E2, the viral proteins located on the surface of HCV. HCV has an unusually high lipid content due to the recruitment of apolipoproteins. We found that E1 (and not E2) preferentially recruits host high-density lipoprotein (HDL) extracellularly. This recruitment of HDL by E1 prevents binding of E1 by a neutralizing antibody and furthermore prevents antibody-mediated neutralization of the virus. By comparison, low-density lipoprotein does not protect the virus from antibody-mediated neutralization. Our findings provide mechanistic insight into apolipoprotein recruitment, which may be critical for vaccine development.
Collapse
Affiliation(s)
- Jennifer Casiano Matos
- Structural Virology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kaneemozhe Harichandran
- Structural Virology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jingrong Tang
- Lipoprotein Metabolism Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Denis O. Sviridov
- Lipoprotein Metabolism Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Giacomo Sidoti Migliore
- Translational Immunobiology Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Motoshi Suzuki
- Protein Chemistry Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Lisa R. Olano
- Protein Chemistry Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Alvaro Hobbs
- Structural Virology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ashish Kumar
- Structural Virology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Myeisha U. Paskel
- Structural Virology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Mattia Bonsignori
- Translational Immunobiology Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Altaira D. Dearborn
- Structural Virology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alan T. Remaley
- Lipoprotein Metabolism Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph Marcotrigiano
- Structural Virology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Zhang H, Bull RA, Quadeer AA, McKay MR. HCV E1 influences the fitness landscape of E2 and may enhance escape from E2-specific antibodies. Virus Evol 2023; 9:vead068. [PMID: 38107333 PMCID: PMC10722114 DOI: 10.1093/ve/vead068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/27/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
The Hepatitis C virus (HCV) envelope glycoprotein E1 forms a non-covalent heterodimer with E2, the main target of neutralizing antibodies. How E1-E2 interactions influence viral fitness and contribute to resistance to E2-specific antibodies remain largely unknown. We investigate this problem using a combination of fitness landscape and evolutionary modeling. Our analysis indicates that E1 and E2 proteins collectively mediate viral fitness and suggests that fitness-compensating E1 mutations may accelerate escape from E2-targeting antibodies. Our analysis also identifies a set of E2-specific human monoclonal antibodies that are predicted to be especially resilient to escape via genetic variation in both E1 and E2, providing directions for robust HCV vaccine development.
Collapse
Affiliation(s)
- Hang Zhang
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
| | - Rowena A Bull
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- The Kirby Institute for Infection and Immunity, Sydney, NSW 2052, Australia
| | - Ahmed Abdul Quadeer
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
- Department of Electrical and Electronic Engineering, University of Melbourne, Parkville, VIC 3010, Australia
| | - Matthew R McKay
- Department of Electrical and Electronic Engineering, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| |
Collapse
|
7
|
Capella-Pujol J, de Gast M, Radić L, Zon I, Chumbe A, Koekkoek S, Olijhoek W, Schinkel J, van Gils MJ, Sanders RW, Sliepen K. Signatures of V H1-69-derived hepatitis C virus neutralizing antibody precursors defined by binding to envelope glycoproteins. Nat Commun 2023; 14:4036. [PMID: 37419906 PMCID: PMC10328973 DOI: 10.1038/s41467-023-39690-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/23/2023] [Indexed: 07/09/2023] Open
Abstract
An effective preventive vaccine for hepatitis C virus (HCV) remains a major unmet need. Antigenic region 3 (AR3) on the E1E2 envelope glycoprotein complex overlaps with the CD81 receptor binding site and represents an important epitope for broadly neutralizing antibodies (bNAbs) and is therefore important for HCV vaccine design. Most AR3 bNAbs utilize the VH1-69 gene and share structural features that define the AR3C-class of HCV bNAbs. In this work, we identify recombinant HCV glycoproteins based on a permuted E2E1 trimer design that bind to the inferred VH1-69 germline precursors of AR3C-class bNAbs. When presented on nanoparticles, these recombinant E2E1 glycoproteins efficiently activate B cells expressing inferred germline AR3C-class bNAb precursors as B cell receptors. Furthermore, we identify critical signatures in three AR3C-class bNAbs that represent two subclasses of AR3C-class bNAbs that will allow refined protein design. These results provide a framework for germline-targeting vaccine design strategies against HCV.
Collapse
Affiliation(s)
- Joan Capella-Pujol
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105, AZ, Amsterdam, Netherlands
| | - Marlon de Gast
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105, AZ, Amsterdam, Netherlands
| | - Laura Radić
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105, AZ, Amsterdam, Netherlands
| | - Ian Zon
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105, AZ, Amsterdam, Netherlands
| | - Ana Chumbe
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105, AZ, Amsterdam, Netherlands
| | - Sylvie Koekkoek
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105, AZ, Amsterdam, Netherlands
| | - Wouter Olijhoek
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105, AZ, Amsterdam, Netherlands
| | - Janke Schinkel
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105, AZ, Amsterdam, Netherlands
| | - Marit J van Gils
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105, AZ, Amsterdam, Netherlands
| | - Rogier W Sanders
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands.
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105, AZ, Amsterdam, Netherlands.
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, 10065, USA.
| | - Kwinten Sliepen
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands.
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105, AZ, Amsterdam, Netherlands.
| |
Collapse
|
8
|
Metcalf MC, Janus BM, Yin R, Wang R, Guest JD, Pozharski E, Law M, Mariuzza RA, Toth EA, Pierce BG, Fuerst TR, Ofek G. Structure of engineered hepatitis C virus E1E2 ectodomain in complex with neutralizing antibodies. Nat Commun 2023; 14:3980. [PMID: 37407593 PMCID: PMC10322937 DOI: 10.1038/s41467-023-39659-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
Hepatitis C virus (HCV) is a major global health burden as the leading causative agent of chronic liver disease and hepatocellular carcinoma. While the main antigenic target for HCV-neutralizing antibodies is the membrane-associated E1E2 surface glycoprotein, the development of effective vaccines has been hindered by complications in the biochemical preparation of soluble E1E2 ectodomains. Here, we present a cryo-EM structure of an engineered, secreted E1E2 ectodomain of genotype 1b in complex with neutralizing antibodies AR4A, HEPC74, and IGH520. Structural characterization of the E1 subunit and C-terminal regions of E2 reveal an overall architecture of E1E2 that concurs with that observed for non-engineered full-length E1E2. Analysis of the AR4A epitope within a region of E2 that bridges between the E2 core and E1 defines the structural basis for its broad neutralization. Our study presents the structure of an E1E2 complex liberated from membrane via a designed scaffold, one that maintains all essential structural features of native E1E2. The study advances the understanding of the E1E2 heterodimer structure, crucial for the rational design of secreted E1E2 antigens in vaccine development.
Collapse
Affiliation(s)
- Matthew C Metcalf
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
| | - Benjamin M Janus
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
| | - Rui Yin
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
| | - Ruixue Wang
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
| | - Johnathan D Guest
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
| | - Edwin Pozharski
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Roy A Mariuzza
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
| | - Eric A Toth
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
| | - Brian G Pierce
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
| | - Thomas R Fuerst
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
| | - Gilad Ofek
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA.
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA.
| |
Collapse
|
9
|
Ströh LJ, Krey T. Structural insights into hepatitis C virus neutralization. Curr Opin Virol 2023; 60:101316. [DOI: 10.1016/j.coviro.2023.101316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/12/2023] [Indexed: 03/31/2023]
|
10
|
Gomez-Escobar E, Roingeard P, Beaumont E. Current Hepatitis C Vaccine Candidates Based on the Induction of Neutralizing Antibodies. Viruses 2023; 15:1151. [PMID: 37243237 PMCID: PMC10220683 DOI: 10.3390/v15051151] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The introduction of direct-acting antivirals (DAAs) has revolutionized hepatitis C treatment. Short courses of treatment with these drugs are highly beneficial to patients, eliminating hepatitis C virus (HCV) without adverse effects. However, this outstanding success is tempered by the continuing difficulty of eradicating the virus worldwide. Thus, access to an effective vaccine against HCV is strongly needed to reduce the burden of the disease and contribute to the elimination of viral hepatitis. The recent failure of a T-cell vaccine based on the use of viral vectors expressing the HCV non-structural protein sequences to prevent chronic hepatitis C in drug users has pointed out that the induction of neutralizing antibodies (NAbs) will be essential in future vaccine candidates. To induce NAbs, vaccines must contain the main target of this type of antibody, the HCV envelope glycoproteins (E1 and E2). In this review, we summarize the structural regions in E1 and E2 proteins that are targeted by NAbs and how these proteins are presented in the vaccine candidates currently under development.
Collapse
Affiliation(s)
| | - Philippe Roingeard
- Inserm U1259 MAVIVH, Université de Tours and CHRU de Tours, 37000 Tours, France;
| | - Elodie Beaumont
- Inserm U1259 MAVIVH, Université de Tours and CHRU de Tours, 37000 Tours, France;
| |
Collapse
|
11
|
Patra T, Meyer K, Haga Y, Reagan EK, Weissman D, Ray R. Hepatitis C virus E1 and modified E2 delivered from an mRNA vaccine induces protective immunity. NPJ Vaccines 2023; 8:42. [PMID: 36934116 PMCID: PMC10024013 DOI: 10.1038/s41541-023-00635-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 02/27/2023] [Indexed: 03/20/2023] Open
Abstract
Hepatitis C virus (HCV) is characterized by a high number of chronic cases due to an impairment of protective innate and adaptive immune responses. Here, we examined the contribution of the individual ectodomains of E1, E2, or a modified E2 with reduced CD81 binding and an inserted N-linked glycosylation site in combination as vaccine antigen mRNA-lipid nanoparticles (LNPs). The induction of a protective immune response to surrogate recombinant vaccinia virus (VV) expressing homologous HCV glycoprotein(s) challenge infection in a BALB/c mouse model was observed. Vaccination with a mRNA-LNP expressing soluble E1 (sE1) significantly reduced vv/HCV titer in the mouse ovary. However, the addition of sE2 mRNA-LNP for immunization impaired the efficacy of the sE1 construct. Further analysis showed that Th1 related cytokine responses to the sE1 mRNA-LNP were significantly altered in the presence of sE2 following co-immunization. Evaluation of immunogenicity revealed that the use of modified sE2F442NYT nucleoside mRNA-LNP vaccine results in an improved cellular immune response, IgG2a isotype switching, enhanced total IgG, and an increase in the neutralizing antibody response against HCV pseudotype virus. HCV cross genotype specific reactivity to peptides representing conserved E2 specific linear epitopes were enhanced in modified E2 vaccinated animal sera. In the absence of a suitable immunocompetent small animal model for HCV infection, protection from surrogate HCV vaccinia challenge infection model was observed in the immunized mice as compared to sE1 alone or an unmodified sE2 mRNA-LNP vaccine. Inclusion of sE1 with modified sE2F442NYT as mRNA-LNP vaccine candidate appeared to be beneficial for protection.
