1
|
Przybylski M, Guzowska M, Gazi O, Urbański J, Bieganowski P. Curcumin dispersed with colloidal nano-particles inhibits enteric viruses replication. Antiviral Res 2025; 237:106140. [PMID: 40057049 DOI: 10.1016/j.antiviral.2025.106140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/15/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025]
Abstract
Acute gastroenteritis remains one of the most common health problems despite the progress in prevention and vaccination. The options for viral diarrhea therapy are limited and there is the need for effective treatment. Recently a novel form of the nano-dispersed curcumin that is highly bioavailable was described. This form of curcumin was well tolerated by the cells in culture and was rapidly absorbed into the blood plasma after oral administration. We tested the antiviral activity of this curcumin formulation in vitro using several viruses associated with gastrointestinal infections, like astrovirus, norovirus rotavirus, adenovirus, echovirus, and coxackievirus. We did observe strong replication inhibition of all tested viruses. These results suggest that the tested form of curcumin is a promising candidate for a broad-spectrum antiviral drug.
Collapse
Affiliation(s)
- Maciej Przybylski
- Chair and Department of Medical Microbiology, Medical University of Warsaw, Poland.
| | - Magdalena Guzowska
- Division of Biochemistry and Dietetics, Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland.
| | - Olga Gazi
- Chair and Department of Medical Microbiology, Medical University of Warsaw, Poland.
| | - Jakub Urbański
- Food Studies, SWPS University, Warsaw, Poland; Dairy Biotechnologies Ltd., Puławy, Poland.
| | - Pawel Bieganowski
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
2
|
Hao M, Zhang C, Wang T, Hu H. Pharmacological effects, formulations, and clinical research progress of curcumin. Front Pharmacol 2025; 16:1509045. [PMID: 40166470 PMCID: PMC11955698 DOI: 10.3389/fphar.2025.1509045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/03/2025] [Indexed: 04/02/2025] Open
Abstract
Curcumin, a polyphenolic compound derived from the traditional Chinese medicine turmeric, which has a variety of pharmacological effects, including anti-cancer, anti-inflammatory, antioxidant, and antiviral properties. However, its clinical application is hindered by low solubility and bioavailability. To overcome these limitations, researchers have developed various formulations such as nanoformulations, solid dispersions, and microspheres. These advancements have led to improved therapeutic effects and have facilitated the progression of clinical research, primarily focusing on Phase I and Phase II trials for conditions like diabetes, obesity, and metabolic syndrome. In recent years, there has been a noticeable increase in Phase III and IV clinical trials, particularly concerning oral and dental diseases and arthritis. This article reviews recent literature from both domestic and international sources, providing a comprehensive overview of curcumin's research progress, including its pharmacological mechanisms, formulation developments, and clinical studies.
Collapse
Affiliation(s)
- Minghui Hao
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Chungang Zhang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
- Department of Pharmacy, Changzhi Medical College, Changzhi, China
- Qimeng Co., LTD, Chifeng, China
| | - Ti Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Heng Hu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| |
Collapse
|
3
|
Wang Y, Dong Y, Luan T, Chen Y, Lin L, Li S, Feng D, Wei J, Fei Y, Wang G, Pan J, Wang Y, Zhong Z, Zhao W. TRIM56 restricts Coxsackievirus B infection by mediating the ubiquitination of viral RNA-dependent RNA polymerase 3D. PLoS Pathog 2024; 20:e1012594. [PMID: 39348396 PMCID: PMC11476688 DOI: 10.1371/journal.ppat.1012594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/10/2024] [Accepted: 09/13/2024] [Indexed: 10/02/2024] Open
Abstract
Coxsackievirus B (CVB) is the major causative pathogen for severe diseases such as viral myocarditis, meningitis, and pancreatitis. There is no effective antiviral therapy currently available for CVB infection primarily due to that the pathogenesis of CVB has not been completely understood. Viruses are obligate intracellular pathogens which subvert cellular processes to ensure viral replication. Dysregulation of ubiquitination has been implicated in CVB infection. However, how ubiquitination is involved in CVB infection remains unclear. Here we found that the 3D protein of CVB3, the RNA-dependent RNA polymerase, was modified at K220 by K48-linked polyubiquitination which promoted its degradation through proteasome. Proteomic analysis showed that the E3 ligase TRIM56 was upregulated in CVB3-infected cells, while the majority of TRIMs remained unchanged. Pull-down and immunoprecipitation analyses showed that TRIM56 interacted with CVB3 3D. Immunofluorescence observation showed that viral 3D protein was colocalized with TRIM56. TRIM56 overexpression resulted in enhanced ubiquitination of CVB3 3D and decreased virus yield. Moreover, TRIM56 was cleaved by viral 3C protease in CVB3-infected cells. Taken together, this study demonstrated that TRIM56 mediates the ubiquitination and proteasomal degradation of the CVB3 3D protein. These findings demonstrate that TRIM56 is an intrinsic cellular restriction factor against CVB infection, and enhancing viral protein degradation could be a potential strategy to control CVB infection.
Collapse
Affiliation(s)
- Yao Wang
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Yanyan Dong
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Tian Luan
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Yang Chen
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Lexun Lin
- Teaching Center of Pathogenic Biology, Harbin Medical University, Harbin, China
| | - Siwei Li
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Danxiang Feng
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Jianwei Wei
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Yanru Fei
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Guangtian Wang
- Teaching Center of Pathogenic Biology, Harbin Medical University, Harbin, China
| | - Jiahui Pan
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Yan Wang
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Zhaohua Zhong
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Wenran Zhao
- Department of Cell Biology, Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Wu XX, Law SK, Ma H, Jiang Z, Li YF, Au DCT, Wong CK, Luo DX. Bio-active metabolites from Chinese Medicinal Herbs for treatment of skin diseases. Nat Prod Res 2024:1-23. [PMID: 39155491 DOI: 10.1080/14786419.2024.2391070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
Skin diseases have become serious issues to human health and affect one-third of the world's population according to the World Health Organisation (WHO). These consist of internal (endogenous) and external (exogenous) factors referring to genetics, hormones, and the body's immune system, as well as environmental situations, UV radiation, or environmental pollution respectively. Generally, Western Medicines (WMs) are usually treated with topical creams or strong medications for skin diseases that help superficially, and often do not treat the root cause. The relief may be instant and strong, sometimes these medicines have adverse reactions that are too strong to be able and sustained over a long period, especially steroid drug type. Chinese Medicinal Herbs (CMHs) are natural resources and relatively mild in the treatment of both manifestation and the root cause of disease. Nowadays, CMHs are attractive to many scientists, especially in studying their formulations for the treatment of skin diseases. METHODS The methodology of this review was searched in nine electronic databases including WanFang Data, PubMed, Science Direct, Scopus, Web of Science, Springer Link, SciFinder, and China National Knowledge Infrastructure (CNKI), without regard to language constraints. All eligible studies are analysed and summarised. RESULTS Based on the literature findings, some extracts or active metabolites divided from CMHs, including Curcumin, Resveratrol, Liquorice, Dandelions, Cortex Moutan, and Calendula officinalis L., are effective for the treatment and prevention of skin diseases because of a wide range of pharmacological activities, e.g. anti-bacterial, anti-microbial, anti-virus, and anti-inflammation to enhance the body's immune system. It is also responsible for skin whitening to prevent pigmentation and premature ageing through several mechanisms, such as regulation or inhibition of nuclear factor kappa B (IκB/NF-κB) signalling pathways. CONCLUSION This is possible to develop CMHs, such as Curcumin, Resveratrol, Liquorice, Dandelions, Cortex Moutan and Calendula officinalis L. The ratio of multiple CMH formulations and safety assessments on human skin diseases required studying to achieve better pharmacological activities. Nano formulations are the future investigation for CMHs to combat skin diseases.
Collapse
Affiliation(s)
- Xiao Xiao Wu
- Laboratory Medicine Centre, Shenzhen Nanshan People's Hospital, Shenzhen, China
| | - Siu Kan Law
- Department of Food and Health Sciences, The Technological and Higher Education Institute of Hong Kong, New Territories, Hong Kong, China
| | - Hui Ma
- Institute of Chinese Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Zhou Jiang
- Laboratory Medicine Centre, Shenzhen Nanshan People's Hospital, Shenzhen, China
| | - Yi Fan Li
- Laboratory Medicine Centre, Shenzhen Nanshan People's Hospital, Shenzhen, China
| | - Dawn Ching Tung Au
- Department of Food and Health Sciences, The Technological and Higher Education Institute of Hong Kong, New Territories, Hong Kong, China
| | - Chun Kwok Wong
- Institute of Chinese Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Di Xian Luo
- Laboratory Medicine Centre, Shenzhen Nanshan People's Hospital, Shenzhen, China
- Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
5
|
Wang K. The potential therapeutic role of curcumin in osteoporosis treatment: based on multiple signaling pathways. Front Pharmacol 2024; 15:1446536. [PMID: 39175539 PMCID: PMC11338871 DOI: 10.3389/fphar.2024.1446536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Osteoporosis is a common chronic metabolic bone disease caused by disturbances in normal bone metabolism and an imbalance between osteoblasts and osteoclasts. Osteoporosis is characterized by a decrease in bone mass and bone density, leading to increased bone fragility. Osteoporosis is usually treated with medications and surgical methods, but these methods often produce certain side effects. Therefore, the use of traditional herbal ingredients for the treatment of osteoporosis has become a focus of attention and a hot topic in recent years. Curcumin, widely distributed among herbs such as turmeric, tulip, and curcuma longa, contains phenolic, terpenoid, and flavonoid components. Modern pharmacological studies have confirmed that curcumin has a variety of functions including antioxidant and anti-inflammatory properties. In addition, curcumin positively regulates the differentiation and promotes the proliferation of osteoblasts, which play a crucial role in bone formation. Multiple studies have shown that curcumin is effective in the treatment of osteoporosis as it interacts with a variety of signaling pathway targets, thereby interfering with the formation of osteoblasts and osteoclasts and regulating the development of osteoporosis. This review summarized the key signaling pathways and their mechanisms of action of curcumin in the prevention and treatment of osteoporosis and analyzed their characteristics and their relationship with osteoporosis and curcumin. This not only proves the medicinal value of curcumin as a traditional herbal ingredient but also further elucidates the molecular mechanism of curcumin's anti-osteoporosis effect, providing new perspectives for the prevention and treatment of osteoporosis through multiple pathways.
Collapse
Affiliation(s)
- Keyu Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
6
|
de Souza Goncalves B, Sangani D, Nayyar A, Puri R, Irtiza M, Nayyar A, Khalyfa A, Sodhi K, Pillai SS. COVID-19-Associated Sepsis: Potential Role of Phytochemicals as Functional Foods and Nutraceuticals. Int J Mol Sci 2024; 25:8481. [PMID: 39126050 PMCID: PMC11312872 DOI: 10.3390/ijms25158481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
The acute manifestations of coronavirus disease 2019 (COVID-19) exhibit the hallmarks of sepsis-associated complications that reflect multiple organ failure. The inflammatory cytokine storm accompanied by an imbalance in the pro-inflammatory and anti-inflammatory host response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to severe and critical septic shock. The sepsis signature in severely afflicted COVID-19 patients includes cellular reprogramming and organ dysfunction that leads to high mortality rates, emphasizing the importance of improved clinical care and advanced therapeutic interventions for sepsis associated with COVID-19. Phytochemicals of functional foods and nutraceutical importance have an incredible impact on the healthcare system, which includes the prevention and/or treatment of chronic diseases. Hence, in the present review, we aim to explore the pathogenesis of sepsis associated with COVID-19 that disrupts the physiological homeostasis of the body, resulting in severe organ damage. Furthermore, we have summarized the diverse pharmacological properties of some potent phytochemicals, which can be used as functional foods as well as nutraceuticals against sepsis-associated complications of SARS-CoV-2 infection. The phytochemicals explored in this article include quercetin, curcumin, luteolin, apigenin, resveratrol, and naringenin, which are the major phytoconstituents of our daily food intake. We have compiled the findings from various studies, including clinical trials in humans, to explore more into the therapeutic potential of each phytochemical against sepsis and COVID-19, which highlights their possible importance in sepsis-associated COVID-19 pathogenesis. We conclude that our review will open a new research avenue for exploring phytochemical-derived therapeutic agents for preventing or treating the life-threatening complications of sepsis associated with COVID-19.
