1
|
Gao HS, Hu RM, Wang ZH, Ye XQ, Wu XT, Huang JH, Wang ZZ, Chen XX. A Polydnavirus Protein Tyrosine Phosphatase Negatively Regulates the Host Phenoloxidase Pathway. Viruses 2022; 15:56. [PMID: 36680096 PMCID: PMC9866809 DOI: 10.3390/v15010056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Polydnavirus (PDV) is a parasitic factor of endoparasitic wasps and contributes greatly to overcoming the immune response of parasitized hosts. Protein tyrosine phosphatases (PTPs) regulate a wide variety of biological processes at the post-transcriptional level in mammals, but knowledge of PDV PTP action during a parasitoid−host interaction is limited. In this study, we characterized a PTP gene, CvBV_12-6, derived from Cotesia vestalis bracovirus (CvBV), and explored its possible regulatory role in the immune response of the host Plutella xylostella. Our results from qPCR show that CvBV_12-6 was highly expressed in hemocytes at an early stage of parasitization. To explore CvBV_12-6 function, we specifically expressed CvBV_12-6 in Drosophila melanogaster hemocytes. The results show that Hml-Gal4 > CvBV_12-6 suppressed the phenoloxidase activity of hemolymph in D. melanogaster, but exerted no effect on the total count or the viability of the hemocytes. In addition, the Hml-Gal4 > CvBV_12-6 flies exhibited decreased antibacterial abilities against Staphylococcus aureus. Similarly, we found that CvBV_12-6 significantly suppressed the melanization of the host P. xylostella 24 h post parasitization and reduced the viability, but not the number, of hemocytes. In conclusion, CvBV_12-6 negatively regulated both cellular and humoral immunity in P. xylostella, and the related molecular mechanism may be universal to insects.
Collapse
Affiliation(s)
- Hong-Shuai Gao
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Rong-Min Hu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Ze-Hua Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Xi-Qian Ye
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Tong Wu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Jian-Hua Huang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Zhi-Zhi Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
- The Rural Development Academy, Zhejiang University, Hangzhou 310058, China
| | - Xue-Xin Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Mohan P, Sinu PA. Is direct bodyguard manipulation a parasitoid-induced stress sleep? A new perspective. Biol Lett 2022; 18:20220280. [PMID: 36448293 PMCID: PMC9709512 DOI: 10.1098/rsbl.2022.0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/08/2022] [Indexed: 12/02/2022] Open
Abstract
Bodyguard manipulation is a behavioural manipulation in which the host's behaviour is altered to protect the inducer's offspring from imminent biotic threats. The behaviour of a post-parasitoid-egressed host resembles a quiescence state with a characteristic reduction in motor activities like feeding, locomotion, respiration, and metabolic rate. Yet, they respond aggressively through a defensive response when disturbed, which ensures better fitness for the parasitoid's offspring. The behavioural changes in the parasitized host appear after the parasitoid egression. Several hypotheses have been proposed to elucidate how the parasitized host's behaviour is manipulated for the fitness benefits of the inducers, but the exact mechanism is still unknown. We review evidence to explain the behavioural changes and their mechanism in the parasitized hosts. The evidence suggests that parasitoid pre-pupal egression may drive the host to stress-induced sleep. The elevated octopamine concentration also reflects the stress response in the host. Given the theoretical links between the behavioural and the physiological changes in the post-parasitoid-egressed host and stress-induced sleep of other invertebrates, we suggest that behavioural studies combined with functional genomics, proteomics, and histological analyses might give a better understanding of bodyguard manipulation.
Collapse
Affiliation(s)
- Prabitha Mohan
- Department of Zoology, Central University of Kerala, Kasaragod, Kerala, India
- Zoological Survey of India, Chennai, Tamilnadu, India
| | - Palatty Allesh Sinu
- Department of Zoology, Central University of Kerala, Kasaragod, Kerala, India
| |
Collapse
|
3
|
Phurealipids, produced by the entomopathogenic bacteria, Photorhabdus, mimic juvenile hormone to suppress insect immunity and immature development. J Invertebr Pathol 2022; 193:107799. [PMID: 35850258 DOI: 10.1016/j.jip.2022.107799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 11/23/2022]
Abstract
Phurealipids (Photorhabdus urea lipids) are synthesized from Photorhabdus bacteria that are symbiotic to entomopathogenic nematodes. Their chemical structures are similar to that of juvenile hormone (JH) and have been suspected to mimic JH signaling in immunity and the development of insects. This study investigated the physiological roles of phurealipids with respect to their contribution to bacterial pathogenicity using four natural (HB13, HB69, HB416, and HB421) and one derivative (HB27) compound. First, phurealipids like JH suppressed insect immune responses. Overall, phurealipids showed JH like immunosuppressive behavior in a lepidopteran insect Spodoptera exigua larvae. More specifically, phurealipids significantly suppressed the hemocyte spreading behavior which is a key immune response upon immune challenge. Interestingly, the methyl urea derivatives (HB13, HB27, and HB69) were more potent than the unmethylated forms (HB416 and HB421). The inhibitory activity of phurealipids prevented the cellular immune response measured by hemocytic nodule formation in response to the bacterial challenge. Phurealipids also suppressed the expression of cecropin and gallerimycin, which are two highly inducible antimicrobial peptides, in S. exigua upon immune challenge. The immunosuppressive activity of the phurealipids significantly enhanced the bacterial pathogenicity of Bacillus thuringiensis against S. exigua. Second, phurealipids like JH prevented insect metamorphosis. Especially, the methylated urea derivatives of the phurealipids showed the JH-like function by inducing the expression of S. exigua Kr-h1, a transcriptional factor. At the pupal stage, exhibiting the lowest expression of Kr-h1, phurealipid treatments elevated the expression level of Kr-h1 and delayed the pupa-to-adult metamorphosis. These results suggest that phurealipids play crucial roles in Photorhabdus pathogenicity by suppressing host immune defenses and delaying host metamorphosis.
Collapse
|
4
|
Wu X, Wu Z, Ye X, Pang L, Sheng Y, Wang Z, Zhou Y, Zhu J, Hu R, Zhou S, Chen J, Wang Z, Shi M, Huang J, Chen X. The Dual Functions of a Bracovirus C-Type Lectin in Caterpillar Immune Response Manipulation. Front Immunol 2022; 13:877027. [PMID: 35663984 PMCID: PMC9157488 DOI: 10.3389/fimmu.2022.877027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Parasitoids are widespread in natural ecosystems and normally equipped with diverse viral factors to defeat host immune responses. On the other hand, parasitoids can enhance the antibacterial abilities and improve the hypoimmunity traits of parasitized hosts that may encounter pathogenic infections. These adaptive strategies guarantee the survival of parasitoid offspring, yet their underlying mechanisms are poorly understood. Here, we focused on Cotesia vestalis, an endoparasitoid of the diamondback moth Plutella xylostella, and found that C. vestalis parasitization decreases the number of host hemocytes, leading to disruption of the encapsulation reaction. We further found that one bracovirus C-type lectin gene, CvBV_28-1, is highly expressed in the hemocytes of parasitized hosts and participates in suppressing the proliferation rate of host hemocytes, which in turn reduces their population and represses the process of encapsulation. Moreover, CvBV_28-1 presents a classical bacterial clearance ability via the agglutination response in a Ca2+-dependent manner in response to gram-positive bacteria. Our study provides insights into the innovative strategy of a parasitoid-derived viral gene that has dual functions to manipulate host immunity for a successful parasitism.
Collapse
Affiliation(s)
- Xiaotong Wu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Zhiwei Wu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xiqian Ye
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Lan Pang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Yifeng Sheng
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Zehua Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Yuenan Zhou
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jiachen Zhu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Rongmin Hu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Sicong Zhou
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jiani Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Zhizhi Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Min Shi
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China.,State Key Lab of Rice Biology, Zhejiang University, Hangzhou, China
| | - Jianhua Huang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China.,State Key Lab of Rice Biology, Zhejiang University, Hangzhou, China
| | - Xuexin Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China.,State Key Lab of Rice Biology, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Cuny MAC, Poelman EH. Evolution of koinobiont parasitoid host regulation and consequences for indirect plant defence. Evol Ecol 2022; 36:299-319. [PMID: 35663232 PMCID: PMC9156490 DOI: 10.1007/s10682-022-10180-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/15/2022] [Indexed: 12/16/2022]
Abstract
Tritrophic interactions among plants, herbivorous insects and their parasitoids have been well studied in the past four decades. Recently, a new angle has been uncovered: koinobiont parasitoids, that allow their host to keep feeding on the plant for a certain amount of time after parasitism, indirectly alter plant responses against herbivory via the many physiological changes induced in their herbivorous hosts. By affecting plant responses, parasitoids may indirectly affect the whole community of insects interacting with plants induced by parasitized herbivores and have extended effects on plant fitness. These important findings have renewed research interests on parasitoid manipulation of their host development. Parasitoids typically arrest their host development before the last instar, resulting in a lower final weight compared to unparasitized hosts. Yet, some parasitoids prolong their host development, leading to larger herbivores that consume more plant material than unparasitized ones. Furthermore, parasitoid host regulation is plastic and one parasitoid species may arrest or promote its host growth depending on the number of eggs laid, host developmental stage and species as well as environmental conditions. The consequences of plasticity in parasitoid host regulation for plant–insect interactions have received very little attention over the last two decades, particularly concerning parasitoids that promote their host growth. In this review, we first synthesize the mechanisms used by parasitoids to regulate host growth and food consumption. Then, we identify the evolutionary and environmental factors that influence the direction of parasitoid host regulation in terms of arrestment or promotion of host growth. In addition, we discuss the implication of different host regulation types for the parasitoid’s role as agent of plant indirect defence. Finally, we argue that the recent research interests about parasitoid plant-mediated interactions would strongly benefit from revival of research on the mechanisms, ecology and evolution of host regulation in parasitoids.