Collapse
Affiliation(s)
- Tapas Patra
- Department of Internal Medicine, Saint Louis University, Missouri, MO, 63104, USA
| | - Keith Meyer
- Department of Internal Medicine, Saint Louis University, Missouri, MO, 63104, USA
| | - Yuki Haga
- Department of Internal Medicine, Saint Louis University, Missouri, MO, 63104, USA
| | - Erin K Reagan
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ranjit Ray
- Department of Internal Medicine, Saint Louis University, Missouri, MO, 63104, USA.
- Department of Molecular Microbiology & Immunology, Saint Louis University, Missouri, MO, 63104, USA.
| |
Collapse
|
12
|
Nadeem R, Maghraby AS, Abd-Elshafy DN, Barakat AB, Bahgat MM. Individual expression and processing of hepatitis C virus E1/E2 epitopes-based DNA vaccine candidate in healthy humans' peripheral blood mononuclear cells. Clin Exp Vaccine Res 2023; 12:47-59. [PMID: 36844691 PMCID: PMC9950224 DOI: 10.7774/cevr.2023.12.1.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/26/2022] [Accepted: 12/23/2022] [Indexed: 02/19/2023] Open
Abstract
Purpose The development and study of hepatitis C virus (HCV) vaccine candidates' individualized responses are of great importance. Here we report on an HCV DNA vaccine candidate based on selected envelope (E1/E2) epitopes. Besides, we assessed its expression and processing in human peripheral blood mononuclear cells (PBMCs) and in vivo cellular response in mice. Materials and Methods HCV E1/E2 DNA construct (EC) was designed. The antigen expression of EC was assayed in PBMCs of five HCV-uninfected donors via a real-time quantitative polymerase chain reaction. Serum samples from 20 HCV antibody-positive patients were used to detect each individual PBMCs expressed antigens via enzyme-linked immunosorbent assay. Two groups, five Swiss albino mice each, were immunized with the EC or a control construct. The absolute count of lymph nodes' CD4+ and CD8+ T-lymphocytes was assessed. Results Donors' PBMCs showed different levels of EC expression, ranging between 0.83-2.61-fold in four donors, while donor-3 showed 34.53-fold expression. The antigens expressed in PBMCs were significantly reactive to the 20 HCV antibody repertoire (all p=0.0001). All showed comparable reactivity except for donor-3 showing the lowest reactivity level. The absolute count % of the CD4+ T-cell significantly increased in four of the five EC-immunized mice compared to the control group (p=0.03). No significant difference in CD8+ T-cells % was observed (p=0.89). Conclusion The inter-individual variation in antigen expression and processing dominance was evident, showing independence in individuals' antigen expression and reactivity levels to antibodies. The described vaccine candidate might result in a promising natural immune response with a possibility of CD4+ T-cell early priming.
Collapse
Affiliation(s)
- Rola Nadeem
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Center, Cairo, Egypt.,Immune- and Bio-markers for Infection Research Group, Center of Excellence for Advanced Sciences, National Research Center, Cairo, Egypt
| | - Amany Sayed Maghraby
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Center, Cairo, Egypt.,Immune- and Bio-markers for Infection Research Group, Center of Excellence for Advanced Sciences, National Research Center, Cairo, Egypt
| | - Dina Nadeem Abd-Elshafy
- Immune- and Bio-markers for Infection Research Group, Center of Excellence for Advanced Sciences, National Research Center, Cairo, Egypt.,Department of Water Pollution Research, Environmental Research Institute, National Research Center, Dokki, Cairo, Egypt
| | | | - Mahmoud Mohamed Bahgat
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Center, Cairo, Egypt.,Immune- and Bio-markers for Infection Research Group, Center of Excellence for Advanced Sciences, National Research Center, Cairo, Egypt
| |
Collapse
|
13
|
Sliepen K, Radić L, Capella-Pujol J, Watanabe Y, Zon I, Chumbe A, Lee WH, de Gast M, Koopsen J, Koekkoek S, Del Moral-Sánchez I, Brouwer PJM, Ravichandran R, Ozorowski G, King NP, Ward AB, van Gils MJ, Crispin M, Schinkel J, Sanders RW. Induction of cross-neutralizing antibodies by a permuted hepatitis C virus glycoprotein nanoparticle vaccine candidate. Nat Commun 2022; 13:7271. [PMID: 36434005 PMCID: PMC9700739 DOI: 10.1038/s41467-022-34961-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Hepatitis C virus (HCV) infection affects approximately 58 million people and causes ~300,000 deaths yearly. The only target for HCV neutralizing antibodies is the highly sequence diverse E1E2 glycoprotein. Eliciting broadly neutralizing antibodies that recognize conserved cross-neutralizing epitopes is important for an effective HCV vaccine. However, most recombinant HCV glycoprotein vaccines, which usually include only E2, induce only weak neutralizing antibody responses. Here, we describe recombinant soluble E1E2 immunogens that were generated by permutation of the E1 and E2 subunits. We displayed the E2E1 immunogens on two-component nanoparticles and these nanoparticles induce significantly more potent neutralizing antibody responses than E2. Next, we generated mosaic nanoparticles co-displaying six different E2E1 immunogens. These mosaic E2E1 nanoparticles elicit significantly improved neutralization compared to monovalent E2E1 nanoparticles. These results provide a roadmap for the generation of an HCV vaccine that induces potent and broad neutralization.
Collapse
Affiliation(s)
- Kwinten Sliepen
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands.
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands.
| | - Laura Radić
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Joan Capella-Pujol
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Yasunori Watanabe
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Ian Zon
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Ana Chumbe
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Wen-Hsin Lee
- Department of Structural Biology and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Marlon de Gast
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Jelle Koopsen
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Sylvie Koekkoek
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Iván Del Moral-Sánchez
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Philip J M Brouwer
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Rashmi Ravichandran
- Department of Biochemistry, University of Washington, Seattle, USA
- Institute for Protein Design, University of Washington, Seattle, USA
| | - Gabriel Ozorowski
- Department of Structural Biology and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, USA
- Institute for Protein Design, University of Washington, Seattle, USA
| | - Andrew B Ward
- Department of Structural Biology and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Marit J van Gils
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Janke Schinkel
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Rogier W Sanders
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands.
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands.
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, USA.
| |
Collapse
|
14
|
Chumbe A, Urbanowicz RA, Sliepen K, Koekkoek SM, Molenkamp R, Tarr AW, Ball JK, Schinkel J, van Gils MJ. Optimization of the pseudoparticle system for standardized assessments of neutralizing antibodies against hepatitis C virus. J Gen Virol 2022; 103. [PMID: 36399377 DOI: 10.1099/jgv.0.001801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A better understanding of the antibody response during natural infection and the effect on disease progression and reinfection is necessary for the development of a protective hepatitis C virus (HCV) vaccine. The HCV pseudoparticle (HCVpp) system enables the study of viral entry and inhibition by antibody neutralization. A robust and comparable neutralization assay is crucial for the development and evaluation of experimental vaccines.With the aim of optimizing the HCVpp-murine leukaemia virus (MLV) system, we tested the neutralization of HCVpp-harbouring E1E2 from 21 HCV isolates representing 6 different genotypes by several monoclonal antibodies (mAbs). HCVpps are generated by expressing functional envelope glycoproteins (E1E2) onto pseudoparticles derived from env-deleted MLV. Adjustments of E1E2, gag-pol and luciferase plasmid ratios resulted in increased yields for most HCVpps and recovery of one non-infectious HCVpp. We simplified and improved the protocol to achieve higher signal/noise ratios and minimized the amount of HCVpps and mAbs needed for the detection of neutralization. Using our optimized protocol, we demonstrated comparable results to previously reported data with both diluted and freeze-thawed HCVpps.In conclusion, we successfully established a simplified and reproducible HCVpp neutralization protocol for studying a wide range of HCV variants. This simplified protocol provides highly consistent results and could be easily adopted by others to evaluate precious biological material. This will contribute to a better understanding of the antibody response during natural infection and help evaluate experimental HCV vaccines.
Collapse
Affiliation(s)
- Ana Chumbe
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Richard A Urbanowicz
- School of Life Sciences, Faculty of Medicine and Health Sciences, The University of Nottingham, Nottingham, UK
- Wolfson Centre for Global Virus Research, The University of Nottingham, Nottingham, UK
- National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Hospitals National Health Service Trust, Nottingham, UK
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK
| | - Kwinten Sliepen
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Sylvie M Koekkoek
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | | | - Alexander W Tarr
- School of Life Sciences, Faculty of Medicine and Health Sciences, The University of Nottingham, Nottingham, UK
- Wolfson Centre for Global Virus Research, The University of Nottingham, Nottingham, UK
- National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Hospitals National Health Service Trust, Nottingham, UK
| | - Jonathan K Ball
- School of Life Sciences, Faculty of Medicine and Health Sciences, The University of Nottingham, Nottingham, UK
- Wolfson Centre for Global Virus Research, The University of Nottingham, Nottingham, UK
- National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Hospitals National Health Service Trust, Nottingham, UK
| | - Janke Schinkel
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Marit J van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| |
Collapse
|
15
|
de la Peña AT, Sliepen K, Eshun-Wilson L, Newby ML, Allen JD, Zon I, Koekkoek S, Chumbe A, Crispin M, Schinkel J, Lander GC, Sanders RW, Ward AB. Structure of the hepatitis C virus E1E2 glycoprotein complex. Science 2022; 378:263-269. [PMID: 36264808 PMCID: PMC10512783 DOI: 10.1126/science.abn9884] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Hepatitis C virus (HCV) infection is a leading cause of chronic liver disease, cirrhosis, and hepatocellular carcinoma in humans and afflicts more than 58 million people worldwide. The HCV envelope E1 and E2 glycoproteins are essential for viral entry and comprise the primary antigenic target for neutralizing antibody responses. The molecular mechanisms of E1E2 assembly, as well as how the E1E2 heterodimer binds broadly neutralizing antibodies, remain elusive. Here, we present the cryo-electron microscopy structure of the membrane-extracted full-length E1E2 heterodimer in complex with three broadly neutralizing antibodies-AR4A, AT1209, and IGH505-at ~3.5-angstrom resolution. We resolve the interface between the E1 and E2 ectodomains and deliver a blueprint for the rational design of vaccine immunogens and antiviral drugs.