Collapse
Affiliation(s)
- Bruno de Souza Goncalves
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Darshan Sangani
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Aleen Nayyar
- Department of Medicine, Sharif Medical and Dental College, Lahore 55150, Pakistan;
| | - Raghav Puri
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Mahir Irtiza
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Asma Nayyar
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Abdelnaby Khalyfa
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Komal Sodhi
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Sneha S. Pillai
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| |
Collapse
|
7
|
Zhao X, Hu Y, Zhao J, Liu Y, Ma X, Chen H, Xing Y. Role of protein Post-translational modifications in enterovirus infection. Front Microbiol 2024; 15:1341599. [PMID: 38596371 PMCID: PMC11002909 DOI: 10.3389/fmicb.2024.1341599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/18/2024] [Indexed: 04/11/2024] Open
Abstract
Enteroviruses (EVs) are the main cause of a number of neurological diseases. Growing evidence has revealed that successful infection with enteroviruses is highly dependent on the host machinery, therefore, host proteins play a pivotal role in viral infections. Both host and viral proteins can undergo post-translational modification (PTM) which can regulate protein activity, stability, solubility and interactions with other proteins; thereby influencing various biological processes, including cell metabolism, metabolic, signaling pathways, cell death, and cancer development. During viral infection, both host and viral proteins regulate the viral life cycle through various PTMs and different mechanisms, including the regulation of host cell entry, viral protein synthesis, genome replication, and the antiviral immune response. Therefore, protein PTMs play important roles in EV infections. Here, we review the role of various host- and virus-associated PTMs during enterovirus infection.
Collapse
Affiliation(s)
- Xiaohui Zhao
- Department of Pathogen Biology, School of Medicine, Qinghai University, Qinghai, China
| | - Yibo Hu
- Department of Orthopaedic Trauma, The Affiliated Hospital of Qinghai University, Qinghai, China
| | - Jun Zhao
- Department of Pathogen Biology, School of Medicine, Qinghai University, Qinghai, China
| | - Yan Liu
- Department of Immunology, School of Medicine, Qinghai, China
| | - Xueman Ma
- Department of Traditional Chinese Medicine, School of Medicine, Qinghai University, Qinghai, China
| | - Hongru Chen
- Department of Public Health, School of Medicine, Qinghai University, Qinghai, China
| | - Yonghua Xing
- Department of Genetics, School of Medicine, Qinghai University, Qinghai, China
| |
Collapse
|
8
|
Zhu X, Quan YY, Yin ZJ, Li M, Wang T, Zheng LY, Feng SQ, Zhao JN, Li L. Sources, morphology, phytochemistry, pharmacology of Curcumae Longae Rhizoma, Curcumae Radix, and Curcumae Rhizoma: a review of the literature. Front Pharmacol 2023; 14:1229963. [PMID: 37719857 PMCID: PMC10500466 DOI: 10.3389/fphar.2023.1229963] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Curcumae Longae Rhizoma (turmeric), Curcumae Radix and Curcumae Rhizoma are derived from the Curcuma species, and have gradually become three of the most commonly used medicinal herbs in China due to their different origins, processing methods and medicinal part. These three herbs have certain similarities in morphology, chemical composition, and pharmacological effects. All three of these herbs contain curcuminoids and volatile oil compounds, which exhibit anti-inflammatory, anti-tumor, antioxidant, and neuroprotective properties, although modern clinical applications have their own requirements. At present, there is no systematic guidelines for the clinical application of these three of Curcuma species; consequently, there is a high risk of unwanted phenomena associated with the mixing and indiscriminate use of these herbs. In this review, we focus predominantly on morphology, chemical composition, and the pharmacological activity of these three Curcuma herbs and summarize the current status of research in this field. Our goal is to provide a better understanding of clinical value of these Curcuma species so that we can provide reference guidelines for their further development, utilization and rational clinical application.
Collapse
Affiliation(s)
- Xin Zhu
- Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Biological Assay Key Laboratory of State Administration of Traditional Chinese Medicine for Traditional Chinese Medicine Quality, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Engineering Research Center for Formation Principle and Quality Evaluation of Genuine Medicinal Materials in Sichuan Province, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu, China
| | - Yun-yun Quan
- Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Biological Assay Key Laboratory of State Administration of Traditional Chinese Medicine for Traditional Chinese Medicine Quality, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Engineering Research Center for Formation Principle and Quality Evaluation of Genuine Medicinal Materials in Sichuan Province, Chengdu, China
| | - Zhu-jun Yin
- Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Biological Assay Key Laboratory of State Administration of Traditional Chinese Medicine for Traditional Chinese Medicine Quality, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Engineering Research Center for Formation Principle and Quality Evaluation of Genuine Medicinal Materials in Sichuan Province, Chengdu, China
| | - Min Li
- Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu, China
| | - Ting Wang
- Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Biological Assay Key Laboratory of State Administration of Traditional Chinese Medicine for Traditional Chinese Medicine Quality, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Engineering Research Center for Formation Principle and Quality Evaluation of Genuine Medicinal Materials in Sichuan Province, Chengdu, China
| | - Lu-yao Zheng
- Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu, China
| | - Shi-qi Feng
- Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Biological Assay Key Laboratory of State Administration of Traditional Chinese Medicine for Traditional Chinese Medicine Quality, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Engineering Research Center for Formation Principle and Quality Evaluation of Genuine Medicinal Materials in Sichuan Province, Chengdu, China
| | - Jun-ning Zhao
- Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Biological Assay Key Laboratory of State Administration of Traditional Chinese Medicine for Traditional Chinese Medicine Quality, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Engineering Research Center for Formation Principle and Quality Evaluation of Genuine Medicinal Materials in Sichuan Province, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu, China
| | - Li Li
- Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Biological Assay Key Laboratory of State Administration of Traditional Chinese Medicine for Traditional Chinese Medicine Quality, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Engineering Research Center for Formation Principle and Quality Evaluation of Genuine Medicinal Materials in Sichuan Province, Chengdu, China
| |
Collapse
|
9
|
Ponticelli M, Bellone ML, Parisi V, Iannuzzi A, Braca A, de Tommasi N, Russo D, Sileo A, Quaranta P, Freer G, Pistello M, Milella L. Specialized metabolites from plants as a source of new multi-target antiviral drugs: a systematic review. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2023; 22:1-79. [PMID: 37359711 PMCID: PMC10008214 DOI: 10.1007/s11101-023-09855-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/30/2023] [Indexed: 06/28/2023]
Abstract
Viral infections have always been the main global health challenge, as several potentially lethal viruses, including the hepatitis virus, herpes virus, and influenza virus, have affected human health for decades. Unfortunately, most licensed antiviral drugs are characterized by many adverse reactions and, in the long-term therapy, also develop viral resistance; for these reasons, researchers have focused their attention on investigating potential antiviral molecules from plants. Natural resources indeed offer a variety of specialized therapeutic metabolites that have been demonstrated to inhibit viral entry into the host cells and replication through the regulation of viral absorption, cell receptor binding, and competition for the activation of intracellular signaling pathways. Many active phytochemicals, including flavonoids, lignans, terpenoids, coumarins, saponins, alkaloids, etc., have been identified as potential candidates for preventing and treating viral infections. Using a systematic approach, this review summarises the knowledge obtained to date on the in vivo antiviral activity of specialized metabolites extracted from plant matrices by focusing on their mechanism of action.
Collapse
Affiliation(s)
- Maria Ponticelli
- Department of Science, University of Basilicata, Viale Dell’ateneo Lucano 10, 85100 Potenza, Italy
| | - Maria Laura Bellone
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
- Ph.D. Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Valentina Parisi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
- Ph.D. Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Annamaria Iannuzzi
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Alessandra Braca
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Nunziatina de Tommasi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Daniela Russo
- Department of Science, University of Basilicata, Viale Dell’ateneo Lucano 10, 85100 Potenza, Italy
| | - Annalisa Sileo
- Department of Science, University of Basilicata, Viale Dell’ateneo Lucano 10, 85100 Potenza, Italy
| | | | - Giulia Freer
- Virology Unit, Pisa University Hospital, Pisa, Italy
| | | | - Luigi Milella
- Department of Science, University of Basilicata, Viale Dell’ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
10
|
El-Saadony MT, Yang T, Korma SA, Sitohy M, Abd El-Mageed TA, Selim S, Al Jaouni SK, Salem HM, Mahmmod Y, Soliman SM, Mo’men SAA, Mosa WFA, El-Wafai NA, Abou-Aly HE, Sitohy B, Abd El-Hack ME, El-Tarabily KA, Saad AM. Impacts of turmeric and its principal bioactive curcumin on human health: Pharmaceutical, medicinal, and food applications: A comprehensive review. Front Nutr 2023; 9:1040259. [PMID: 36712505 PMCID: PMC9881416 DOI: 10.3389/fnut.2022.1040259] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/09/2022] [Indexed: 01/11/2023] Open
Abstract
The yellow polyphenolic pigment known as curcumin, originating from the rhizome of the turmeric plant Curcuma longa L., has been utilized for ages in ancient medicine, as well as in cooking and food coloring. Recently, the biological activities of turmeric and curcumin have been thoroughly investigated. The studies mainly focused on their antioxidant, antitumor, anti-inflammatory, neuroprotective, hepatoprotective, and cardioprotective impacts. This review seeks to provide an in-depth, detailed discussion of curcumin usage within the food processing industries and its effect on health support and disease prevention. Curcumin's bioavailability, bio-efficacy, and bio-safety characteristics, as well as its side effects and quality standards, are also discussed. Finally, curcumin's multifaceted uses, food appeal enhancement, agro-industrial techniques counteracting its instability and low bioavailability, nanotechnology and focused drug delivery systems to increase its bioavailability, and prospective clinical use tactics are all discussed.
Collapse
Affiliation(s)
- Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Tao Yang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Sameh A. Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mahmoud Sitohy
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Taia A. Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Soad K. Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Yasser Mahmmod
- Department of Veterinary Sciences, Faculty of Health Sciences, Higher Colleges of Technology, Al Ain, United Arab Emirates
| | - Soliman M. Soliman
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Shaimaa A. A. Mo’men
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Walid F. A. Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, Egypt
| | - Nahed A. El-Wafai
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Hamed E. Abou-Aly
- Department of Agricultural Microbiology, Faculty of Agriculture, Benha University, Benha, Egypt
| | - Basel Sitohy
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, Umeå, Sweden
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Mohamed E. Abd El-Hack
- Department of Poultry Diseases, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Ahmed M. Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
11
|
In Vitro Susceptibility of Cryptosporidium parvum to Plant Antiparasitic Compounds. Pathogens 2022; 12:pathogens12010061. [PMID: 36678409 PMCID: PMC9863366 DOI: 10.3390/pathogens12010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Cryptosporidium parvum is a significant cause of watery diarrhoea in humans and other animals worldwide. Although hundreds of novel drugs have been evaluated, no effective specific chemotherapeutic intervention for C. parvum has been reported. There has been much recent interest in evaluating plant-derived products in the fight against gastrointestinal parasites, including C. parvum. This study aimed to identify extracts from 13 different plant species that provide evidence for inhibiting the growth of C. parvum in vitro. Efficacy against C. parvum was detected and quantified using quantitative PCR and immunofluorescence assays. All plant extracts tested against C. parvum showed varying inhibition activities in vitro, and none of them produced a cytotoxic effect on HCT-8 cells at concentrations up to 500 µg/mL. Four plant species with the strongest evidence of activity against C. parvum were Curcuma longa, Piper nigrum, Embelia ribes, and Nigella sativa, all with dose-dependent efficacy. To the authors' knowledge, this is the first time that these plant extracts have proven to be experimentally efficacious against C. parvum. These results support further exploration of these plants and their compounds as possible treatments for Cryptosporidium infections.