Collapse
Affiliation(s)
- Maximilien A. C. Cuny
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Erik H. Poelman
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
6
|
Drezen JM, Bézier A, Burke GR, Strand MR. Bracoviruses, ichnoviruses, and virus-like particles from parasitoid wasps retain many features of their virus ancestors. CURRENT OPINION IN INSECT SCIENCE 2022; 49:93-100. [PMID: 34954138 DOI: 10.1016/j.cois.2021.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Animal genomes commonly contain genes or sequences that have been acquired from different types of viruses. The vast majority of these endogenous virus elements (EVEs) are inactive or consist of only a small number of components that show no evidence of cooption for new functions or interaction. Unlike most EVEs, bracoviruses (BVs), ichnoviruses (IVs) and virus-like particles (VLPs) in parasitoid wasps have evolved through retention and interaction of many genes from virus ancestors. Here, we discuss current understanding of BV, IV and VLP evolution along with associated implications for what constitutes a virus. We suggest that BVs and IVs are domesticated endogenous viruses (DEVs) that differ in several important ways from other known EVEs.
Collapse
Affiliation(s)
- Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université de Tours, Tours, France.
| | - Annie Bézier
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université de Tours, Tours, France
| | - Gaelen R Burke
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Michael R Strand
- Department of Entomology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
7
|
Polydnavirus Innexins Disrupt Host Cellular Encapsulation and Larval Maturation. Viruses 2021; 13:v13081621. [PMID: 34452485 PMCID: PMC8402728 DOI: 10.3390/v13081621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022] Open
Abstract
Polydnaviruses are dsDNA viruses associated with endoparasitoid wasps. Delivery of the virus during parasitization of a caterpillar and subsequent virus gene expression is required for production of an amenable environment for parasitoid offspring development. Consequently, understanding of Polydnavirus gene function provides insight into mechanisms of host susceptibility and parasitoid wasp host range. Polydnavirus genes predominantly are arranged in multimember gene families, one of which is the vinnexins, which are virus homologues of insect gap junction genes, the innexins. Previous studies of Campoletis sonorensis Ichnovirus Vinnexins using various heterologous systems have suggested the four encoded members may provide different functionality in the infected caterpillar host. Here, we expressed two of the members, vnxG and vnxQ2, using recombinant baculoviruses in susceptible host, the caterpillar Heliothis virescens. Following intrahemocoelic injections, we observed that >90% of hemocytes (blood cells) were infected, producing recombinant protein. Larvae infected with a vinnexin-recombinant baculovirus exhibited significantly reduced molting rates relative to larvae infected with a control recombinant baculovirus and mock-infected larvae. Similarly, larvae infected with vinnexin-recombinant baculoviruses were less likely to survive relative to controls and showed reduced ability to encapsulate chromatography beads in an immune assay. In most assays, the VnxG protein was associated with more severe pathology than VnxQ2. Our findings support a role for Vinnexins in CsIV and more broadly Ichnovirus pathology in infected lepidopteran hosts, particularly in disrupting multicellular developmental and immune physiology.
Collapse
|
8
|
Chen CX, He HJ, Cai QC, Zhang W, Kou TC, Zhang XW, You S, Chen YB, Liu T, Xiao W, Zhu QS, Luo KJ. Bracovirus-mediated innexin hemichannel closure in cell disassembly. iScience 2021; 24:102281. [PMID: 33817584 PMCID: PMC8008186 DOI: 10.1016/j.isci.2021.102281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/19/2021] [Accepted: 03/03/2021] [Indexed: 01/10/2023] Open
Abstract
Cell-cell communication is necessary for cellular immune response. Hemichannel closure disrupts communication between intracellular and extracellular environments during polydnavirus-induced immunosuppression in invertebrates. However, the effects of hemichannel closure on cellular immune response are unclear. Here, we examined apoptotic body formation triggered by hemichannel closure in hemocytes of Spodoptera litura infected with bracovirus from the parasitic wasp, Microplitis bicoloratus. We showed that Microplitis bicoloratus bracovirus (MbBV) induced apoptotic cell disassembly, accompanied by hemichannel closure. Hemocyte apoptotic body formation was caused by the dysregulation of the innexins (Inxs), Inx1, Inx2, Inx3, and Inx4, during the MbBV-mediated inhibition of pI3K/AKT signaling and activation of caspase-3, which cleaved gap junction Inx proteins. Our results showed that hemichannel opening or closure in response to various stimuli, which induces the modulation of Inx levels, could inhibit or activate apoptotic body formation, respectively. Therefore, the "hemichannel open and close" model may regulate the cellular immune response.
Collapse
Affiliation(s)
- Chang-Xu Chen
- School of Life Sciences, Yunnan University, Kunming 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming 650500, P.R. China
- Biocontrol Engineering Research Centre of Crop Disease & Pest in Yunnan Province, Kunming 650500, P. R. China
| | - Hao-Juan He
- School of Life Sciences, Yunnan University, Kunming 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming 650500, P.R. China
- Biocontrol Engineering Research Centre of Crop Disease & Pest in Yunnan Province, Kunming 650500, P. R. China
| | - Qiu-Chen Cai
- School of Life Sciences, Yunnan University, Kunming 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming 650500, P.R. China
- Biocontrol Engineering Research Centre of Crop Disease & Pest in Yunnan Province, Kunming 650500, P. R. China
| | - Wei Zhang
- School of Life Sciences, Yunnan University, Kunming 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming 650500, P.R. China
- Biocontrol Engineering Research Centre of Crop Disease & Pest in Yunnan Province, Kunming 650500, P. R. China
| | - Tian-Chao Kou
- School of Life Sciences, Yunnan University, Kunming 650500, P.R. China
| | - Xue-Wen Zhang
- School of Life Sciences, Yunnan University, Kunming 650500, P.R. China
| | - Shan You
- School of Life Sciences, Yunnan University, Kunming 650500, P.R. China
| | - Ya-Bin Chen
- School of Life Sciences, Yunnan University, Kunming 650500, P.R. China
| | - Tian Liu
- School of Life Sciences, Yunnan University, Kunming 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming 650500, P.R. China
- Biocontrol Engineering Research Centre of Crop Disease & Pest in Yunnan Province, Kunming 650500, P. R. China
| | - Wei Xiao
- School of Life Sciences, Yunnan University, Kunming 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming 650500, P.R. China
| | - Qi-Shun Zhu
- School of Life Sciences, Yunnan University, Kunming 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming 650500, P.R. China
| | - Kai-Jun Luo
- School of Life Sciences, Yunnan University, Kunming 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming 650500, P.R. China
- Biocontrol Engineering Research Centre of Crop Disease & Pest in Yunnan Province, Kunming 650500, P. R. China
| |
Collapse
|
9
|
Benoist R, Capdevielle-Dulac C, Chantre C, Jeannette R, Calatayud PA, Drezen JM, Dupas S, Le Rouzic A, Le Ru B, Moreau L, Van Dijk E, Kaiser L, Mougel F. Quantitative trait loci involved in the reproductive success of a parasitoid wasp. Mol Ecol 2020; 29:3476-3493. [PMID: 32731311 DOI: 10.1111/mec.15567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022]
Abstract
Dissecting the genetic basis of intraspecific variations in life history traits is essential to understand their evolution, notably for potential biocontrol agents. Such variations are observed in the endoparasitoid Cotesia typhae (Hymenoptera: Braconidae), specialized on the pest Sesamia nonagrioides (Lepidoptera: Noctuidae). Previously, we identified two strains of C. typhae that differed significantly for life history traits on an allopatric host population. To investigate the genetic basis underlying these phenotypic differences, we used a quantitative trait locus (QTL) approach based on restriction site-associated DNA markers. The characteristic of C. typhae reproduction allowed us generating sisters sharing almost the same genetic content, named clonal sibship. Crosses between individuals from the two strains were performed to generate F2 and F8 recombinant CSS. The genotypes of 181 clonal sibships were determined as well as the phenotypes of the corresponding 4,000 females. Informative markers were then used to build a high-quality genetic map. These 465 markers spanned a total length of 1,300 cM and were organized in 10 linkage groups which corresponded to the number of C. typhae chromosomes. Three QTLs were detected for parasitism success and two for offspring number, while none were identified for sex ratio. The QTLs explained, respectively, 27.7% and 24.5% of the phenotypic variation observed. The gene content of the genomic intervals was investigated based on the genome of C. congregata and revealed 67 interesting candidates, as potentially involved in the studied traits, including components of the venom and of the symbiotic virus (bracovirus) shown to be necessary for parasitism success in related wasps.