Collapse
Affiliation(s)
- Alba Torrents de la Peña
- Department of Integrative Structural Biology and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kwinten Sliepen
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105 AZ Amsterdam, Netherlands
| | - Lisa Eshun-Wilson
- Department of Integrative Structural Biology and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Maddy L. Newby
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Joel D. Allen
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Ian Zon
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105 AZ Amsterdam, Netherlands
| | - Sylvie Koekkoek
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105 AZ Amsterdam, Netherlands
| | - Ana Chumbe
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105 AZ Amsterdam, Netherlands
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Janke Schinkel
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105 AZ Amsterdam, Netherlands
| | - Gabriel C. Lander
- Department of Integrative Structural Biology and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rogier W. Sanders
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105 AZ Amsterdam, Netherlands
- Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Andrew B. Ward
- Department of Integrative Structural Biology and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
16
|
Omasta B, Tomaskova J. Cellular Lipids-Hijacked Victims of Viruses. Viruses 2022; 14:1896. [PMID: 36146703 PMCID: PMC9501026 DOI: 10.3390/v14091896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
Over the millions of years-long co-evolution with their hosts, viruses have evolved plenty of mechanisms through which they are able to escape cellular anti-viral defenses and utilize cellular pathways and organelles for replication and production of infectious virions. In recent years, it has become clear that lipids play an important role during viral replication. Viruses use cellular lipids in a variety of ways throughout their life cycle. They not only physically interact with cellular membranes but also alter cellular lipid metabolic pathways and lipid composition to create an optimal replication environment. This review focuses on examples of how different viruses exploit cellular lipids in different cellular compartments during their life cycles.
Collapse
Affiliation(s)
| | - Jana Tomaskova
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| |
Collapse
|
17
|
Pfaff-Kilgore JM, Davidson E, Kadash-Edmondson K, Hernandez M, Rosenberg E, Chambers R, Castelli M, Clementi N, Mancini N, Bailey JR, Crowe JE, Law M, Doranz BJ. Sites of vulnerability in HCV E1E2 identified by comprehensive functional screening. Cell Rep 2022; 39:110859. [PMID: 35613596 PMCID: PMC9281441 DOI: 10.1016/j.celrep.2022.110859] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 12/08/2021] [Accepted: 05/01/2022] [Indexed: 12/15/2022] Open
Abstract
The E1 and E2 envelope proteins of hepatitis C virus (HCV) form a heterodimer that drives virus-host membrane fusion. Here, we analyze the role of each amino acid in E1E2 function, expressing 545 individual alanine mutants of E1E2 in human cells, incorporating them into infectious viral pseudoparticles, and testing them against 37 different monoclonal antibodies (MAbs) to ascertain full-length translation, folding, heterodimer assembly, CD81 binding, viral pseudoparticle incorporation, and infectivity. We propose a model describing the role of each critical residue in E1E2 functionality and use it to examine how MAbs neutralize infection by exploiting functionally critical sites of vulnerability on E1E2. Our results suggest that E1E2 is a surprisingly fragile protein complex where even a single alanine mutation at 92% of positions disrupts its function. The amino-acid-level targets identified are highly conserved and functionally critical and can be exploited for improved therapies and vaccines.
Collapse
Affiliation(s)
| | - Edgar Davidson
- Integral Molecular, Inc., 3711 Market St, Philadelphia, PA 19104, USA
| | | | - Mayda Hernandez
- Integral Molecular, Inc., 3711 Market St, Philadelphia, PA 19104, USA
| | - Erin Rosenberg
- Integral Molecular, Inc., 3711 Market St, Philadelphia, PA 19104, USA
| | - Ross Chambers
- Integral Molecular, Inc., 3711 Market St, Philadelphia, PA 19104, USA
| | - Matteo Castelli
- Laboratory of Medical Microbiology and Virology, University Vita-Salute San Raffaele, Milan, Italy
| | - Nicola Clementi
- Laboratory of Medical Microbiology and Virology, University Vita-Salute San Raffaele, Milan, Italy; IRCSS San Raffaele Hospital, Milan, Italy
| | - Nicasio Mancini
- Laboratory of Medical Microbiology and Virology, University Vita-Salute San Raffaele, Milan, Italy; IRCSS San Raffaele Hospital, Milan, Italy
| | - Justin R Bailey
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - James E Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Benjamin J Doranz
- Integral Molecular, Inc., 3711 Market St, Philadelphia, PA 19104, USA.
| |
Collapse
|
18
|
Antigenic and immunogenic evaluation of permutations of soluble hepatitis C virus envelope protein E2 and E1 antigens. PLoS One 2021; 16:e0255336. [PMID: 34329365 PMCID: PMC8323887 DOI: 10.1371/journal.pone.0255336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/14/2021] [Indexed: 01/25/2023] Open
Abstract
Yearly, about 1.5 million people become chronically infected with hepatitis C virus (HCV) and for the 71 million with chronic HCV infection about 400,000 die from related morbidities, including liver cirrhosis and cancer. Effective treatments exist, but challenges including cost-of-treatment and wide-spread undiagnosed infection, necessitates the development of vaccines. Vaccines should induce neutralizing antibodies (NAbs) against the HCV envelope (E) transmembrane glycoprotein 2, E2, which partly depends on its interaction partner, E1, for folding. Here, we generated three soluble HCV envelope protein antigens with the transmembrane regions deleted (i.e., fused peptide backbones), termed sE1E2 (E1 followed by E2), sE2E1 (E2 followed by E1), and sE21E (E2 followed by inverted E1). The E1 inversion for sE21E positions C-terminal residues of E1 near C-terminal residues of E2, which is in analogy to how they likely interact in native E1/E2 complexes. Probing conformational E2 epitope binding using HCV patient-derived human monoclonal antibodies, we show that sE21E was superior to sE2E1, which was consistently superior to sE1E2. This correlated with improved induction of NAbs by sE21E compared with sE2E1 and especially compared with sE1E2 in female BALB/c mouse immunizations. The deletion of the 27 N-terminal amino acids of E2, termed hypervariable region 1 (HVR1), conferred slight increases in antigenicity for sE2E1 and sE21E, but severely impaired induction of antibodies able to neutralize in vitro viruses retaining HVR1. Finally, comparing sE21E with sE2 in mouse immunizations, we show similar induction of heterologous NAbs. In summary, we find that C-terminal E2 fusion of E1 or 1E is superior to N-terminal fusion, both in terms of antigenicity and the induction of heterologous NAbs. This has relevance when designing HCV E1E2 vaccine antigens.
Collapse
|
19
|
Sevvana M, Keck Z, Foung SK, Kuhn RJ. Structural perspectives on HCV humoral immune evasion mechanisms. Curr Opin Virol 2021; 49:92-101. [PMID: 34091143 DOI: 10.1016/j.coviro.2021.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022]
Abstract
The molecular mechanisms of hepatitis C virus (HCV) persistence and pathogenesis are poorly understood. The design of an effective HCV vaccine is challenging despite a robust humoral immune response against closely related strains of HCV. This is primarily because of the huge genetic diversity of HCV and the molecular evolution of various virus escape mechanisms. These mechanisms are steered by the presence of a high mutational rate in HCV, structural plasticity of the immunodominant regions on the virion surface of diverse HCV genotypes, and constant amino acid substitutions on key structural components of HCV envelope glycoproteins. Here, we review the molecular basis of neutralizing antibody (nAb)-mediated immune response against diverse HCV variants, HCV-steered humoral immune evasion strategies and explore the essential structural elements to consider for designing a universal HCV vaccine. Structural perspectives on key escape pathways mediated by a point mutation within the epitope, allosteric modulation of the epitope by distant mutations and glycan shift on envelope glycoproteins will be highlighted (abstract graphic).
Collapse
Affiliation(s)
- Madhumati Sevvana
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47904, USA; Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47904, USA
| | - Zhenyong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steven Kh Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47904, USA; Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47904, USA.
| |
Collapse
|
20
|
LeBlanc EV, Kim Y, Capicciotti CJ, Colpitts CC. Hepatitis C Virus Glycan-Dependent Interactions and the Potential for Novel Preventative Strategies. Pathogens 2021; 10:pathogens10060685. [PMID: 34205894 PMCID: PMC8230238 DOI: 10.3390/pathogens10060685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infections continue to be a major contributor to liver disease worldwide. HCV treatment has become highly effective, yet there are still no vaccines or prophylactic strategies available to prevent infection and allow effective management of the global HCV burden. Glycan-dependent interactions are crucial to many aspects of the highly complex HCV entry process, and also modulate immune evasion. This review provides an overview of the roles of viral and cellular glycans in HCV infection and highlights glycan-focused advances in the development of entry inhibitors and vaccines to effectively prevent HCV infection.
Collapse
Affiliation(s)
- Emmanuelle V. LeBlanc
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (E.V.L.); (Y.K.); (C.J.C.)
| | - Youjin Kim
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (E.V.L.); (Y.K.); (C.J.C.)
| | - Chantelle J. Capicciotti
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (E.V.L.); (Y.K.); (C.J.C.)
- Department of Chemistry, Queen’s University, Kingston, ON K7L 3N6, Canada
- Department of Surgery, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Che C. Colpitts
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (E.V.L.); (Y.K.); (C.J.C.)
- Correspondence:
| |
Collapse
|
21
|
Structural and Biophysical Characterization of the HCV E1E2 Heterodimer for Vaccine Development. Viruses 2021; 13:v13061027. [PMID: 34072451 PMCID: PMC8227786 DOI: 10.3390/v13061027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
An effective vaccine for the hepatitis C virus (HCV) is a major unmet medical and public health need, and it requires an antigen that elicits immune responses to multiple key conserved epitopes. Decades of research have generated a number of vaccine candidates; based on these data and research through clinical development, a vaccine antigen based on the E1E2 glycoprotein complex appears to be the best choice. One bottleneck in the development of an E1E2-based vaccine is that the antigen is challenging to produce in large quantities and at high levels of purity and antigenic/functional integrity. This review describes the production and characterization of E1E2-based vaccine antigens, both membrane-associated and a novel secreted form of E1E2, with a particular emphasis on the major challenges facing the field and how those challenges can be addressed.