Collapse
|
12
|
Qian Y, Yang Y, Qing W, Li C, Kong M, Kang Z, Zuo Y, Wu J, Yu M, Yang Z. Coxsackievirus B3 infection induces glycolysis to facilitate viral replication. Front Microbiol 2022; 13:962766. [PMID: 36569097 PMCID: PMC9780277 DOI: 10.3389/fmicb.2022.962766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/10/2022] [Indexed: 12/14/2022] Open
Abstract
Coxsackievirus B3 (CVB3) is a leading cause of viral myocarditis, but no effective treatment strategy against CVB3 is available. Viruses lack an inherent metabolic system and thus depend on host cellular metabolism for their benefit. In this study, we observed that CVB3 enhanced glycolysis in H9c2 rat cardiomyocytes and HL-1 mouse cardiomyocytes. Therefore, three key glycolytic enzymes, namely, hexokinase 2 (HK2), muscle phosphofructokinase (PFKM), and pyruvate kinase M2 (PKM2), were measured in CVB3-infected H9c2 and HL-1 cells. Expression levels of HK2 and PFKM, but not PKM2, were increased in CVB3-infected H9c2 cells. All three key glycolytic enzymes showed elevated expression in CVB3-infected HL-1 cells. To further investigate this, we used 2 deoxyglucose, sodium citrate, and shikonin as glycolysis inhibitors for HK2, PFKM, and PKM2, respectively. Glycolysis inhibitors significantly reduced CVB3 replication, while the glycolysis enhancer dramatically promoted it. In addition, glycolysis inhibitors decreased autophagy and accelerated autophagosome degradation. The autophagy inducer eliminated partial inhibition effects of glycolysis inhibitors on CVB3 replication. These results demonstrate that CVB3 infection enhances glycolysis and thus benefits viral replication.
Collapse
Affiliation(s)
- Yujie Qian
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yeyi Yang
- Department of Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wenxiang Qing
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Chunyun Li
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Min Kong
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhijuan Kang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuanbojiao Zuo
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jiping Wu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Meng Yu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zuocheng Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Zuocheng Yang
| |
Collapse
|
13
|
Wang Y, Xu S, Han C, Huang Y, Wei J, Wei S, Qin Q. Modulatory effects of curcumin on Singapore grouper iridovirus infection-associated apoptosis and autophagy in vitro. FISH & SHELLFISH IMMUNOLOGY 2022; 131:84-94. [PMID: 36206994 DOI: 10.1016/j.fsi.2022.09.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Singapore grouper iridovirus (SGIV) with high pathogenicity can cause great economic losses to aquaculture industry. Thus, it is of urgency to find effective antiviral strategies to combat SGIV. Curcumin has been demonstrated effective antiviral activity on SGIV infection. However, the molecular mechanism behind this action needs to be further explanations. In view of the fact that apoptosis (type I programmed cell death) and autophagy (type II programmed cell death) were key regulators during SGIV infection, we aimed to investigate the relevance between antiviral activity of curcumin and SGIV-associated programmed and clarify the role of potential signaling pathways. Our results showed that curcumin suppressed SGIV-induced apoptosis. At the same time, the activities of caspase-3/8/9 and activating protein-1 (AP-1), P53, nuclear factor-κB (NF-ΚB) promoters were inhibited. Besides, the activation of extracellular regulated protein kinases (ERK), c-Jun N-terminal kinase (JNK) and p38 mitogen activate protein kinase (p38 MAPK) signal pathways were suppressed in curcumin-treated cells. On the other hand, curcumin down-regulated protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway to promote autophagy representing by increased LC3 II and Beclin1 expression. Curcumin also hindered the transition of cells from G1 to S phase, as well as down-regulating the expression of CyclinD1. Our findings revealed the resistance curcumin induced to the effects of DNA virus on cell apoptosis and autophagy and the insights gained from this study may be of assistance to understand the molecular mechanism of curcumin against DNA virus infection.
Collapse
Affiliation(s)
- Yuexuan Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Suifeng Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Chengzong Han
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Youhua Huang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jingguang Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shina Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 528478, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
14
|
Atanasova-Panchevska N, Stojchevski R, Hadzi-Petrushev N, Mitrokhin V, Avtanski D, Mladenov M. Antibacterial and Antiviral Properties of Tetrahydrocurcumin-Based Formulations: An Overview of Their Metabolism in Different Microbiotic Compartments. Life (Basel) 2022; 12:1708. [PMID: 36362863 PMCID: PMC9696410 DOI: 10.3390/life12111708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 08/29/2023] Open
Abstract
In this review, the basic metabolic characteristics of the curcuminoid tetrahydrocurcumin (THC) at the level of the intestinal microbiota were addressed. Special attention was given to the bactericidal effects of one of the THC-phospholipid formulations, which has shown greater bioavailability and activity than pure THC. Similarly, quinoline derivatives and amino acid conjugates of THC have also shown antibacterial effects in the gut. The microbial effect of pure THC is particularly pronounced in pathophysiological conditions related to the function of the intestinal microbiota, such as type II diabetes. Furthermore, the antiviral characteristics of Cur compared to those of THC are more pronounced in preventing the influenza virus. In the case of HIV infections, the new microemulsion gel formulations of THC possess high retention during preventive application in the vagina and, at the same time, do not disturb the vaginal microbiota, which is critical in maintaining low vaginal pH. Based on the reviewed literature, finding new formulations of THC which can increase its bioavailability and activity and emphasize its antibacterial and antiviral characteristics could be very important. Applying such THC formulations in preventing and treating ailments related to the microbiotic compartments in the body would be beneficial from a medical point of view.
Collapse
Affiliation(s)
- Natalija Atanasova-Panchevska
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, P.O. Box 162, 1000 Skopje, North Macedonia
| | - Radoslav Stojchevski
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, P.O. Box 162, 1000 Skopje, North Macedonia
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY 10022, USA
| | - Nikola Hadzi-Petrushev
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, P.O. Box 162, 1000 Skopje, North Macedonia
| | - Vadim Mitrokhin
- Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova Street, 1, 117997 Moscow, Russia
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY 10022, USA
| | - Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, P.O. Box 162, 1000 Skopje, North Macedonia
- Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova Street, 1, 117997 Moscow, Russia
| |
Collapse
|
15
|
Curcumin partly prevents ISG15 activation via ubiquitin-activating enzyme E1-like protein and decreases ISGylation. Biochem Biophys Res Commun 2022; 625:94-101. [PMID: 35952613 PMCID: PMC9352433 DOI: 10.1016/j.bbrc.2022.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022]
|
16
|
Liu S, Liu J, He L, Liu L, Cheng B, Zhou F, Cao D, He Y. A Comprehensive Review on the Benefits and Problems of Curcumin with Respect to Human Health. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144400. [PMID: 35889273 PMCID: PMC9319031 DOI: 10.3390/molecules27144400] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/03/2022]
Abstract
Curcumin is the most important active component in turmeric extracts. Curcumin, a natural monomer from plants has received a considerable attention as a dietary supplement, exhibiting evident activity in a wide range of human pathological conditions. In general, curcumin is beneficial to human health, demonstrating pharmacological activities of anti-inflammation and antioxidation, as well as antitumor and immune regulation activities. Curcumin also presents therapeutic potential in neurodegenerative, cardiovascular and cerebrovascular diseases. In this review article, we summarize the advancements made in recent years with respect to curcumin as a biologically active agent in malignant tumors, Alzheimer’s disease (AD), hematological diseases and viral infectious diseases. We also focus on problems associated with curcumin from basic research to clinical translation, such as its low solubility, leading to poor bioavailability, as well as the controversy surrounding the association between curcumin purity and effect. Through a review and summary of the clinical research on curcumin and case reports of adverse effects, we found that the clinical transformation of curcumin is not successful, and excessive intake of curcumin may have adverse effects on the kidneys, heart, liver, blood and immune system, which leads us to warn that curcumin has a long way to go from basic research to application transformation.
Collapse
Affiliation(s)
- Siyu Liu
- Post-Graduate School, Hunan University of Chinese Medicine, Changsha 410208, China; (S.L.); (J.L.); (L.L.); (F.Z.)
| | - Jie Liu
- Post-Graduate School, Hunan University of Chinese Medicine, Changsha 410208, China; (S.L.); (J.L.); (L.L.); (F.Z.)
| | - Lan He
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410007, China; (L.H.); (B.C.)
| | - Liu Liu
- Post-Graduate School, Hunan University of Chinese Medicine, Changsha 410208, China; (S.L.); (J.L.); (L.L.); (F.Z.)
| | - Bo Cheng
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410007, China; (L.H.); (B.C.)
| | - Fangliang Zhou
- Post-Graduate School, Hunan University of Chinese Medicine, Changsha 410208, China; (S.L.); (J.L.); (L.L.); (F.Z.)
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Deliang Cao
- Post-Graduate School, Hunan University of Chinese Medicine, Changsha 410208, China; (S.L.); (J.L.); (L.L.); (F.Z.)
- Correspondence: (D.C.); (Y.H.)
| | - Yingchun He
- Post-Graduate School, Hunan University of Chinese Medicine, Changsha 410208, China; (S.L.); (J.L.); (L.L.); (F.Z.)
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese Medicine, Changsha 410208, China
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
- Correspondence: (D.C.); (Y.H.)
| |
Collapse
|
17
|
Ferreira LLC, Abreu MP, Costa CB, Leda PO, Behrens MD, Dos Santos EP. Curcumin and Its Analogs as a Therapeutic Strategy in Infections Caused by RNA Genome Viruses. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:120-137. [PMID: 35352306 PMCID: PMC8963406 DOI: 10.1007/s12560-022-09514-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 02/09/2022] [Indexed: 05/03/2023]
Abstract
The use of natural resources for the prevention and treatment of diseases considered fatal to humanity has evolved. Several medicinal plants have nutritional and pharmacological potential in the prevention and treatment of viral infections, among them, turmeric, which is recognized for its biological properties associated with curcuminoids, mainly represented by curcumin, and found mostly in rhizomes. The purpose of this review was to compile the pharmacological activities of curcumin and its analogs, aiming at stimulating their use as a therapeutic strategy to treat infections caused by RNA genome viruses. We revisited its historical application as an anti-inflammatory, antioxidant, and antiviral agent that combined with low toxicity, motivated research against viruses affecting the population for decades. Most findings concentrate particularly on arboviruses, HIV, and the recent SARS-CoV-2. As one of the main conclusions, associating curcuminoids with nanomaterials increases solubility, bioavailability, and antiviral effects, characterized by blocking the entry of the virus into the cell or by inhibiting key enzymes in viral replication and transcription.
Collapse
Affiliation(s)
- Leide Lene C Ferreira
- Herbal Medicines Department, Vital Brazil Institute, Maestro José Botelho, 64, Santa Rosa, CEP 24.230-340, Niterói, RJ, Brazil.