Collapse
Affiliation(s)
- Romain Benoist
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France
| | - Claire Capdevielle-Dulac
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France
| | - Célina Chantre
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France
| | - Rémi Jeannette
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France
| | - Paul-André Calatayud
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France.,icipe, International Center of Insect Physiology and Ecology, Nairobi, Kenya
| | - Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, Université Tours, Tours, France
| | - Stéphane Dupas
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France
| | - Arnaud Le Rouzic
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France
| | - Bruno Le Ru
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France
| | - Laurence Moreau
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, UMR GQE - Le Moulon, Gif-sur-Yvette, France
| | - Erwin Van Dijk
- Université Paris-Saclay, CNRS, CEA, UMR Institut de Biologie Intégrative de la Cellule, Gif-sur-Yvette, France
| | - Laure Kaiser
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France
| | - Florence Mougel
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France
| |
Collapse
|
10
|
Merlin BL, Cônsoli FL. Regulation of the Larval Transcriptome of Diatraea saccharalis (Lepidoptera: Crambidae) by Maternal and Other Factors of the Parasitoid Cotesia flavipes (Hymenoptera: Braconidae). Front Physiol 2019; 10:1106. [PMID: 31555143 PMCID: PMC6742964 DOI: 10.3389/fphys.2019.01106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022] Open
Abstract
Koinobiont endoparasitoid wasps regulate the host's physiology to their own benefit during their growth and development, using maternal, immature and/or derived-tissue weaponry. The tools used to subdue the wasps' hosts interfere directly with host transcription activity. The broad range of host tissues and pathways affected impedes our overall understanding of the host-regulation process during parasitoid development. Next-generation sequencing and de novo transcriptomes are helpful approaches to broad questions, including in non-model organisms. In the present study, we used Illumina sequencing to assemble a de novo reference transcriptome of the sugarcane borer Diatraea saccharalis, to investigate the regulation of host gene expression by the larval endoparasitoid Cotesia flavipes. We obtained 174,809,358 reads and assembled 144,116 transcripts, of which 44,325 were putatively identified as lepidopteran genes and represented a substantial number of pathways that are well described in other lepidopteran species. Comparative transcriptome analyses of unparasitized versus parasitized larvae identified 1,432 transcripts of D. saccharalis that were up-regulated under parasitization by C. flavipes, while 1,027 transcripts were down-regulated. Comparison of the transcriptomes of unparasitized and pseudoparasitized D. saccharalis larvae led to the identification of 1,253 up-regulated transcripts and 972 down-regulated transcripts in the pseudoparasitized larvae. Analysis of the differentially expressed transcripts showed that C. flavipes regulated several pathways, including the Ca+2 transduction signaling pathway, glycolysis/gluconeogenesis, chitin metabolism, and hormone biosynthesis and degradation, as well as the immune system, allowing us to identify key target genes involved in the metabolism and development of D. saccharalis.
Collapse
|
11
|
Chevignon G, Periquet G, Gyapay G, Vega-Czarny N, Musset K, Drezen JM, Huguet E. Cotesia congregata Bracovirus Circles Encoding PTP and Ankyrin Genes Integrate into the DNA of Parasitized Manduca sexta Hemocytes. J Virol 2018; 92:e00438-18. [PMID: 29769342 PMCID: PMC6052314 DOI: 10.1128/jvi.00438-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/04/2018] [Indexed: 12/21/2022] Open
Abstract
Polydnaviruses (PDVs) are essential for the parasitism success of tens of thousands of species of parasitoid wasps. PDVs are present in wasp genomes as proviruses, which serve as the template for the production of double-stranded circular viral DNA carrying virulence genes that are injected into lepidopteran hosts. PDV circles do not contain genes coding for particle production, thereby impeding viral replication in caterpillar hosts during parasitism. Here, we investigated the fate of PDV circles of Cotesia congregata bracovirus during parasitism of the tobacco hornworm, Manduca sexta, by the wasp Cotesia congregata Sequences sharing similarities with host integration motifs (HIMs) of Microplitis demolitor bracovirus (MdBV) circles involved in integration into DNA could be identified in 12 CcBV circles, which encode PTP and VANK gene families involved in host immune disruption. A PCR approach performed on a subset of these circles indicated that they persisted in parasitized M. sexta hemocytes as linear forms, possibly integrated in host DNA. Furthermore, by using a primer extension capture method based on these HIMs and high-throughput sequencing, we could show that 8 out of 9 circles tested were integrated in M. sexta hemocyte genomic DNA and that integration had occurred specifically using the HIM, indicating that an HIM-mediated specific mechanism was involved in their integration. Investigation of BV circle insertion sites at the genome scale revealed that certain genomic regions appeared to be enriched in BV insertions, but no specific M. sexta target site could be identified.IMPORTANCE The identification of a specific and efficient integration mechanism shared by several bracovirus species opens the question of its role in braconid parasitoid wasp parasitism success. Indeed, results obtained here show massive integration of bracovirus DNA in somatic immune cells at each parasitism event of a caterpillar host. Given that bracoviruses do not replicate in infected cells, integration of viral sequences in host DNA might allow the production of PTP and VANK virulence proteins within newly dividing cells of caterpillar hosts that continue to develop during parasitism. Furthermore, this integration process could serve as a basis to understand how PDVs mediate the recently identified gene flux between parasitoid wasps and Lepidoptera and the frequency of these horizontal transfer events in nature.
Collapse
Affiliation(s)
- Germain Chevignon
- Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université de Tours, Tours, France
| | - Georges Periquet
- Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université de Tours, Tours, France
| | - Gabor Gyapay
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Genoscope (Centre National de Séquençage), Evry, France
| | - Nathalie Vega-Czarny
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Genoscope (Centre National de Séquençage), Evry, France
| | - Karine Musset
- Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université de Tours, Tours, France
| | - Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université de Tours, Tours, France
| | - Elisabeth Huguet
- Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université de Tours, Tours, France
| |
Collapse
|
12
|
Kim Y, Kumar S. Persistent expression of Cotesia plutellae bracovirus genes in parasitized host, Plutella xylostella. PLoS One 2018; 13:e0200663. [PMID: 30011308 PMCID: PMC6047808 DOI: 10.1371/journal.pone.0200663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/30/2018] [Indexed: 12/02/2022] Open
Abstract
Cotesia plutellae (= vestalis) bracovirus (CpBV) is symbiotic to an endoparasitoid wasp, C. plutellae, and plays crucial roles in parasitism against the diamondback moth, Plutella xylostella. CpBV virion genome consists of 35 circular DNAs encoding 157 putative open reading frames (ORFs). This study re-annotated 157 ORFs with update genome database and analyzed their gene expressions at early and late parasitic stages. Re-annotation has established 15 different viral gene families, to which 83 ORFs are assigned with remaining 74 hypothetical genes. Among 157 ORFs, 147 genes were expressed at early or late parasitic stages, among which 141 genes were expressed in both parasitic stages, indicating persistent nature of gene expression. Relative frequencies of different viral circles present in the ovarian lumen did not explain the expression variation of the viral ORFs. Furthermore, expression level of each viral gene was varied during parasitism along with host development. Highly up-regulated CpBV genes at early parasitic stage included BEN (BANP, E5R and NAC1), ELP (EP1-like protein), IkB (inhibitor kB), P494 (protein 494 kDa) family genes, while those at late stage were mostly hypothetical genes. Along with the viral gene expression, 362 host genes exhibited more than two fold changes in expression levels at early parasitic stage compared to nonparasitized host. At late stage, more number (1,858) of host genes was regulated. These results suggest that persistent expression of most CpBV genes may be necessary to regulate host physiological processes during C. plutellae parasitism.