Collapse
|
22
|
Kalemera MD, Capella-Pujol J, Chumbe A, Underwood A, Bull RA, Schinkel J, Sliepen K, Grove J. Optimized cell systems for the investigation of hepatitis C virus E1E2 glycoproteins. J Gen Virol 2021; 102. [PMID: 33147126 PMCID: PMC8116788 DOI: 10.1099/jgv.0.001512] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Great strides have been made in understanding and treating hepatitis C virus (HCV) thanks to the development of various experimental systems including cell-culture-proficient HCV, the HCV pseudoparticle system and soluble envelope glycoproteins. The HCV pseudoparticle (HCVpp) system is a platform used extensively in studies of cell entry, screening of novel entry inhibitors, assessing the phenotypes of clinically observed E1 and E2 glycoproteins and, most pertinently, in characterizing neutralizing antibody breadth induced upon vaccination and natural infection in patients. Nonetheless, some patient-derived clones produce pseudoparticles that are either non-infectious or exhibit infectivity too low for meaningful phenotyping. The mechanisms governing whether any particular clone produces infectious pseudoparticles are poorly understood. Here we show that endogenous expression of CD81, an HCV receptor and a cognate-binding partner of E2, in producer HEK 293T cells is detrimental to the infectivity of recovered HCVpp for most strains. Many HCVpp clones exhibited increased infectivity or had their infectivity rescued when they were produced in 293T cells CRISPR/Cas9 engineered to ablate CD81 expression (293TCD81KO). Clones made in 293TCD81KO cells were antigenically very similar to their matched counterparts made parental cells and appear to honour the accepted HCV entry pathway. Deletion of CD81 did not appreciably increase the recovered titres of soluble E2 (sE2). However, we did, unexpectedly, find that monomeric sE2 made in 293T cells and Freestyle 293-F (293-F) cells exhibit important differences. We found that 293-F-produced sE2 harbours mostly complex-type glycans whilst 293T-produced sE2 displays a heterogeneous mixture of both complex-type glycans and high-mannose or hybrid-type glycans. Moreover, sE2 produced in 293T cells is antigenically superior; exhibiting increased binding to conformational antibodies and the large extracellular loop of CD81. In summary, this work describes an optimal cell line for the production of HCVpp and reveals that sE2 made in 293T and 293-F cells are not antigenic equals. Our findings have implications for functional studies of E1E2 and the production of candidate immunogens.
Collapse
Affiliation(s)
- Mphatso D Kalemera
- Institute of Immunity and Transplantation, Division of Infection and Immunity, The Royal Free Hospital, University College London, London, UK
| | - Joan Capella-Pujol
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Ana Chumbe
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Alexander Underwood
- Viral Immunology Systems Program, The Kirby Institute, School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Rowena A Bull
- Viral Immunology Systems Program, The Kirby Institute, School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Janke Schinkel
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Kwinten Sliepen
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Joe Grove
- Institute of Immunity and Transplantation, Division of Infection and Immunity, The Royal Free Hospital, University College London, London, UK
| |
Collapse
|
23
|
From Structural Studies to HCV Vaccine Design. Viruses 2021; 13:v13050833. [PMID: 34064532 PMCID: PMC8147963 DOI: 10.3390/v13050833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a serious and growing public health problem despite recent developments of antiviral therapeutics. To achieve global elimination of HCV, an effective cross-genotype vaccine is needed. The failure of previous vaccination trials to elicit an effective cross-reactive immune response demands better vaccine antigens to induce a potent cross-neutralizing response to improve vaccine efficacy. HCV E1 and E2 envelope (Env) glycoproteins are the main targets for neutralizing antibodies (nAbs), which aid in HCV clearance and protection. Therefore, a molecular-level understanding of the nAb responses against HCV is imperative for the rational design of cross-genotype vaccine antigens. Here we summarize the recent advances in structural studies of HCV Env and Env-nAb complexes and how they improve our understanding of immune recognition of HCV. We review the structural data defining HCV neutralization epitopes and conformational plasticity of the Env proteins, and the knowledge applicable to rational vaccine design.
Collapse
|
24
|
To Include or Occlude: Rational Engineering of HCV Vaccines for Humoral Immunity. Viruses 2021; 13:v13050805. [PMID: 33946211 PMCID: PMC8146105 DOI: 10.3390/v13050805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/16/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Direct-acting antiviral agents have proven highly effective at treating existing hepatitis C infections but despite their availability most countries will not reach the World Health Organization targets for elimination of HCV by 2030. A prophylactic vaccine remains a high priority. Whilst early vaccines focused largely on generating T cell immunity, attention is now aimed at vaccines that generate humoral immunity, either alone or in combination with T cell-based vaccines. High-resolution structures of hepatitis C viral glycoproteins and their interaction with monoclonal antibodies isolated from both cleared and chronically infected people, together with advances in vaccine technologies, provide new avenues for vaccine development.
Collapse
|
25
|
Abstract
Antibody responses in hepatitis C virus (HCV) have been a rather mysterious research topic for many investigators working in the field. Chronic HCV infection is often associated with dysregulation of immune functions particularly in B cells, leading to abnormal lymphoproliferation or the production of autoantibodies that exacerbate inflammation and extrahepatic diseases. When considering the antiviral function of antibody, it was difficult to endorse its role in HCV protection, whereas T-cell response has been shown unequivocally critical for natural recovery. Recent breakthroughs in the study of HCV and antigen-specific antibody responses provide important insights into viral vulnerability to antibodies and the immunogenetic and structural properties of the neutralizing antibodies. The new knowledge reinvigorates HCV vaccine research by illuminating a new path for the rational design of vaccine antigens to elicit broadly neutralizing antibodies for protection.
Collapse
Affiliation(s)
- Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California 92109, USA
| |
Collapse
|
26
|
Ströh LJ, Krey T. HCV Glycoprotein Structure and Implications for B-Cell Vaccine Development. Int J Mol Sci 2020; 21:ijms21186781. [PMID: 32947858 PMCID: PMC7555785 DOI: 10.3390/ijms21186781] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the approval of highly efficient direct-acting antivirals in the last decade Hepatitis C virus (HCV) remains a global health burden and the development of a vaccine would constitute an important step towards the control of HCV. The high genetic variability of the viral glycoproteins E1 and E2, which carry the main neutralizing determinants, together with their intrinsic structural flexibility, the high level of glycosylation that shields conserved neutralization epitopes and immune evasion using decoy epitopes renders the design of an efficient vaccine challenging. Recent structural and functional analyses have highlighted the role of the CD81 receptor binding site on E2, which overlaps with those neutralization epitopes within E2 that have been structurally characterized to date. This CD81 binding site consists of three distinct segments including “epitope I”, “epitope II” and the “CD81 binding loop”. In this review we summarize the structural features of the HCV glycoproteins that have been derived from X-ray structures of neutralizing and non-neutralizing antibody fragments complexed with either recombinant E2 or epitope-derived linear peptides. We focus on the current understanding how neutralizing antibodies interact with their cognate antigen, the structural features of the respective neutralization epitopes targeted by nAbs and discuss the implications for informed vaccine design.
Collapse
Affiliation(s)
- Luisa J. Ströh
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany;
| | - Thomas Krey
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany;
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Luebeck, 23562 Luebeck, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 30625 Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Riems, 23562 Luebeck, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, 30625 Hannover, Germany
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany
- Correspondence: ; Tel.: +49-(0)451–3101-3101
| |
Collapse
|
27
|
Hepatitis C virus vaccine design: focus on the humoral immune response. J Biomed Sci 2020; 27:78. [PMID: 32631318 PMCID: PMC7338099 DOI: 10.1186/s12929-020-00669-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the recent development of safe and highly effective direct-acting antivirals, hepatitis C virus (HCV) infection remains a significant health problem. In 2016, the World Health Organization set out to reduce the rate of new HCV infections by 90% by 2030. Still, global control of the virus does not seem to be achievable in the absence of an effective vaccine. Current approaches to the development of a vaccine against HCV include the production of recombinant proteins, synthetic peptides, DNA vaccines, virus-like particles, and viral vectors expressing various antigens. In this review, we focus on the development of vaccines targeting the humoral immune response against HCV based on the cumulative evidence supporting the important role of neutralizing antibodies in protection against HCV infection. The main targets of HCV-specific neutralizing antibodies are the glycoproteins E1 and E2. Recent advances in the knowledge of HCV glycoprotein structure and their epitopes, as well as the possibility of getting detailed information on the human antibody repertoire generated by the infection, will allow rational structure-based antigen design to target specific germline antibodies. Although obtaining a vaccine capable of inducing sterilizing immunity will be a difficult task, a vaccine that prevents chronic hepatitis C infections, a more realistic goal in the short term, would have a considerable health impact.
Collapse
|
28
|
Abstract
Monoclonal based therapeutics have always been looked at as a futuristic natural way we could take care of pathogens and many diseases. However, in order to develop, establish and realize monoclonal based therapy we need to understand how the immune system contains or kill pathogens. Antibody complexes serve the means to decode this black box. We have discussed examples of antibody complexes both at biochemical and structural levels to understand and appreciate how discoveries in the field of antibody complexes have started to decoded mechanism of viral invasion and create potential vaccine targets against many pathogens. Antibody complexes have made advancement in our knowledge about the molecular interaction between antibody and antigen. It has also led to identification of potent protective monoclonal antibodies. Further use of selective combination of monoclonal antibodies have provided improved protection against deadly diseases. The administration of newly designed and improved immunogen has been used as potential vaccine. Therefore, antibody complexes are important tools to develop new vaccine targets and design an improved combination of monoclonal antibodies for passive immunization or protection with very little or no side effects.
Collapse
Affiliation(s)
- Reetesh Raj Akhouri
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | | | - Gunnar Wilken
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Ulf Skoglund
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| |
Collapse
|
29
|
Dearborn AD, Marcotrigiano J. Hepatitis C Virus Structure: Defined by What It Is Not. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036822. [PMID: 31501263 DOI: 10.1101/cshperspect.a036822] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) represents an important and growing public health problem, chronically infecting an estimated 70 million people worldwide. This blood-borne pathogen is generating a new wave of infections in the United States, associated with increasing intravenous drug use over the last decade. In most cases, HCV establishes a chronic infection, sometimes causing cirrhosis, end-stage liver disease, and hepatocellular carcinoma. Although a curative therapy exists, it is extremely expensive and provides no barrier to reinfection; therefore, a vaccine is urgently needed. The virion is asymmetric and heterogeneous with the buoyancy and protein content similar to low-density lipoparticles. Core protein is unstructured, and of the two envelope glycoproteins, E1 and E2, the function of E1 remains enigmatic. E2 is responsible for specifically binding host receptors CD81 and scavenger receptor class B type I (SR-BI). This review will focus on structural progress on HCV virion, core protein, envelope glycoproteins, and specific host receptors.