- Galenic Development Laboratory, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Marina P Abreu
- Herbal Medicines Department, Vital Brazil Institute, Maestro José Botelho, 64, Santa Rosa, CEP 24.230-340, Niterói, RJ, Brazil
| | - Camila B Costa
- Technological Development and Innovation Laboratory, Vital Brazil Institute, Rio de Janeiro, Brazil
| | - Paulo O Leda
- Laboratory of Natural Products for Public Health, Institute of Pharmaceutical Technology, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Maria Dutra Behrens
- Laboratory of Natural Products for Public Health, Institute of Pharmaceutical Technology, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Elisabete Pereira Dos Santos
- Galenic Development Laboratory, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Costantino M, Corno C, Colombo D, Perego P. Curcumin and Related Compounds in Cancer Cells: New Avenues for Old Molecules. Front Pharmacol 2022; 13:889816. [PMID: 35685638 PMCID: PMC9170941 DOI: 10.3389/fphar.2022.889816] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/06/2022] [Indexed: 01/14/2023] Open
Abstract
Curcumin and related compounds are known for the large spectrum of activities. The chemical features of these compounds are important for their biological effects with a key role for the thiol-reactive α−β unsaturated carbonyl groups. Curcumin derivatives may overcome the limitation of the bioavailability of the parent compound, while maintaining the key chemical features responsible for biological activities. Curcumin and related compounds show anti-viral, anti-fungal, anti-microbial and anti-tumor activities. The therapeutic effects of curcumin, used as a supplement in cancer therapy, have been documented in various cancer types, in which inhibition of cell growth and survival pathways, induction of apoptosis and other cell death pathways have been reported. Curcumin-induced apoptosis has been linked both to the intrinsic and extrinsic apoptotic pathways. Necroptosis has also been involved in curcumin-induced toxicity. Among curcumin-induced effects, ferroptosis has also been described. The mechanism of curcumin toxicity can be triggered by reactive oxygen species-mediated endoplasmic reticulum stress. Curcumin targets have been identified in the context of the ubiquitin-proteasome system with evidence of inhibition of the proteasome proteolytic activities and cellular deubiquitinases. Curcumin has recently been shown to act on the tumor microenvironment with effects on cancer-associated fibroblasts and immune cells. The related product caffeic acid phenethyl ester has shown promising preclinical results with an effect on the inflammatory microenvironment. Here, we review the mechanisms underlying curcumin and derivatives toxicity towards cancer cells with particular emphasis on cell death pathways and the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Matteo Costantino
- Unit of Molecular Pharmacology, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Cristina Corno
- Unit of Molecular Pharmacology, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Diego Colombo
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan, Italy
| | - Paola Perego
- Unit of Molecular Pharmacology, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- *Correspondence: Paola Perego,
| |
Collapse
|
19
|
Wang Y, Dan K, Xue X, Chen B, Chen C. Curcumin assists anti-EV71 activity of IFN-α by inhibiting IFNAR1 reduction in SH-SY5Y cells. Gut Pathog 2022; 14:8. [PMID: 35151347 PMCID: PMC8840321 DOI: 10.1186/s13099-022-00481-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/01/2022] [Indexed: 12/30/2022] Open
Abstract
Background and aim Enterovirus 71(EV71) can cause severe hand, foot, and mouth disease (HFMD) with brain tissue involvement. Few effective anti-EV71 drugs are presently available in clinical practice. Interferon-α (IFN-α) was ineffective while Curcumin was effective in restricting EV71 replication in non-neuronal cells. Ubiquitin–proteasome-mediated degradation of interferon-alpha receptor 1 (IFNAR1) protein contributes to IFN-α resistance. Current study aimed to determine synergistic inhibition of EV71 by Curcumin and IFN-α in human neuroblastoma SH-SY5Y cells. Methods SH-SY5Y cells were infected with mock-/Curcumin-pre-incubated EV71 or transfected with plasmid containing interferon-stimulated response element (ISRE) or mRNA containing viral internal ribosomal entry site (IRES) following by post-treatment with Curcumin with or without IFN-α. Supernatant IFN-α/β was detected by ELISA. ISRE, IRSE, proteasome and deubiquitinating activity were measured by luciferase assay. EV71 RNA and viral protein or IFNAR1 were determined by qPCR and western blot, respectively. Results EV71 flailed to completely block IFN-α/β production but inhibited IFN-α signal. Curcumin only slightly inhibited EV71 proliferation without modulating virus attachment and internalization. However, Curcumin addition restored IFN-α-mediated ISRE activity thus significantly inhibiting EV71 replication. Furthermore, EV71 also reduced IFNAR1 protein with proteasome-dependence in SH-SY5Y cells, which can be reversed by Curcumin addition with the evidence that it lowered proteasome activity. Conclusion These data demonstrate that Curcumin assists anti-EV71 activity of IFN-α by inhibiting IFNAR1 reduction via ubiquitin–proteasome disruption in SH-SY5Y cells.
Collapse
|
20
|
Devan AR, Nair B, Kumar AR, Gorantla JN, T S A, Nath LR. Unravelling the Immune Modulatory Effect of Indian Spices to Impede the Transmission of COVID-19: A Promising Approach. Curr Pharm Biotechnol 2022; 23:201-220. [PMID: 33593256 DOI: 10.2174/1389201022666210216144917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 02/08/2023]
Abstract
Months after WHO declared COVID-19 as a Global Public Health Emergency of International Concern, it does not seem to be flattening the curve as we are still devoid of an effective treatment modality and vaccination is in the first phase in many countries. Amid such uncertainty, being immune is the best strategy to defend against corona attacks. As the whole world is referring back to immune-boosting traditional remedies, interest is rekindled in the Indian system of Medicine, which is gifted with an abundance of herbal medicines as well as remedies. Among them, spices (root, rhizome, seed, fruit, leaf, bud, and flower of various plants used to add taste and flavors to food) are bestowed with immense medicinal potential. A plethora of clinical as well as preclinical studies reported the effectiveness of various spices for various ailments. The potential immune-boosting properties together with their excellent safety profiles are making spices the current choice of phytoresearch as well as the immune-boosting home remedies during these sceptical times. The present review critically evaluates the immune impact of various Indian spices and their potential to tackle the novel coronavirus, with comments on the safety and toxicity aspects of spices.
Collapse
Affiliation(s)
- Aswathy R Devan
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Ayana R Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Jaggaiah N Gorantla
- Department of Chemistry, Wayne State University, Detroit, 48201, Michigan, USA
| | - Aishwarya T S
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| |
Collapse
|
21
|
Delcanale P, Abbruzzetti S, Viappiani C. Photodynamic treatment of pathogens. LA RIVISTA DEL NUOVO CIMENTO 2022; 45:407-459. [PMCID: PMC8921710 DOI: 10.1007/s40766-022-00031-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/10/2022] [Indexed: 06/01/2023]
Abstract
The current viral pandemic has highlighted the compelling need for effective and versatile treatments, that can be quickly tuned to tackle new threats, and are robust against mutations. Development of such treatments is made even more urgent in view of the decreasing effectiveness of current antibiotics, that makes microbial infections the next emerging global threat. Photodynamic effect is one such method. It relies on physical processes proceeding from excited states of particular organic molecules, called photosensitizers, generated upon absorption of visible or near infrared light. The excited states of these molecules, tailored to undergo efficient intersystem crossing, interact with molecular oxygen and generate short lived reactive oxygen species (ROS), mostly singlet oxygen. These species are highly cytotoxic through non-specific oxidation reactions and constitute the basis of the treatment. In spite of the apparent simplicity of the principle, the method still has to face important challenges. For instance, the short lifetime of ROS means that the photosensitizer must reach the target within a few tens nanometers, which requires proper molecular engineering at the nanoscale level. Photoactive nanostructures thus engineered should ideally comprise a functionality that turns the system into a theranostic means, for instance, through introduction of fluorophores suitable for nanoscopy. We discuss the principles of the method and the current molecular strategies that have been and still are being explored in antimicrobial and antiviral photodynamic treatment.
Collapse
Affiliation(s)
- Pietro Delcanale
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| |
Collapse
|
22
|
Antiviral effect of herbal mixture (Garlic, Nilavembu, Turmeric, Coriander and Fenugreek) against Newcastle disease virus in-ovo. J APPL POULTRY RES 2021. [DOI: 10.1016/j.japr.2021.100229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
23
|
Antiviral Therapeutic Potential of Curcumin: An Update. Molecules 2021; 26:molecules26226994. [PMID: 34834089 PMCID: PMC8617637 DOI: 10.3390/molecules26226994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/10/2023] Open
Abstract
The treatment of viral disease has become a medical challenge because of the increasing incidence and prevalence of human viral pathogens, as well as the lack of viable treatment alternatives, including plant-derived strategies. This review attempts to investigate the trends of research on in vitro antiviral effects of curcumin against different classes of human viral pathogens worldwide. Various electronic databases, including PubMed, Scopus, Web of Science, and Google Scholar were searched for published English articles evaluating the anti-viral activity of curcumin. Data were then extracted and analyzed. The forty-three studies (published from 1993 to 2020) that were identified contain data for 24 different viruses. The 50% cytotoxic concentration (CC50), 50% effective/inhibitory concentration (EC50/IC50), and stimulation index (SI) parameters showed that curcumin had antiviral activity against viruses causing diseases in humans. Data presented in this review highlight the potential antiviral applications of curcumin and open new avenues for further experiments on the clinical applications of curcumin and its derivatives.
Collapse
|
24
|
Albalawi AE, Alanazi AD, Sharifi I, Ezzatkhah F. A Systematic Review of Curcumin and its Derivatives as Valuable Sources of Antileishmanial Agents. Acta Parasitol 2021; 66:797-811. [PMID: 33770343 DOI: 10.1007/s11686-021-00351-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/10/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND In recent years, antimonial agents and other synthetic antileishmanial drugs, such as amphotericin B, paromomycin, and many other drugs, have restrictions in use due to the toxicity risk, high cost, and emerging resistance to these drugs. The present study aimed to review the antileishmanial effects of curcumin, its derivatives, and other relevant pharmaceutical formulations on leishmaniasis. METHODS The present study was carried out according to the 06-preferred reporting items for systematic reviews and meta-analyses (PRISMA) guideline and registered in the CAMARADES-NC3Rs Preclinical Systematic Review and Meta-Analysis Facility (SyRF) database. Some English-language databases including PubMed, Google Scholar, Web of Science, EBSCO, Science Direct, and Scopus were searched for publications worldwide related to antileishmanial effects of curcumin, its derivatives, and other relevant pharmaceutical formulations, without date limitation, to identify all the published articles (in vitro, in vivo, and clinical studies). Keywords included "curcumin", "Curcuma longa", "antileishmanial", "Leishmania", "leishmaniasis", "cutaneous leishmaniasis", "visceral leishmaniasis", "in vitro", and "in vivo". RESULTS Out of 5492 papers, 29 papers including 20 in vitro (69.0%), 1 in vivo (3.4%), and 8 in vitro/in vivo (27.6%) studies conducted up to 2020, met the inclusion criteria for discussion in this systematic review. The most common species of the Leishmania parasite used in these studies were L. donovani (n = 13, 44.8%), L. major (n = 10, 34.5%), and L. amazonensis (n = 6, 20.7%), respectively. The most used derivatives in these studies were curcumin (n = 15, 33.3%) and curcuminoids (n = 5, 16.7%), respectively. CONCLUSION In the present review, according to the studies in the literature, various forms of drugs based on curcumin and their derivatives exhibited significant in vitro and in vivo antileishmanial activity against different Leishmania spp. The results revealed that curcumin and its derivatives could be considered as an alternative and complementary source of valuable antileishmanial components against leishmaniasis, which had no significant toxicity. However, further studies are required to elucidate this concluding remark, especially in clinical settings.