Collapse
Affiliation(s)
- Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong, Korea
- * E-mail:
| | - Sunil Kumar
- Department of Plant Medicals, Andong National University, Andong, Korea
| |
Collapse
|
13
|
Valzania L, Martinson VG, Harrison RE, Boyd BM, Coon KL, Brown MR, Strand MR. Both living bacteria and eukaryotes in the mosquito gut promote growth of larvae. PLoS Negl Trop Dis 2018; 12:e0006638. [PMID: 29979680 PMCID: PMC6057668 DOI: 10.1371/journal.pntd.0006638] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/24/2018] [Accepted: 06/26/2018] [Indexed: 12/23/2022] Open
Abstract
We recently reported that larval stage Aedes aegypti and several other species of mosquitoes grow when living bacteria are present in the gut but do not grow when living bacteria are absent. We further reported that living bacteria induce a hypoxia signal in the gut, which activates hypoxia-induced transcription factors and other processes larvae require for growth. In this study we assessed whether other types of organisms induce mosquito larvae to grow and asked if the density of non-living microbes or diet larvae are fed obviate the requirement for living organisms prior results indicated are required for growth. Using culture conditions identical to our own prior studies, we determined that inoculation density of living Escherichia coli positively affected growth rates of Ae. aegypti larvae, whereas non-living E. coli had no effect on growth across the same range of inoculation densities. A living yeast, alga, and insect cell line induced axenic Ae. aegypti first instars to grow, and stimulated similar levels of midgut hypoxia, HIF-α stabilization, and neutral lipid accumulation in the fat body as E. coli. However, the same organisms had no effect on larval growth if heat-killed. In addition, no axenic larvae molted when fed two other diets, when fed diets supplemented with heat-killed microbes or lysed and heat-killed microbes. Experiments conducted with An. gambiae yielded similar findings. Taken together, our results indicate that organisms from different prokaryotic and eukaryotic groups induce mosquito larvae to grow, whereas no conditions were identified that stimulated larvae to grow in the absence of living organisms.
Collapse
Affiliation(s)
- Luca Valzania
- Department of Entomology, The University of Georgia, Athens, GA, United States of America
| | - Vincent G. Martinson
- Department of Entomology, The University of Georgia, Athens, GA, United States of America
| | - Ruby E. Harrison
- Department of Entomology, The University of Georgia, Athens, GA, United States of America
| | - Bret M. Boyd
- Department of Entomology, The University of Georgia, Athens, GA, United States of America
| | - Kerri L. Coon
- Department of Entomology, The University of Georgia, Athens, GA, United States of America
| | - Mark R. Brown
- Department of Entomology, The University of Georgia, Athens, GA, United States of America
| | - Michael R. Strand
- Department of Entomology, The University of Georgia, Athens, GA, United States of America
| |
Collapse
|
14
|
Ye XQ, Shi M, Huang JH, Chen XX. Parasitoid polydnaviruses and immune interaction with secondary hosts. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:124-129. [PMID: 29352983 DOI: 10.1016/j.dci.2018.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/02/2018] [Accepted: 01/12/2018] [Indexed: 05/26/2023]
Abstract
Polydnaviruses (PDVs) are obligatory symbionts with parasitoid wasps. The PDV virions are produced solely in wasp (the primary host) calyx cells. They are injected into caterpillar hosts (the secondary host) during parasitoid oviposition, where they express irreplaceable actions to ensure survival and development of wasp larvae. Some of PDV gene products suppress host immune responses while others alter host growth, metabolism or endocrine system. Here, we treat new findings on PDV gene products and their action on immunity within secondary hosts.
Collapse
Affiliation(s)
- Xi-Qian Ye
- State Key Lab of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Min Shi
- State Key Lab of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jian-Hua Huang
- State Key Lab of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xue-Xin Chen
- State Key Lab of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
15
|
Han Y, van Houte S, van Oers MM, Ros VID. Baculovirus PTP2 Functions as a Pro-Apoptotic Protein. Viruses 2018; 10:v10040181. [PMID: 29642442 PMCID: PMC5923475 DOI: 10.3390/v10040181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/16/2018] [Accepted: 04/05/2018] [Indexed: 12/19/2022] Open
Abstract
The family Baculoviridae encompasses a large number of invertebrate viruses, mainly infecting caterpillars of the order Lepidoptera. The baculovirus Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) induces physiological and behavioral changes in its host Spodoptera exigua, as well as immunological responses, which may affect virus transmission. Here we show that the SeMNPV-encoded protein tyrosine phosphatase 2 (PTP2) induces mild apoptosis in Spodoptera frugiperda (Sf) 21 cells upon transient expression. Transient expression of a catalytic-site mutant of ptp2 did not lead to apoptosis, indicating that the phosphatase activity of PTP2 is needed to induce apoptosis. We also found that the caspase level (indicator of apoptosis) was higher in cells transfected with the ptp2 gene than in cells transfected with the catalytic mutant. Adding a caspase inhibitor reduced the level of ptp2-induced apoptosis. Moreover, deletion of the ptp2 gene from the viral genome prevented the induction of apoptosis in S. exigua hemocytes. The virus titer and virulence indices (the viral infectivity and the time to death) were not affected by deletion of the ptp2 gene. However, the viral occlusion body yield from S. exigua larvae infected with the mutant virus lacking the ptp2 gene was much lower than the yield from larvae infected with the wild-type (WT) virus. We hypothesize that the observed pro-apoptotic effects of PTP2 are the result of PTP2-mediated immune suppression in larvae, which consequently leads to higher viral occlusion body yields.
Collapse
Affiliation(s)
- Yue Han
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Stineke van Houte
- Centre for Ecology and Conservation, Biosciences, University of Exeter, Penryn, Cornwall TR10 9FE, UK.
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Vera I D Ros
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
16
|
Seehausen ML, Cusson M, Régnière J, Bory M, Stewart D, Djoumad A, Smith SM, Martel V. High temperature induces downregulation of polydnavirus gene transcription in lepidopteran host and enhances accumulation of host immunity gene transcripts. JOURNAL OF INSECT PHYSIOLOGY 2017; 98:126-133. [PMID: 28041943 DOI: 10.1016/j.jinsphys.2016.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 12/23/2016] [Indexed: 06/06/2023]
Abstract
Endoparasitoids face the challenge of overcoming the immune reaction of their hosts, which typically consists of encapsulation and melanisation of parasitoid eggs or larvae. Some endoparasitic wasps such as the solitary Tranosema rostrale (Hymenoptera: Ichneumonidae) that lay their eggs in larvae of the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae), have evolved a symbiotic relationship with a polydnavirus (PDV), which in turn helps them suppress the host's immune response. We observed an increase in mortality of immature T. rostrale with increasing temperature, and we tested two hypotheses about the mechanisms involved: high temperatures (1) hamper the expression of T. rostrale PDV genes and (2) enhance the expression of spruce budworm immunity-related genes. Dissections of parasitized spruce budworm larvae reared at 30°C revealed that most parasitoid eggs or larvae had died as a result of encapsulation and melanisation by the host. A qPCR analysis of T. rostrale PDV (TrIV) gene expression showed that the transcription of several TrIV genes in host larvae was downregulated at high temperature. On the other hand, encapsulation, but not melanisation, of foreign bodies in spruce budworm larvae was enhanced at high temperatures, as shown by the injection of Sephadex™ beads into larvae. However, at the molecular level, the transcription of genes related to spruce budworm's melanisation process (prophenoloxidase 1 and 2) was upregulated. Our results support the hypothesis that a temperature-dependent increase of encapsulation response is due to the combined effects of reduced expression of TrIV genes and enhanced expression of host immune genes.
Collapse
Affiliation(s)
- M Lukas Seehausen
- University of Toronto, Faculty of Forestry, 33 Willcocks Street, Toronto, Ontario M5S 3B3, Canada.
| | - Michel Cusson
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., Québec G1V 4C7, Canada
| | - Jacques Régnière
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., Québec G1V 4C7, Canada
| | - Maxence Bory
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., Québec G1V 4C7, Canada
| | - Don Stewart
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., Québec G1V 4C7, Canada
| | - Abdelmadjid Djoumad
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., Québec G1V 4C7, Canada
| | - Sandy M Smith
- University of Toronto, Faculty of Forestry, 33 Willcocks Street, Toronto, Ontario M5S 3B3, Canada
| | - Véronique Martel
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., Québec G1V 4C7, Canada
| |
Collapse
|
17
|
Kumar S, Gu X, Kim Y. A viral histone H4 suppresses insect insulin signal and delays host development. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 63:66-77. [PMID: 27216029 DOI: 10.1016/j.dci.2016.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 05/18/2016] [Accepted: 05/18/2016] [Indexed: 06/05/2023]
Abstract
Parasitization by an endoparasitoid wasp, Cotesia plutellae, alters host development of Plutella xylostella by extending larval period and preventing metamorphosis. Insulin signal plays a crucial role in mediating insect development and controlling blood sugar level in insects. In this study, three insulin-like peptide genes (PxILP1-3) were predicted from the genome of P. xylostella. However, only PxILP1 was confirmed to be expressed in P. xylostella. Starvation suppressed the expression level of PxILP1 and up-regulated plasma trehalose level. RNA interference against PxILP1 mimicked starvation effect and extended the larval period of P. xylostella. Parasitized larvae exhibited significantly lower levels of PxILP1 expression compared to nonparasitized larvae. Injection of wasp-symbiotic polydnavirus C. plutellae bracovirus (CpBV) also suppressed PxILP1 expression and extended the larval period. Injection of a viral segment (CpBV-S30) containing a viral histone H4 (CpBV-H4) also suppressed PxILP1 expression. Co-injection of CpBV-S30 and double-stranded RNA (dsCpBV-H4) specific to CpBV-H4 rescued the suppression of PxILP1 expression. Injection of CpBV-S30 significantly extended larval development. Co-injection of CpBV-S30 with dsCpBV-H4 rescued the delay of larval development. Injection of a bovine insulin to parasitized larvae prevented parasitoid development. These results indicate that parasitism of C. plutellae can down-regulate host insulin signaling with the help of parasitic factor CpBV-H4.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Bioresource Sciences, Andong National University, Andong 36729, South Korea
| | - Xiaojun Gu
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yonggyun Kim
- Department of Bioresource Sciences, Andong National University, Andong 36729, South Korea.
