1
|
Lorentzen EM, Henriksen S, Rinaldo CH. Massive entry of BK Polyomavirus induces transient cytoplasmic vacuolization of human renal proximal tubule epithelial cells. PLoS Pathog 2024; 20:e1012681. [PMID: 39570904 PMCID: PMC11581322 DOI: 10.1371/journal.ppat.1012681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/20/2024] [Indexed: 11/24/2024] Open
Abstract
BK polyomavirus (BKPyV) is a ubiquitous human virus that establishes a persistent infection in renal tubular epithelial cells and mainly causes disease in kidney transplant recipients. The closely related simian polyomavirus SV40 is known to cause cytoplasmic vacuolization in simian kidney cells, possibly increasing progeny release and cell death. This study aimed to determine whether BKPyV causes cytoplasmic vacuolization in primary human renal proximal tubule epithelial cells (RPTECs) and to investigate its potential role in the replication cycle. Using a large infectious dose (MOI 100-1000), a fraction of RPTECs (10-72%) showed early-wave vacuolization from 3 hours post-infection (hpi), which was mainly reversed by 36 hpi. Independent of the infectious dose, late-wave vacuolization occurred around the timepoint of progeny release. BKPyV receptor binding and internalization were required, as neuraminidase pretreatment and preincubation or treatment with a BKPyV-specific neutralizing antibody prevented early or late-occurring vacuolization. Microscopy revealed that the vacuoles were enlarged acidic endo-/lysosomal structures (dextran, EEA1, Rab5, Rab7, LAMP1, and/or Lysoview positive) that contained membrane-bound BKPyV. Time-lapse microscopy and quantitative PCR revealed that cell death and progeny release preceded late-wave vacuolization, mainly affecting cells directly neighboring the lysed cells. Thus, vacuolization had little impact on cell death or progeny release. Addition of the V-ATPase inhibitor Bafilomycin A1 at 0 hpi blocked vacuolization and BKPyV replication, but addition at 2 hpi only blocked vacuolization, suggesting that continuous endosomal acidification and maturation is needed for vacuole formation, but not for BKPyV replication. Our study shows that a massive uptake of BKPyV in RPTECs induces transient enlargement of endo-/lysosomes and is an early event in the viral replication cycle. Vacuolization gives no clear benefit for BKPyV and is possibly the result of a transiently overloaded endocytic pathway. Focal vacuolization around lysed cells suggests that the spread of BKPyV is preferably local.
Collapse
Affiliation(s)
- Elias Myrvoll Lorentzen
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Metabolic and Renal Research Group, Department of Clinical Medicine, UiT—The Arctic University of Norway, Tromsø, Norway
| | - Stian Henriksen
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Metabolic and Renal Research Group, Department of Clinical Medicine, UiT—The Arctic University of Norway, Tromsø, Norway
| | - Christine Hanssen Rinaldo
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Metabolic and Renal Research Group, Department of Clinical Medicine, UiT—The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
2
|
Bruštíková K, Ryabchenko B, Liebl D, Horníková L, Forstová J, Huérfano S. BK Polyomavirus Infection of Bladder Microvascular Endothelial Cells Leads to the Activation of the cGAS-STING Pathway. J Med Virol 2024; 96:e70038. [PMID: 39487659 PMCID: PMC11600483 DOI: 10.1002/jmv.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024]
Abstract
BK polyomavirus (BKPyV) infection in humans is usually asymptomatic but ultimately results in viral persistence. In immunocompromised hosts, virus reactivation can lead to nephropathy or hemorrhagic cystitis. The urinary tract serves as a silent reservoir for the virus. Recently, it has been demonstrated that human bladder microvascular endothelial cells (HBMVECs) serve as viral reservoirs, given their unique response to infection, which involves interferon (IFN) production. The aim of the present study was to better understand the life cycle of BKPyV in HBMVECs, uncover the molecular pathway leading to IFN production, and to identify the connection between the viral life cycle and the activation of the IFN response. Here, in the early stage of infection, BKPyV virions were found in internalized monopinocytic vesicles, while later they were detected in late endosomes, lysosomes, tubuloreticular structures, and vacuole-like vesicles. The production of viral progeny in these cells started at 36 h postinfection. Increased cell membrane permeability and peaks of virion release coincided with the leakage of viral and cellular DNA into the cytosol at approximately 60 h postinfection. Leaked DNA colocalized with and activated cGAS, leading to the activation of STING and the consequent transcription of IFNB and IFN-related genes; in contrast, the IFN response was attenuated by exposure to the cGAS inhibitor, G140. These findings highlight the importance of the cGAS-STING pathway in the innate immune response of HBMVECs to BKPyV.
Collapse
Affiliation(s)
- Kateřina Bruštíková
- Department of Genetics and Microbiology, Faculty of ScienceCharles University, BIOCEVVestecCzech Republic
| | - Boris Ryabchenko
- Department of Genetics and Microbiology, Faculty of ScienceCharles University, BIOCEVVestecCzech Republic
| | - David Liebl
- Imaging Methods, Core Facility, Faculty of ScienceCharles University, BIOCEVVestecCzech Republic
| | - Lenka Horníková
- Department of Genetics and Microbiology, Faculty of ScienceCharles University, BIOCEVVestecCzech Republic
| | - Jitka Forstová
- Department of Genetics and Microbiology, Faculty of ScienceCharles University, BIOCEVVestecCzech Republic
| | - Sandra Huérfano
- Department of Genetics and Microbiology, Faculty of ScienceCharles University, BIOCEVVestecCzech Republic
| |
Collapse
|
3
|
Mobaraki G, Shi S, Liu D, Smits KM, Severens K, Lommen K, Rennspiess D, Speel EJM, Winnepenninckx V, Klufah F, Samarska I, zur Hausen A. Mapping of Human Polyomavirus in Renal Cell Carcinoma Tissues. Int J Mol Sci 2024; 25:8213. [PMID: 39125783 PMCID: PMC11312419 DOI: 10.3390/ijms25158213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Worldwide, the incidence of renal cell carcinoma (RCC) is rising, accounting for approximately 2% of all cancer diagnoses and deaths. The etiology of RCC is still obscure. Here, we assessed the presence of HPyVs in paraffin-embedded tissue (FFPE) resected tissue from patients with RCC by using different molecular techniques. Fifty-five FFPE tissues from 11 RCC patients were included in this study. Consensus and HPyV-specific primers were used to screen for HPyVs. Both PCR approaches revealed that HPyV is frequently detected in the tissues of RCC kidney resections. A total of 78% (43/55) of the tissues tested were positive for at least one HPyV (i.e., MCPyV, HPyV6, HPyV7, BKPyV, JCPyV, or WUyV). Additionally, 25 tissues (45%) were positive for only one HPyV, 14 (25%) for two HPyVs, 3 (5%) for three HPyVs, and 1 one (1%) tissue specimen was positive for four HPyVs. Eleven (20%) RCC specimens were completely devoid of HPyV sequences. MCPyV was found in 24/55 RCC tissues, HPyV7 in 19, and HPyV6 in 8. The presence of MCPyV and HPyV6 was confirmed by specific FISH or RNA-ISH. In addition, we aimed to confirm HPyV gene expression by IHC. Our results strongly indicate that these HPyVs infect RCC and nontumor tissues, possibly indicating that kidney tissues serve as a reservoir for HPyV latency. Whether HPyVs possibly contribute to the etiopathogenesis of RCC remains to be elucidated.
Collapse
Affiliation(s)
- Ghalib Mobaraki
- Department of Pathology, GROW-Research Institute for Oncology & Reproduction, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (D.L.); (K.M.S.); (K.S.); (K.L.); (D.R.); (E.-J.M.S.); (V.W.); (F.K.); (I.S.)
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Shuai Shi
- Department of Pathology, GROW-Research Institute for Oncology & Reproduction, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (D.L.); (K.M.S.); (K.S.); (K.L.); (D.R.); (E.-J.M.S.); (V.W.); (F.K.); (I.S.)
| | - Dan Liu
- Department of Pathology, GROW-Research Institute for Oncology & Reproduction, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (D.L.); (K.M.S.); (K.S.); (K.L.); (D.R.); (E.-J.M.S.); (V.W.); (F.K.); (I.S.)
| | - Kim M. Smits
- Department of Pathology, GROW-Research Institute for Oncology & Reproduction, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (D.L.); (K.M.S.); (K.S.); (K.L.); (D.R.); (E.-J.M.S.); (V.W.); (F.K.); (I.S.)
| | - Kim Severens
- Department of Pathology, GROW-Research Institute for Oncology & Reproduction, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (D.L.); (K.M.S.); (K.S.); (K.L.); (D.R.); (E.-J.M.S.); (V.W.); (F.K.); (I.S.)
| | - Kim Lommen
- Department of Pathology, GROW-Research Institute for Oncology & Reproduction, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (D.L.); (K.M.S.); (K.S.); (K.L.); (D.R.); (E.-J.M.S.); (V.W.); (F.K.); (I.S.)
| | - Dorit Rennspiess
- Department of Pathology, GROW-Research Institute for Oncology & Reproduction, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (D.L.); (K.M.S.); (K.S.); (K.L.); (D.R.); (E.-J.M.S.); (V.W.); (F.K.); (I.S.)
| | - Ernst-Jan M. Speel
- Department of Pathology, GROW-Research Institute for Oncology & Reproduction, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (D.L.); (K.M.S.); (K.S.); (K.L.); (D.R.); (E.-J.M.S.); (V.W.); (F.K.); (I.S.)
| | - Véronique Winnepenninckx
- Department of Pathology, GROW-Research Institute for Oncology & Reproduction, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (D.L.); (K.M.S.); (K.S.); (K.L.); (D.R.); (E.-J.M.S.); (V.W.); (F.K.); (I.S.)
| | - Faisal Klufah
- Department of Pathology, GROW-Research Institute for Oncology & Reproduction, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (D.L.); (K.M.S.); (K.S.); (K.L.); (D.R.); (E.-J.M.S.); (V.W.); (F.K.); (I.S.)
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Albaha 65525, Saudi Arabia
| | - Iryna Samarska
- Department of Pathology, GROW-Research Institute for Oncology & Reproduction, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (D.L.); (K.M.S.); (K.S.); (K.L.); (D.R.); (E.-J.M.S.); (V.W.); (F.K.); (I.S.)
| | - Axel zur Hausen
- Department of Pathology, GROW-Research Institute for Oncology & Reproduction, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (D.L.); (K.M.S.); (K.S.); (K.L.); (D.R.); (E.-J.M.S.); (V.W.); (F.K.); (I.S.)
| |
Collapse
|
4
|
Oberholster L, Mathias A, Perriot S, Blaser E, Canales M, Jones S, Culebras L, Gimenez M, Kaynor GC, Sapozhnik A, Richetin K, Goelz S, Du Pasquier R. Comprehensive proteomic analysis of JC polyomavirus-infected human astrocytes and their extracellular vesicles. Microbiol Spectr 2023; 11:e0275123. [PMID: 37815349 PMCID: PMC10714778 DOI: 10.1128/spectrum.02751-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/24/2023] [Indexed: 10/11/2023] Open
Abstract
IMPORTANCE Progressive multifocal leukoencephalopathy is a crimpling demyelinating disease of the central nervous system caused by JC polyomavirus (JCPyV). Much about JCPyV propagation in the brain remains obscure because of a lack of proper animal models to study the virus in the context of the disease, thus hampering efforts toward the development of new antiviral strategies. Here, having established a robust and representative model of JCPyV infection in human-induced pluripotent stem cell-derived astrocytes, we are able to fully characterize the effect of JCPyV on the biology of the cells and show that the proteomic signature observed for JCPyV-infected astrocytes is extended to extracellular vesicles (EVs). These data suggest that astrocyte-derived EVs found in body fluids might serve as a rich source of information relevant to JCPyV infection in the brain, opening avenues toward better understanding the pathogenesis of the virus and, ultimately, the identification of new antiviral targets.
Collapse
Affiliation(s)
- Larise Oberholster
- Department of Clinical Neurosciences, Laboratory of Neuroimmunology, Neuroscience Research Centre, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Amandine Mathias
- Department of Clinical Neurosciences, Laboratory of Neuroimmunology, Neuroscience Research Centre, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Sylvain Perriot
- Department of Clinical Neurosciences, Laboratory of Neuroimmunology, Neuroscience Research Centre, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Emma Blaser
- Department of Clinical Neurosciences, Laboratory of Neuroimmunology, Neuroscience Research Centre, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Mathieu Canales
- Department of Clinical Neurosciences, Laboratory of Neuroimmunology, Neuroscience Research Centre, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Samuel Jones
- Department of Clinical Neurosciences, Laboratory of Neuroimmunology, Neuroscience Research Centre, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Lucas Culebras
- Department of Clinical Neurosciences, Laboratory of Neuroimmunology, Neuroscience Research Centre, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Marie Gimenez
- Department of Clinical Neurosciences, Laboratory of Neuroimmunology, Neuroscience Research Centre, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | | | - Alexey Sapozhnik
- Laboratory for Ultrafast Microscopy and Electron Scattering (LUMES), Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Kevin Richetin
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Susan Goelz
- MS&SI, Biogen, Cambridge, Massachusetts, USA
- Department of Neurology, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Renaud Du Pasquier
- Department of Clinical Neurosciences, Laboratory of Neuroimmunology, Neuroscience Research Centre, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Liu N, Gu C, Yang Y, Gao Z, Kang N, Liu J, Xie Y. Establishment and characterization of a novel reverse genetic system of BK polyomavirus. J Med Virol 2023; 95:e28995. [PMID: 37522259 DOI: 10.1002/jmv.28995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023]
Abstract
BK polyomavirus (BKV) is a small non-enveloped DNA virus. BKV infection or reactivation may cause BKV-associated nephropathy and hemorrhagic cystitis in immunosuppressed transplant recipients. No effective antivirals or prevention strategies are available against BKV infections. The current BKV reverse system employs the transfection of purified full-length linear viral genomes released by enzyme digestion from BKV genomic plasmids. The method is laborious and often results in variable DNA yield and quality, which can affect the efficiency of transfection and subsequent formation of circular viral genomes in cells. In this study, we report the generation of circular viral genomes by Cre-mediated DNA recombination in cells directly transfected with BKV precursor genomic plasmids. The novel system supported efficient viral expression and replication, and produced a higher level of infectious virions compared with the transfection with linear BKV genomes. Furthermore, we successfully constructed recombinant BKV capable of reporter gene expression. In conclusion, the novel BKV reverse genetic system allows for simpler manipulation of BKV genome with better virus yield, providing a tool for the study of BKV life cycle and antiviral screening.