Collapse
Affiliation(s)
| | - Abdullah D Alanazi
- Department of Biological Science, Faculty of Science and Humanities, Shaqra University, Ad-Dawadimi 11911, Saudi Arabia
- Alghad International Colleges for Applied Medical Science, Tabuk 47913, Saudi Arabia
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Ezzatkhah
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran.
| |
Collapse
|
25
|
Kowalczyk M, Golonko A, Świsłocka R, Kalinowska M, Parcheta M, Swiergiel A, Lewandowski W. Drug Design Strategies for the Treatment of Viral Disease. Plant Phenolic Compounds and Their Derivatives. Front Pharmacol 2021; 12:709104. [PMID: 34393787 PMCID: PMC8363300 DOI: 10.3389/fphar.2021.709104] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/15/2021] [Indexed: 01/08/2023] Open
Abstract
The coronavirus pandemic (SARS CoV-2) that has existed for over a year, constantly forces scientists to search for drugs against this virus. In silico research and selected experimental data have shown that compounds of natural origin such as phenolic acids and flavonoids have promising antiviral potential. Phenolic compounds inhibit multiplication of viruses at various stages of the viral life cycle, e.g., attachment (disturbance of the interaction between cellular and viral receptors), penetration (inhibition of viral pseudo-particle fusion to the host membrane), replication (inhibition of integrase and 3C-like protease), assembly and maturation (inhibition of microsomal triglyceride transfer protein (MTP) activity hydrolysis) and release (inhibition of secretion of apolipoprotein B (apoB) from infected cells). Phenolic compounds also indirectly influence on the viral life cycle by affecting the host cell's biochemical processes that viruses use for their own benefit. Phenolic compounds may inhibit the proteasomes and cellular deubiquitinating activity that causes an increase in the ubiquitinated proteins level in host cells. This, in turn, contributes to the lowering the available ubiquitin molecules that viruses could use for their own replication. One of the drug design strategy for the treatment of viral diseases may be an enhancement of the antiviral properties of phenolic compounds by metal complexation. Many studies have shown that the presence of a metal ion in the structure can significantly affect the affinity of the compound to key structural elements of the SARS CoV-2, such as Mpro protease, RNA-dependent RNA polymerase (RdRp) and spike protein. We believe that in the era of coronavirus pandemic, it is necessary to reconsider the search for therapeutics among well-known compounds of plant origin and their metal complexes.
Collapse
Affiliation(s)
- Monika Kowalczyk
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Institute of Agricultural and Food Biotechnology—State Research Institute, Warsaw, Poland
| | - Aleksandra Golonko
- Department of Microbiology, Institute of Agricultural and Food Biotechnology—State Research Institute, Warsaw, Poland
| | - Renata Świsłocka
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Bialystok, Poland
| | - Monika Kalinowska
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Bialystok, Poland
| | - Monika Parcheta
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Bialystok, Poland
| | - Artur Swiergiel
- Faculty of Biology, University of Gdansk, Gdansk, Poland
- Institute of Agricultural and Food Biotechnology—State Research Institute, Warsaw, Poland
| | | |
Collapse
|
26
|
Witika BA, Makoni PA, Matafwali SK, Mweetwa LL, Shandele GC, Walker RB. Enhancement of Biological and Pharmacological Properties of an Encapsulated Polyphenol: Curcumin. Molecules 2021; 26:4244. [PMID: 34299519 PMCID: PMC8303961 DOI: 10.3390/molecules26144244] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
There is a dearth of natural remedies available for the treatment of an increasing number of diseases facing mankind. Natural products may provide an opportunity to produce formulations and therapeutic solutions to address this shortage. Curcumin (CUR), diferuloylmethane; I,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione is the major pigment in turmeric powder which has been reported to exhibit a number of health benefits including, antibacterial, antiviral, anti-cancer, anti-inflammatory and anti-oxidant properties. In this review, the authors attempt to highlight the biological and pharmacological properties of CUR in addition to emphasizing aspects relating to the biosynthesis, encapsulation and therapeutic effects of the compound. The information contained in this review was generated by considering published information in which evidence of enhanced biological and pharmacological properties of nano-encapsulated CUR was reported. CUR has contributed to a significant improvement in melanoma, breast, lung, gastro-intestinal, and genito-urinary cancer therapy. We highlight the impact of nano-encapsulated CUR for efficient inhibition of cell proliferation, even at low concentrations compared to the free CUR when considering anti-proliferation. Furthermore nano-encapsulated CUR exhibited bioactive properties, exerted cytotoxic and anti-oxidant effects by acting on endogenous and cholinergic anti-oxidant systems. CUR was reported to block Hepatitis C virus (HCV) entry into hepatic cells, inhibit MRSA proliferation, enhance wound healing and reduce bacterial load. Nano-encapsulated CUR has also shown bioactive properties when acting on antioxidant systems (endogenous and cholinergic). Future research is necessary and must focus on investigation of encapsulated CUR nano-particles in different models of human pathology.
Collapse
Affiliation(s)
- Bwalya Angel Witika
- ApotheCom|A MEDiSTRAVA Company (Medical Division of Huntsworth), London WC2A 1AN, UK;
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa
| | - Pedzisai Anotida Makoni
- Division of Pharmacology, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa;
| | - Scott Kaba Matafwali
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, LSHTM, London WC1E 7HT, UK;
| | - Larry Lawrence Mweetwa
- Department of Chemistry, Marine Biodiscovery Centre, University of Aberdeen, Aberdeen AB24 3FX, UK;
| | - Ginnethon Chaamba Shandele
- Department of Biochemistry, Institute of Basic and Biomedical Sciences, Levy Mwanawasa Medical University, P.O. Box 33991, Lusaka 10101, Zambia;
| | - Roderick Bryan Walker
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
27
|
Abdallah AE, Alesawy MS, Eissa SI, El-Fakharany EM, Kalaba MH, Sharaf MH, Abo Shama NM, Mahmoud SH, Mostafa A, Al-Karmalawy AA, Elkady H. Design and synthesis of new 4-(2-nitrophenoxy)benzamide derivatives as potential antiviral agents: molecular modeling and in vitro antiviral screening. NEW J CHEM 2021; 45:16557-16571. [DOI: 10.1039/d1nj02710g] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Novel benzamide derivatives as anti adenovirus, HSV-1, coxsackievirus, and SARS-CoV-2: in vitro and in silico study.
Collapse
Affiliation(s)
- Abdallah E. Abdallah
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Mohamed S. Alesawy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Sally I. Eissa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11884, Egypt
- Faculty of Pharmacy Al-Maareffa University for Science and Technology, Riyadh, Kingdom of Saudi Arabia
| | - Esmail M. El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Egypt
| | - Mohamed H. Kalaba
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Egypt
| | - Mohamed H. Sharaf
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Egypt
| | - Noura M. Abo Shama
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Sara H. Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Ahmed A. Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| |
Collapse
|
28
|
Loaiza-Cano V, Monsalve-Escudero LM, Filho CDSMB, Martinez-Gutierrez M, de Sousa DP. Antiviral Role of Phenolic Compounds against Dengue Virus: A Review. Biomolecules 2020; 11:biom11010011. [PMID: 33374457 PMCID: PMC7823413 DOI: 10.3390/biom11010011] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Phenolic compounds have been related to multiple biological activities, and the antiviral effect of these compounds has been demonstrated in several viral models of public health concern. In this review, we show the antiviral role of phenolic compounds against dengue virus (DENV), the most widespread arbovirus globally that, after its re-emergence, has caused multiple epidemic outbreaks, especially in the last two years. Twenty phenolic compounds with anti-DENV activity are discussed, including the multiple mechanisms of action, such as those directed against viral particles or viral proteins, host proteins or pathways related to the productive replication viral cycle and the spread of the infection.
Collapse
Affiliation(s)
- Vanessa Loaiza-Cano
- Grupo de Investigacion en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, 680003 Bucaramanga, Colombia; (V.L.-C.); (L.M.M.-E.)
| | - Laura Milena Monsalve-Escudero
- Grupo de Investigacion en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, 680003 Bucaramanga, Colombia; (V.L.-C.); (L.M.M.-E.)
| | | | - Marlen Martinez-Gutierrez
- Grupo de Investigacion en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, 680003 Bucaramanga, Colombia; (V.L.-C.); (L.M.M.-E.)
- Correspondence: (M.M.-G.); (D.P.d.S.); Tel.: +57-310-543-8583 (M.M.-G.); +55-833-216-7347 (D.P.d.S.)
| | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraíba, CEP 58051-970 João Pessoa, PB, Brazil;
- Correspondence: (M.M.-G.); (D.P.d.S.); Tel.: +57-310-543-8583 (M.M.-G.); +55-833-216-7347 (D.P.d.S.)
| |
Collapse
|
29
|
Rahban M, Habibi-Rezaei M, Mazaheri M, Saso L, Moosavi-Movahedi AA. Anti-Viral Potential and Modulation of Nrf2 by Curcumin: Pharmacological Implications. Antioxidants (Basel) 2020; 9:E1228. [PMID: 33291560 PMCID: PMC7761780 DOI: 10.3390/antiox9121228] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is an essential transcription factor that maintains the cell's redox balance state and reduces inflammation in different adverse stresses. Under the oxidative stress, Nrf2 is separated from Kelch-like ECH-associated protein 1 (Keap1), which is a key sensor of oxidative stress, translocated to the nucleus, interacts with the antioxidant response element (ARE) in the target gene, and then activates the transcriptional pathway to ameliorate the cellular redox condition. Curcumin is a yellow polyphenolic curcuminoid from Curcuma longa (turmeric) that has revealed a broad spectrum of bioactivities, including antioxidant, anti-inflammatory, anti-tumor, and anti-viral activities. Curcumin significantly increases the nuclear expression levels and promotes the biological effects of Nrf2 via the interaction with Cys151 in Keap1, which makes it a marvelous therapeutic candidate against a broad range of oxidative stress-related diseases, including type 2 diabetes (T2D), neurodegenerative diseases (NDs), cardiovascular diseases (CVDs), cancers, viral infections, and more recently SARS-CoV-2. Currently, the multifactorial property of the diseases and lack of adequate medical treatment, especially in viral diseases, result in developing new strategies to finding potential drugs. Curcumin potentially opens up new views as possible Nrf2 activator. However, its low bioavailability that is due to low solubility and low stability in the physiological conditions is a significant challenge in the field of its efficient and effective utilization in medicinal purposes. In this review, we summarized recent studies on the potential effect of curcumin to activate Nrf2 as the design of potential drugs for a viral infection like SARS-Cov2 and acute and chronic inflammation diseases in order to improve the cells' protection.