| |
Collapse
|
18
|
Permissiveness of lepidopteran hosts is linked to differential expression of bracovirus genes. Virology 2016; 492:259-72. [DOI: 10.1016/j.virol.2016.02.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 01/01/2023]
|
19
|
Wang F, Xue R, Li X, Hu C, Xia Q. Characterization of a protein tyrosine phosphatase as a host factor promoting baculovirus replication in silkworm, Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 57:31-7. [PMID: 26684065 PMCID: PMC7124732 DOI: 10.1016/j.dci.2015.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/02/2015] [Accepted: 12/02/2015] [Indexed: 05/09/2023]
Abstract
The relevance of protein tyrosine phosphatase (PTP) to host-pathogen interaction is highlighted in mammalian studies, whereas less is known in insects. Here we presented the categorization of the PTP complement of silkworm and characterized their homologous relationship with human and fruit fly PTPs. Among the 36 PTP genes, ptp-h, which was proposed to be the origin of baculovirus ptp belongs to atypical VH1-like dual-specific PTP subset and encodes a catalytic active protein. The maximum expression level of Bmptp-h was at 5th instar and in fat body. Bombyx mori nucleopolyhedrovirus (BmNPV) infection potently induced its expression in silkworm larvae and in BmE cells. Knock-down of Bmptp-h by RNA interference significantly inhibited viral replication, and over-expression enhanced viral replication as determined by viral DNA abundance and BmNPV-GFP positive cells. These results suggest that BmPTP-h might be one of the host factors that is beneficial to baculovirus infection by promoting viral replication.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Renju Xue
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Xianyang Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Cuimei Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
20
|
Abstract
Virus-host associations are usually viewed as parasitic, but several studies in recent years have reported examples of viruses that benefit host organisms. The Polydnaviridae are of particular interest because these viruses are all obligate mutualists of insects called parasitoid wasps. Parasitoids develop during their immature stages by feeding inside the body of other insects, which serve as their hosts. Polydnaviruses are vertically transmitted as proviruses through the germ line of wasps but also function as gene delivery vectors that wasps rely upon to genetically manipulate the hosts they parasitize. Here we review the evolutionary origin of polydnaviruses, the organization and function of their genomes, and some of their roles in parasitism.
Collapse
Affiliation(s)
- Michael R Strand
- Department of Entomology, University of Georgia, Athens, Georgia 30602; ,
| | - Gaelen R Burke
- Department of Entomology, University of Georgia, Athens, Georgia 30602; ,
| |
Collapse
|
21
|
Venom of Parasitoid Pteromalus puparum Impairs Host Humoral Antimicrobial Activity by Decreasing Host Cecropin and Lysozyme Gene Expression. Toxins (Basel) 2016; 8:52. [PMID: 26907346 PMCID: PMC4773805 DOI: 10.3390/toxins8020052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/30/2016] [Accepted: 02/04/2016] [Indexed: 11/16/2022] Open
Abstract
Insect host/parasitoid interactions are co-evolved systems in which host defenses are balanced by parasitoid mechanisms to disable or hide from host immune effectors. Here, we report that Pteromalus puparum venom impairs the antimicrobial activity of its host Pieris rapae. Inhibition zone results showed that bead injection induced the antimicrobial activity of the host hemolymph but that venom inhibited it. The cDNAs encoding cecropin and lysozyme were screened. Relative quantitative PCR results indicated that all of the microorganisms and bead injections up-regulated the transcript levels of the two genes but that venom down-regulated them. At 8 h post bead challenge, there was a peak in the transcript level of the cecropin gene, whereas the peak of lysozyme gene occurred at 24 h. The transcripts levels of the two genes were higher in the granulocytes and fat body than in other tissues. RNA interference decreased the transcript levels of the two genes and the antimicrobial activity of the pupal hemolymph. Venom injections similarly silenced the expression of the two genes during the first 8 h post-treatment in time- and dose-dependent manners, after which the silence effects abated. Additionally, recombinant cecropin and lysozyme had no significant effect on the emergence rate of pupae that were parasitized by P. puparum females. These findings suggest one mechanism of impairing host antimicrobial activity by parasitoid venom.
Collapse
|
22
|
Ovary ecdysteroidogenic hormone requires a receptor tyrosine kinase to activate egg formation in the mosquito Aedes aegypti. Proc Natl Acad Sci U S A 2015; 112:5057-62. [PMID: 25848040 DOI: 10.1073/pnas.1501814112] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mosquitoes are major disease vectors because most species must feed on blood from a vertebrate host to produce eggs. Blood feeding by the vector mosquito Aedes aegypti triggers the release of two neurohormones, ovary ecdysteroidogenic hormone (OEH) and insulin-like peptides (ILPs), which activate multiple processes required for egg formation. ILPs function by binding to the insulin receptor, which activates downstream components in the canonical insulin signaling pathway. OEH in contrast belongs to a neuropeptide family called neuroparsins, whose receptor is unknown. Here we demonstrate that a previously orphanized receptor tyrosine kinase (RTK) from A. aegypti encoded by the gene AAEL001915 is an OEH receptor. Phylogenetic studies indicated that the protein encoded by this gene, designated AAEL001915, belongs to a clade of RTKs related to the insulin receptor, which are distinguished by an extracellular Venus flytrap module. Knockdown of AAEL001915 by RNAi disabled OEH-mediated egg formation in A. aegypti. AAEL001915 was primarily detected in the mosquito ovary in association with follicular epithelial cells. Both monomeric and dimeric AAEL001915 were detected in mosquito ovaries and transfected Drosophila S2 cells. Functional assays further indicated that OEH bound to dimeric AAEL001915, which resulted in downstream phosphorylation of Ak strain transforming factor (Akt). We hypothesize that orthologs of AAEL001915 in other insects are neuroparsin receptors.
Collapse
|
23
|
Schneider SE, Thomas JH. Accidental genetic engineers: horizontal sequence transfer from parasitoid wasps to their Lepidopteran hosts. PLoS One 2014; 9:e109446. [PMID: 25296163 PMCID: PMC4190172 DOI: 10.1371/journal.pone.0109446] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/04/2014] [Indexed: 11/18/2022] Open
Abstract
We show here that 105 regions in two Lepidoptera genomes appear to derive from horizontally transferred wasp DNA. We experimentally verified the presence of two of these sequences in a diverse set of silkworm (Bombyx mori) genomes. We hypothesize that these horizontal transfers are made possible by the unusual strategy many parasitoid wasps employ of injecting hosts with endosymbiotic polydnaviruses to minimize the host's defense response. Because these virus-like particles deliver wasp DNA to the cells of the host, there has been much interest in whether genetic information can be permanently transferred from the wasp to the host. Two transferred sequences code for a BEN domain, known to be associated with polydnaviruses and transcriptional regulation. These findings represent the first documented cases of horizontal transfer of genes between two organisms by a polydnavirus. This presents an interesting evolutionary paradigm in which host species can acquire new sequences from parasitoid wasps that attack them. Hymenoptera and Lepidoptera diverged ∼300 MYA, making this type of event a source of novel sequences for recipient species. Unlike many other cases of horizontal transfer between two eukaryote species, these sequence transfers can be explained without the need to invoke the sequences 'hitchhiking' on a third organism (e.g. retrovirus) capable of independent reproduction. The cellular machinery necessary for the transfer is contained entirely in the wasp genome. The work presented here is the first such discovery of what is likely to be a broader phenomenon among species affected by these wasps.