Collapse
Affiliation(s)
- Nannan Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Diseases and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chenjian Gu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Diseases and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Yang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Diseases and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zixiang Gao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Diseases and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ning Kang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Diseases and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Diseases and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Diseases and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Clinical Laboratory, Children's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Procario MC, Sexton JZ, Halligan BS, Imperiale MJ. Single-Cell, High-Content Microscopy Analysis of BK Polyomavirus Infection. Microbiol Spectr 2023; 11:e0087323. [PMID: 37154756 PMCID: PMC10269497 DOI: 10.1128/spectrum.00873-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/08/2023] [Indexed: 05/10/2023] Open
Abstract
By adulthood, the majority of the population is persistently infected with BK polyomavirus (BKPyV). Only a subset of the population, generally transplant recipients on immunosuppressive drugs, will experience disease from BKPyV, but those who do have few treatment options and, frequently, poor outcomes, because to date there are no effective antivirals to treat or approved vaccines to prevent BKPyV. Most studies of BKPyV have been performed on bulk populations of cells, and the dynamics of infection at single-cell resolution have not been explored. As a result, much of our knowledge is based upon the assumption that all cells within a greater population are behaving the same way with respect to infection. The present study examines BKPyV infection on a single-cell level using high-content microscopy to measure and analyze the viral protein large T antigen (TAg), promyelocytic leukemia protein (PML), DNA, and nuclear morphological features. We observed significant heterogeneity among infected cells, within and across time points. We found that the levels of TAg within individual cells did not necessarily increase with time and that cells with the same TAg levels varied in other ways. Overall, high-content, single-cell microscopy is a novel approach to studying BKPyV that enables experimental insight into the heterogenous nature of the infection. IMPORTANCE BK polyomavirus (BKPyV) is a human pathogen that infects nearly everyone by adulthood and persists throughout a person's life. Only people with significant immune suppression develop disease from the virus, however. Until recently the only practical means of studying many viral infections was to infect a group of cells in the laboratory and measure the outcomes in that group. However, interpreting these bulk population experiments requires the assumption that infection influences all cells within a group similarly. This assumption has not held for multiple viruses tested so far. Our study establishes a novel single-cell microscopy assay for BKPyV infection. Using this assay, we discovered differences among individual infected cells that have not been apparent in bulk population studies. The knowledge gained in this study and the potential for future use demonstrate the power of this assay as a tool for understanding the biology of BKPyV.
Collapse
Affiliation(s)
- Megan C. Procario
- Department of Microbiology and Immunology, Medical School, University of Michigan, Ann Arbor, Michigan, USA
| | - Jonathan Z. Sexton
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
- Center for Drug Repurposing, University of Michigan, Ann Arbor, Michigan, USA
| | - Benjamin S. Halligan
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael J. Imperiale
- Department of Microbiology and Immunology, Medical School, University of Michigan, Ann Arbor, Michigan, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
An P, Sáenz Robles MT, Cantalupo PG, Naik AS, Sealfon R, Imperiale MJ, Pipas JM. Cultured Renal Proximal Tubular Epithelial Cells Resemble a Stressed/Damaged Kidney While Supporting BK Virus Infection. J Virol 2023; 97:e0034323. [PMID: 37166336 PMCID: PMC10231206 DOI: 10.1128/jvi.00343-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/22/2023] [Indexed: 05/12/2023] Open
Abstract
BK virus (BKV; human polyomavirus 1) infections are asymptomatic in most individuals, and the virus persists throughout life without harm. However, BKV is a threat to transplant patients and those with immunosuppressive disorders. Under these circumstances, the virus can replicate robustly in proximal tubule epithelial cells (PT). Cultured renal proximal tubule epithelial cells (RPTE) are permissive to BKV and have been used extensively to characterize different aspects of BKV infection. Recently, lines of hTERT-immortalized RPTE have become available, and preliminary studies indicate they support BKV infection as well. Our results indicate that BKV infection leads to a similar response in primary and immortalized RPTE. In addition, we examined the patterns of global gene expression of primary and immortalized RPTE and compared them with uncultured PT freshly dissociated from human kidney. As expected, PT isolated from the healthy kidney express a number of differentiation-specific genes that are associated with kidney function. However, the expression of most of these genes is absent or repressed in cultured RPTE. Rather, cultured RPTE exhibit a gene expression profile indicative of a stressed or injured kidney. Inoculation of cultured RPTE with BKV results in the suppression of many genes associated with kidney stress. In summary, this study demonstrated similar global gene expression patterns and responses to BKV infection between primary and immortalized RPTE. Moreover, results from bulk transcriptome sequencing (RNA-seq) and SCT experiments revealed distinct transcriptomic signatures representing cell injury and stress in primary RPTE in contrast to the uncultured, freshly dissociated PT from human kidney. IMPORTANCE Cultured primary human cells provide powerful tools for the study of viral infectious cycles and host virus interactions. In the case of BKV-associated nephropathy, viral replication occurs primarily in the proximal tubule epithelia in the kidney. Consequently, cultured primary and immortalized renal proximal tubule epithelial cells (RPTE) are widely used to study BKV infection. In this work, using bulk and single-cell transcriptomics, we found that primary and immortalized RPTE responded similarly to BKV infection. However, both uninfected primary and immortalized RPTE have gene expression profiles that are markedly different from healthy proximal tubule epithelia isolated directly from human kidney without culture. Cultured RPTE are in a gene expression state indicative of an injured or stressed kidney. These results raise the possibility that BKV replicates preferentially in injured or stressed kidney epithelial cells during nephropathy.
Collapse
Affiliation(s)
- Ping An
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Paul G. Cantalupo
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Abhijit S. Naik
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | | | - Michael J. Imperiale
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - James M. Pipas
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
Yang F, Chen X, Zhang H, Zhao GD, Yang H, Qiu J, Meng S, Wu P, Tao L, Wang Q, Huang G. Single-Cell Transcriptome Identifies the Renal Cell Type Tropism of Human BK Polyomavirus. Int J Mol Sci 2023; 24:ijms24021330. [PMID: 36674845 PMCID: PMC9861348 DOI: 10.3390/ijms24021330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
BK polyomavirus (BKPyV) infection is the main factor affecting the prognosis of kidney transplant recipients, as no antiviral agent is yet available. A better understanding of the renal-cell-type tropism of BKPyV can serve to develop new treatment strategies. In this study, the single-cell transcriptomic analysis demonstrated that the ranking of BKPyV tropism for the kidney was proximal tubule cells (PT), collecting duct cells (CD), and glomerular endothelial cells (GEC) according to the signature of renal cell type and immune microenvironment. In normal kidneys, we found that BKPyV infection-related transcription factors P65 and CEBPB were PT-specific transcription factors, and PT showed higher glycolysis/gluconeogenesis activities than CD and GEC. Furthermore, in the BKPyV-infected kidneys, the percentage of late viral transcripts in PT was significantly higher than in CD and GEC. In addition, PT had the smallest cell-cell interactions with immune cells compared to CD and GEC in both normal and BKPyV-infected kidneys. Subsequently, we indirectly demonstrated the ranking of BKPyV tropism via the clinical observation of sequential biopsies. Together, our results provided in-depth insights into the renal cell-type tropism of BKPyV in vivo at single-cell resolution and proposed a novel antiviral target.
Collapse
Affiliation(s)
- Feng Yang
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-Sen University, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Based of Science and Technology (Organ Transplantation), Sun Yat-Sen University, Guangzhou 510080, China
| | - Xutao Chen
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Hui Zhang
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Guo-Dong Zhao
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Huifei Yang
- Department of Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Jiang Qiu
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Siyan Meng
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Penghan Wu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Liang Tao
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qin Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
- Correspondence: (Q.W.); (G.H.)
| | - Gang Huang
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-Sen University, Guangzhou 510080, China
- Guangdong Provincial International Cooperation Based of Science and Technology (Organ Transplantation), Sun Yat-Sen University, Guangzhou 510080, China
- Correspondence: (Q.W.); (G.H.)
| |
Collapse
|
9
|
Justice JL, Needham JM, Verhalen B, Jiang M, Thompson SR. BK Polyomavirus Requires the Mismatch Repair Pathway for DNA Damage Response Activation. J Virol 2022; 96:e0202821. [PMID: 35389233 PMCID: PMC9044952 DOI: 10.1128/jvi.02028-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/18/2022] [Indexed: 11/20/2022] Open
Abstract
BK polyomavirus (PyV) infects the genitourinary tract of >90% of the adult population. Immunosuppression increases the risk of viral reactivation, making BKPyV a leading cause of graft failure in kidney transplant recipients. Polyomaviruses have a small double-stranded DNA (dsDNA) genome that requires host replication machinery to amplify the viral genome. Specifically, polyomaviruses promote S phase entry and delay S phase exit by activating the DNA damage response (DDR) pathway via an uncharacterized mechanism requiring viral replication. BKPyV infection elevates expression of MutSα, a mismatch repair (MMR) pathway protein complex that senses and repairs DNA mismatches and can activate the DDR. Thus, we investigated the role of the MMR pathway by silencing the MutSα component, Msh6, in BKPyV-infected primary cells. This resulted in severe DNA damage that correlated with weak DNA damage response activation and a failure to arrest the cell cycle to prevent mitotic entry during infection. Furthermore, silencing Msh6 expression resulted in significantly fewer infectious viral particles due to significantly lower levels of VP2, a minor capsid protein important for trafficking during subsequent infections. Since viral assembly occurs in the nucleus, our findings are consistent with a model in which entry into mitosis disrupts viral assembly due to nuclear envelope breakdown, which disperses VP2 throughout the cell, reducing its availability for encapsidation into viral particles. Thus, the MMR pathway may be required to activate the ATR (ATM-Rad3-related) pathway during infection to maintain a favorable environment for both viral replication and assembly. IMPORTANCE Since there are no therapeutics that target BKPyV reactivation in organ transplant patients, it is currently treated by decreasing immunosuppression to allow the natural immune system to fight the viral infection. Antivirals would significantly improve patient outcomes since reducing immunosuppression carries the risk of graft failure. PyVs activate the DDR, for which there are several promising inhibitors. However, a better understanding of how PyVs activate the DDR and what role the DDR plays during infection is needed. Here, we show that a component of the mismatch repair pathway is required for DDR activation during PyV infection. These findings show that the mismatch repair pathway is important for DDR activation during PyV infection and that inhibiting the DDR reduces viral titers by generating less infectious virions that lack the minor capsid protein VP2, which is important for viral trafficking.
Collapse
Affiliation(s)
- Joshua L. Justice
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jason M. Needham
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Brandy Verhalen
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mengxi Jiang
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sunnie R. Thompson
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
10
|
Lotti V, Merigo F, Lagni A, Di Clemente A, Ligozzi M, Bernardi P, Rossini G, Concia E, Plebani R, Romano M, Sbarbati A, Sorio C, Gibellini D. CFTR Modulation Reduces SARS-CoV-2 Infection in Human Bronchial Epithelial Cells. Cells 2022; 11:cells11081347. [PMID: 35456026 PMCID: PMC9028056 DOI: 10.3390/cells11081347] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 02/08/2023] Open
Abstract
People with cystic fibrosis should be considered at increased risk of developing severe symptoms of COVID-19. Strikingly, a broad array of evidence shows reduced spread of SARS-CoV-2 in these subjects, suggesting a potential role for CFTR in the regulation of SARS-CoV-2 infection/replication. Here, we analyzed SARS-CoV-2 replication in wild-type and CFTR-modified human bronchial epithelial cell lines and primary cells to investigate SARS-CoV-2 infection in people with cystic fibrosis. Both immortalized and primary human bronchial epithelial cells expressing wt or F508del-CFTR along with CRISPR/Cas9 CFTR-ablated clones were infected with SARS-CoV-2 and samples were harvested before and from 24 to 72 h post-infection. CFTR function was also inhibited in wt-CFTR cells with the CFTR-specific inhibitor IOWH-032 and partially restored in F508del-CFTR cells with a combination of CFTR modulators (VX-661+VX-445). Viral load was evaluated by real-time RT-PCR in both supernatant and cell extracts, and ACE-2 expression was analyzed by both western blotting and flow cytometry. SARS-CoV-2 replication was reduced in CFTR-modified bronchial cells compared with wild-type cell lines. No major difference in ACE-2 expression was detected before infection between wild-type and CFTR-modified cells, while a higher expression in wild-type compared to CFTR-modified cells was detectable at 72 h post-infection. Furthermore, inhibition of CFTR channel function elicited significant inhibition of viral replication in cells with wt-CFTR, and correction of CFTR function in F508del-CFTR cells increased the release of SARS-CoV-2 viral particles. Our study provides evidence that CFTR expression/function is involved in the regulation of SARS-CoV-2 replication, thus providing novel insights into the role of CFTR in SARS-CoV-2 infection and the development of therapeutic strategies for COVID-19.