Collapse
Affiliation(s)
- Mahdie Rahban
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran;
| | - Mehran Habibi-Rezaei
- School of Biology, College of Science, University of Tehran, Tehran 1417614335, Iran
- Center of Excellence in NanoBiomedicine, University of Tehran, Tehran 1417614335, Iran
| | - Mansoureh Mazaheri
- Research Center of Food Technology and Agricultural Products, Department of Food Toxicology, Standard Research Institute, Karaj 3158777871, Iran;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy;
| | - Ali A. Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran;
- UNESCO Chair on Interdisciplinary Research in Diabetes, University of Tehran, Tehran 1417614335, Iran
| |
Collapse
|
30
|
Emirik M. Potential therapeutic effect of turmeric contents against SARS-CoV-2 compared with experimental COVID-19 therapies: in silico study. J Biomol Struct Dyn 2020; 40:2024-2037. [PMID: 33078675 DOI: 10.1080/07391102.2020.1835719] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Inspired by the 'There is no scientific evidence that turmeric prevents COVID-19' statement made by WHO, the protective or therapeutic potential of the compounds in turmeric contents was investigated against COVID-19 with in silico methodology. The drugs used for experimental COVID-19 therapies were included in this study using the same method for comparison with turmeric components. The 30 turmeric compounds and nine drugs were performed in the docking procedure for vital proteins of COVID-19. With evaluations based on docking scores, the Prime MMGBSA binding free energy and protein-ligand interactions were identified in detail. The 100 ns MD simulations were also performed to assess the stability of the ligands at the binding site of the target proteins. The Root Mean Square Deviation (RMSD) is used to obtain the average displacement for a particular frame concerning a reference frame. The results of this study are suggesting that turmeric spice have a potential to inhibit the SARS-CoV-2 vital proteins and can be use a therapeutic or protective agent against SARS-CoV-2 via inhibiting key protein of the SARS-CoV-2 virus. The compound 4, 23 and 6 are the most prominent inhibitor for the main protease, the spike glycoprotein and RNA polymerase of virus, respectively. The MD simulation validated the stability of ligand-protein interactions. The compactness of the complexes was shown using a radius of gyration. ADME properties of featured compounds are in range of 95% drug molecules. It is hoped that the outputs of this study will contribute to the struggle of humanity with COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mustafa Emirik
- Department of Chemistry, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|
31
|
Cardaci TD, Machek SB, Wilburn DT, Hwang PS, Willoughby DS. Ubiquitin Proteasome System Activity is Suppressed by Curcumin following Exercise-Induced Muscle Damage in Human Skeletal Muscle. J Am Coll Nutr 2020; 40:401-411. [PMID: 32701392 DOI: 10.1080/07315724.2020.1783721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Curcumin is a polyphenolic compound that is suggested to dysregulate the ubiquitin-proteasome system (UPS). This study investigated the effects of curcumin supplementation on markers of UPS activity in response to muscle damage. METHODS Twenty-three recreationally active male and females between the ages of 18-30 were randomized into a curcumin (CUR) or placebo (PLA) group. Both groups ingested 2 g of their respective supplement and 20 mg of piperine for 11 consecutive days. Following 8 consecutive days of supplementation, participants performed a 45-minute eccentrically-biased treadmill protocol at 60% VO2max. Muscle biopsies and delayed onset muscle soreness (DOMS) assessments were performed 30 minutes prior and 3, 24, 48, and 72 hours following exercise. Skeletal muscle ubiquitin, MAFbx/Atrogin-1, ubiquitin specific peptidase 19 (USP19), and chymotrypsin-like protease concentrations were measured using ELISA. A 3-way repeated measures ANOVA with pairwise comparisons was conducted with significance set at p ≤ 0.05. RESULTS Compared to baseline, DOMS for both groups was significantly increased (p < 0.05) at all time points except 72 hours following exercise. No significant differences were found for USP19 between groups. Ubiquitin (p=.016) and MAFbx/Atrogin-1 (p=.006) were significantly lower for CUR compared to PLA. Additionally, MAFbx/Atrogin-1 was significantly greater for females (p=.013) compared to males. In males, curcumin resulted in significant reductions (p = .049) in chymotrypsin-like protease (p = .049). CONCLUSION While elevations in UPS activity were not observed in response to muscle damage, curcumin supplementation in humans does appear to dysregulate basal UPS activity in the presence of exercise-induced muscle damage.
Collapse
Affiliation(s)
- Thomas D Cardaci
- Department of Health, Human Performance, & Recreation, Exercise & Biochemical Nutrition Laboratory, Baylor University, Waco, Texas, USA
| | - Steven B Machek
- Department of Health, Human Performance, & Recreation, Exercise & Biochemical Nutrition Laboratory, Baylor University, Waco, Texas, USA
| | - Dylan T Wilburn
- Department of Health, Human Performance, & Recreation, Exercise & Biochemical Nutrition Laboratory, Baylor University, Waco, Texas, USA
| | - Paul S Hwang
- Department of Health, Human Performance, & Recreation, Exercise & Biochemical Nutrition Laboratory, Baylor University, Waco, Texas, USA
| | - Darryn S Willoughby
- Department of Health, Human Performance, & Recreation, Exercise & Biochemical Nutrition Laboratory, Baylor University, Waco, Texas, USA.,Human Performance Laboratory, School of Exercise and Sport Science, University of Mary Hardin-Baylor, Belton, Texas, USA
| |
Collapse
|
32
|
Wang Y, Zhao S, Chen Y, Wang Y, Wang T, Wo X, Dong Y, Zhang J, Xu W, Qu C, Feng X, Wu X, Wang Y, Zhong Z, Zhao W. N-Acetyl cysteine effectively alleviates Coxsackievirus B-Induced myocarditis through suppressing viral replication and inflammatory response. Antiviral Res 2020; 179:104699. [DOI: 10.1016/j.antiviral.2019.104699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/22/2019] [Accepted: 12/17/2019] [Indexed: 12/23/2022]
|
33
|
In Vitro Evaluation of Curcumin-Encapsulated Chitosan Nanoparticles against Feline Infectious Peritonitis Virus and Pharmacokinetics Study in Cats. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3012198. [PMID: 32596292 PMCID: PMC7262662 DOI: 10.1155/2020/3012198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 01/23/2023]
Abstract
Feline infectious peritonitis (FIP) is an important feline viral disease, causing an overridden inflammatory response that results in a high mortality rate, primarily in young cats. Curcumin is notable for its biological activities against various viral diseases; however, its poor bioavailability has hindered its potential in therapeutic application. In this study, curcumin was encapsulated in chitosan nanoparticles to improve its bioavailability. Curcumin-encapsulated chitosan (Cur-CS) nanoparticles were synthesised based on the ionic gelation technique and were spherical and cuboidal in shape, with an average particle size of 330 nm and +42 mV in zeta potential. The nanoparticles exerted lower toxicity in Crandell-Rees feline kidney (CrFK) cells and enhanced antiviral activities with a selective index (SI) value three times higher than that of curcumin. Feline-specific bead-based multiplex immunoassay and qPCR were used to examine their modulatory effects on proinflammatory cytokines, including tumour necrosis factor (TNF)α, interleukin- (IL-) 6, and IL-1β. There were significant decrements in IL-1β, IL-6, and TNFα expression in both curcumin and Cur-CS nanoparticles. Based on the multiplex immunoassay, curcumin and the Cur-CS nanoparticles could lower the immune-related proteins in FIP virus (FIPV) infection. The single- and multiple-dose pharmacokinetics profiles of curcumin and the Cur-CS nanoparticles were determined by high-performance liquid chromatography (HPLC). Oral delivery of the Cur-CS nanoparticles to cats showed enhanced bioavailability with a maximum plasma concentration (C max) value of 621.5 ng/mL. Incorporating chitosan nanoparticles to deliver curcumin improved the oral bioavailability and antiviral effects of curcumin against FIPV infection. This study provides evidence for the potential of Cur-CS nanoparticles as a supplementary treatment of FIP.
Collapse
|
34
|
Obaidi I, Cassidy H, Ibáñez Gaspar V, McCaul J, Higgins M, Halász M, Reynolds AL, Kennedy BN, McMorrow T. Curcumin Sensitizes Kidney Cancer Cells to TRAIL-Induced Apoptosis via ROS Mediated Activation of JNK-CHOP Pathway and Upregulation of DR4. BIOLOGY 2020; 9:E92. [PMID: 32370057 PMCID: PMC7284747 DOI: 10.3390/biology9050092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 12/14/2022]
Abstract
Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), is a selective anticancer cytokine capable of exerting a targeted therapy approach. Disappointingly, recent research has highlighted the development of TRAIL resistance in cancer cells, thus minimising its usefulness in clinical settings. However, several recent studies have demonstrated that cancer cells can be sensitised to TRAIL through the employment of a combinatorial approach, utilizing TRAIL in conjunction with other natural or synthetic anticancer agents. In the present study, the chemo-sensitising effect of curcumin on TRAIL-induced apoptosis in renal carcinoma cells (RCC) was investigated. The results indicate that exposure of kidney cancer ACHN cells to curcumin sensitised the cells to TRAIL, with the combination treatment of TRAIL and curcumin synergistically targeting the cancer cells without affecting the normal renal proximal tubular epithelial cells (RPTEC/TERT1) cells. Furthermore, this combination treatment was shown to induce caspase-dependent apoptosis, inhibition of the proteasome, induction of ROS, upregulation of death receptor 4 (DR4), alterations in mitogen-activated protein kinase (MAPK) signalling and induction of endoplasmic reticulum stress. An in vivo zebrafish embryo study demonstrated the effectiveness of the combinatorial regime to inhibit tumour formation without affecting zebrafish embryo viability or development. Overall, the results arising from this study demonstrate that curcumin has the ability to sensitise TRAIL-resistant ACHN cells to TRAIL-induced apoptosis.
Collapse
Affiliation(s)
- Ismael Obaidi
- NIBRT|National Institute for Bioprocessing, Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co., A94 X099 Dublin, Ireland
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
- College of Pharmacy, University of Babylon, Babylon 51002, Iraq
| | - Hilary Cassidy
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, 4 Dublin, Ireland;
| | - Verónica Ibáñez Gaspar
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
| | - Jasmin McCaul
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
| | - Michael Higgins
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
| | - Melinda Halász
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, 4 Dublin, Ireland;
| | - Alison L. Reynolds
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
- UCD School of Veterinary Medicine, Rm 232, University College Dublin, Belfield, 4 Dublin, Ireland
| | - Breandan N. Kennedy
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
| | - Tara McMorrow
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
| |
Collapse
|
35
|
Momtaz S, Memariani Z, El-Senduny FF, Sanadgol N, Golab F, Katebi M, Abdolghaffari AH, Farzaei MH, Abdollahi M. Targeting Ubiquitin-Proteasome Pathway by Natural Products: Novel Therapeutic Strategy for Treatment of Neurodegenerative Diseases. Front Physiol 2020; 11:361. [PMID: 32411012 PMCID: PMC7199656 DOI: 10.3389/fphys.2020.00361] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
Misfolded proteins are the main common feature of neurodegenerative diseases, thereby, normal proteostasis is an important mechanism to regulate the neural survival and the central nervous system functionality. The ubiquitin-proteasome system (UPS) is a non-lysosomal proteolytic pathway involved in numerous normal functions of the nervous system, modulation of neurotransmitter release, synaptic plasticity, and recycling of membrane receptors or degradation of damaged and regulatory intracellular proteins. Aberrant accumulation of intracellular ubiquitin-positive inclusions has been implicated to a variety of neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington disease (HD), Amyotrophic Lateral Sclerosis (ALS), and Multiple Myeloma (MM). Genetic mutation in deubiquitinating enzyme could disrupt UPS and results in destructive effects on neuron survival. To date, various agents were characterized with proteasome-inhibitory potential. Proteins of the ubiquitin-proteasome system, and in particular, E3 ubiquitin ligases, may be promising molecular targets for neurodegenerative drug discovery. Phytochemicals, specifically polyphenols (PPs), were reported to act as proteasome-inhibitors or may modulate the proteasome activity. PPs modify the UPS by means of accumulation of ubiquitinated proteins, suppression of neuronal apoptosis, reduction of neurotoxicity, and improvement of synaptic plasticity and transmission. This is the first comprehensive review on the effect of PPs on UPS. Here, we review the recent findings describing various aspects of UPS dysregulation in neurodegenerative disorders. This review attempts to summarize the latest reports on the neuroprotective properties involved in the proper functioning of natural polyphenolic compounds with implication for targeting ubiquitin-proteasome pathway in the neurodegenerative diseases. We highlight the evidence suggesting that polyphenolic compounds have a dose and disorder dependent effects in improving neurological dysfunctions, and so their mechanism of action could stimulate the UPS, induce the protein degradation or inhibit UPS and reduce protein degradation. Future studies should focus on molecular mechanisms by which PPs can interfere this complex regulatory system at specific stages of the disease development and progression.