Collapse
Affiliation(s)
- Altaira D Dearborn
- The Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.,Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Joseph Marcotrigiano
- The Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
30
|
Dawood RM, Moustafa RI, Abdelhafez TH, El-Shenawy R, El-Abd Y, Bader El Din NG, Dubuisson J, El Awady MK. A multiepitope peptide vaccine against HCV stimulates neutralizing humoral and persistent cellular responses in mice. BMC Infect Dis 2019; 19:932. [PMID: 31690267 PMCID: PMC6833294 DOI: 10.1186/s12879-019-4571-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 10/16/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Although DAAs hold promise to significantly reduce rates of chronic HCV infections, its eradication still requires development of an effective vaccine. Prolonged T cell responses and cross neutralizing antibodies are ideal for vaccination against the infection. We aimed to design and synthesize a 6 multi epitope peptide vaccine candidate and provide evidence for production of extended cellular and neutralizing Abs in mice. METHODS Six peptides derived from conserved epitopes in E1, E2 (n = 2),NS4B, NS5A and NS5B were designed, synthesized in a multiple antigenic peptide (MAP) form and administered w/o adjuvant to BALB/c mice as HCVp6-MAP at doses ranging from 800 ng to 16 μg. Humoral responses to structural epitopes were assayed by ELISA at different times after injection. ELISpot assay was used to evaluate IFN ɣ producing CD4+/ CD8+ T- lymphocytes at extended durations i.e. > 20 weeks. Viral neutralization by mice sera was tested for genotypes 2a (JFH1) and a chimeric 2a/4a virus (ED43/JFH1) in HCVcc culture. RESULTS HCVp6-MAP confers potent viral neutralization and specific cellular responses at > 1600 ng/ animal for at least 20 weeks. CONCLUSION We report on a promising anti HCV vaccine for future studies on permissive hosts and in clinical trials.
Collapse
Affiliation(s)
- Reham M Dawood
- Micrbial Biotechnology Department, National Research Center, 33 Tahrir street, Dokki, Cairo, 12622, Egypt.
| | - Rehab I Moustafa
- Micrbial Biotechnology Department, National Research Center, 33 Tahrir street, Dokki, Cairo, 12622, Egypt
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL- Centre d'Infection et d'Immunité de Lille, F-59000, Lille, France
| | - Tawfeek H Abdelhafez
- Micrbial Biotechnology Department, National Research Center, 33 Tahrir street, Dokki, Cairo, 12622, Egypt
| | - Reem El-Shenawy
- Micrbial Biotechnology Department, National Research Center, 33 Tahrir street, Dokki, Cairo, 12622, Egypt
| | - Yasmine El-Abd
- Micrbial Biotechnology Department, National Research Center, 33 Tahrir street, Dokki, Cairo, 12622, Egypt
| | - Noha G Bader El Din
- Micrbial Biotechnology Department, National Research Center, 33 Tahrir street, Dokki, Cairo, 12622, Egypt
| | - Jean Dubuisson
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL- Centre d'Infection et d'Immunité de Lille, F-59000, Lille, France
| | - Mostafa K El Awady
- Micrbial Biotechnology Department, National Research Center, 33 Tahrir street, Dokki, Cairo, 12622, Egypt
| |
Collapse
|
31
|
HCV p7 as a novel vaccine-target inducing multifunctional CD4 + and CD8 + T-cells targeting liver cells expressing the viral antigen. Sci Rep 2019; 9:14085. [PMID: 31575882 PMCID: PMC6773770 DOI: 10.1038/s41598-019-50365-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023] Open
Abstract
Despite recent treatment advances for chronic hepatitis C virus (HCV) infection, a vaccine is urgently needed for global control of this important liver pathogen. The lack of robust immunocompetent HCV infection models makes it challenging to identify correlates of protection and test vaccine efficacy. However, vigorous CD4+ and CD8+ T-cell responses are detected in patients that spontaneously resolve acute infection, whereas dysfunctional T-cell responses are a hallmark of chronic infection. The HCV p7 protein, forming ion-channels essential for viral assembly and release, has not previously been pursued as a vaccine antigen. Herein, we demonstrated that HCV p7 derived from genotype 1a and 1b sequences are highly immunogenic in mice when employed as overlapping peptides formulated as nanoparticles with the cross-priming adjuvant, CAF09. This approach induced multifunctional cytokine producing CD4+ and CD8+ T-cells targeting regions of p7 that are subject to immune pressure during HCV infection in chimpanzees and humans. Employing a surrogate in vivo challenge model of liver cells co-expressing HCV-p7 and GFP, we found that vaccinated mice cleared transgene expressing cells. This study affirms the potential of a T-cell inducing nanoparticle vaccine platform to target the liver and introduces HCV p7 as a potential target for HCV vaccine explorations.
Collapse
|
32
|
Broadly Neutralizing Antibodies Targeting New Sites of Vulnerability in Hepatitis C Virus E1E2. J Virol 2019; 93:JVI.02070-18. [PMID: 31068427 DOI: 10.1128/jvi.02070-18] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/01/2019] [Indexed: 02/08/2023] Open
Abstract
Increasing evidence indicates that broadly neutralizing antibodies (bNAbs) play an important role in immune-mediated control of hepatitis C virus (HCV) infection, but the relative contribution of neutralizing antibodies targeting antigenic sites across the HCV envelope (E1 and E2) proteins is unclear. Here, we isolated thirteen E1E2-specific monoclonal antibodies (MAbs) from B cells of a single HCV-infected individual who cleared one genotype 1a infection and then became persistently infected with a second genotype 1a strain. These MAbs bound six distinct discontinuous antigenic sites on the E1 protein, the E2 protein, or the E1E2 heterodimer. Three antigenic sites, designated AS108, AS112 (an N-terminal E1 site), and AS146, were distinct from previously described antigenic regions (ARs) 1 to 5 and E1 sites. Antibodies targeting four sites (AR3, AR4-5, AS108, and AS146) were broadly neutralizing. These MAbs also displayed distinct patterns of relative neutralizing potency (i.e., neutralization profiles) across a panel of diverse HCV strains, which led to complementary neutralizing breadth when they were tested in combination. Overall, this study demonstrates that HCV bNAb epitopes are not restricted to previously described antigenic sites, expanding the number of sites that could be targeted for vaccine development.IMPORTANCE Worldwide, more than 70 million people are infected with hepatitis C virus (HCV), which is a leading cause of hepatocellular carcinoma and liver transplantation. Despite the development of potent direct acting antivirals (DAAs) for HCV treatment, a vaccine is urgently needed due to the high cost of treatment and the possibility of reinfection after cure. Induction of multiple broadly neutralizing antibodies (bNAbs) that target distinct epitopes on the HCV envelope proteins is one approach to vaccine development. However, antigenic sites targeted by bNAbs in individuals with spontaneous control of HCV have not been fully defined. In this study, we characterize 13 monoclonal antibodies (MAbs) from a single person who cleared an HCV infection without treatment, and we identify 3 new sites targeted by neutralizing antibodies. The sites targeted by these MAbs could inform HCV vaccine development.
Collapse
|
33
|
Flyak AI, Ruiz S, Colbert MD, Luong T, Crowe JE, Bailey JR, Bjorkman PJ. HCV Broadly Neutralizing Antibodies Use a CDRH3 Disulfide Motif to Recognize an E2 Glycoprotein Site that Can Be Targeted for Vaccine Design. Cell Host Microbe 2019; 24:703-716.e3. [PMID: 30439340 DOI: 10.1016/j.chom.2018.10.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/17/2018] [Accepted: 10/03/2018] [Indexed: 12/14/2022]
Abstract
Hepatitis C virus (HCV) vaccine efforts are hampered by the extensive genetic diversity of HCV envelope glycoproteins E1 and E2. Structures of broadly neutralizing antibodies (bNAbs) (e.g., HEPC3, HEPC74) isolated from individuals who spontaneously cleared HCV infection facilitate immunogen design to elicit antibodies against multiple HCV variants. However, challenges in expressing HCV glycoproteins previously limited bNAb-HCV structures to complexes with truncated E2 cores. Here we describe crystal structures of full-length E2 ectodomain complexes with HEPC3 and HEPC74, revealing lock-and-key antibody-antigen interactions, E2 regions (including a target of immunogen design) that were truncated or disordered in E2 cores, and an antibody CDRH3 disulfide motif that exhibits common interactions with a conserved epitope despite different bNAb-E2 binding orientations. The structures display unusual features relevant to common genetic signatures of HCV bNAbs and demonstrate extraordinary plasticity in antibody-antigen interactions. In addition, E2 variants that bind HEPC3/HEPC74-like germline precursors may represent candidate vaccine immunogens.
Collapse
Affiliation(s)
- Andrew I Flyak
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Stormy Ruiz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michelle D Colbert
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tiffany Luong
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - James E Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Justin R Bailey
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
34
|
Moustafa RI, Dubuisson J, Lavie M. Function of the HCV E1 envelope glycoprotein in viral entry and assembly. Future Virol 2019. [DOI: 10.2217/fvl-2018-0180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
HCV envelope glycoproteins, E1 and E2, are multifunctional proteins. Until recently, E2 glycoprotein was thought to be the fusion protein and was the focus of investigations. However, the recently obtained partial structures of E2 and E1 rather support a role for E1 alone or in association with E2 in HCV fusion. Moreover, they suggest that HCV harbors a new fusion mechanism, distinct from that of other members of the Flaviviridae family. In this context, E1 aroused a renewed interest. Recent functional characterizations of E1 revealed a more important role than previously thought in entry and assembly. Thus, E1 is involved in the viral genome encapsidation step and influences the association of the virus with lipoprotein components. Moreover, E1 modulates HCV–receptor interaction and participates in a late entry step potentially fusion. In this review, we outline our current knowledge on E1 functions in HCV assembly and entry.