Collapse
Affiliation(s)
- Virginia Lotti
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (A.L.); (A.D.C.); (M.L.); (D.G.)
- Correspondence:
| | - Flavia Merigo
- Anatomy and Histology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.M.); (P.B.); (A.S.)
| | - Anna Lagni
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (A.L.); (A.D.C.); (M.L.); (D.G.)
| | - Andrea Di Clemente
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (A.L.); (A.D.C.); (M.L.); (D.G.)
| | - Marco Ligozzi
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (A.L.); (A.D.C.); (M.L.); (D.G.)
| | - Paolo Bernardi
- Anatomy and Histology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.M.); (P.B.); (A.S.)
| | - Giada Rossini
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Ercole Concia
- Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy;
| | - Roberto Plebani
- Laboratory of Molecular Medicine, Centre on Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (R.P.); (M.R.)
| | - Mario Romano
- Laboratory of Molecular Medicine, Centre on Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (R.P.); (M.R.)
| | - Andrea Sbarbati
- Anatomy and Histology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.M.); (P.B.); (A.S.)
| | - Claudio Sorio
- General Pathology Section, Department of Medicine, University of Verona, 37134 Verona, Italy;
| | - Davide Gibellini
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (A.L.); (A.D.C.); (M.L.); (D.G.)
| |
Collapse
|
11
|
Nomburg J, Zou W, Frost TC, Datta C, Vasudevan S, Starrett GJ, Imperiale MJ, Meyerson M, DeCaprio JA. Long-read sequencing reveals complex patterns of wraparound transcription in polyomaviruses. PLoS Pathog 2022; 18:e1010401. [PMID: 35363834 PMCID: PMC9007360 DOI: 10.1371/journal.ppat.1010401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/13/2022] [Accepted: 02/27/2022] [Indexed: 12/22/2022] Open
Abstract
Polyomaviruses (PyV) are ubiquitous pathogens that can cause devastating human diseases. Due to the small size of their genomes, PyV utilize complex patterns of RNA splicing to maximize their coding capacity. Despite the importance of PyV to human disease, their transcriptome architecture is poorly characterized. Here, we compare short- and long-read RNA sequencing data from eight human and non-human PyV. We provide a detailed transcriptome atlas for BK polyomavirus (BKPyV), an important human pathogen, and the prototype PyV, simian virus 40 (SV40). We identify pervasive wraparound transcription in PyV, wherein transcription runs through the polyA site and circles the genome multiple times. Comparative analyses identify novel, conserved transcripts that increase PyV coding capacity. One of these conserved transcripts encodes superT, a T antigen containing two RB-binding LxCxE motifs. We find that superT-encoding transcripts are abundant in PyV-associated human cancers. Together, we show that comparative transcriptomic approaches can greatly expand known transcript and coding capacity in one of the simplest and most well-studied viral families.
Collapse
Affiliation(s)
- Jason Nomburg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Harvard Program in Virology, Harvard University Graduate School of Arts and Sciences, Boston, Massachusetts, United States of America
| | - Wei Zou
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Thomas C. Frost
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Harvard Program in Virology, Harvard University Graduate School of Arts and Sciences, Boston, Massachusetts, United States of America
| | - Chandreyee Datta
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, Massachusetts, United States of America
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, United States of America
| | - Shobha Vasudevan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, Massachusetts, United States of America
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, United States of America
| | - Gabriel J. Starrett
- Laboratory of Cellular Oncology, CCR, NCI, NIH, Bethesda, Maryland, United States of America
| | - Michael J. Imperiale
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
- Rogel Cancer Center, Ann Arbor, Michigan, United States of America
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - James A. DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Harvard Program in Virology, Harvard University Graduate School of Arts and Sciences, Boston, Massachusetts, United States of America
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
12
|
Myint TM, Chong CHY, Wyld M, Nankivell B, Kable K, Wong G. Polyoma BK Virus in Kidney Transplant Recipients: Screening, Monitoring, and Management. Transplantation 2022; 106:e76-e89. [PMID: 33908382 DOI: 10.1097/tp.0000000000003801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Polyomavirus BK virus (BKPyV) infection is an important complication of kidney transplantation and allograft failure. The prevalence of viremia is 10%-15%, compared with BK-associated nephropathy (BKPyVAN) at 3%-5%. Given that there are no effective antiviral prophylaxis or treatment strategies for BKPyVAN, active screening to detect BKPyV viremia is recommended, particularly during the early posttransplant period. Immunosuppression reduction to allow viral clearance may avoid progression to severe and irreversible allograft damage. The frequency and duration of screening are highly variable between transplant centers because the evidence is reliant largely on observational data. While the primary treatment goals center on achieving viral clearance through immunosuppression reduction, prevention of subsequent acute rejection, premature graft loss, and return to dialysis remain as major challenges. Treatment strategies for BKPyV infection should be individualized to the recipient's underlying immunological risk and severity of the allograft infection. Efficacy data for adjuvant therapies including intravenous immunoglobulin and cidofovir are sparse. Future well-powered and high-quality randomized controlled trials are needed to inform evidence-based clinical practice for the management of BKPy infection.
Collapse
Affiliation(s)
- Thida Maung Myint
- Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia
- Newcastle Transplant Unit, John Hunter Hospital, Newcastle, NSW, Australia
| | - Chanel H Y Chong
- Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia
| | - Melanie Wyld
- Department of Renal Medicine, Centre for Transplant and Renal Research, Westmead Hospital, Westmead, NSW, Australia
| | - Brian Nankivell
- Department of Renal Medicine, Centre for Transplant and Renal Research, Westmead Hospital, Westmead, NSW, Australia
| | - Kathy Kable
- Department of Renal Medicine, Centre for Transplant and Renal Research, Westmead Hospital, Westmead, NSW, Australia
| | - Germaine Wong
- Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia
- Department of Renal Medicine, Centre for Transplant and Renal Research, Westmead Hospital, Westmead, NSW, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, NSW, Australia
| |
Collapse
|
13
|
Abstract
BK polyomavirus (BKPyV) is a small nonenveloped DNA virus that establishes a ubiquitous, asymptomatic, and lifelong persistent infection in at least 80% of the world's population. In some immunosuppressed transplant recipients, BKPyV reactivation causes polyomavirus-associated nephropathy and hemorrhagic cystitis. We report a novel in vitro model of BKPyV persistence and reactivation using a BKPyV natural host cell line. In this system, viral genome loads remain constant for various times after establishment of persistent infection, during which BKPyV undergoes extensive random genome recombination. Certain recombination events result in viral DNA amplification and protein expression, resulting in production of viruses with enhanced replication ability.
Collapse
|
14
|
Ryabchenko B, Soldatova I, Šroller V, Forstová J, Huérfano S. Immune sensing of mouse polyomavirus DNA by p204 and cGAS DNA sensors. FEBS J 2021; 288:5964-5985. [PMID: 33969628 PMCID: PMC8596513 DOI: 10.1111/febs.15962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/20/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022]
Abstract
The mechanism by which DNA viruses interact with different DNA sensors and their connection with the activation of interferon (IFN) type I pathway are poorly understood. We investigated the roles of protein 204 (p204) and cyclic guanosine-adenosine synthetase (cGAS) sensors during infection with mouse polyomavirus (MPyV). The phosphorylation of IFN regulatory factor 3 (IRF3) and the stimulator of IFN genes (STING) proteins and the upregulation of IFN beta (IFN-β) and MX Dynamin Like GTPase 1 (MX-1) genes were detected at the time of replication of MPyV genomes in the nucleus. STING knockout abolished the IFN response. Infection with a mutant virus that exhibits defective nuclear entry via nucleopores and that accumulates in the cytoplasm confirmed that replication of viral genomes in the nucleus is required for IFN induction. The importance of both DNA sensors, p204 and cGAS, in MPyV-induced IFN response was demonstrated by downregulation of the IFN pathway observed in p204-knockdown and cGAS-knockout cells. Confocal microscopy revealed the colocalization of p204 with MPyV genomes in the nucleus. cGAS was found in the cytoplasm, colocalizing with viral DNA leaked from the nucleus and with DNA within micronucleus-like bodies, but also with the MPyV genomes in the nucleus. However, 2'3'-Cyclic guanosine monophosphate-adenosine monophosphate synthesized by cGAS was detected exclusively in the cytoplasm. Biochemical assays revealed no evidence of functional interaction between cGAS and p204 in the nucleus. Our results provide evidence for the complex interactions of MPyV and DNA sensors including the sensing of viral genomes in the nucleus by p204 and of leaked viral DNA and micronucleus-like bodies in the cytoplasm by cGAS.
Collapse
Affiliation(s)
- Boris Ryabchenko
- Department of Genetics and MicrobiologyFaculty of ScienceCharles UniversityBiocevCzech Republic
| | - Irina Soldatova
- Department of Genetics and MicrobiologyFaculty of ScienceCharles UniversityBiocevCzech Republic
| | - Vojtech Šroller
- Department of Genetics and MicrobiologyFaculty of ScienceCharles UniversityBiocevCzech Republic
| | - Jitka Forstová
- Department of Genetics and MicrobiologyFaculty of ScienceCharles UniversityBiocevCzech Republic
| | - Sandra Huérfano
- Department of Genetics and MicrobiologyFaculty of ScienceCharles UniversityBiocevCzech Republic
| |
Collapse
|
15
|
Chk1 and the Host Cell DNA Damage Response as a Potential Antiviral Target in BK Polyomavirus Infection. Viruses 2021; 13:v13071353. [PMID: 34372559 PMCID: PMC8310304 DOI: 10.3390/v13071353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 12/26/2022] Open
Abstract
The human BK polyomavirus (BKPyV) is latent in the kidneys of most adults, but can be reactivated in immunosuppressed states, such as following renal transplantation. If left unchecked, BK polyomavirus nephropathy (PyVAN) and possible graft loss may result from viral destruction of tubular epithelial cells and interstitial fibrosis. When coupled with regular post-transplant screening, immunosuppression reduction has been effective in limiting BKPyV viremia and the development of PyVAN. Antiviral drugs that are safe and effective in combating BKPyV have not been identified but would be a benefit in complementing or replacing immunosuppression reduction. The present study explores inhibition of the host DNA damage response (DDR) as an antiviral strategy. Immunohistochemical and immunofluorescent analyses of PyVAN biopsies provide evidence for stimulation of a DDR in vivo. DDR pathways were also stimulated in vitro following BKPyV infection of low-passage human renal proximal tubule epithelial cells. The role of Chk1, a protein kinase known to be involved in the replication stress-induced DDR, was examined by inhibition with the small molecule LY2603618 and by siRNA-mediated knockdown. Inhibition of Chk1 resulted in decreased replication of BKPyV DNA and viral spread. Activation of mitotic pathways was associated with the reduction in BKPyV replication. Chk1 inhibitors that are found to be safe and effective in clinical trials for cancer should also be evaluated for antiviral activity against BKPyV.
Collapse
|
16
|
Acitretin and Retinoic Acid Derivatives Inhibit BK Polyomavirus Replication in Primary Human Proximal Renal Tubular Epithelial and Urothelial Cells. J Virol 2021; 95:e0012721. [PMID: 34011542 DOI: 10.1128/jvi.00127-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Small-molecule drugs inhibiting BK polyomavirus (BKPyV) represent a significant unmet clinical need in view of polyomavirus-associated nephropathy or hemorrhagic cystitis, which complicate 5% to 25% of kidney and hematopoietic cell transplantations. We characterized the inhibitory activity of acitretin on BKPyV replication in primary human renal proximal tubular epithelial cells (RPTECs). Effective inhibitory concentrations of 50% (EC50) and 90% (EC90) were determined in dilution series measuring BKPyV loads, transcripts, and protein expression, using cell proliferation, metabolic activity, and viability to estimate cytotoxic concentrations and selectivity indices (SI). The acitretin EC50 and EC90 in RPTECs were 0.64 (SI50, 250) and 3.25 μM (SI90, 49.2), respectively. Acitretin effectively inhibited BKPyV replication until 72 h postinfection when added 24 h before infection until 12 h after infection, but decreased to <50% at later time points. Acitretin did not interfere with nuclear delivery of BKPyV genomes, but it decreased large T-antigen transcription and protein expression. Acitretin did not inhibit the initial round of BKPyV replication following transfection of full-length viral genomes, but it affected subsequent rounds of reinfection. Acitretin also inhibited BKPyV replication in human urothelial cells and in Vero cells, but not in COS-7 cells constitutively expressing Simian virus 40 (SV40) large T antigen. Retinoic acid agonists (all-trans retinoic acid, 9-cis retinoic acid [9-cis-RA], 13-cis-RA, bexarotene, and tamibarotene) and the RAR/RXR antagonist RO41-5253 also inhibited BKPyV replication, pointing to an as-yet-undefined mechanism. IMPORTANCE Acitretin selectively inhibits BKPyV replication in primary human cell culture models of nephropathy and hemorrhagic cystitis. Since acitretin is an approved drug in clinical use reaching BKPyV-inhibiting concentrations in systemically treated patients, further studies are warranted to provide data for clinical repurposing of retinoids for treatment and prevention of replicative BKPyV-diseases.