Collapse
Affiliation(s)
- Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.,Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network, Tehran, Iran
| | - Zahra Memariani
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Center, Babol University of Medical Sciences, Babol, Iran
| | | | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran.,Department of Biomolecular Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Brazil
| | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Science, Tehran, Iran
| | - Majid Katebi
- Department of Anatomy, Faculty of Medicine, Hormozgan University of Medical Sciences, Hormozgan, Iran
| | - Amir Hossein Abdolghaffari
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.,Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network, Tehran, Iran.,Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Abdollahi
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Lin CJ, Chang L, Chu HW, Lin HJ, Chang PC, Wang RYL, Unnikrishnan B, Mao JY, Chen SY, Huang CC. High Amplification of the Antiviral Activity of Curcumin through Transformation into Carbon Quantum Dots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902641. [PMID: 31468672 DOI: 10.1002/smll.201902641] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/03/2019] [Indexed: 05/19/2023]
Abstract
It is demonstrated that carbon quantum dots derived from curcumin (Cur-CQDs) through one-step dry heating are effective antiviral agents against enterovirus 71 (EV71). The surface properties of Cur-CQDs, as well as their antiviral activity, are highly dependent on the heating temperature during synthesis. The one-step heating of curcumin at 180 °C preserves many of the moieties of polymeric curcumin on the surfaces of the as-synthesized Cur-CQDs, resulting in superior antiviral characteristics. It is proposed that curcumin undergoes a series of structural changes through dehydration, polymerization, and carbonization to form core-shell CQDs whose surfaces remain a pyrolytic curcumin-like polymer, boosting the antiviral activity. The results reveal that curcumin possesses insignificant inhibitory activity against EV71 infection in RD cells [half-maximal effective concentration (EC50 ) >200 µg mL-1 ] but exhibits high cytotoxicity toward RD cells (half-maximal cytotoxic concentration (CC50 ) <13 µg mL-1 ). The EC50 (0.2 µg mL-1 ) and CC50 (452.2 µg mL-1 ) of Cur-CQDs are >1000-fold lower and >34-fold higher, respectively, than those of curcumin, demonstrating their far superior antiviral capabilities and high biocompatibility. In vivo, intraperitoneal administration of Cur-CQDs significantly decreases mortality and provides protection against virus-induced hind-limb paralysis in new-born mice challenged with a lethal dose of EV71.
Collapse
Affiliation(s)
- Chin-Jung Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Lung Chang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, 11221, Taiwan
- Department of Pediatrics, Mackay Memorial Hospital and Mackay Junior College of Medicine, Nursing and Management, Taipei, 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, 25245, Taiwan
| | - Han-Wei Chu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Han-Jia Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Pei-Ching Chang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Robert Y L Wang
- Department of Biomedical Sciences and Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
- Division of Pediatric Infectious Disease, Department of Pediatrics, Chang Gung Memorial Hospital, Linkuo, Taoyuan, 33305, Taiwan
| | - Binesh Unnikrishnan
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Ju-Yi Mao
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Shiow-Yi Chen
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| |
Collapse
|
37
|
Wiehe A, O'Brien JM, Senge MO. Trends and targets in antiviral phototherapy. Photochem Photobiol Sci 2019; 18:2565-2612. [PMID: 31397467 DOI: 10.1039/c9pp00211a] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Photodynamic therapy (PDT) is a well-established treatment option in the treatment of certain cancerous and pre-cancerous lesions. Though best-known for its application in tumor therapy, historically the photodynamic effect was first demonstrated against bacteria at the beginning of the 20th century. Today, in light of spreading antibiotic resistance and the rise of new infections, this photodynamic inactivation (PDI) of microbes, such as bacteria, fungi, and viruses, is gaining considerable attention. This review focuses on the PDI of viruses as an alternative treatment in antiviral therapy, but also as a means of viral decontamination, covering mainly the literature of the last decade. The PDI of viruses shares the general action mechanism of photodynamic applications: the irradiation of a dye with light and the subsequent generation of reactive oxygen species (ROS) which are the effective phototoxic agents damaging virus targets by reacting with viral nucleic acids, lipids and proteins. Interestingly, a light-independent antiviral activity has also been found for some of these dyes. This review covers the compound classes employed in the PDI of viruses and their various areas of use. In the medical area, currently two fields stand out in which the PDI of viruses has found broader application: the purification of blood products and the treatment of human papilloma virus manifestations. However, the PDI of viruses has also found interest in such diverse areas as water and surface decontamination, and biosafety.
Collapse
Affiliation(s)
- Arno Wiehe
- biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany. and Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Jessica M O'Brien
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James's Hospital, Dublin 8, Ireland.
| | - Mathias O Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
38
|
Patel SS, Acharya A, Ray RS, Agrawal R, Raghuwanshi R, Jain P. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit Rev Food Sci Nutr 2019; 60:887-939. [PMID: 30632782 DOI: 10.1080/10408398.2018.1552244] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Curcumin is a naturally occurring polyphenolic compound present in rhizome of Curcuma longa belonging to the family zingiberaceae. Growing experimental evidence revealed that curcumin exhibit multitarget biological implications signifying its crucial role in health and disease. The current review highlights the recent progress and mechanisms underlying the wide range of pharmacological effects of curcumin against numerous diseases like neuronal, cardiovascular, metabolic, kidney, endocrine, skin, respiratory, infectious, gastrointestinal diseases and cancer. The ability of curcumin to modulate the functions of multiple signal transductions are linked with attenuation of acute and chronic diseases. Numerous preclinical and clinical studies have revealed that curcumin modulates several molecules in cell signal transduction pathway including PI3K, Akt, mTOR, ERK5, AP-1, TGF-β, Wnt, β-catenin, Shh, PAK1, Rac1, STAT3, PPARγ, EBPα, NLRP3 inflammasome, p38MAPK, Nrf2, Notch-1, AMPK, TLR-4 and MyD-88. Curcumin has a potential to prevent and/or manage various diseases due to its anti-inflammatory, anti-oxidant and anti-apoptotic properties with an excellent safety profile. In contrast, the anti-cancer effects of curcumin are reflected due to induction of growth arrest and apoptosis in various premalignant and malignant cells. This review also carefully emphasized the pharmacokinetics of curcumin and its interaction with other drugs. Clinical studies have shown that curcumin is safe at the doses of 12 g/day but exhibits poor systemic bioavailability. The use of adjuvant like piperine, liposomal curcumin, curcumin nanoparticles and curcumin phospholipid complex has shown enhanced bioavailability and therapeutic potential. Further studies are warranted to prove the potential of curcumin against various ailments.
Collapse
Affiliation(s)
- Sita Sharan Patel
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Ashish Acharya
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - R S Ray
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Ritesh Agrawal
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Ramsaneh Raghuwanshi
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Priyal Jain
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| |
Collapse
|
39
|
Long MJC, Lawson AP, Baggio R, Qian Y, Rozhansky L, Fasci D, El Oualid F, Weerapana E, Hedstrom L. Diarylcarbonates are a new class of deubiquitinating enzyme inhibitor. Bioorg Med Chem Lett 2018; 29:204-211. [PMID: 30528168 DOI: 10.1016/j.bmcl.2018.11.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 02/06/2023]
Abstract
Promiscuous inhibitors of tyrosine protein kinases, proteases and phosphatases are useful reagents for probing regulatory pathways and stabilizing lysates as well as starting points for the design of more selective agents. Ubiquitination regulates many critical cellular processes, and promiscuous inhibitors of deubiquitinases (DUBs) would be similarly valuable. The currently available promiscuous DUB inhibitors are highly reactive electrophilic compounds that can crosslink proteins. Herein we introduce diarylcarbonate esters as a novel class of promiscuous DUB inhibitors that do not have the liabilities associated with the previously reported compounds. Diarylcarbonates stabilize the high molecular weight ubiquitin pools in cells and lysates. They also elicit cellular phenotypes associated with DUB inhibition, demonstrating their utility in ubiquitin discovery. Diarylcarbonates may also be a useful scaffold for the development of specific DUB inhibitors.
Collapse
Affiliation(s)
- Marcus J C Long
- Graduate Program in Biochemistry and Biophysics Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Ann P Lawson
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Rick Baggio
- Graduate Program in Biochemistry and Biophysics Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Yu Qian
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| | - Lior Rozhansky
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Domenico Fasci
- Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Farid El Oualid
- UbiQ Bio BV, Science Park 408, 1098 XH Amsterdam, the Netherlands
| | - Eranthie Weerapana
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| | - Lizbeth Hedstrom
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02453, USA; Department of Chemistry(3), Brandeis University, 415 South Street, Waltham, MA 02453, USA.
| |
Collapse
|
40
|
Meng X, Yu X, Liu C, Wang Y, Song F, Huan C, Huo W, Zhang S, Li Z, Zhang J, Zhang W, Yu J. Effect of ingredients from Chinese herbs on enterovirus D68 production. Phytother Res 2018; 33:174-186. [PMID: 30346067 DOI: 10.1002/ptr.6214] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/20/2018] [Accepted: 09/25/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Xiangling Meng
- Institute of Virology and AIDS Research, The First Hospital of Jilin University Jilin University Changchun China
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy Jilin University Changchun China
| | - Xiaoyan Yu
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy Jilin University Changchun China
| | - Chunyu Liu
- Acupuncture Department The Affiliated Hospital to Changchun University of Chinese Medicine Changchun China
| | - Ying Wang
- Department of Gastroenterology, The First Hospital of Jilin University Jilin University Changchun China
| | - Fengmei Song
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy Jilin University Changchun China
| | - Chen Huan
- Institute of Virology and AIDS Research, The First Hospital of Jilin University Jilin University Changchun China
| | - Wenbo Huo
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy Jilin University Changchun China
| | - Shuxia Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy Jilin University Changchun China
| | - Zhaolong Li
- Institute of Virology and AIDS Research, The First Hospital of Jilin University Jilin University Changchun China
| | - Jun Zhang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University Jilin University Changchun China
| | - Wenyan Zhang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University Jilin University Changchun China
| | - Jinghua Yu
- Institute of Virology and AIDS Research, The First Hospital of Jilin University Jilin University Changchun China
| |
Collapse
|
41
|
Patel K, Ahmed ZSO, Huang X, Yang Q, Ekinci E, Neslund-Dudas CM, Mitra B, Elnady FAEM, Ahn YH, Yang H, Liu J, Dou QP. Discovering proteasomal deubiquitinating enzyme inhibitors for cancer therapy: lessons from rational design, nature and old drug reposition. Future Med Chem 2018; 10:2087-2108. [PMID: 30066579 PMCID: PMC6123888 DOI: 10.4155/fmc-2018-0091] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/15/2018] [Indexed: 12/24/2022] Open
Abstract
The ubiquitin proteasome system has been validated as a target of cancer therapies evident by the US FDA approval of anticancer 20S proteasome inhibitors. Deubiquitinating enzymes (DUBs), an essential component of the ubiquitin proteasome system, regulate cellular processes through the removal of ubiquitin from ubiquitinated-tagged proteins. The deubiquitination process has been linked with cancer and other pathologies. As such, the study of proteasomal DUBs and their inhibitors has garnered interest as a novel strategy to improve current cancer therapies, especially for cancers resistant to 20S proteasome inhibitors. This article reviews proteasomal DUB inhibitors in the context of: discovery through rational design approach, discovery from searching natural products and discovery from repurposing old drugs, and offers a future perspective.