Collapse
Affiliation(s)
- Sean E. Schneider
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - James H. Thomas
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
24
|
Functional annotation of Cotesia congregata bracovirus: identification of viral genes expressed in parasitized host immune tissues. J Virol 2014; 88:8795-812. [PMID: 24872581 DOI: 10.1128/jvi.00209-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED Bracoviruses (BVs) from the Polydnaviridae family are symbiotic viruses used as biological weapons by parasitoid wasps to manipulate lepidopteran host physiology and induce parasitism success. BV particles are produced by wasp ovaries and injected along with the eggs into the caterpillar host body, where viral gene expression is necessary for wasp development. Recent sequencing of the proviral genome of Cotesia congregata BV (CcBV) identified 222 predicted virulence genes present on 35 proviral segments integrated into the wasp genome. To date, the expressions of only a few selected candidate virulence genes have been studied in the caterpillar host, and we lacked a global vision of viral gene expression. In this study, a large-scale transcriptomic analysis by 454 sequencing of two immune tissues (fat body and hemocytes) of parasitized Manduca sexta caterpillar hosts allowed the detection of expression of 88 CcBV genes expressed 24 h after the onset of parasitism. We linked the expression profiles of these genes to several factors, showing that different regulatory mechanisms control viral gene expression in the host. These factors include the presence of signal peptides in encoded proteins, diversification of promoter regions, and, more surprisingly, gene position on the proviral genome. Indeed, most genes for which expression could be detected are localized in particular proviral regions globally producing higher numbers of circles. Moreover, this polydnavirus (PDV) transcriptomic analysis also reveals that a majority of CcBV genes possess at least one intron and an arthropod transcription start site, consistent with an insect origin of these virulence genes. IMPORTANCE Bracoviruses (BVs) are symbiotic polydnaviruses used by parasitoid wasps to manipulate lepidopteran host physiology, ensuring wasp offspring survival. To date, the expressions of only a few selected candidate BV virulence genes have been studied in caterpillar hosts. We performed a large-scale analysis of BV gene expression in two immune tissues of Manduca sexta caterpillars parasitized by Cotesia congregata wasps. Genes for which expression could be detected corresponded to genes localized in particular regions of the viral genome globally producing higher numbers of circles. Our study thus brings an original global vision of viral gene expression and paves the way to the determination of the regulatory mechanisms enabling the expression of BV genes in targeted organisms, such as major insect pests. In addition, we identify sequence features suggesting that most BV virulence genes were acquired from insect genomes.
Collapse
|
25
|
Polydnavirus-wasp associations: evolution, genome organization, and function. Curr Opin Virol 2013; 3:587-94. [DOI: 10.1016/j.coviro.2013.06.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 06/09/2013] [Accepted: 06/10/2013] [Indexed: 01/02/2023]
|
26
|
Parasitization by Cotesia chilonis influences gene expression in fatbody and hemocytes of Chilo suppressalis. PLoS One 2013; 8:e74309. [PMID: 24086331 PMCID: PMC3781088 DOI: 10.1371/journal.pone.0074309] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 07/31/2013] [Indexed: 01/02/2023] Open
Abstract
Background During oviposition many parasitoid wasps inject various factors, such as polydnaviruses (PDVs), along with eggs that manipulate the physiology and development of their hosts. These manipulations are thought to benefit the parasites. However, the detailed mechanisms of insect host-parasitoid interactions are not fully understood at the molecular level. Based on recent findings that some parasitoids influence gene expression in their hosts, we posed the hypothesis that parasitization by a braconid wasp, Cotesia chilonis, influences the expression of genes responsible for development, metabolism and immune functions in the fatbody and hemocytes of its host, Chilo suppressalis. Methodology/Principal Findings We obtained 39,344,452 reads, which were assembled into 146,770 scaffolds, and 76,016 unigenes. Parasitization impacted gene expression in fatbody and hemocytes. Of these, 8096 fatbody or 5743 hemocyte unigenes were down-regulated, and 2572 fatbody or 1452 hemocyte unigenes were up-regulated. Gene ontology data showed that the majority of the differentially expressed genes are involved in enzyme-regulated activity, binding, transcription regulator activity and catalytic activity. qPCR results show that most anti-microbial peptide transcription levels were up-regulated after parasitization. Expression of bracovirus genes was detected in parasitized larvae with 19 unique sequences identified from six PDV gene families including ankyrin, CrV1 protein, cystatin, early-expressed (EP) proteins, lectin, and protein tyrosine phosphatase. Conclusions The current study supports our hypothesis that parasitization influences the expression of fatbody and hemocyte genes in the host, C. suppressalis. The general view is that manipulation of host metabolism and immunity benefits the development and emergence of the parasitoid offsprings. The accepted beneficial mechanisms include the direct impact of parasitoid-associated virulence factors such as venom and polydnavirus on host tissues (such as cell damage) and, more deeply, the ability of these factors to influence gene expression. We infer that insect parasitoids generally manipulate their environments, the internal milieu of their hosts.
Collapse
|
27
|
Jancek S, Bézier A, Gayral P, Paillusson C, Kaiser L, Dupas S, Le Ru BP, Barbe V, Periquet G, Drezen JM, Herniou EA. Adaptive selection on bracovirus genomes drives the specialization of Cotesia parasitoid wasps. PLoS One 2013; 8:e64432. [PMID: 23724046 PMCID: PMC3665748 DOI: 10.1371/journal.pone.0064432] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 04/15/2013] [Indexed: 01/10/2023] Open
Abstract
The geographic mosaic of coevolution predicts parasite virulence should be locally adapted to the host community. Cotesia parasitoid wasps adapt to local lepidopteran species possibly through their symbiotic bracovirus. The virus, essential for the parasitism success, is at the heart of the complex coevolutionary relationship linking the wasps and their hosts. The large segmented genome contained in the virus particles encodes virulence genes involved in host immune and developmental suppression. Coevolutionary arms race should result in the positive selection of particular beneficial alleles. To understand the global role of bracoviruses in the local adaptation or specialization of parasitoid wasps to their hosts, we studied the molecular evolution of four bracoviruses associated with wasps of the genus Cotesia, including C congregata, C vestalis and new data and annotation on two ecologically differentiated populations of C sesamie, Kitale and Mombasa. Paired orthologs analyses revealed more genes under positive selection when comparing the two C sesamiae bracoviruses belonging to the same species, and more genes under strong evolutionary constraint between species. Furthermore branch-site evolutionary models showed that 17 genes, out of the 54 currently available shared by the four bracoviruses, harboured sites under positive selection including: the histone H4-like, a C-type lectin, two ep1-like, ep2, a viral ankyrin, CrV1, a ben-domain, a Serine-rich, and eight unknown genes. Lastly the phylogenetic analyses of the histone, ep2 and CrV1 genes in different African C sesamiae populations showed that each gene described differently the individual relationships. In particular we found recombination had happened between the ep2 and CrV1 genes, which are localized 37.5 kb apart on the wasp chromosomes. Involved in multidirectional coevolutionary interactions, C sesamiae wasps rely on different bracovirus mediated molecular pathways to overcome local host resistance.
Collapse
Affiliation(s)
- Séverine Jancek
- Institut de Recherches sur la Biologie de l’Insecte, UMR 7261 CNRS, Université François-Rabelais, UFR Sciences et Techniques, Parc Grandmont, Tours, France
| | - Annie Bézier
- Institut de Recherches sur la Biologie de l’Insecte, UMR 7261 CNRS, Université François-Rabelais, UFR Sciences et Techniques, Parc Grandmont, Tours, France
| | - Philippe Gayral
- Institut de Recherches sur la Biologie de l’Insecte, UMR 7261 CNRS, Université François-Rabelais, UFR Sciences et Techniques, Parc Grandmont, Tours, France
| | - Corentin Paillusson
- Institut de Recherches sur la Biologie de l’Insecte, UMR 7261 CNRS, Université François-Rabelais, UFR Sciences et Techniques, Parc Grandmont, Tours, France
| | - Laure Kaiser
- Laboratoire Evolution, Génomes et Spéciation, CNRS UPR9034, IRD UR 072 and Université Paris Sud, Gif sur Yvette, France
- Unité de Recherche UMR 1272, Physiologie de l’Insecte, Signalisation et Communication, INRA, Versailles, France
| | - Stéphane Dupas
- Laboratoire Evolution, Génomes et Spéciation, CNRS UPR9034, IRD UR 072 and Université Paris Sud, Gif sur Yvette, France
| | - Bruno Pierre Le Ru
- Laboratoire Evolution, Génomes et Spéciation, CNRS UPR9034, IRD UR 072 and Université Paris Sud, Gif sur Yvette, France
- Icipe, IRD UR 072, Nairobi, Kenya
| | - Valérie Barbe
- Genoscope (CEA), CNRS UMR 8030, Université d'Evry, Evry, France
| | - Georges Periquet
- Institut de Recherches sur la Biologie de l’Insecte, UMR 7261 CNRS, Université François-Rabelais, UFR Sciences et Techniques, Parc Grandmont, Tours, France
| | - Jean-Michel Drezen
- Institut de Recherches sur la Biologie de l’Insecte, UMR 7261 CNRS, Université François-Rabelais, UFR Sciences et Techniques, Parc Grandmont, Tours, France
| | - Elisabeth A. Herniou
- Institut de Recherches sur la Biologie de l’Insecte, UMR 7261 CNRS, Université François-Rabelais, UFR Sciences et Techniques, Parc Grandmont, Tours, France
| |
Collapse
|
28
|
Djoumad A, Stoltz D, Béliveau C, Boyle B, Kuhn L, Cusson M. Ultrastructural and genomic characterization of a second banchine polydnavirus confirms the existence of shared features within this ichnovirus lineage. J Gen Virol 2013; 94:1888-1895. [PMID: 23658210 DOI: 10.1099/vir.0.052506-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polydnaviruses (PDVs) are symbiotic viruses carried by endoparasitic wasps and transmitted to caterpillar hosts during parasitization. Although they share several features, including a segmented dsDNA genome, a unique life cycle where replication is restricted to the wasp host, and immunodepressive/developmental effects on the caterpillar host, PDVs carried by ichneumonid and braconid wasps (referred to as ichnoviruses and bracoviruses, respectively) have different evolutionary origins. In addition, ichnoviruses (IVs) form two distinct lineages, with viral entities found in wasps belonging to the subfamilies Campopleginae and Banchinae displaying strikingly different virion morphologies and genomic features. However, the current description for banchine IVs is based on the characterization of a single species, namely that of the Glypta fumiferanae IV (GfIV). Here we provide an ultrastructural and genomic analysis of a second banchine IV isolated from the wasp Apophua simplicipes, and we show that this virus shares many features with GfIV, including a multi-nucleocapsid virion, an aggregate genome size of ~300 kb, genome segments <5 kb, an impressively high degree of genome segmentation and a very similar gene content (same gene families in both viruses). Altogether, the data presented here confirm the existence of shared characteristics within this banchine IV lineage.