Collapse
|
17
|
Wu Z, Graf FE, Hirsch HH. Antivirals against human polyomaviruses: Leaving no stone unturned. Rev Med Virol 2021; 31:e2220. [PMID: 33729628 DOI: 10.1002/rmv.2220] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/20/2022]
Abstract
Human polyomaviruses (HPyVs) encompass more than 10 species infecting 30%-90% of the human population without significant illness. Proven HPyV diseases with documented histopathology affect primarily immunocompromised hosts with manifestations in brain, skin and renourinary tract such as polyomavirus-associated nephropathy (PyVAN), polyomavirus-associated haemorrhagic cystitis (PyVHC), polyomavirus-associated urothelial cancer (PyVUC), progressive multifocal leukoencephalopathy (PML), Merkel cell carcinoma (MCC), Trichodysplasia spinulosa (TS) and pruritic hyperproliferative keratinopathy. Although virus-specific immune control is the eventual goal of therapy and lasting cure, antiviral treatments are urgently needed in order to reduce or prevent HPyV diseases and thereby bridging the time needed to establish virus-specific immunity. However, the small dsDNA genome of only 5 kb of the non-enveloped HPyVs only encodes 5-7 viral proteins. Thus, HPyV replication relies heavily on host cell factors, thereby limiting both, number and type of specific virus-encoded antiviral targets. Lack of cost-effective high-throughput screening systems and relevant small animal models complicates the preclinical development. Current clinical studies are limited by small case numbers, poorly efficacious compounds and absence of proper randomized trial design. Here, we review preclinical and clinical studies that evaluated small molecules with presumed antiviral activity against HPyVs and provide an outlook regarding potential new antiviral strategies.
Collapse
Affiliation(s)
- Zongsong Wu
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Basel, Switzerland
| | - Fabrice E Graf
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Basel, Switzerland
| | - Hans H Hirsch
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Basel, Switzerland.,Clinical Virology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland.,Infectious Diseases & Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
18
|
Mayberry CL, Bond AC, Wilczek MP, Mehmood K, Maginnis MS. Sending mixed signals: polyomavirus entry and trafficking. Curr Opin Virol 2021; 47:95-105. [PMID: 33690104 DOI: 10.1016/j.coviro.2021.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/31/2022]
Abstract
Polyomaviruses are mostly non-pathogenic, yet some can cause human disease especially under conditions of immunosuppression, including JC, BK, and Merkel cell polyomaviruses. Direct interactions between viruses and the host early during infection dictate the outcome of disease, many of which remain enigmatic. However, significant work in recent years has contributed to our understanding of how this virus family establishes an infection, largely due to advances made for animal polyomaviruses murine and SV40. Here we summarize the major findings that have contributed to our understanding of polyomavirus entry, trafficking, disassembly, signaling, and immune evasion during the infectious process and highlight major unknowns in these processes that are open areas of study.
Collapse
Affiliation(s)
- Colleen L Mayberry
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME, USA
| | - Avery Cs Bond
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME, USA
| | - Michael P Wilczek
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME, USA
| | - Kashif Mehmood
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME, USA
| | - Melissa S Maginnis
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME, USA; Graduate School in Biomedical Sciences and Engineering, The University of Maine, Orono, ME, USA.
| |
Collapse
|
19
|
An P, Cantalupo PG, Zheng W, Sáenz-Robles MT, Duray AM, Weitz D, Pipas JM. Single-Cell Transcriptomics Reveals a Heterogeneous Cellular Response to BK Virus Infection. J Virol 2021; 95:e02237-20. [PMID: 33361432 PMCID: PMC8094954 DOI: 10.1128/jvi.02237-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
BK virus (BKV) is a human polyomavirus that is generally harmless but can cause devastating disease in immunosuppressed individuals. BKV infection of renal cells is a common problem for kidney transplant patients undergoing immunosuppressive therapy. In cultured primary human renal proximal tubule epithelial (RPTE) cells, BKV undergoes a productive infection. The BKV-encoded large T antigen (LT) induces cell cycle entry, resulting in the upregulation of numerous genes associated with cell proliferation. Consistently, microarray and transcriptome sequencing (RNA-seq) experiments performed on bulk infected cell populations identified several proliferation-related pathways that are upregulated by BKV. These studies revealed few genes that are downregulated. In this study, we analyzed viral and cellular transcripts in single mock- or BKV-infected cells. We found that the levels of viral mRNAs vary widely among infected cells, resulting in different levels of LT and viral capsid protein expression. Cells expressing the highest levels of viral transcripts account for approximately 20% of the culture and have a gene expression pattern that is distinct from that of cells expressing lower levels of viral mRNAs. Surprisingly, cells expressing low levels of viral mRNA do not progress with time to high expression, suggesting that the two cellular responses are determined prior to or shortly following infection. Finally, comparison of cellular gene expression patterns of cells expressing high levels of viral mRNA with those of mock-infected cells or cells expressing low levels of viral mRNA revealed previously unidentified pathways that are downregulated by BKV. Among these are pathways associated with drug metabolism and detoxification, tumor necrosis factor (TNF) signaling, energy metabolism, and translation.IMPORTANCE The outcome of viral infection is determined by the ability of the virus to redirect cellular systems toward progeny production countered by the ability of the cell to block these viral actions. Thus, an infected culture consists of thousands of cells, each fighting its own individual battle. Bulk measurements, such as PCR or RNA-seq, measure the average of these individual responses to infection. Single-cell transcriptomics provides a window to the one-on-one battle between BKV and each cell. Our studies reveal that only a minority of infected cells are overwhelmed by the virus and produce large amounts of BKV mRNAs and proteins, while the infection appears to be restricted in the remaining cells. Correlation of viral transcript levels with cellular gene expression patterns reveals pathways manipulated by BKV that may play a role in limiting infection.
Collapse
Affiliation(s)
- Ping An
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Paul G Cantalupo
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Wenshan Zheng
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | - Alexis M Duray
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David Weitz
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - James M Pipas
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
20
|
Non-permissive human conventional CD1c+ dendritic cells enable trans-infection of human primary renal tubular epithelial cells and protect BK polyomavirus from neutralization. PLoS Pathog 2021; 17:e1009042. [PMID: 33592065 PMCID: PMC7886149 DOI: 10.1371/journal.ppat.1009042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/04/2021] [Indexed: 12/31/2022] Open
Abstract
The BK polyomavirus (BKPyV) is a ubiquitous human virus that persists in the renourinary epithelium. Immunosuppression can lead to BKPyV reactivation in the first year post-transplantation in kidney transplant recipients (KTRs) and hematopoietic stem cell transplant recipients. In KTRs, persistent DNAemia has been correlated to the occurrence of polyomavirus-associated nephropathy (PVAN) that can lead to graft loss if not properly controlled. Based on recent observations that conventional dendritic cells (cDCs) specifically infiltrate PVAN lesions, we hypothesized that those cells could play a role in BKPyV infection. We first demonstrated that monocyte-derived dendritic cells (MDDCs), an in vitro model for mDCs, captured BKPyV particles through an unconventional GRAF-1 endocytic pathway. Neither BKPyV particles nor BKPyV-infected cells were shown to activate MDDCs. Endocytosed virions were efficiently transmitted to permissive cells and protected from the antibody-mediated neutralization. Finally, we demonstrated that freshly isolated CD1c+ mDCs from the blood and kidney parenchyma behaved similarly to MDDCs thus extending our results to cells of clinical relevance. This study sheds light on a potential unprecedented CD1c+ mDC involvement in the BKPyV infection as a promoter of viral spreading. Dr Sylvia Gardner first discovered the BK polyomavirus (BKPyV) in the urine of a kidney-transplant recipient in 1970. In the 1990’s, the widespread use of potent immunosuppressive drugs such as tacrolimus, sirolimus or mycophenolate mofetil led to the emergence of BKPyV nephropathy. Recently, various studies reported a specific influx of myeloid dendritic cells (mDCs) in the renal tissue of kidney-transplant patients who were diagnosed with a BKPyV nephropathy. MDCs are immune cells both residing in tissues and migrating to other organs or compartments like the blood when changes in their environment occur. Their main functions are the detection of danger signals such as pathogens or tumors and the processing of antigens to prime naïve specific effectors of the adaptive immune response. Although anti-BKPyV cellular immune responses have been investigated in post-transplant recipients as well as healthy individuals, supporting an active role of mDCs little is known about how mDCs and BKPyV interact with each other. Our study provides the basis to understand the role played by mDCs in virus capture through an unprecedented endocytic mechanism and possibly in viral protection from neutralization by specific antibodies. Moreover, we showed that mDCs are unable to sense BKPyV particles or BKPyV-infected dying cells as a danger signal, supporting the view that other DC subsets might act as the true antigen presenting cells that promote the adaptive immune response against BKPyV infection.
Collapse
|
21
|
Control of Archetype BK Polyomavirus MicroRNA Expression. J Virol 2020; 95:JVI.01589-20. [PMID: 33115878 DOI: 10.1128/jvi.01589-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
BK polyomavirus (BKPyV) is a ubiquitous human pathogen, with over 80% of adults worldwide being persistently infected. BKPyV infection is usually asymptomatic in healthy people; however, it causes polyomavirus-associated nephropathy in renal transplant patients and hemorrhagic cystitis in bone marrow transplant patients. BKPyV has a circular, double-stranded DNA genome that is divided genetically into three parts: an early region, a late region, and a noncoding control region (NCCR). The NCCR contains the viral DNA replication origin and cis-acting elements regulating viral early and late gene expression. It was previously shown that a BKPyV microRNA (miRNA) expressed from the late strand regulates viral large-T-antigen expression and limits the replication capacity of archetype BKPyV. A major unanswered question in the field is how expression of the viral miRNA is regulated. Typically, miRNA is expressed from introns in cellular genes, but there is no intron readily apparent in BKPyV from which the miRNA could derive. Here, we provide evidence for primary RNA transcripts that circle the genome more than once and include the NCCR. We identified splice junctions resulting from splicing of primary transcripts circling the genome more than once, and Sanger sequencing of reverse transcription-PCR (RT-PCR) products indicates that there are viral transcripts that circle the genome up to four times. Our data suggest that the miRNA is expressed from an intron spliced out of these greater-than-genome-size primary transcripts.IMPORTANCE The BK polyomavirus (BKPyV) miRNA plays an important role in regulating viral large-T-antigen expression and limiting the replication of archetype BKPyV, suggesting that the miRNA regulates BKPyV persistence. However, how miRNA expression is regulated is poorly understood. Here, we present evidence that the miRNA is expressed from an intron that is generated by RNA polymerase II transcribing the circular viral genome more than once. We identified splice junctions that could be generated only from primary transcripts that contain tandemly repeated copies of the viral genome. The results indicate another way in which viruses optimize expression of their genes using limited coding capacity.
Collapse
|
22
|
Schneider SM, Lee BH, Nicola AV. Viral entry and the ubiquitin-proteasome system. Cell Microbiol 2020; 23:e13276. [PMID: 33037857 DOI: 10.1111/cmi.13276] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 02/06/2023]
Abstract
Viruses confiscate cellular components of the ubiquitin-proteasome system (UPS) to facilitate many aspects of the infectious cycle. The 26S proteasome is an ATP-dependent, multisubunit proteolytic machine present in all eukaryotic cells. The proteasome executes the controlled degradation of functional proteins, as well as the hydrolysis of aberrantly folded polypeptides. There is growing evidence for the role of the UPS in viral entry. The UPS assists in several steps of the initiation of infection, including endosomal escape of the entering virion, intracellular transport of incoming nucleocapsids and uncoating of the viral genome. Inhibitors of proteasome activity, including MG132, epoxomicin, lactacystin and bortezomib have been integral to developments in this area. Here, we review the mechanistic details of UPS involvement in the entry process of viruses from a multitude of families. The possibility of proteasome inhibitors as therapeutic antiviral agents is highlighted.
Collapse
Affiliation(s)
- Seth M Schneider
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA.,School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Becky H Lee
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Anthony V Nicola
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA.,School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
23
|
Mayberry CL, Maginnis MS. Taking the Scenic Route: Polyomaviruses Utilize Multiple Pathways to Reach the Same Destination. Viruses 2020; 12:v12101168. [PMID: 33076363 PMCID: PMC7602598 DOI: 10.3390/v12101168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 01/02/2023] Open
Abstract
Members of the Polyomaviridae family differ in their host range, pathogenesis, and disease severity. To date, some of the most studied polyomaviruses include human JC, BK, and Merkel cell polyomavirus and non-human subspecies murine and simian virus 40 (SV40) polyomavirus. Although dichotomies in host range and pathogenesis exist, overlapping features of the infectious cycle illuminate the similarities within this virus family. Of particular interest to human health, JC, BK, and Merkel cell polyomavirus have all been linked to critical, often fatal, illnesses, emphasizing the importance of understanding the underlying viral infections that result in the onset of these diseases. As there are significant overlaps in the capacity of polyomaviruses to cause disease in their respective hosts, recent advancements in characterizing the infectious life cycle of non-human murine and SV40 polyomaviruses are key to understanding diseases caused by their human counterparts. This review focuses on the molecular mechanisms by which different polyomaviruses hijack cellular processes to attach to host cells, internalize, traffic within the cytoplasm, and disassemble within the endoplasmic reticulum (ER), prior to delivery to the nucleus for viral replication. Unraveling the fundamental processes that facilitate polyomavirus infection provides deeper insight into the conserved mechanisms of the infectious process shared within this virus family, while also highlighting critical unique viral features.