Collapse
Affiliation(s)
- Kush Patel
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | - Zainab SO Ahmed
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
- Department of Cytology & Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Giza 12613, Egypt
| | - Xuemei Huang
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
- School of Life Science & Technology, Harbin Institute of Technology, Harbin 150001, PR China
| | - Qianqian Yang
- Protein Modification & Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou 510000, PR China
| | - Elmira Ekinci
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | - Christine M Neslund-Dudas
- Department of Public Health Sciences & Henry Ford Cancer Institute, Henry Ford Health System, One Ford Place, Suite 5C, Detroit, MI 48202, USA
| | - Bharati Mitra
- Department of Biochemistry, Microbiology & Immunology, Wayne State University School of Medicine, 540 E. Canfield Avenue, Detroit, MI 48201, USA
| | - Fawzy AEM Elnady
- Department of Anatomy & Embryology, Faculty of Veterinary Medicine, Cairo University, Giza, Giza 12613, Egypt
| | - Young-Hoon Ahn
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - Huanjie Yang
- School of Life Science & Technology, Harbin Institute of Technology, Harbin 150001, PR China
| | - Jinbao Liu
- Protein Modification & Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou 510000, PR China
| | - Qing Ping Dou
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
- Protein Modification & Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou 510000, PR China
| |
Collapse
|
42
|
Banerjee S, Ji C, Mayfield JE, Goel A, Xiao J, Dixon JE, Guo X. Ancient drug curcumin impedes 26S proteasome activity by direct inhibition of dual-specificity tyrosine-regulated kinase 2. Proc Natl Acad Sci U S A 2018; 115:8155-8160. [PMID: 29987021 PMCID: PMC6094102 DOI: 10.1073/pnas.1806797115] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Curcumin, the active ingredient in Curcuma longa, has been in medicinal use since ancient times. However, the therapeutic targets and signaling cascades modulated by curcumin have been enigmatic despite extensive research. Here we identify dual-specificity tyrosine-regulated kinase 2 (DYRK2), a positive regulator of the 26S proteasome, as a direct target of curcumin. Curcumin occupies the ATP-binding pocket of DYRK2 in the cocrystal structure, and it potently and specifically inhibits DYRK2 over 139 other kinases tested in vitro. As a result, curcumin diminishes DYRK2-mediated 26S proteasome phosphorylation in cells, leading to reduced proteasome activity and impaired cell proliferation. Interestingly, curcumin synergizes with the therapeutic proteasome inhibitor carfilzomib to induce apoptosis in a variety of proteasome-addicted cancer cells, while this drug combination exhibits modest to no cytotoxicity to noncancerous cells. In a breast cancer xenograft model, curcumin treatment significantly reduces tumor burden in immunocompromised mice, showing a similar antitumor effect as CRISPR/Cas9-mediated DYRK2 depletion. These results reveal an unexpected role of curcumin in DYRK2-proteasome inhibition and provide a proof-of-concept that pharmacological manipulation of proteasome regulators may offer new opportunities for anticancer treatment.
Collapse
Affiliation(s)
- Sourav Banerjee
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0721
| | - Chenggong Ji
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China
| | - Joshua E Mayfield
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0721
| | - Apollina Goel
- Division of the Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242-1181
| | - Junyu Xiao
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China
| | - Jack E Dixon
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0721;
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093
| | - Xing Guo
- The Life Sciences Institute, Zhejiang University, 310058 Hangzhou, China
| |
Collapse
|
43
|
Inhibition of EV71 by curcumin in intestinal epithelial cells. PLoS One 2018; 13:e0191617. [PMID: 29370243 PMCID: PMC5784943 DOI: 10.1371/journal.pone.0191617] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/08/2018] [Indexed: 01/26/2023] Open
Abstract
EV71 is a positive-sense single-stranded RNA virus that belongs to the Picornaviridae family. EV71 infection may cause various symptoms ranging from hand-foot-and-mouth disease to neurological pathological conditions such as aseptic meningitis, ataxia, and acute transverse myelitis. There is currently no effective treatment or vaccine available. Various compounds have been examined for their ability to restrict EV71 replication. However, most experiments have been performed in rhabdomyosarcoma or Vero cells. Since the gastrointestinal tract is the entry site for this pathogen, we anticipated that orally ingested agents may exert beneficial effects by decreasing virus replication in intestinal epithelial cells. In this study, curcumin (diferuloylmethane, C21H20O6), an active ingredient of turmeric (Curcuma longa Linn) with anti-cancer properties, was investigated for its anti-enterovirus activity. We demonstrate that curcumin treatment inhibits viral translation and increases host cell viability. Curcumin does not exert its anti-EV71 effects by modulating virus attachment or virus internal ribosome entry site (IRES) activity. Furthermore, curcumin-mediated regulation of mitogen-activated protein kinase (MAPK) signaling pathways is not involved. We found that protein kinase C delta (PKCδ) plays a role in virus translation in EV71-infected intestinal epithelial cells and that curcumin treatment decreases the phosphorylation of this enzyme. In addition, we show evidence that curcumin also limits viral translation in differentiated human intestinal epithelial cells. In summary, our data demonstrate the anti-EV71 properties of curcumin, suggesting that ingestion of this phytochemical may protect against enteroviral infections.
Collapse
|
44
|
|
45
|
Amanullah A, Upadhyay A, Joshi V, Mishra R, Jana NR, Mishra A. Progressing neurobiological strategies against proteostasis failure: Challenges in neurodegeneration. Prog Neurobiol 2017; 159:1-38. [DOI: 10.1016/j.pneurobio.2017.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 06/01/2017] [Accepted: 08/25/2017] [Indexed: 02/07/2023]
|
46
|
Imran M, Ullah A, Saeed F, Nadeem M, Arshad MU, Suleria HAR. Cucurmin, anticancer, & antitumor perspectives: A comprehensive review. Crit Rev Food Sci Nutr 2017; 58:1271-1293. [PMID: 27874279 DOI: 10.1080/10408398.2016.1252711] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cucurmin, a naturally yellow component isolated from turmeric, ability to prevent various life-style related disorders. The current review article mainly emphasizes on different anticancer perspectives of cucurmin, i.e., colon, cervical, uterine, ovarian, prostate head and neck, breast, pulmonary, stomach and gastric, pancreatic, bladder oral, oesophageal, and bone cancer. It holds a mixture of strong bioactive molecule known as cucurminoids that has ability to reduce cancer/tumor at initial, promotion and progression stages of tumor development. In particular, these compounds block several enzymes required for the growth of tumors and may therefore involve in tumor treatments. Moreover, it modulates an array of cellular progressions, i.e., nitric oxide synthetase activity, protein kinase C activity, epidermal growth factor (EGF) receptor intrinsic kinase activity, nuclear factor kappa (NF-kB) activity, inhibiting lipid peroxidation and production of reactive oxygen species. However, current manuscript summarizes most of the recent investigations of cucurmin but still further research should be conducted to explore the role of curcumin to mitigate various cancers.
Collapse
Affiliation(s)
- Muhammad Imran
- a Department of Diet and Nutritional Sciences , Imperial College of Business Studies , Lahore , Pakistan.,b National Institute of Food Science and Technology , University of Agriculture Faisalabad , Pakistan
| | - Azmat Ullah
- e Department of Food Science and Human Nutrition , University of Veterinary and Animal Sciences , Lahore , Pakistan
| | - Farhan Saeed
- c Institute of Home & Food Sciences , Government College University Faisalabad , Pakistan
| | - Muhammad Nadeem
- d Department of Environmental Sciences , COMSATS Institute of Information Technology Vehari , Pakistan
| | - Muhammad Umair Arshad
- c Institute of Home & Food Sciences , Government College University Faisalabad , Pakistan
| | | |
Collapse
|
47
|
Mounce BC, Cesaro T, Carrau L, Vallet T, Vignuzzi M. Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding. Antiviral Res 2017; 142:148-157. [DOI: 10.1016/j.antiviral.2017.03.014] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 03/18/2017] [Indexed: 01/24/2023]
|
48
|
Zhong T, Zhang LY, Wang ZY, Wang Y, Song FM, Zhang YH, Yu JH. Rheum emodin inhibits enterovirus 71 viral replication and affects the host cell cycle environment. Acta Pharmacol Sin 2017; 38:392-401. [PMID: 27840410 PMCID: PMC5342659 DOI: 10.1038/aps.2016.110] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/02/2016] [Indexed: 12/21/2022]
Abstract
Human enterovirus 71 (EV71) is the primary causative agent of recent large-scale outbreaks of hand, foot, and mouth disease (HFMD) in Asia. Currently, there are no drugs available for the prevention and treatment of HFMD. In this study, we compared the anti-EV71 activities of three natural compounds, rheum emodin, artemisinin and astragaloside extracted from Chinese herbs Chinese rhubarb, Artemisia carvifolia and Astragalus, respectively, which have been traditionally used for the treatment and prevention of epidemic diseases. Human lung fibroblast cell line MRC5 was mock-infected or infected with EV71, and treated with drugs. The cytotoxicity of the drugs was detected with MTT assay. The cytopathic effects such as cell death and condensed nuclei were morphologically observed. The VP1-coding sequence required for EV71 genome replication was assayed with qRT-PCR. Viral protein expression was analyzed with Western blotting. Viral TCID50 was determined to evaluate EV71 virulence. Flow cytometry analysis of propidium iodide staining was performed to analyze the cell cycle distribution of MRC5 cells. Rheum emodin (29.6 μmol/L) effectively protected MRC5 cells from EV71-induced cytopathic effects, which resulted from the inhibiting viral replication: rheum emodin treatment decreased viral genomic levels by 5.34-fold, viral protein expression by less than 30-fold and EV71 virulence by 0.33107-fold. The fact that inhibition of rheum emodin on viral virulence was much stronger than its effects on genomic levels and viral protein expression suggested that rheum emodin inhibited viral maturation. Furthermore, rheum emodin treatment markedly diminished cell cycle arrest at S phase in MRC5 cells, which was induced by EV71 infection and favored the viral replication. In contrast, neither astragaloside (50 μmol/L) nor artemisinin (50 μmol/L) showed similar anti-EV71 activities. Among the three natural compounds tested, rheum emodin effectively suppressed EV71 viral replication, thus is a candidate anti-HFMD drug.
Collapse
|
49
|
Soluble coxsackie- and adenovirus receptor (sCAR-Fc); a highly efficient compound against laboratory and clinical strains of coxsackie-B-virus. Antiviral Res 2016; 136:1-8. [PMID: 27773751 DOI: 10.1016/j.antiviral.2016.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/06/2016] [Accepted: 10/19/2016] [Indexed: 12/11/2022]
Abstract
Coxsackie-B-viruses (CVB) cause a wide variety of diseases, ranging from mild syndromes to life-threatening conditions such as pancreatitis, myocarditis, meningitis and encephalitis. Especially newborns and young infants develop severe diseases and long-term sequelae may occur among survivors. Due to lack of specific antiviral therapy the current treatment of CVB infection is limited to symptomatic treatment. Here we analyzed the antiviral activity of a soluble receptor fusion protein, containing the extracellular part of the coxsackievirus and adenovirus receptor (CAR) fused to the constant domain of the human IgG - sCAR-Fc - against laboratory and clinical CVB strains. We found a high overall antiviral activity of sCAR-Fc against various prototypic laboratory strains of CVB, with an inhibition of viral replication up to 3 orders of magnitude (99.9%) at a concentration of 2.5 μg/ml. These include isolates that are not dependent on CAR for infection and isolates that are resistant against pleconaril, the currently most promising anti-CVB therapeutic. A complete inhibition was observed using higher concentration of sCAR-Fc. Further analysis of 23 clinical CVB isolates revealed overall high antiviral efficiency (up to 99.99%) of sCAR-Fc. In accordance with previous data, our results confirm the strong antiviral activity of sCAR-Fc against laboratory CVB strains and demonstrate for the first time that sCAR-Fc is also highly efficient at neutralizing clinical CVB isolates. Importantly, during the sCAR-Fc inhibition experiments, no naturally occurring resistant mutants were observed.
Collapse
|
50
|
|