Collapse
Affiliation(s)
- Rehab I Moustafa
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204 – CIIL– Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
- Department of Microbial Biotechnology, Genetic Engineering & Biotechnology Division, National Research Center, Dokki, Cairo, Egypt
| | - Jean Dubuisson
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204 – CIIL– Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Muriel Lavie
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204 – CIIL– Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| |
Collapse
|
35
|
Abstract
In spite of the immense progress in hepatitis C virus (HCV) research, efforts to prevent infection, such as generating a vaccine, have not yet been successful. The high price tag associated with current treatment options for chronic infection and the spike in new infections concurrent with growing opioid abuse are strong motivators for developing effective immunization and understanding neutralizing antibodies' role in preventing infection. Humanized mice-both human liver chimeras as well as genetically humanized models-are important platforms for testing both possible vaccine candidates as well as antibody-based therapies. This chapter details the variety of ways humanized mouse technology can be employed in pursuit of learning how HCV infection can be prevented.
Collapse
Affiliation(s)
- Jenna M Gaska
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Qiang Ding
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- School of Medicine, Tsinghua University, Beijing, China
| | - Alexander Ploss
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
36
|
Prentoe J, Bukh J. Hypervariable Region 1 in Envelope Protein 2 of Hepatitis C Virus: A Linchpin in Neutralizing Antibody Evasion and Viral Entry. Front Immunol 2018; 9:2146. [PMID: 30319614 PMCID: PMC6170631 DOI: 10.3389/fimmu.2018.02146] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infection is the cause of about 400,000 annual liver disease-related deaths. The global spread of this important human pathogen can potentially be prevented through the development of a vaccine, but this challenge has proven difficult, and much remains unknown about the multitude of mechanisms by which this heterogeneous RNA virus evades inactivation by neutralizing antibodies (NAbs). The N-terminal motif of envelope protein 2 (E2), termed hypervariable region 1 (HVR1), changes rapidly in immunoglobulin-competent patients due to antibody-driven antigenic drift. HVR1 contains NAb epitopes and is directly involved in protecting diverse antibody-specific epitopes on E1, E2, and E1/E2 through incompletely understood mechanisms. The ability of HVR1 to protect HCV from NAbs appears linked with modulation of HCV entry co-receptor interactions. Thus, removal of HVR1 increases interaction with CD81, while altering interaction with scavenger receptor class B, type I (SR-BI) in a complex fashion, and decreasing interaction with low-density lipoprotein receptor. Despite intensive efforts this modulation of receptor interactions by HVR1 remains incompletely understood. SR-BI has received the most attention and it appears that HVR1 is involved in a multimodal HCV/SR-BI interaction involving high-density-lipoprotein associated ApoCI, which may prime the virus for later entry events by exposing conserved NAb epitopes, like those in the CD81 binding site. To fully elucidate the multifunctional role of HVR1 in HCV entry and NAb evasion, improved E1/E2 models and comparative studies with other NAb evasion strategies are needed. Derived knowledge may be instrumental in the development of a prophylactic HCV vaccine.
Collapse
Affiliation(s)
- Jannick Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, Copenhagen, Denmark.,Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, Copenhagen, Denmark.,Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
37
|
Tong Y, Lavillette D, Li Q, Zhong J. Role of Hepatitis C Virus Envelope Glycoprotein E1 in Virus Entry and Assembly. Front Immunol 2018; 9:1411. [PMID: 29971069 PMCID: PMC6018474 DOI: 10.3389/fimmu.2018.01411] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/06/2018] [Indexed: 12/22/2022] Open
Abstract
Hepatitis C virus (HCV) glycoproteins E1 and E2 form a heterodimer to constitute viral envelope proteins, which play an essential role in virus entry. E1 does not directly interact with host receptors, and its functions in viral entry are exerted mostly through its interaction with E2 that directly binds the receptors. HCV enters the host cell via receptor-mediated endocytosis during which the fusion of viral and host endosomal membranes occurs to release viral genome to cytoplasm. A putative fusion peptide in E1 has been proposed to participate in membrane fusion, but its exact role and underlying molecular mechanisms remain to be deciphered. Recently solved crystal structures of the E2 ectodomains and N-terminal of E1 fail to reveal a classical fusion-like structure in HCV envelope glycoproteins. In addition, accumulating evidence suggests that E1 also plays an important role in virus assembly. In this mini-review, we summarize current knowledge on HCV E1 including its structure and biological functions in virus entry, fusion, and assembly, which may provide clues for developing HCV vaccines and more effective antivirals.
Collapse
Affiliation(s)
- Yimin Tong
- Unit of Viral Hepatitis, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Dimitri Lavillette
- Unit of Interspecies Transmission of Arboviruses and Antivirals, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qingchao Li
- Unit of Viral Hepatitis, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jin Zhong
- Unit of Viral Hepatitis, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
38
|
Ströh LJ, Nagarathinam K, Krey T. Conformational Flexibility in the CD81-Binding Site of the Hepatitis C Virus Glycoprotein E2. Front Immunol 2018; 9:1396. [PMID: 29967619 PMCID: PMC6015841 DOI: 10.3389/fimmu.2018.01396] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/05/2018] [Indexed: 01/15/2023] Open
Abstract
Numerous antibodies have been described that potently neutralize a broad range of hepatitis C virus (HCV) isolates and the majority of these antibodies target the binding site for the cellular receptor CD81 within the major HCV glycoprotein E2. A detailed understanding of the major antigenic determinants is crucial for the design of an efficient vaccine that elicits high levels of such antibodies. In the past 6 years, structural studies have shed additional light on the way the host’s humoral immune system recognizes neutralization epitopes within the HCV glycoproteins. One of the most striking findings from these studies is that the same segments of the E2 polypeptide chain induce antibodies targeting distinct antigen conformations. This was demonstrated by several crystal structures of identical polypeptide segments bound to different antibodies, highlighting an unanticipated intrinsic structural flexibility that allows binding of antibodies with distinct paratope shapes following an “induced-fit” mechanism. This unprecedented flexibility extends to the entire binding site for the cellular receptor CD81, underlining the importance of dynamic analyses to understand (1) the interplay between HCV and the humoral immune system and (2) the relevance of this structural flexibility for virus entry. This review summarizes the current understanding how neutralizing antibodies target structurally flexible epitopes. We focus on differences and common features of the reported structures and discuss the implications of the observed structural flexibility for the viral replication cycle, the full scope of the interplay between the virus and the host immune system and—most importantly—informed vaccine design.
Collapse
Affiliation(s)
- Luisa J Ströh
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | - Thomas Krey
- Institute of Virology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
39
|
Guo X, Zhong JY, Li JW. Hepatitis C Virus Infection and Vaccine Development. J Clin Exp Hepatol 2018; 8:195-204. [PMID: 29892184 PMCID: PMC5992307 DOI: 10.1016/j.jceh.2018.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/08/2018] [Indexed: 12/12/2022] Open
Abstract
In the twenty-seven years since the discovery of hepatitis C virus (HCV) the majority of individuals exposed to HCV establish a persistent infection, which is a leading cause of chronic liver disease, cirrhosis and hepatocellular carcinoma. In developed nations, the cure rates of HCV infection could be over 90% with direct-acting antiviral (DAA) regimens, which has made the great progress in global eradication. However, the cost of these treatments is so expensive that the patients in developing nations, where the disease burden is the most severe, could not afford it, which highly restricted its access. Additionally, the largely asymptomatic nature of infection facilitates continued transmission in risk groups due to limited surveillance. Consequently a protective vaccine and likely emergence of drug-resistant viral variants call for further studies of HCV biology. In the current review, the development and the progress of preventive and therapeutic vaccines against the HCV have been reviewed in the context of peptide vaccines, recombinant protein vaccines, HCV-like particle, DNA vaccines and viral vectors expressing HCV genes.
Collapse
Affiliation(s)
- Xuan Guo
- Research Institute of Chemical Defense, No.1 Huaiyin Road, Beijing 102205, China
- Department of Environment and Health, Tianjin Institute of Health and Environmental Medicine, No.1 Dali Road, Tianjin 300050, China
| | - Jin-Yi Zhong
- Research Institute of Chemical Defense, No.1 Huaiyin Road, Beijing 102205, China
| | - Jun-Wen Li
- Department of Environment and Health, Tianjin Institute of Health and Environmental Medicine, No.1 Dali Road, Tianjin 300050, China
| |
Collapse
|
40
|
Keck ML, Wrensch F, Pierce BG, Baumert TF, Foung SKH. Mapping Determinants of Virus Neutralization and Viral Escape for Rational Design of a Hepatitis C Virus Vaccine. Front Immunol 2018; 9:1194. [PMID: 29904384 PMCID: PMC5991293 DOI: 10.3389/fimmu.2018.01194] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/14/2018] [Indexed: 12/20/2022] Open
Abstract
Hepatitis C virus (HCV) continues to spread worldwide with an annual increase of 1.75 million new infections. The number of HCV cases in the U.S. is now greater than the number of HIV cases and is increasing in young adults because of the opioid epidemic sweeping the country. HCV-related liver disease is the leading indication of liver transplantation. An effective vaccine is of paramount importance to control and prevent HCV infection. While this vaccine will need to induce both cellular and humoral immunity, this review is focused on the required antibody responses. For highly variable viruses, such as HCV, isolation and characterization of monoclonal antibodies mediating broad virus neutralization are an important guide for vaccine design. The viral envelope glycoproteins, E1 and E2, are the main targets of these antibodies. Epitopes on the E2 protein have been studied more extensively than epitopes on E1, due to higher antibody targeting that reflects these epitopes having higher degrees of immunogenicity. E2 epitopes are overall organized in discrete clusters of overlapping epitopes that ranged from high conservation to high variability. Other epitopes on E1 and E1E2 also are targets of neutralizing antibodies. Taken together, these regions are important for vaccine design. Another element in vaccine design is based on information on how the virus escapes from broadly neutralizing antibodies. Escape mutations can occur within the epitopes that are involved in antibody binding and in regions that are not involved in their epitopes, but nonetheless reduce the efficiency of neutralizing antibodies. An understanding on the specificities of a protective B cell response, the molecular locations of these epitopes on E1, E2, and E1E2, and the mechanisms, which enable the virus to negatively modulate neutralizing antibody responses to these regions will provide the necessary guidance for vaccine design.