Collapse
Affiliation(s)
- Colleen L. Mayberry
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04469, USA;
| | - Melissa S. Maginnis
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04469, USA;
- Graduate School in Biomedical Sciences and Engineering, The University of Maine, Orono, ME 04469, USA
- Correspondence:
| |
Collapse
|
24
|
Panou MM, Antoni M, Morgan EL, Loundras EA, Wasson CW, Welberry-Smith M, Mankouri J, Macdonald A. Glibenclamide inhibits BK polyomavirus infection in kidney cells through CFTR blockade. Antiviral Res 2020; 178:104778. [PMID: 32229236 PMCID: PMC7322401 DOI: 10.1016/j.antiviral.2020.104778] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/07/2020] [Accepted: 03/18/2020] [Indexed: 02/08/2023]
Abstract
BK polyomavirus (BKPyV) is a ubiquitous pathogen in the human population that is asymptomatic in healthy individuals, but can be life-threatening in those undergoing kidney transplant. To-date, no vaccines or anti-viral therapies are available to treat human BKPyV infections. New therapeutic strategies are urgently required. In this study, using a rational pharmacological screening regimen of known ion channel modulating compounds, we show that BKPyV requires cystic fibrosis transmembrane conductance regulator (CFTR) activity to infect primary renal proximal tubular epithelial cells. Disrupting CFTR function through treatment with the clinically available drug glibenclamide, the CFTR inhibitor CFTR172, or CFTR-silencing, all reduced BKPyV infection. Specifically, time of addition assays and the assessment of the exposure of VP2/VP3 minor capsid proteins indicated a role for CFTR during BKPyV transport to the endoplasmic reticulum, an essential step during the early stages of BKPyV infection. We thus establish CFTR as an important host-factor in the BKPyV life cycle and reveal CFTR modulators as potential anti-BKPyV therapies. BK polyomavirus (BKPyV) is life-threatening in those undergoing kidney transplant. BKPyV requires CFTR to infect primary kidney cells. Disrupting CFTR function pharmacologically reduces BKPyV infection. CFTR is required during BKPyV transport to the endoplasmic reticulum.
Collapse
Affiliation(s)
- Margarita-Maria Panou
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, United Kingdom
| | - Michelle Antoni
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, United Kingdom
| | - Ethan L Morgan
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, United Kingdom
| | - Eleni-Anna Loundras
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, United Kingdom
| | - Christopher W Wasson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, United Kingdom
| | | | - Jamel Mankouri
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, United Kingdom.
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, United Kingdom.
| |
Collapse
|
25
|
Kane JR, Fong S, Shaul J, Frommlet A, Frank AO, Knapp M, Bussiere DE, Kim P, Ornelas E, Cuellar C, Hyrina A, Abend JR, Wartchow CA. A polyomavirus peptide binds to the capsid VP1 pore and has potent antiviral activity against BK and JC polyomaviruses. eLife 2020; 9:50722. [PMID: 31960795 PMCID: PMC6974358 DOI: 10.7554/elife.50722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/30/2019] [Indexed: 12/18/2022] Open
Abstract
In pursuit of therapeutics for human polyomaviruses, we identified a peptide derived from the BK polyomavirus (BKV) minor structural proteins VP2/3 that is a potent inhibitor of BKV infection with no observable cellular toxicity. The thirteen-residue peptide binds to major structural protein VP1 with single-digit nanomolar affinity. Alanine-scanning of the peptide identified three key residues, substitution of each of which results in ~1000 fold loss of binding affinity with a concomitant reduction in antiviral activity. Structural studies demonstrate specific binding of the peptide to the pore of pentameric VP1. Cell-based assays demonstrate nanomolar inhibition (EC50) of BKV infection and suggest that the peptide acts early in the viral entry pathway. Homologous peptide exhibits similar binding to JC polyomavirus VP1 and inhibits infection with similar potency to BKV in a model cell line. Lastly, these studies validate targeting the VP1 pore as a novel strategy for the development of anti-polyomavirus agents.
Collapse
Affiliation(s)
- Joshua R Kane
- Infectious Diseases, Novartis Institutes for BioMedical Research, Emeryville, United States.,Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, United States
| | - Susan Fong
- Infectious Diseases, Novartis Institutes for BioMedical Research, Emeryville, United States
| | - Jacob Shaul
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Emeryville, United States
| | - Alexandra Frommlet
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, United States
| | - Andreas O Frank
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, United States
| | - Mark Knapp
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, United States
| | - Dirksen E Bussiere
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, United States
| | - Peter Kim
- Infectious Diseases, Novartis Institutes for BioMedical Research, Emeryville, United States
| | - Elizabeth Ornelas
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, United States
| | - Carlos Cuellar
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, United States
| | - Anastasia Hyrina
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Emeryville, United States
| | - Johanna R Abend
- Infectious Diseases, Novartis Institutes for BioMedical Research, Emeryville, United States
| | - Charles A Wartchow
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, United States
| |
Collapse
|
26
|
Horníková L, Bruštíková K, Forstová J. Microtubules in Polyomavirus Infection. Viruses 2020; 12:E121. [PMID: 31963741 PMCID: PMC7019765 DOI: 10.3390/v12010121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
Microtubules, part of the cytoskeleton, are indispensable for intracellular movement, cell division, and maintaining cell shape and polarity. In addition, microtubules play an important role in viral infection. In this review, we summarize the role of the microtubules' network during polyomavirus infection. Polyomaviruses usurp microtubules and their motors to travel via early and late acidic endosomes to the endoplasmic reticulum. As shown for SV40, kinesin-1 and microtubules are engaged in the release of partially disassembled virus from the endoplasmic reticulum to the cytosol, and dynein apparently assists in the further disassembly of virions prior to their translocation to the cell nucleus-the place of their replication. Polyomavirus gene products affect the regulation of microtubule dynamics. Early T antigens destabilize microtubules and cause aberrant mitosis. The role of these activities in tumorigenesis has been documented. However, its importance for productive infection remains elusive. On the other hand, in the late phase of infection, the major capsid protein, VP1, of the mouse polyomavirus, counteracts T-antigen-induced destabilization. It physically binds microtubules and stabilizes them. The interaction results in the G2/M block of the cell cycle and prolonged S phase, which is apparently required for successful completion of the viral replication cycle.
Collapse
Affiliation(s)
| | | | - Jitka Forstová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 25250 Vestec, Czech Republic; (L.H.); (K.B.)
| |
Collapse
|
27
|
Temporal Proteomic Analysis of BK Polyomavirus Infection Reveals Virus-Induced G 2 Arrest and Highly Effective Evasion of Innate Immune Sensing. J Virol 2019; 93:JVI.00595-19. [PMID: 31142673 PMCID: PMC6675895 DOI: 10.1128/jvi.00595-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/18/2019] [Indexed: 12/13/2022] Open
Abstract
BK polyomavirus (BKPyV) is a small DNA virus that establishes a life-long persistent infection in the urinary tract of most people. BKPyV is known to cause severe morbidity in renal transplant recipients and can lead to graft rejection. The simple 5.2-kbp double-stranded DNA (dsDNA) genome expresses just seven known proteins; thus, it relies heavily on the host machinery to replicate. How the host proteome changes over the course of infection is key to understanding this host-virus interplay. Here, for the first time quantitative temporal viromics has been used to quantify global changes in >9,000 host proteins in two types of primary human epithelial cells throughout 72 h of BKPyV infection. These data demonstrate the importance of cell cycle progression and pseudo-G2 arrest in effective BKPyV replication, along with a surprising lack of an innate immune response throughout the whole virus replication cycle. BKPyV thus evades pathogen recognition to prevent activation of innate immune responses in a sophisticated manner.IMPORTANCE BK polyomavirus can cause serious problems in immune-suppressed patients, in particular, kidney transplant recipients who can develop polyomavirus-associated kidney disease. In this work, we have used advanced proteomics techniques to determine the changes to protein expression caused by infection of two independent primary cell types of the human urinary tract (kidney and bladder) throughout the replication cycle of this virus. Our findings have uncovered new details of a specific form of cell cycle arrest caused by this virus, and, importantly, we have identified that this virus has a remarkable ability to evade detection by host cell defense systems. In addition, our data provide an important resource for the future study of kidney epithelial cells and their infection by urinary tract pathogens.
Collapse
|
28
|
BK Polyomavirus Activates the DNA Damage Response To Prolong S Phase. J Virol 2019; 93:JVI.00130-19. [PMID: 31043526 DOI: 10.1128/jvi.00130-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
BK polyomavirus (PyV) is a major source of kidney failure in transplant recipients. The standard treatment for patients with lytic BKPyV infection is to reduce immunosuppressive therapy, which increases the risk of graft rejection. PyVs are DNA viruses that rely upon host replication proteins for viral genome replication. A hallmark of PyV infection is activation of the DNA damage response (DDR) to prevent severe host and viral DNA damage that impairs viral production by an unknown mechanism. Therefore, we sought to better understand why BKPyV activates the DDR through the ATR and ATM pathways and how this prevents DNA damage and leads to increased viral production. When ATR was inhibited in BKPyV-infected primary kidney cells, severe DNA damage occurred due to premature Cdk1 activation, which resulted in mitosis of cells that were actively replicating host DNA in S phase. Conversely, ATM was required for efficient entry into S phase and to prevent normal mitotic entry after G2 phase. The synergistic activation of these DDR kinases promoted and maintained BKPyV-mediated S phase to enhance viral production. In contrast to BKPyV infection, DDR inhibition did not disrupt cell cycle control in uninfected cells. This suggests that DDR inhibitors may be used to specifically target BKPyV-infected cells.IMPORTANCE BK polyomavirus (BKPyV) is an emerging pathogen that reactivates in immunosuppressed organ transplant patients. We wanted to understand why BKPyV-induced activation of the DNA damage response (DDR) enhances viral titers and prevents host DNA damage. Here, we show that the virus activates the DNA damage response in order to keep the infected cells in S phase to replicate the viral DNA. The source of DNA damage was due to actively replicating cells with uncondensed chromosomes entering directly into mitosis when the DDR was inhibited in BKPyV-infected cells. This study clarifies the previously enigmatic role of the DDR during BKPyV infection by demonstrating that the virus activates the DDR to maintain the cells in S phase in order to promote viral replication and that disruption of this cell cycle arrest can lead to catastrophic DNA damage for the host.
Collapse
|
29
|
Bugnon Valdano M, Pim D, Banks L. Choosing the right path: membrane trafficking and infectious entry of small DNA tumor viruses. Curr Opin Cell Biol 2019; 59:112-120. [PMID: 31128386 DOI: 10.1016/j.ceb.2019.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/03/2019] [Accepted: 03/19/2019] [Indexed: 01/27/2023]
Abstract
To infect mammalian cells, all infectious viruses must cross a common set of biophysical membrane barriers to gain access to the cell. The virus capsid proteins attach to a host cell, become endocytosed, and traffic the viral genome to sites of replication. To do this they must interact with the membrane-confined organelles that control endocytosis, endosomal sorting, processing, and degradation of biological molecules. In this review, we highlight some recent advances in our understanding of the mechanisms that small non-enveloped DNA tumor viruses, such as Human Papillomavirus (HPV) and Polyomaviruses (PyV) employ to attain infectious entry. These viruses exploit different pathways to mediate entry, uncoating and subsequent transport to the nucleus via the Trans Golgi Network (TGN) or the Endoplasmic Reticulum (ER). Understanding how the viral capsid proteins interact with cellular membranous organelles sheds light on the novel ways by which viruses can hi-jack endocytic transport pathways and provides unique insights into how the highly complex machinery controlling cargo fate determination is regulated within the cell.
Collapse
Affiliation(s)
- Marina Bugnon Valdano
- Tumour Virology Laboratory, International Centre for Genetic Engineering and Biotechnology, Padriciano-99, I-34149, Trieste, Italy
| | - David Pim
- Tumour Virology Laboratory, International Centre for Genetic Engineering and Biotechnology, Padriciano-99, I-34149, Trieste, Italy
| | - Lawrence Banks
- Tumour Virology Laboratory, International Centre for Genetic Engineering and Biotechnology, Padriciano-99, I-34149, Trieste, Italy.
| |
Collapse
|
30
|
Polyomavirus T Antigen Induces APOBEC3B Expression Using an LXCXE-Dependent and TP53-Independent Mechanism. mBio 2019; 10:mBio.02690-18. [PMID: 30723127 PMCID: PMC6428753 DOI: 10.1128/mbio.02690-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
APOBEC3B is a single-stranded DNA cytosine deaminase with beneficial innate antiviral functions. However, misregulated APOBEC3B can also be detrimental by inflicting APOBEC signature C-to-T and C-to-G mutations in genomic DNA of multiple cancer types. Polyomavirus and papillomavirus oncoproteins induce APOBEC3B overexpression, perhaps to their own benefit, but little is known about the cellular mechanisms hijacked by these viruses to do so. Here we investigate the molecular mechanism of APOBEC3B upregulation by the polyomavirus large T antigen. First, we demonstrate that the upregulated APOBEC3B enzyme is strongly nuclear and partially localized to virus replication centers. Second, truncated T antigen (truncT) is sufficient for APOBEC3B upregulation, and the RB-interacting motif (LXCXE), but not the p53-binding domain, is required. Third, genetic knockdown of RB1 alone or in combination with RBL1 and/or RBL2 is insufficient to suppress truncT-mediated induction of APOBEC3B Fourth, CDK4/6 inhibition by palbociclib is also insufficient to suppress truncT-mediated induction of APOBEC3B Last, global gene expression analyses in a wide range of human cancers show significant associations between expression of APOBEC3B and other genes known to be regulated by the RB/E2F axis. These experiments combine to implicate the RB/E2F axis in promoting APOBEC3B transcription, yet they also suggest that the polyomavirus RB-binding motif has at least one additional function in addition to RB inactivation for triggering APOBEC3B upregulation in virus-infected cells.IMPORTANCE The APOBEC3B DNA cytosine deaminase is overexpressed in many different cancers and correlates with elevated frequencies of C-to-T and C-to-G mutations in 5'-TC motifs, oncogene activation, acquired drug resistance, and poor clinical outcomes. The mechanisms responsible for APOBEC3B overexpression are not fully understood. Here, we show that the polyomavirus truncated T antigen (truncT) triggers APOBEC3B overexpression through its RB-interacting motif, LXCXE, which in turn likely modulates the binding of E2F family transcription factors to promote APOBEC3B expression. This work strengthens the mechanistic linkage between active cell cycling, APOBEC3B overexpression, and cancer mutagenesis. Although this mutational mechanism damages cellular genomes, viruses may leverage it to promote evolution, immune escape, and pathogenesis. The cellular portion of the mechanism may also be relevant to nonviral cancers, where genetic mechanisms often activate the RB/E2F axis and APOBEC3B mutagenesis contributes to tumor evolution.