Collapse
Affiliation(s)
- Abdelmadjid Djoumad
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, QC G1V 0A6, Canada.,Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du PEPS, PO Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada
| | - Don Stoltz
- Department of Microbiology and Immunology, Sir Charles Tupper Medical Building, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Catherine Béliveau
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du PEPS, PO Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada
| | - Brian Boyle
- Institut de biologie intégrative et des systèmes, Université Laval, Québec, QC G1V 0A6, Canada
| | - Lisa Kuhn
- Department of Microbiology and Immunology, Sir Charles Tupper Medical Building, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Michel Cusson
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, QC G1V 0A6, Canada.,Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du PEPS, PO Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada
| |
Collapse
|
29
|
Serbielle C, Dupas S, Perdereau E, Héricourt F, Dupuy C, Huguet E, Drezen JM. Evolutionary mechanisms driving the evolution of a large polydnavirus gene family coding for protein tyrosine phosphatases. BMC Evol Biol 2012; 12:253. [PMID: 23270369 PMCID: PMC3573978 DOI: 10.1186/1471-2148-12-253] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 12/11/2012] [Indexed: 11/20/2022] Open
Abstract
Background Gene duplications have been proposed to be the main mechanism involved in genome evolution and in acquisition of new functions. Polydnaviruses (PDVs), symbiotic viruses associated with parasitoid wasps, are ideal model systems to study mechanisms of gene duplications given that PDV genomes consist of virulence genes organized into multigene families. In these systems the viral genome is integrated in a wasp chromosome as a provirus and virus particles containing circular double-stranded DNA are injected into the parasitoids’ hosts and are essential for parasitism success. The viral virulence factors, organized in gene families, are required collectively to induce host immune suppression and developmental arrest. The gene family which encodes protein tyrosine phosphatases (PTPs) has undergone spectacular expansion in several PDV genomes with up to 42 genes. Results Here, we present strong indications that PTP gene family expansion occurred via classical mechanisms: by duplication of large segments of the chromosomally integrated form of the virus sequences (segmental duplication), by tandem duplications within this form and by dispersed duplications. We also propose a novel duplication mechanism specific to PDVs that involves viral circle reintegration into the wasp genome. The PTP copies produced were shown to undergo conservative evolution along with episodes of adaptive evolution. In particular recently produced copies have undergone positive selection in sites most likely involved in defining substrate selectivity. Conclusion The results provide evidence about the dynamic nature of polydnavirus proviral genomes. Classical and PDV-specific duplication mechanisms have been involved in the production of new gene copies. Selection pressures associated with antagonistic interactions with parasitized hosts have shaped these genes used to manipulate lepidopteran physiology with evidence for positive selection involved in adaptation to host targets.
Collapse
Affiliation(s)
- Céline Serbielle
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, Faculté des Sciences et Techniques, Université F. Rabelais, Parc de Grandmont, 37200, Tours, France
| | | | | | | | | | | | | |
Collapse
|
30
|
Polydnavirus Ank proteins bind NF-κB homodimers and inhibit processing of Relish. PLoS Pathog 2012; 8:e1002722. [PMID: 22654665 PMCID: PMC3359993 DOI: 10.1371/journal.ppat.1002722] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 04/12/2012] [Indexed: 12/25/2022] Open
Abstract
Recent studies have greatly increased understanding of how the immune system of insects responds to infection, whereas much less is known about how pathogens subvert immune defenses. Key regulators of the insect immune system are Rel proteins that form Nuclear Factor-κB (NF-κB) transcription factors, and inhibitor κB (IκB) proteins that complex with and regulate NF-κBs. Major mortality agents of insects are parasitoid wasps that carry immunosuppressive polydnaviruses (PDVs). Most PDVs encode ank genes that share features with IκBs, while our own prior studies suggested that two ank family members from Microplitis demolitor bracovirus (MdBV) (Ank-H4 and Ank-N5) behave as IκB mimics. However, the binding affinities of these viral mimics for Rel proteins relative to endogenous IκBs remained unclear. Surface plasmon resonance (SPR) and co-immunoprecipitation assays showed that the IκB Cactus from Drosophila bound Dif and Dorsal homodimers more strongly than Relish homodimers. Ank-H4 and –N5 bound Dif, Dorsal and Relish homodimers with higher affinity than the IκB domain of Relish (Rel-49), and also bound Relish homodimers more strongly than Cactus. Ank-H4 and –N5 inhibited processing of compound Relish and reduced the expression of several antimicrobial peptide genes regulated by the Imd signaling pathway in Drosophila mbn2 cells. Studies conducted in the natural host Pseudoplusia includens suggested that parasitism by M. demolitor also activates NF-κB signaling and that MdBV inhibits this response. Overall, our data provide the first quantitative measures of insect and viral IκB binding affinities, while also showing that viral mimics disable Relish processing. Central to the study of host-pathogen interactions is understanding how the immune system of hosts responds to infection, and reciprocally how pathogens subvert host defenses. In the case of insects, understanding of how the immune system responds to infection greatly exceeds understanding of pathogen counterstrategies. Parasitoid wasps are key mortality agents of insects. Thousands of wasp species have also evolved a symbiotic relationship with large DNA viruses in the family Polydnaviridae whose primary function is to deliver immunosuppressive virulence genes to the insect hosts that wasps parasitize. The function of most PDV-encoded virulence genes, however, remains unknown. In this article, we investigated the function of two ank gene family members from Microplitis demolitor bracovirus (MdBV). Our results indicate that Ank-H4 and Ank-N5 function as mimics of IκB proteins, which regulate a family of transcription factors called NF-κBs that control many genes of the insect immune system. IκBs and NF-κBs also function as key regulators of the mammalian immune system. Our results thus suggest that viral Ank proteins subvert the immune system of host insects by targeting conserved signaling pathways used by a diversity of organisms.
Collapse
|
31
|
Burke GR, Strand MR. Polydnaviruses of Parasitic Wasps: Domestication of Viruses To Act as Gene Delivery Vectors. INSECTS 2012; 3:91-119. [PMID: 26467950 PMCID: PMC4553618 DOI: 10.3390/insects3010091] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/07/2012] [Accepted: 01/16/2012] [Indexed: 12/21/2022]
Abstract
Symbiosis is a common phenomenon in which associated organisms can cooperate in ways that increase their ability to survive, reproduce, or utilize hostile environments. Here, we discuss polydnavirus symbionts of parasitic wasps. These viruses are novel in two ways: (1) they have become non-autonomous domesticated entities that cannot replicate outside of wasps; and (2) they function as a delivery vector of genes that ensure successful parasitism of host insects that wasps parasitize. In this review we discuss how these novelties may have arisen, which genes are potentially involved, and what the consequences have been for genome evolution.
Collapse
Affiliation(s)
- Gaelen R Burke
- Department of Entomology, The University of Georgia, 120 Cedar St., Athens, GA 30601, USA.
| | - Michael R Strand
- Department of Entomology, The University of Georgia, 120 Cedar St., Athens, GA 30601, USA.
| |
Collapse
|
32
|
Magkrioti C, Iatrou K, Labropoulou V. Differential inhibition of BmRelish1-dependent transcription in lepidopteran cells by bracovirus ankyrin-repeat proteins. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:993-1002. [PMID: 22015579 DOI: 10.1016/j.ibmb.2011.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 09/23/2011] [Accepted: 09/30/2011] [Indexed: 05/31/2023]
Abstract
In the tripartite parasitization system of the lepidopteran host Manduca sexta, the endoparasitoid wasp Cotesia congregata and its endosymbiotic virus, C. congregata Bracovirus (CcBV), the expression of viral proteins is necessary for successful parasitization. Here we have examined the in vitro effects of six members of the ankyrin-repeat protein family (Ank) of CcBV, which are thought to interfere with the host's induced innate immune responses, on the transcriptional activity of a heterologous lepidopteran Rel/NFκB transcription factor, Relish1 of Bombyx mori. Using as transcriptional activator BmRelish1-d2 (R1d2), a constitutively active mutant of the major regulator of the Imd pathway, BmRelish1, in conjunction with a reporter gene controlled by a B. mori antimicrobial peptide gene promoter, we have found that 5 of the 6 examined Anks suppress R1d2-dependent transcriptional activity to various degrees. Immunofluorescence studies have also revealed that while some of the Ank proteins have a rather strict cytoplasmic localization, others are detected both in the cytoplasm and the nucleus of the expressing cells and that colocalization with R1d2 occurs exclusively in the nucleus. Thus, our results suggest that functional and spatial differences among the various CcBV Ank family members may be responsible for the observed differential inhibition of R1d2 activity.