Collapse
Affiliation(s)
- Mei-Le Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Florian Wrensch
- INSERM U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France.,Université de Strasbourg, Strasbourg, France
| | - Brian G Pierce
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States.,Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Thomas F Baumert
- INSERM U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France.,Université de Strasbourg, Strasbourg, France
| | - Steven K H Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
41
|
Lavie M, Hanoulle X, Dubuisson J. Glycan Shielding and Modulation of Hepatitis C Virus Neutralizing Antibodies. Front Immunol 2018; 9:910. [PMID: 29755477 PMCID: PMC5934428 DOI: 10.3389/fimmu.2018.00910] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/12/2018] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) envelope glycoprotein heterodimer, E1E2, plays an essential role in virus entry and assembly. Furthermore, due to their exposure at the surface of the virion, these proteins are the major targets of anti-HCV neutralizing antibodies. Their ectodomain are heavily glycosylated with up to 5 sites on E1 and up to 11 sites on E2 modified by N-linked glycans. Thus, one-third of the molecular mass of E1E2 heterodimer corresponds to glycans. Despite the high sequence variability of E1 and E2, N-glycosylation sites of these proteins are generally conserved among the seven major HCV genotypes. N-glycans have been shown to be involved in E1E2 folding and modulate different functions of the envelope glycoproteins. Indeed, site-directed mutagenesis studies have shown that specific glycans are needed for virion assembly and infectivity. They can notably affect envelope protein entry functions by modulating their affinity for HCV receptors and their fusion activity. Importantly, glycans have also been shown to play a key role in immune evasion by masking antigenic sites targeted by neutralizing antibodies. It is well known that the high mutational rate of HCV polymerase facilitates the appearance of neutralization resistant mutants, and occurrence of mutations leading to glycan shifting is one of the mechanisms used by this virus to escape host humoral immune response. As a consequence of the importance of the glycan shield for HCV immune evasion, the deletion of N-glycans also leads to an increase in E1E2 immunogenicity and can induce a more potent antibody response against HCV.
Collapse
Affiliation(s)
- Muriel Lavie
- University of Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection & Immunity of Lille, Lille, France
| | - Xavier Hanoulle
- University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Jean Dubuisson
- University of Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection & Immunity of Lille, Lille, France
| |
Collapse
|
42
|
Can Broadly Neutralizing Monoclonal Antibodies Lead to a Hepatitis C Virus Vaccine? Trends Microbiol 2018; 26:854-864. [PMID: 29703495 DOI: 10.1016/j.tim.2018.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/09/2018] [Accepted: 04/02/2018] [Indexed: 12/20/2022]
Abstract
While licensed vaccines elicit protective antibody responses against a variety of viral infections, an effective vaccine for hepatitis C virus (HCV) has remained elusive. The extraordinary genetic diversity of HCV and the ability of the virus to evade the immune response have hindered vaccine development efforts. However, recent studies have greatly expanded the number of well characterized broadly neutralizing human monoclonal antibodies (bNAbs) against HCV. These bNAbs target relatively conserved HCV epitopes, prevent HCV infection in animal models, and are associated with spontaneous clearance of human HCV infection. In this review, recent high-resolution bNAb epitope mapping and structural analysis of bNAb-epitope complexes that may serve as a guide for vaccine development are discussed along with major obstacles.
Collapse
|
43
|
Wei S, Lei Y, Yang J, Wang X, Shu F, Wei X, Lin F, Li B, Cui Y, Zhang H, Wei S. Neutralization effects of antibody elicited by chimeric HBV S antigen viral-like particles presenting HCV neutralization epitopes. Vaccine 2018; 36:2273-2281. [PMID: 29576303 DOI: 10.1016/j.vaccine.2018.03.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/23/2018] [Accepted: 03/14/2018] [Indexed: 01/29/2023]
Abstract
Hepatitis C virus (HCV) infection is a major public health problem despite effectual direct-acting antivirals (DAAs) therapy. Development of a prophylactic vaccine is essential to block spread of HCV infection. The HBV small surface antigen (HBsAg-S) can self-assemble into virus-like particles (VLPs), has higher immunogenicity and is used as a vaccine against HBV infections. Chimeric HBsAg-S proteins with foreign epitopes allow VLP formation and induce the specific humoral and cellular immune responses against the foreign proteins. In this study, we investigated the immune responses induced by chimeric VLPs with HCV neutralizing epitopes and HBV S antigen in mice. The chimeric HCV-HBV VLPs expressing neutralizing epitopes were prepared and purified. BALB/c mice were immunized with purified chimeric VLPs and the serum neutralizing antibodies were analyzed. We found that these chimeric VLPs induced neutralizing antibodies against HCV in mice. Additionally, the murine serum neutralized infections with HCV pseudoparticles and cell-cultured viruses derived from different heterologous 1a, 1b and 2a genotypes. We also found that immunization with chimeric VLPs induced anti-HBsAg antibodies. This study provides a novel strategy for development of a HCV prophylactic neutralizing epitope vaccine and a HCV-HBV bivalent prophylactic vaccine.
Collapse
Affiliation(s)
- Sanhua Wei
- Department of Clinical Laboratory and Research Center, Tangdu Hospital, The Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, Shaanxi 710038, China
| | - Yingfeng Lei
- Department of Microbiology, The Fourth Military Medical University, No. 17 West Road, Xi'an, Shaanxi 710032, China
| | - Jie Yang
- Department of Nephrology, Tangdu Hospital, The Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, Shaanxi 710038, China
| | - Xiaoyan Wang
- Department of Clinical Laboratory and Research Center, Tangdu Hospital, The Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, Shaanxi 710038, China
| | - Fang Shu
- Department of Clinical Laboratory, Xi'an Third Hospital, No. 10 Eastern Section of The Third FengCheng Rd., WeiYang District, Xi'an, Shaanxi 710018, China
| | - Xin Wei
- Department of Infectious Disease, Tangdu Hospital, The Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, Shaanxi 710038, China
| | - Fang Lin
- Department of Clinical Laboratory and Research Center, Tangdu Hospital, The Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, Shaanxi 710038, China
| | - Bin Li
- Department of Clinical Laboratory and Research Center, Tangdu Hospital, The Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, Shaanxi 710038, China
| | - Ying Cui
- Department of Clinical Laboratory and Research Center, Tangdu Hospital, The Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, Shaanxi 710038, China
| | - Hai Zhang
- Laboratory Animal Research Center, The Fourth Military Medical University, No. 17 West Road, Xi'an, Shaanxi 710032, China.
| | - Sanhua Wei
- Department of Clinical Laboratory and Research Center, Tangdu Hospital, The Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, Shaanxi 710038, China.
| |
Collapse
|
44
|
Cheng HD, Grimm SK, Gilman MS, Gwom LC, Sok D, Sundling C, Donofrio G, Karlsson Hedestam GB, Bonsignori M, Haynes BF, Lahey TP, Maro I, von Reyn CF, Gorny MK, Zolla-Pazner S, Walker BD, Alter G, Burton DR, Robb ML, Krebs SJ, Seaman MS, Bailey-Kellogg C, Ackerman ME. Fine epitope signature of antibody neutralization breadth at the HIV-1 envelope CD4-binding site. JCI Insight 2018. [PMID: 29515029 PMCID: PMC5922287 DOI: 10.1172/jci.insight.97018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Major advances in donor identification, antigen probe design, and experimental methods to clone pathogen-specific antibodies have led to an exponential growth in the number of newly characterized broadly neutralizing antibodies (bnAbs) that recognize the HIV-1 envelope glycoprotein. Characterization of these bnAbs has defined new epitopes and novel modes of recognition that can result in potent neutralization of HIV-1. However, the translation of envelope recognition profiles in biophysical assays into an understanding of in vivo activity has lagged behind, and identification of subjects and mAbs with potent antiviral activity has remained reliant on empirical evaluation of neutralization potency and breadth. To begin to address this discrepancy between recombinant protein recognition and virus neutralization, we studied the fine epitope specificity of a panel of CD4-binding site (CD4bs) antibodies to define the molecular recognition features of functionally potent humoral responses targeting the HIV-1 envelope site bound by CD4. Whereas previous studies have used neutralization data and machine-learning methods to provide epitope maps, here, this approach was reversed, demonstrating that simple binding assays of fine epitope specificity can prospectively identify broadly neutralizing CD4bs-specific mAbs. Building on this result, we show that epitope mapping and prediction of neutralization breadth can also be accomplished in the assessment of polyclonal serum responses. Thus, this study identifies a set of CD4bs bnAb signature amino acid residues and demonstrates that sensitivity to mutations at signature positions is sufficient to predict neutralization breadth of polyclonal sera with a high degree of accuracy across cohorts and across clades.
Collapse
Affiliation(s)
- Hao D Cheng
- Thayer School of Engineering and.,Molecular and Cellular Biology Program, Dartmouth College, Hanover, New Hampshire, USA
| | | | - Morgan Sa Gilman
- Thayer School of Engineering and.,Molecular and Cellular Biology Program, Dartmouth College, Hanover, New Hampshire, USA
| | - Luc Christian Gwom
- Thayer School of Engineering and.,Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
| | - Devin Sok
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Christopher Sundling
- Unit of Infectious Diseases, Department of Medicine, Solna, Karolinska Institute, Stockholm, Sweden
| | - Gina Donofrio
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | | | | | | | - Timothy P Lahey
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Isaac Maro
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA.,DarDar Health Programs, Dar es salaam, Tanzania.,Tokyo Medical and Dental University, Tokyo, Japan
| | - C Fordham von Reyn
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Miroslaw K Gorny
- Department of Pathology, NYU School of Medicine, New York, New York, USA
| | - Susan Zolla-Pazner
- Departments of Medicine and Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bruce D Walker
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, Massachusetts, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, Massachusetts, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA.,Ragon Institute of MGH, MIT, and Harvard University, Cambridge, Massachusetts, USA
| | - Merlin L Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Shelly J Krebs
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Michael S Seaman
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | | |
Collapse
|
45
|
Fuerst TR, Pierce BG, Keck ZY, Foung SKH. Designing a B Cell-Based Vaccine against a Highly Variable Hepatitis C Virus. Front Microbiol 2018; 8:2692. [PMID: 29379486 PMCID: PMC5775222 DOI: 10.3389/fmicb.2017.02692] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023] Open
Abstract
The ability to use structure-based design and engineering to control the molecular shape and reactivity of an immunogen to induce protective responses shows great promise, along with corresponding advancements in vaccine testing and evaluation systems. We describe in this review new paradigms for the development of a B cell-based HCV vaccine. Advances in test systems to measure in vitro and in vivo antibody-mediated virus neutralization include retroviral pseudotype particles expressing HCV E1E2 glycoproteins (HCVpp), infectious cell culture-derived HCV virions (HCVcc), and surrogate animal models mimicking acute HCV infection. Their applications have established the role of broadly neutralizing antibodies to control HCV infection. However, the virus has immunogenic regions in the viral envelope glycoproteins that are associated with viral escape or non-neutralizing antibodies. These regions serve as immunologic decoys that divert the antibody response from less prominent conserved regions mediating virus neutralization. This review outlines the immunogenic regions on E2, which are roughly segregated into the hypervariable region 1 (HVR1), and five clusters of overlapping epitopes designated as antigenic domains A-E. Understanding the molecular architecture of conserved neutralizing epitopes within these antigenic domains, and how other antigenic regions or decoys deflect the immune response from these conserved regions will provide a roadmap for the rational design of an HCV vaccine.