Collapse
|
31
|
An P, Sáenz Robles MT, Duray AM, Cantalupo PG, Pipas JM. Human polyomavirus BKV infection of endothelial cells results in interferon pathway induction and persistence. PLoS Pathog 2019; 15:e1007505. [PMID: 30620752 PMCID: PMC6338385 DOI: 10.1371/journal.ppat.1007505] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/18/2019] [Accepted: 12/05/2018] [Indexed: 01/19/2023] Open
Abstract
Polyomavirus BKV is highly prevalent among humans. The virus establishes an asymptomatic persistent infection in the urinary system in healthy people, but uncontrolled productive infection of the virus in immunocompromised patients can lead to serious diseases. In spite of its high prevalence, our knowledge regarding key aspects of BKV polyomavirus infection remains incomplete. To determine tissue and cell type tropism of the virus, primary human epithelial cells, endothelial cells and fibroblasts isolated from the respiratory and urinary systems were tested. Results from this study demonstrated that all 9 different types of human cells were infectable by BKV polyomavirus but showed differential cellular responses. In microvascular endothelial cells from the lung and the bladder, BKV persistent infection led to prolonged viral protein expression, low yield of infectious progeny and delayed cell death, in contrast with infection in renal proximal tubular epithelial cells, a widely used cell culture model for studying productive infection of this virus. Transcriptomic profiling revealed the activation of interferon signaling and induction of multiple interferon stimulated genes in infected microvascular endothelial cells. Further investigation demonstrated production of IFNβ and secretion of chemokine CXCL10 by infected endothelial cells. Activation of IRF3 and STAT1 in infected endothelial cells was also confirmed. In contrast, renal proximal tubular epithelial cells failed to mount an interferon response and underwent progressive cell death. These results demonstrated that microvascular endothelial cells are able to activate interferon signaling in response to polyomavirus BKV infection. This raises the possibility that endothelial cells might provide initial immune defense against BKV infection. Our results shed light on the persistence of and immunity against infection by BKV polyomavirus.
Collapse
Affiliation(s)
- Ping An
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Maria Teresa Sáenz Robles
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Alexis M. Duray
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Paul G. Cantalupo
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - James M. Pipas
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
32
|
Robinson M, Schor S, Barouch-Bentov R, Einav S. Viral journeys on the intracellular highways. Cell Mol Life Sci 2018; 75:3693-3714. [PMID: 30043139 PMCID: PMC6151136 DOI: 10.1007/s00018-018-2882-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/01/2018] [Accepted: 07/19/2018] [Indexed: 12/24/2022]
Abstract
Viruses are obligate intracellular pathogens that are dependent on cellular machineries for their replication. Recent technological breakthroughs have facilitated reliable identification of host factors required for viral infections and better characterization of the virus-host interplay. While these studies have revealed cellular machineries that are uniquely required by individual viruses, accumulating data also indicate the presence of broadly required mechanisms. Among these overlapping cellular functions are components of intracellular membrane trafficking pathways. Here, we review recent discoveries focused on how viruses exploit intracellular membrane trafficking pathways to promote various stages of their life cycle, with an emphasis on cellular factors that are usurped by a broad range of viruses. We describe broadly required components of the endocytic and secretory pathways, the Endosomal Sorting Complexes Required for Transport pathway, and the autophagy pathway. Identification of such overlapping host functions offers new opportunities to develop broad-spectrum host-targeted antiviral strategies.
Collapse
Affiliation(s)
- Makeda Robinson
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Lane Building, Rm L127, Stanford, CA, 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Stanford Schor
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Lane Building, Rm L127, Stanford, CA, 94305, USA
| | - Rina Barouch-Bentov
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Lane Building, Rm L127, Stanford, CA, 94305, USA
| | - Shirit Einav
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Lane Building, Rm L127, Stanford, CA, 94305, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
33
|
Ravindran MS. Molecular chaperones: from proteostasis to pathogenesis. FEBS J 2018; 285:3353-3361. [PMID: 29890022 PMCID: PMC7164077 DOI: 10.1111/febs.14576] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/12/2018] [Accepted: 06/07/2018] [Indexed: 12/13/2022]
Abstract
Maintaining protein homeostasis (proteostasis) is essential for a functional proteome. A wide range of extrinsic and intrinsic factors perturb proteostasis, causing protein misfolding, misassembly, and aggregation. This compromises cellular integrity and leads to aging and disease, including neurodegeneration and cancer. At the cellular level, protein aggregation is counteracted by powerful mechanisms comprising of a cascade of enzymes and chaperones that operate in a coordinated multistep manner to sense, prevent, and/or dispose of aberrant proteins. Although these processes are well understood for soluble proteins, there is a major gap in our understanding of how cells handle misfolded or aggregated membrane proteins. This article provides an overview of cellular proteostasis with emphasis on membrane protein substrates and suggests host-virus interaction as a tool to clarify outstanding questions in proteostasis.
Collapse
Affiliation(s)
- Madhu Sudhan Ravindran
- Department of Cell and Developmental BiologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Present address:
Biocon Bristol‐Myers Squibb R&D CenterBiocon Park, Bommasandra Jigani Link RdBengaluruKarnataka560099India
| |
Collapse
|
34
|
Hurdiss DL, Frank M, Snowden JS, Macdonald A, Ranson NA. The Structure of an Infectious Human Polyomavirus and Its Interactions with Cellular Receptors. Structure 2018; 26:839-847.e3. [PMID: 29706532 PMCID: PMC5992339 DOI: 10.1016/j.str.2018.03.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/14/2018] [Accepted: 03/29/2018] [Indexed: 01/23/2023]
Abstract
BK polyomavirus (BKV) causes polyomavirus-associated nephropathy and hemorrhagic cystitis in immunosuppressed patients. These are diseases for which we currently have limited treatment options, but potential therapies could include pre-transplant vaccination with a multivalent BKV vaccine or therapeutics which inhibit capsid assembly or block attachment and entry into target cells. A useful tool in such efforts would be a high-resolution structure of the infectious BKV virion and how this interacts with its full repertoire of cellular receptors. We present the 3.4-Å cryoelectron microscopy structure of native, infectious BKV in complex with the receptor fragment of GT1b ganglioside. We also present structural evidence that BKV can utilize glycosaminoglycans as attachment receptors. This work highlights features that underpin capsid stability and provides a platform for rational design and development of urgently needed pharmacological interventions for BKV-associated diseases. Present the cryo-EM structure of native, infectious BKV virion at 3.4 Å resolution Reveal interpentamer interactions that mediate capsid assembly Determine the interaction of BKV with a receptor fragment of GT1b ganglioside Identify possible sites for glycosaminoglycan binding on the virion surface
Collapse
Affiliation(s)
- Daniel L Hurdiss
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Martin Frank
- Biognos AB, P.O. Box 8963, Gothenburg 40274, Sweden
| | - Joseph S Snowden
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Andrew Macdonald
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
35
|
Levican J, Acevedo M, León O, Gaggero A, Aguayo F. Role of BK human polyomavirus in cancer. Infect Agent Cancer 2018; 13:12. [PMID: 29632550 PMCID: PMC5887205 DOI: 10.1186/s13027-018-0182-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/14/2018] [Indexed: 12/17/2022] Open
Abstract
Human polyomaviruses (HPyV), which are small DNA viruses classified into the polyomaviridae family, are widely distributed in human populations. Thirteen distinct HPyVs have been described to date. Some of these viruses have been found in human tumors, suggesting an etiological relationship with cancer. In particular, convincing evidence of an oncogenic role has emerged for a specific HPyV, the Merkel cell polyomavirus (MCPyV). This HPyV has been linked to rare skin cancer, Merkel cell carcinoma (MCC). This finding may be just the tip of the iceberg, as HPyV infections are ubiquitous in humans. Many authors have conjectured that additional associations between HPyV infections and neoplastic diseases will likely be discovered. In 2012, the International Agency for Research on Cancer (IARC) evaluated the carcinogenicity of the BK virus (BKPyV), reporting that BKPyV is “possibly carcinogenic to humans.” This review explores the BKPyV infection from a historical point of view, including biological aspects related to viral entry, tropism, epidemiology and mechanisms potentially involved in BKPyV-mediated human carcinogenesis. In order to clarify the role of this virus in human cancer, more epidemiological and basic research is strongly warranted.
Collapse
Affiliation(s)
- Jorge Levican
- 1Programa de Virología, Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mónica Acevedo
- 1Programa de Virología, Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Oscar León
- 1Programa de Virología, Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Aldo Gaggero
- 1Programa de Virología, Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Francisco Aguayo
- 2Departamento de Oncología Básico clínica, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,3Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| |
Collapse
|
36
|
Goetsch HE, Zhao L, Gnegy M, Imperiale MJ, Love NG, Wigginton KR. Fate of the Urinary Tract Virus BK Human Polyomavirus in Source-Separated Urine. Appl Environ Microbiol 2018; 84:e02374-17. [PMID: 29374036 PMCID: PMC5861842 DOI: 10.1128/aem.02374-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 01/20/2018] [Indexed: 12/11/2022] Open
Abstract
Human polyomaviruses are emerging pathogens that infect a large percentage of the human population and are excreted in urine. Consequently, urine that is collected for fertilizer production often has high concentrations of polyomavirus genes. We studied the fate of infectious double-stranded DNA (dsDNA) BK human polyomavirus (BKPyV) in hydrolyzed source-separated urine with infectivity assays and quantitative PCR (qPCR). Although BKPyV genomes persisted in the hydrolyzed urine for long periods of time (T90 [time required for 90% reduction in infectivity or gene copies] of >3 weeks), the viruses were rapidly inactivated (T90 of 1.1 to 11 h) in most of the tested urine samples. Interestingly, the infectivity of dsDNA bacteriophage surrogate T3 (T90 of 24 to 46 days) was much more persistent than that of BKPyV, highlighting a major shortcoming of using bacteriophages as human virus surrogates. Pasteurization and filtration experiments suggest that BKPyV virus inactivation was due to microorganism activity in the source-separated urine, and SDS-PAGE Western blots showed that BKPyV protein capsid disassembly is concurrent with inactivation. Our results imply that stored urine does not pose a substantial risk of BKPyV transmission, that qPCR and infectivity of the dsDNA surrogate do not accurately depict BKPyV fate, and that microbial inactivation is driven by structural elements of the BKPyV capsid.IMPORTANCE We demonstrate that a common urinary tract virus has a high susceptibility to the conditions in hydrolyzed urine and consequently would not be a substantial exposure route to humans using urine-derived fertilizers. The results have significant implications for understanding virus fate. First, by demonstrating that the dsDNA (double-stranded DNA) genome of the polyomavirus lasts for weeks despite infectivity lasting for hours to days, our work highlights the shortcomings of using qPCR to estimate risks from unculturable viruses. Second, commonly used dsDNA surrogate viruses survived for weeks under the same conditions that BK polyomavirus survived for only hours, highlighting issues with using virus surrogates to predict how human viruses will behave in the environment. Finally, our mechanistic inactivation analysis provides strong evidence that microbial activity drives rapid virus inactivation, likely through capsid disassembly. Overall, our work underlines how subtle structural differences between viruses can greatly impact their environmental fate.
Collapse
Affiliation(s)
- Heather E Goetsch
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Linbo Zhao
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Mariah Gnegy
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael J Imperiale
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nancy G Love
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Krista R Wigginton
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
37
|
Inhibition of Retrograde Transport Limits Polyomavirus Infection In Vivo. mSphere 2017; 2:mSphere00494-17. [PMID: 29152583 PMCID: PMC5687923 DOI: 10.1128/mspheredirect.00494-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 10/30/2017] [Indexed: 02/08/2023] Open
Abstract
PyVs can cause significant morbidity and mortality in immunocompromised individuals. No clinically efficacious anti-PyV therapeutic agents are available. A recently identified inhibitor of retrograde transport, Retro-2cycl, blocks movement of PyV virion-containing vesicles from early endosomes to the endoplasmic reticulum, an early step in the PyV life cycle. Retro-2cycl and its derivatives have been shown to inhibit infection by human PyVs in tissue culture. Here, we demonstrate that a derivative of Retro-2cycl, Retro-2.1, reduces infection by MuPyV in the kidneys of acutely infected mice. Mimicking the common clinical scenario of PyV resurgence, we further show that MuPyV levels increase in the kidneys of immunocompromised, persistently infected mice and that this increase is inhibited by Retro-2.1. These data provide the first evidence for control of a natural PyV infection in vivo by administration of an inhibitor of retrograde transport. Polyomaviruses (PyVs) silently infect most humans, but they can cause life-threatening diseases in immunocompromised individuals. The JC polyomavirus (JCPyV) induces progressive multifocal leukoencephalopathy, a severe demyelinating disease in multiple sclerosis patients receiving immunomodulatory therapy, and BK polyomavirus (BKPyV)-associated nephropathy is a major cause of kidney allograft failure. No effective anti-PyV agents are available. Several compounds have been reported to possess anti-PyV activity in vitro, but none have shown efficacy in clinical trials. Productive PyV infection involves usurping the cellular retrograde vesicular transport pathway to enable endocytosed virions to navigate to the endoplasmic reticulum where virion uncoating begins. Compounds inhibiting this pathway have been shown to reduce infection by simian virus 40 (SV40), JCPyV, and BKPyV in tissue culture. In this study, we investigated the potential of Retro-2.1, a retrograde transport inhibitor, to limit infection by mouse polyomavirus (MuPyV) in vivo. We found that Retro-2.1 significantly reduced MuPyV levels in the kidney during acute infection without affecting renal function or the MuPyV-specific CD8 T cell response. To approximate the clinical setting of PyV resurgence in immunocompromised hosts, we showed that antibody-mediated depletion of T cells in persistently infected mice elevated MuPyV levels in the kidney and that Retro-2.1 blunted this increase in virus levels. In summary, these data indicate that inhibition of retrograde vesicular transport in vivo controls infection in a natural PyV mouse model and supports development of these compounds as potential therapeutic agents for individuals at risk for human PyV-associated diseases. IMPORTANCE PyVs can cause significant morbidity and mortality in immunocompromised individuals. No clinically efficacious anti-PyV therapeutic agents are available. A recently identified inhibitor of retrograde transport, Retro-2cycl, blocks movement of PyV virion-containing vesicles from early endosomes to the endoplasmic reticulum, an early step in the PyV life cycle. Retro-2cycl and its derivatives have been shown to inhibit infection by human PyVs in tissue culture. Here, we demonstrate that a derivative of Retro-2cycl, Retro-2.1, reduces infection by MuPyV in the kidneys of acutely infected mice. Mimicking the common clinical scenario of PyV resurgence, we further show that MuPyV levels increase in the kidneys of immunocompromised, persistently infected mice and that this increase is inhibited by Retro-2.1. These data provide the first evidence for control of a natural PyV infection in vivo by administration of an inhibitor of retrograde transport.
Collapse
|
38
|
Helle F, Brochot E, Handala L, Martin E, Castelain S, Francois C, Duverlie G. Biology of the BKPyV: An Update. Viruses 2017; 9:v9110327. [PMID: 29099746 PMCID: PMC5707534 DOI: 10.3390/v9110327] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 10/30/2017] [Accepted: 10/30/2017] [Indexed: 12/29/2022] Open
Abstract
The BK virus (BKPyV) is a member of the Polyomaviridae family first isolated in 1971. BKPyV causes frequent infections during childhood and establishes persistent infections with minimal clinical implications within renal tubular cells and the urothelium. However, reactivation of BKPyV in immunocompromised individuals may cause serious complications. In particular, with the implementation of more potent immunosuppressive drugs in the last decade, BKPyV has become an emerging pathogen in kidney and bone marrow transplant recipients where it often causes associated nephropathy and haemorrhagic cystitis, respectively. Unfortunately, no specific antiviral against BKPyV has been approved yet and the only therapeutic option is a modulation of the immunosuppressive drug regimen to improve immune control though it may increase the risk of rejection. A better understanding of the BKPyV life cycle is thus needed to develop efficient treatment against this virus. In this review, we provide an update on recent advances in understanding the biology of BKPyV.
Collapse
Affiliation(s)
- Francois Helle
- EA4294, Unité de Virologie Clinique et Fondamentale, Centre Universitaire de Recherche en Santé, Centre Hospitalier Universitaire et Université de Picardie Jules Verne, 80054 Amiens, France.
| | - Etienne Brochot
- EA4294, Unité de Virologie Clinique et Fondamentale, Centre Universitaire de Recherche en Santé, Centre Hospitalier Universitaire et Université de Picardie Jules Verne, 80054 Amiens, France.
| | - Lynda Handala
- EA4294, Unité de Virologie Clinique et Fondamentale, Centre Universitaire de Recherche en Santé, Centre Hospitalier Universitaire et Université de Picardie Jules Verne, 80054 Amiens, France.
| | - Elodie Martin
- EA4294, Unité de Virologie Clinique et Fondamentale, Centre Universitaire de Recherche en Santé, Centre Hospitalier Universitaire et Université de Picardie Jules Verne, 80054 Amiens, France.
| | - Sandrine Castelain
- EA4294, Unité de Virologie Clinique et Fondamentale, Centre Universitaire de Recherche en Santé, Centre Hospitalier Universitaire et Université de Picardie Jules Verne, 80054 Amiens, France.
| | - Catherine Francois
- EA4294, Unité de Virologie Clinique et Fondamentale, Centre Universitaire de Recherche en Santé, Centre Hospitalier Universitaire et Université de Picardie Jules Verne, 80054 Amiens, France.
| | - Gilles Duverlie
- EA4294, Unité de Virologie Clinique et Fondamentale, Centre Universitaire de Recherche en Santé, Centre Hospitalier Universitaire et Université de Picardie Jules Verne, 80054 Amiens, France.
| |
Collapse
|
39
|
Abstract
BK polyomavirus (BKV) causes frequent infections during childhood and establishes persistent infections within renal tubular cells and the uroepithelium, with minimal clinical implications. However, reactivation of BKV in immunocompromised individuals following renal or hematopoietic stem cell transplantation may cause serious complications, including BKV-associated nephropathy (BKVAN), ureteric stenosis, or hemorrhagic cystitis. Implementation of more potent immunosuppression and increased posttransplant surveillance has resulted in a higher incidence of BKVAN. Antiviral immunity plays a crucial role in controlling BKV replication, and our increasing knowledge about host-virus interactions has led to the development of improved diagnostic tools and clinical management strategies. Currently, there are no effective antiviral agents for BKV infection, and the mainstay of managing reactivation is reduction of immunosuppression. Development of immune-based therapies to combat BKV may provide new and exciting opportunities for the successful treatment of BKV-associated complications.
Collapse
|
40
|
Primary Human Renal-Derived Tubular Epithelial Cells Fail to Recognize and Suppress BK Virus Infection. Transplantation 2017; 101:1820-1829. [PMID: 27755502 DOI: 10.1097/tp.0000000000001521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND BK polyomavirus (BKV)-associated nephropathy is a threat to kidney allograft survival affecting up to 15% of renal transplant patients. Previous studies revealed that tubular epithelial cells (TEC) show a limited response towards BKV infection. Here we investigated the interplay between BKV and TEC in more detail. In particular, we questioned whether BKV suppresses and/or evades antiviral responses. METHODS Human primary TEC and peripheral blood mononuclear cells were infected with BKV Dunlop strain or other viruses. Moreover, TEC were stimulated with genomic double-stranded (ds)DNA or IFN. Viral replication and cellular responses were measured using quantitative real time PCR and multiplex assay. RESULTS BKV infection of primary human TEC did not induce an antiviral response, whereas infection with influenza A virus, herpes simplex virus 1, or cytomegalovirus induced a strong antiviral response measured by upregulation of interferon-stimulated genes, such as CXCL10 and DAI. In addition, intracellular delivery of dsDNA or stimulation with IFN did elicit a rapid and pronounced response. However, BKV infection did not affect dsDNA-induced gene expression, indicating BKV did not modulate the antiviral response. Prestimulation of primary TEC with IFNα or dsDNA did not hamper replication of BKV, whereas influenza and herpes simplex virus 1 replication were clearly reduced. In contrast, BKV infection of leukocytes did elicit an antiviral response. CONCLUSIONS BKV specifically evades innate immunity in TEC and is not susceptible to an intrinsic interferon response, which may facilitate latent presence of the virus in this cell type.
Collapse
|
41
|
Identification of Rab18 as an Essential Host Factor for BK Polyomavirus Infection Using a Whole-Genome RNA Interference Screen. mSphere 2017; 2:mSphere00291-17. [PMID: 28815213 PMCID: PMC5555678 DOI: 10.1128/mspheredirect.00291-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 07/12/2017] [Indexed: 11/20/2022] Open
Abstract
Polyomaviruses bind to a group of specific gangliosides on the plasma membrane of the cell prior to being endocytosed. They then follow a retrograde trafficking pathway to reach the endoplasmic reticulum (ER). The viruses begin to disassemble in the ER and then exit the ER and move to the nucleus. However, the details of intracellular trafficking between the endosome and the ER are largely unknown. By implementing a whole human genome small interfering RNA screen, we identified Rab18, syntaxin 18, and the NRZ complex as key components in endosome-ER trafficking of the human polyomavirus BKPyV. These results serve to further elucidate the route BKPyV takes from outside the cell to its site of replication in the nucleus. BK polyomavirus (BKPyV) is a human pathogen first isolated in 1971. BKPyV infection is ubiquitous in the human population, with over 80% of adults worldwide being seropositive for BKPyV. BKPyV infection is usually asymptomatic; however, BKPyV reactivation in immunosuppressed transplant patients causes two diseases, polyomavirus-associated nephropathy and hemorrhagic cystitis. To establish a successful infection in host cells, BKPyV must travel in retrograde transport vesicles to reach the nucleus. To make this happen, BKPyV requires the cooperation of host cell proteins. To further identify host factors associated with BKPyV entry and intracellular trafficking, we performed a whole-genome small interfering RNA screen on BKPyV infection of primary human renal proximal tubule epithelial cells. The results revealed the importance of Ras-related protein Rab18 and syntaxin 18 for BKPyV infection. Our subsequent experiments implicated additional factors that interact with this pathway and suggest a more detailed model of the intracellular trafficking process, indicating that BKPyV reaches the endoplasmic reticulum (ER) lumen through a retrograde transport pathway between the late endosome and the ER. IMPORTANCE Polyomaviruses bind to a group of specific gangliosides on the plasma membrane of the cell prior to being endocytosed. They then follow a retrograde trafficking pathway to reach the endoplasmic reticulum (ER). The viruses begin to disassemble in the ER and then exit the ER and move to the nucleus. However, the details of intracellular trafficking between the endosome and the ER are largely unknown. By implementing a whole human genome small interfering RNA screen, we identified Rab18, syntaxin 18, and the NRZ complex as key components in endosome-ER trafficking of the human polyomavirus BKPyV. These results serve to further elucidate the route BKPyV takes from outside the cell to its site of replication in the nucleus.
Collapse
|
42
|
Mouse Mammary Tumor Virus Signal Peptide Uses a Novel p97-Dependent and Derlin-Independent Retrotranslocation Mechanism To Escape Proteasomal Degradation. mBio 2017; 8:mBio.00328-17. [PMID: 28351922 PMCID: PMC5371415 DOI: 10.1128/mbio.00328-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Multiple pathogens, including viruses and bacteria, manipulate endoplasmic reticulum-associated degradation (ERAD) to avoid the host immune response and promote their replication. The betaretrovirus mouse mammary tumor virus (MMTV) encodes Rem, which is a precursor protein that is cleaved into a 98-amino-acid signal peptide (SP) and a C-terminal protein (Rem-CT). SP uses retrotranslocation for ER membrane extraction and yet avoids ERAD by an unknown mechanism to enter the nucleus and function as a Rev-like protein. To determine how SP escapes ERAD, we used a ubiquitin-activated interaction trap (UBAIT) screen to trap and identify transient protein interactions with SP, including the ERAD-associated p97 ATPase, but not E3 ligases or Derlin proteins linked to retrotranslocation, polyubiquitylation, and proteasomal degradation of extracted proteins. A dominant negative p97 ATPase inhibited both Rem and SP function. Immunoprecipitation experiments indicated that Rem, but not SP, is polyubiquitylated. Using both yeast and mammalian expression systems, linkage of a ubiquitin-like domain (UbL) to SP or Rem induced degradation by the proteasome, whereas SP was stable in the absence of the UbL. ERAD-associated Derlin proteins were not required for SP activity. Together, these results suggested that Rem uses a novel p97-dependent, Derlin-independent retrotranslocation mechanism distinct from other pathogens to avoid SP ubiquitylation and proteasomal degradation. Bacterial and viral infections produce pathogen-specific proteins that interfere with host functions, including the immune response. Mouse mammary tumor virus (MMTV) is a model system for studies of human complex retroviruses, such as HIV-1, as well as cancer induction. We have shown that MMTV encodes a regulatory protein, Rem, which is cleaved into an N-terminal signal peptide (SP) and a C-terminal protein (Rem-CT) within the endoplasmic reticulum (ER) membrane. SP function requires ER membrane extraction by retrotranslocation, which is part of a protein quality control system known as ER-associated degradation (ERAD) that is essential to cellular health. Through poorly understood mechanisms, certain pathogen-derived proteins are retrotranslocated but not degraded. We demonstrate here that MMTV SP retrotranslocation from the ER membrane avoids degradation through a unique process involving interaction with cellular p97 ATPase and failure to acquire cellular proteasome-targeting sequences.