Collapse
Affiliation(s)
- Thomas R Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States.,Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Brian G Pierce
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States.,Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Zhen-Yong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Steven K H Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
46
|
Ghasemi F, Ghayour-Mobarhan M, Gouklani H, Meshkat Z. Development of Preventive Vaccines for Hepatitis C Virus E1/E2 Protein. IRANIAN JOURNAL OF PATHOLOGY 2018; 13:113-124. [PMID: 30697280 PMCID: PMC6339490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/03/2018] [Indexed: 11/30/2022]
Abstract
Hepatitis C virus (HCV) is responsible for a vast majority of liver failure cases. HCV is a kind of blood disease estimated to chronically infect 3% of the worlds population, causing significant morbidity and mortality. Therefore, a complete knowledge of humoral responses against HCV, resulting antibodies, and virus-receptor and virus-antibody interactions, are essential to design a vaccine. HCV epitopes or full sequence of HCV proteins can induce HCV specific immune responses. In fact, structural proteins are usually the main target of humoral responses and non-structural proteins are usually the main target of cellular responses. Hence, various vaccines based on distinct antigenic combinations are developed to prevent HCV infection and the current study tried to summarize them.
Collapse
Affiliation(s)
- Faezeh Ghasemi
- Dept. of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran,Dept. of Medical Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Majid Ghayour-Mobarhan
- Biochemistry of Nutrition Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Gouklani
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran,Dept. of Microbiology and Virology, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran,Zahra Meshkat, Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. E-mail:
| |
Collapse
|
47
|
Gopal R, Jackson K, Tzarum N, Kong L, Ettenger A, Guest J, Pfaff JM, Barnes T, Honda A, Giang E, Davidson E, Wilson IA, Doranz BJ, Law M. Probing the antigenicity of hepatitis C virus envelope glycoprotein complex by high-throughput mutagenesis. PLoS Pathog 2017; 13:e1006735. [PMID: 29253863 PMCID: PMC5749897 DOI: 10.1371/journal.ppat.1006735] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 01/02/2018] [Accepted: 11/04/2017] [Indexed: 12/12/2022] Open
Abstract
The hepatitis C virus (HCV) envelope glycoproteins E1 and E2 form a non-covalently linked heterodimer on the viral surface that mediates viral entry. E1, E2 and the heterodimer complex E1E2 are candidate vaccine antigens, but are technically challenging to study because of difficulties in producing natively folded proteins by standard protein expression and purification methods. To better comprehend the antigenicity of these proteins, a library of alanine scanning mutants comprising the entirety of E1E2 (555 residues) was created for evaluating the role of each residue in the glycoproteins. The mutant library was probed, by a high-throughput flow cytometry-based assay, for binding with the co-receptor CD81, and a panel of 13 human and mouse monoclonal antibodies (mAbs) that target continuous and discontinuous epitopes of E1, E2, and the E1E2 complex. Together with the recently determined crystal structure of E2 core domain (E2c), we found that several residues in the E2 back layer region indirectly impact binding of CD81 and mAbs that target the conserved neutralizing face of E2. These findings highlight an unexpected role for the E2 back layer in interacting with the E2 front layer for its biological function. We also identified regions of E1 and E2 that likely located at or near the interface of the E1E2 complex, and determined that the E2 back layer also plays an important role in E1E2 complex formation. The conformation-dependent reactivity of CD81 and the antibody panel to the E1E2 mutant library provides a global view of the influence of each amino acid (aa) on E1E2 expression and folding. This information is valuable for guiding protein engineering efforts to enhance the antigenic properties and stability of E1E2 for vaccine antigen development and structural studies.
Collapse
Affiliation(s)
- Radhika Gopal
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Kelli Jackson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Netanel Tzarum
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Leopold Kong
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Andrew Ettenger
- Integral Molecular, Inc., Philadelphia, PA, United States of America
| | - Johnathan Guest
- Integral Molecular, Inc., Philadelphia, PA, United States of America
| | - Jennifer M. Pfaff
- Integral Molecular, Inc., Philadelphia, PA, United States of America
| | - Trevor Barnes
- Integral Molecular, Inc., Philadelphia, PA, United States of America
| | - Andrew Honda
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Erick Giang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Edgar Davidson
- Integral Molecular, Inc., Philadelphia, PA, United States of America
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States of America
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, United States of America
| | | | - Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States of America
- * E-mail:
| |
Collapse
|
48
|
Development and characterization of a human monoclonal antibody targeting the N-terminal region of hepatitis C virus envelope glycoprotein E1. Virology 2017; 514:30-41. [PMID: 29128754 DOI: 10.1016/j.virol.2017.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/16/2017] [Accepted: 10/20/2017] [Indexed: 12/23/2022]
Abstract
Monoclonal antibodies (mAbs) targeting the hepatitis C virus (HCV) envelope have been raised mainly against envelope protein 2 (E2), while the antigenic epitopes of envelope protein 1 (E1) are not fully identified. Here we describe the detailed characterization of a human mAb, designated A6, generated from an HCV genotype 1b infected patient. ELISA results showed reactivity of mAb A6 to full-length HCV E1E2 of genotypes 1a, 1b and 2a. Epitope mapping identified a region spanning amino acids 230-239 within the N-terminal region of E1 as critical for binding. Antibody binding to this epitope was not conformation dependent. Neutralization assays showed that mAb A6 lacks neutralizing capacity and does not interfere with the activity of known neutralizing antibodies. In summary, mAb A6 is an important tool to study the structure and function of E1 within the viral envelope, a crucial step in the development of an effective prophylactic HCV vaccine.
Collapse
|
49
|
Torresi J. The Rationale for a Preventative HCV Virus-Like Particle (VLP) Vaccine. Front Microbiol 2017; 8:2163. [PMID: 29163442 PMCID: PMC5674006 DOI: 10.3389/fmicb.2017.02163] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/20/2017] [Indexed: 12/16/2022] Open
Abstract
HCV represents a global health problem with ~200 million individuals currently infected, worldwide. With the high cost of antiviral therapies, the global burden of chronic hepatitis C infection (CHCV) infection will be substantially reduced by the development of an effective vaccine for HCV. The field of HCV vaccines is generally divided into proponents of strategies to induce neutralizing antibodies (NAb) and those who propose to elicit cell mediated immunity (CMI). However, for a hepatitis C virus (HCV) vaccine to be effective in preventing infection, it must be capable of generating cross-reactive CD4+, CD8+ T cell, and NAb responses that will cover the major viral genotypes. Simulation models of hepatitis C have predicted that a vaccine of even modest efficacy and coverage will significantly reduce the incidence of hepatitis C. A HCV virus like particle (VLP) based vaccine would fulfill the requirement of delivering critical conformational neutralizing epitopes in addition to providing HCV specific CD4+ and CD8+ epitopes. Several approaches have been reported including insect cell-derived genotype 1b HCV VLPs; a human liver-derived quadrivalent genotype 1a, 1b, 2, and 3a vaccine; a genotype 1a HCV E1 and E2 glycoprotein/MLV Gag pseudotype VLP vaccine; and chimeric HBs-HCV VLP vaccines. All to result in the production of cross-NAb and/or T cell responses against HCV. This paper summarizes the evidence supporting the development of a HCV VLP based vaccine.
Collapse
Affiliation(s)
- Joseph Torresi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
50
|
Abdelhafez TH, Bader El Din NG, Tabll AA, Mashaly MM, Dawood RM, Yassin NA, El-Awady MK. Mice Antibody Response to Conserved Nonadjuvanted Multiple Antigenic Peptides Derived from E1/E2 Regions of Hepatitis C Virus. Viral Immunol 2017; 30:359-365. [PMID: 28402196 DOI: 10.1089/vim.2016.0123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Synthetic peptides are one of the hepatitis C virus (HCV)-specific small molecules that have antiviral activity and represent a target for HCV vaccine. This study aims to determine the lowest concentration of adjuvanted and non-adjuvanted (multiple antigenic peptide [MAP]) form of three conserved HCV envelope peptides that can induce murine immunogenic responses and evaluate the neutralization capacities of the generated antibodies (Abs) against HCV in cultured Huh7.5 cells. In this study, three HCV synthetic peptides, E1 peptide (a.a 315-323) and E2 peptides (a.a 412-419 and a.a 516-531) were synthesized. Female Balb/c mice were immunized with different concentration of either adjuvanted linear peptides or nonadjuvanted MAP peptides to determine the lowest dose that generates Ab responses enough to confer viral neutralization in vitro. The humoral responses targeting these peptides in immunized mice sera were measured by enzyme-linked immunosorbent assay (ELISA). Viral neutralization capacities of the generated mice Abs were assessed using Huh7.5 cells infected with the HCVcc infectious system (J6/JFH-1). The results of this study showed that the MAPs induce higher Ab titers than adjuvanted linear peptides after 4 weeks of immunization (p = 0.003). The viral neutralization experiments showed that the immunized mice sera contain anti E1/E2 Abs that blocked HCVcc (J6/JFH-1) entry into Huh7.5 cells. In conclusion, the three HCV envelope MAP peptides are more immunogenic and produce higher neutralizing Abs than linear peptides; therefore, they can be essential components for HCV vaccine.
Collapse
Affiliation(s)
- Tawfeek H Abdelhafez
- 1 Department of Microbial Biotechnology, National Research Center , Dokki, Giza, Egypt
| | - Noha G Bader El Din
- 1 Department of Microbial Biotechnology, National Research Center , Dokki, Giza, Egypt
| | - Ashraf A Tabll
- 1 Department of Microbial Biotechnology, National Research Center , Dokki, Giza, Egypt
| | - Mohammad M Mashaly
- 2 Department of Chemistry, Faculty of Science, Damietta University , Damietta, Egypt
| | - Reham M Dawood
- 1 Department of Microbial Biotechnology, National Research Center , Dokki, Giza, Egypt
| | - Nemat A Yassin
- 3 Department of Pharmacology, National Research Center , Dokki, Giza, Egypt
| | - Mostafa K El-Awady
- 1 Department of Microbial Biotechnology, National Research Center , Dokki, Giza, Egypt
| |
Collapse
|