Collapse
|
43
|
Bhattacharjee S, Chattaraj S. Entry, infection, replication, and egress of human polyomaviruses: an update. Can J Microbiol 2017; 63:193-211. [DOI: 10.1139/cjm-2016-0519] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polyomaviruses (PyVs), belonging to the family Polyomaviridae, are a group of small, nonenveloped, double-stranded, circular DNA viruses widely distributed in the vertebrates. PyVs cause no apparent disease in adult laboratory mice but cause a wide variety of tumors when artificially inoculated into neonates or semipermissive animals. A few human PyVs, such as BK, JC, and Merkel cell PyVs, have been unequivocally linked to pathogenesis under conditions of immunosuppression. Infection is thought to occur early in life and persists for the lifespan of the host. Over evolutionary time scales, it appears that PyVs have slowly co-evolved with specific host animal lineages. Host cell surface glycoproteins and glycolipids seem to play a decisive role in the entry stage of viral infection and in channeling the virions to specific intracellular membrane-bound compartments and ultimately to the nucleus, where the genomes are replicated and packaged for release. Therefore the transport of the infecting virion or viral genome to this site of multiplication is an essential process in productive viral infection as well as in latent infection and transformation. This review summarizes the major findings related to the characterization of the nature of the interactions between PyV and host protein and their impact in host cell invasion.
Collapse
Affiliation(s)
- Soumen Bhattacharjee
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, P.O. North Bengal University, Siliguri, District Darjeeling, West Bengal, PIN 734013, India
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, P.O. North Bengal University, Siliguri, District Darjeeling, West Bengal, PIN 734013, India
| | - Sutanuka Chattaraj
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, P.O. North Bengal University, Siliguri, District Darjeeling, West Bengal, PIN 734013, India
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, P.O. North Bengal University, Siliguri, District Darjeeling, West Bengal, PIN 734013, India
| |
Collapse
|
44
|
Kuppachi S, Holanda D, Eberlein M, Alexiev B, Tyler AJ, Wissel MC, Kleiboeker SB, Thomas CP. An Unexpected Surge in Plasma BKPyV Viral Load Heralds the Development of BKPyV-Associated Metastatic Bladder Cancer in a Lung Transplant Recipient With BKPyV Nephropathy. Am J Transplant 2017; 17:813-818. [PMID: 27647675 DOI: 10.1111/ajt.14057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/19/2016] [Accepted: 09/10/2016] [Indexed: 01/25/2023]
Abstract
We report a lung transplant recipient who developed BK polyoma virus (BKPyV) DNAemia and BKPyV nephropathy. With careful management of his immunosuppression he achieved significant reduction in BKPyV DNAemia and stabilization of his kidney function. He later developed a high-grade bladder cancer and shortly thereafter he experienced a major upsurge in the level of BKPyV DNAemia that coincided with the discovery of hepatic metastasis. Retrospectively, the bladder cancer and the hepatic secondary tumor stained uniformly for SV40 large T antigen, and the BKPyV DNA sequences identified in plasma corresponded to BKPyV DNA within hepatic tissue, indicating that the spike in BKPyV load was likely derived from the circulating tumor cells or cell-free tumor DNA following metastases of a BKV-associated cancer. To the best of our knowledge, this is the first description of a surge in BKPyV load in a patient with controlled BKPyVN that heralded the appearance of a metastatic urothelial malignancy. This report discusses the literature on BKPyV-associated malignancies and the possibility that unexplained increases in BKPyV DNAemia may be a biomarker for metastatic BKPyV-related urothelial cancer.
Collapse
Affiliation(s)
- S Kuppachi
- Division of Nephrology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA
| | - D Holanda
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - M Eberlein
- Division of Pulmonary, Critical Care and Occupational Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA
| | - B Alexiev
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - A J Tyler
- Viracor-IBT Laboratories, Lee's Summit, MO
| | - M C Wissel
- Viracor-IBT Laboratories, Lee's Summit, MO
| | | | - C P Thomas
- Division of Nephrology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA.,Division of Internal Medicine, VA Medical Center, Iowa City, IA.,Graduate Program in Molecular and Cellular Biology, University of Iowa Carver College of Medicine, Iowa City, IA
| |
Collapse
|
45
|
Huérfano S, Ryabchenko B, Španielová H, Forstová J. Hydrophobic domains of mouse polyomavirus minor capsid proteins promote membrane association and virus exit from theER. FEBS J 2017; 284:883-902. [DOI: 10.1111/febs.14033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/19/2016] [Accepted: 01/31/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Sandra Huérfano
- Department of Genetics and Microbiology Charles University in Prague Czech Republic
| | - Boris Ryabchenko
- Department of Genetics and Microbiology Charles University in Prague Czech Republic
| | - Hana Španielová
- Department of Genetics and Microbiology Charles University in Prague Czech Republic
| | - Jitka Forstová
- Department of Genetics and Microbiology Charles University in Prague Czech Republic
| |
Collapse
|
46
|
Evidence that Hsc70 Is Associated with Cucumber Necrosis Virus Particles and Plays a Role in Particle Disassembly. J Virol 2017; 91:JVI.01555-16. [PMID: 27807229 DOI: 10.1128/jvi.01555-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/25/2016] [Indexed: 11/20/2022] Open
Abstract
Uncoating of a virus particle to expose its nucleic acid is a critical aspect of the viral multiplication cycle, as it is essential for the establishment of infection. In the present study, we investigated the role of plant HSP70 homologs in the uncoating process of Cucumber necrosis virus (CNV), a nonenveloped positive-sense single-stranded RNA [(+)ssRNA] virus having a T=3 icosahedral capsid. We have found through Western blot analysis and mass spectrometry that the HSP70 homolog Hsc70-2 copurifies with CNV particles. Virus overlay and immunogold labeling assays suggest that Hsc70-2 is physically bound to virions. Furthermore, trypsin digestion profiles suggest that the bound Hsc70-2 is partially protected by the virus, indicating an intimate association with particles. In investigating a possible role of Hsc70-2 in particle disassembly, we showed that particles incubated with Hsp70/Hsc70 antibody produce fewer local lesions than those incubated with prebleed control antibody on Chenopodium quinoa In conjunction, CNV virions purified using CsCl and having undetectable amounts of Hsc70-2 produce fewer local lesions. We also have found that plants with elevated levels of HSP70/Hsc70 produce higher numbers of local lesions following CNV inoculation. Finally, incubation of recombinant Nicotiana benthamiana Hsc70-2 with virus particles in vitro leads to conformational changes or partial disassembly of capsids as determined by transmission electron microscopy, and particles are more sensitive to chymotrypsin digestion. This is the first report suggesting that a cellular Hsc70 chaperone is involved in disassembly of a plant virus. IMPORTANCE Virus particles must disassemble and release their nucleic acid in order to establish infection in a cell. Despite the importance of disassembly in the ability of a virus to infect its host, little is known about this process, especially in the case of nonenveloped spherical RNA viruses. Previous work has shown that host HSP70 homologs play multiple roles in the CNV infection cycle. We therefore examined the potential role of these cellular components in the CNV disassembly process. We show that the HSP70 family member Hsc70-2 is physically associated with CNV virions and that HSP70 antibody reduces the ability of CNV to establish infection. Statistically significantly fewer lesions are produced when virions having undetectable HSc70-2 are used as an inoculum. Finally incubation of Hsc70-2 with CNV particles results in conformational changes in particles. Taken together, our data point to an important role of the host factor Hsc70-2 in CNV disassembly.
Collapse
|
47
|
[How polyomavirus crosses the endoplasmic reticulum membrane to gain entry into the cytosol]. Uirusu 2017; 67:121-132. [PMID: 30369536 DOI: 10.2222/jsv.67.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Polyomavirus (Py) is a non-enveloped, double stranded DNA virus that causes a myriad of devastating human diseases for immunocompromised individuals. To cause infection, Py binds to its receptors on the plasma membrane, is endocytosed, and sorts to the endoplasmic reticulum (ER). From here, Py penetrates the ER membrane to reach the cytosol. Ensuing nuclear entry enables the virus to cause infection. How Py penetrates the ER membrane to access the cytosol is a decisive infection step that is enigmatic. In this review, I highlight the mechanisms by which host cell functions facilitate Py translocation across the ER membrane into the cytosol.
Collapse
|
48
|
Barth H, Solis M, Lepiller Q, Sueur C, Soulier E, Caillard S, Stoll-Keller F, Fafi-Kremer S. 45 years after the discovery of human polyomaviruses BK and JC: Time to speed up the understanding of associated diseases and treatment approaches. Crit Rev Microbiol 2016; 43:178-195. [DOI: 10.1080/1040841x.2016.1189873] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Heidi Barth
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- INSERM UMR_S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Morgane Solis
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- INSERM UMR_S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Quentin Lepiller
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- INSERM UMR_S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Charlotte Sueur
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- INSERM UMR_S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Eric Soulier
- INSERM UMR_S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Sophie Caillard
- INSERM UMR_S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Département de Néphrologie et Transplantation, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Françoise Stoll-Keller
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- INSERM UMR_S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Samira Fafi-Kremer
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- INSERM UMR_S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| |
Collapse
|
49
|
Neumann F, Czech-Sioli M, Dobner T, Grundhoff A, Schreiner S, Fischer N. Replication of Merkel cell polyomavirus induces reorganization of promyelocytic leukemia nuclear bodies. J Gen Virol 2016; 97:2926-2938. [PMID: 27580912 DOI: 10.1099/jgv.0.000593] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is associated with Merkel cell carcinoma (MCC), a rare but aggressive skin cancer. The virus is highly prevalent: 60-80 % of adults are seropositive; however, cells permissive for MCPyV infection are unknown. Consequently, very little information about the MCPyV life cycle is available. Until recently, MCPyV replication could only be studied using a semi-permissive in vitro replication system (Neumann et al., 2011; Feng et al., 2011, Schowalter et al., 2011). MCPyV replication most likely depends on subnuclear structures such as promyelocytic leukemia protein nuclear bodies (PML-NBs), which are known to play regulatory roles in the infection of many DNA viruses. Here, we investigated PML-NB components as candidate host factors to control MCPyV DNA replication. We showed that PML-NBs change in number and size in cells actively replicating MCPyV proviral DNA. We observed a significant increase in PML-NBs in cells positive for MCPyV viral DNA replication. Interestingly, a significant amount of cells actively replicating MCPyV did not show any Sp100 expression. While PML and Daxx had no effect on MCPyV DNA replication, MCPyV replication was increased in cells depleted for Sp100, strongly suggesting that Sp100 is a negative regulator of MCPyV DNA replication.
Collapse
MESH Headings
- Antigens, Nuclear/genetics
- Antigens, Nuclear/metabolism
- Autoantigens/genetics
- Autoantigens/metabolism
- Carcinoma, Merkel Cell/genetics
- Carcinoma, Merkel Cell/metabolism
- Carcinoma, Merkel Cell/virology
- DNA Replication
- DNA, Viral/genetics
- DNA, Viral/metabolism
- Humans
- Inclusion Bodies, Viral/genetics
- Inclusion Bodies, Viral/metabolism
- Inclusion Bodies, Viral/virology
- Merkel cell polyomavirus/genetics
- Merkel cell polyomavirus/physiology
- Polyomavirus Infections/genetics
- Polyomavirus Infections/metabolism
- Polyomavirus Infections/virology
- Promyelocytic Leukemia Protein/genetics
- Promyelocytic Leukemia Protein/metabolism
- Tumor Virus Infections/genetics
- Tumor Virus Infections/metabolism
- Tumor Virus Infections/virology
- Virus Replication
Collapse
Affiliation(s)
- Friederike Neumann
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manja Czech-Sioli
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Dobner
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Adam Grundhoff
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Sabrina Schreiner
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Nicole Fischer
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
50
|
Vigil D, Konstantinov NK, Barry M, Harford AM, Servilla KS, Kim YH, Sun Y, Ganta K, Tzamaloukas AH. BK nephropathy in the native kidneys of patients with organ transplants: Clinical spectrum of BK infection. World J Transplant 2016; 6:472-504. [PMID: 27683628 PMCID: PMC5036119 DOI: 10.5500/wjt.v6.i3.472] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/25/2016] [Accepted: 09/08/2016] [Indexed: 02/05/2023] Open
Abstract
Nephropathy secondary to BK virus, a member of the Papoviridae family of viruses, has been recognized for some time as an important cause of allograft dysfunction in renal transplant recipients. In recent times, BK nephropathy (BKN) of the native kidneys has being increasingly recognized as a cause of chronic kidney disease in patients with solid organ transplants, bone marrow transplants and in patients with other clinical entities associated with immunosuppression. In such patients renal dysfunction is often attributed to other factors including nephrotoxicity of medications used to prevent rejection of the transplanted organs. Renal biopsy is required for the diagnosis of BKN. Quantitation of the BK viral load in blood and urine are surrogate diagnostic methods. The treatment of BKN is based on reduction of the immunosuppressive medications. Several compounds have shown antiviral activity, but have not consistently shown to have beneficial effects in BKN. In addition to BKN, BK viral infection can cause severe urinary bladder cystitis, ureteritis and urinary tract obstruction as well as manifestations in other organ systems including the central nervous system, the respiratory system, the gastrointestinal system and the hematopoietic system. BK viral infection has also been implicated in tumorigenesis. The spectrum of clinical manifestations from BK infection and infection from other members of the Papoviridae family is widening. Prevention and treatment of BK infection and infections from other Papovaviruses are subjects of intense research.
Collapse
|