Collapse
Affiliation(s)
- Christiana Magkrioti
- Insect Molecular Genetics and Biotechnology Group, Institute of Biology, National Centre for Scientific Research Demokritos, Neapoleos & Patr. Grigoriou, 153 10 Aghia Paraskevi Attikis, Athens, Greece
| | | | | |
Collapse
|
33
|
Fang Q, Wang L, Zhu Y, Stanley DW, Chen X, Hu C, Ye G. Pteromalus puparum venom impairs host cellular immune responses by decreasing expression of its scavenger receptor gene. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:852-862. [PMID: 21802512 DOI: 10.1016/j.ibmb.2011.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/30/2011] [Accepted: 07/12/2011] [Indexed: 05/26/2023]
Abstract
Insect host/parasitoid interactions are co-evolved systems in which host defenses are balanced by parasitoid mechanisms to disable or hide from host immune effectors. Although there is a rich literature on these systems, parasitoid immune-disabling mechanisms have not been fully elucidated. Here we report on a newly discovered immune-disabling mechanism in the Pieris rapae/Pteromalus puparum host/parasitoid system. Because venom injections and parasitization suppresses host phagocytosis, we turned attention to the P. rapae scavenger receptor (Pr-SR), posing the hypothesis that P. puparum venom suppresses expression of the host Pr-SR gene. To test our hypothesis, we cloned a full-length cDNA of the Pr-SR. Multiple sequences alignment showed the deduced amino acid sequence of Pr-SR is similar to scavenger receptors of other lepidopterans. Bacterial and bead injections induced Pr-SR mRNA and protein expression, which peaked at 4h post-bead injection. Venom injection inhibited Pr-SR expression. Pr-SR was specifically expressed in granulocytes compared to plasmatocytes. We localized the Pr-SR protein in cytoplasm and cellular membrane, with no evidence of secretion into host plasma. Double-strand RNA designed to Pr-SR mRNA silenced expression of Pr-SR and significantly impaired host phagocytosis and encapsulation reactions. Venom injections similarly silenced Pr-SR expression during the first 8h post-treatment, after which the silencing effects gradually abated. We infer from these findings that one mechanism of impairing P. rapae hemocytic immune reactions is by silencing expression of Pr-SR.
Collapse
Affiliation(s)
- Qi Fang
- State Key Laboratory of Rice Biology & Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Venom of parasitoid, Pteromalus puparum, suppresses host, Pieris rapae, immune promotion by decreasing host C-type lectin gene expression. PLoS One 2011; 6:e26888. [PMID: 22046395 PMCID: PMC3202585 DOI: 10.1371/journal.pone.0026888] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 10/05/2011] [Indexed: 11/19/2022] Open
Abstract
Background Insect hosts have evolved immunity against invasion by parasitoids, and in co-evolutionary response parasitoids have also developed strategies to overcome host immune systems. The mechanisms through which parasitoid venoms disrupt the promotion of host immunity are still unclear. We report here a new mechanism evolved by parasitoid Pteromalus puparum, whose venom inhibited the promotion of immunity in its host Pieris rapae (cabbage white butterfly). Methodology/Principal Findings A full-length cDNA encoding a C-type lectin (Pr-CTL) was isolated from P. rapae. Quantitative PCR and immunoblotting showed that injection of bacterial and inert beads induced expression of Pr-CTL, with peaks of mRNA and Pr-CTL protein levels at 4 and 8 h post beads challenge, respectively. In contrast, parasitoid venom suppressed Pr-CTL expression when co-injected with beads, in a time and dose-dependent manner. Immunolocalization and immunoblotting results showed that Pr-CTL was first detectable in vesicles present in cytoplasm of granulocytes in host hemolymph, and was then secreted from cells into circulatory fluid. Finally, the secreted Pr-CTL bound to cellular membranes of both granulocytes and plasmatocytes. Injection of double-stranded RNA specific for target gene decreased expression of Pr-CTL, and a few other host immune-related genes. Suppression of Pr-CTL expression also down-regulated antimicrobial and phenoloxidase activities, and reducing phagocytotic and encapsulation rates in host. The inhibitory effect of parasitoid venom on host encapsulation is consistent with its effect in suppressing Pr-CTL expression. Binding assay results showed that recombinant Pr-CTL directly attached to the surface of P. puparum egges. We infer that Pr-CTL may serve as an immune signalling co-effector, first binding to parasitoid eggs, regulating expression of a set of immune-related genes and promoting host immunity. Conclusions/Significance P. puparum venom inhibits promotion of host immune responses by silencing expression of host C-type lectin gene Pr-CTL, whose expression affected transcription of other host immune-related genes.
Collapse
|
35
|
Bitra K, Zhang S, Strand MR. Transcriptomic profiling of Microplitis
demolitor bracovirus reveals host, tissue and stage-specific patterns of activity. J Gen Virol 2011; 92:2060-2071. [DOI: 10.1099/vir.0.032680-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The polydnaviruses (PDVs) are a family of DNA viruses that are symbiotically associated with parasitoid wasps. The transcription of particular genes or gene-family members have been reported for several PDVs, but no studies have characterized the spatio-temporal patterns of expression for the entire complement of predicted genes in the encapsidated genome of any PDV isolate. The braconid wasp Microplitis
demolitor carries the PDV Microplitis
demolitor bracovirus (MdBV) and parasitizes larval stage Pseudoplusia (Chrysodeixis) includens. The encapsidated genome consists of 15 genomic segments with 51 predicted ORFs encoding proteins ≥100 aa. A majority of these ORFs form four multimember gene families (ptp, ank, glc and egf) while the remaining ORFs consist of single copy (orph) genes. Here we used RT-PCR and quantitative real-time PCR methods to profile the encapsidated transcriptome of MdBV in P.
includens and M.
demolitor. Our results indicate that most predicted genes are expressed in P.
includens. Spatial patterns of expression in P.
includens differed among genes, but temporal patterns of expression were generally similar, with transcript abundance progressively declining between 24 and 120 h. A subset of ptp, ank and orph genes were also expressed in adult female but not male M.
demolitor. Only one encapsidated gene (ank-H4) was expressed in all life stages of M.
demolitor, albeit at much lower levels than in P.
includens. However, another encapsidated gene (orph-B1) was expressed in adult M.
demolitor at similar levels to those detected in P.
includens.
Collapse
Affiliation(s)
- Kavita Bitra
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Shu Zhang
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Michael R. Strand
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
36
|
The encapsidated genome of Microplitis demolitor bracovirus integrates into the host Pseudoplusia includens. J Virol 2011; 85:11685-96. [PMID: 21880747 DOI: 10.1128/jvi.05726-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Polydnaviruses (PDVs) are symbionts of parasitoid wasps that function as gene delivery vehicles in the insects (hosts) that the wasps parasitize. PDVs persist in wasps as integrated proviruses but are packaged as circularized and segmented double-stranded DNAs into the virions that wasps inject into hosts. In contrast, little is known about how PDV genomic DNAs persist in host cells. Microplitis demolitor carries Microplitis demolitor bracovirus (MdBV) and parasitizes the host Pseudoplusia includens. MdBV infects primarily host hemocytes and also infects a hemocyte-derived cell line from P. includens called CiE1 cells. Here we report that all 15 genomic segments of the MdBV encapsidated genome exhibited long-term persistence in CiE1 cells. Most MdBV genes expressed in hemocytes were persistently expressed in CiE1 cells, including members of the glc gene family whose products transformed CiE1 cells into a suspension culture. PCR-based integration assays combined with cloning and sequencing of host-virus junctions confirmed that genomic segments J and C persisted in CiE1 cells by integration. These genomic DNAs also rapidly integrated into parasitized P. includens. Sequence analysis of wasp-viral junction clones showed that the integration of proviral segments in M. demolitor was associated with a wasp excision/integration motif (WIM) known from other bracoviruses. However, integration into host cells occurred in association with a previously unknown domain that we named the host integration motif (HIM). The presence of HIMs in most MdBV genomic DNAs suggests that the integration of each genomic segment into host cells occurs through a shared mechanism.
Collapse
|
37
|
Chen YF, Gao F, Ye XQ, Wei SJ, Shi M, Zheng HJ, Chen XX. Deep sequencing of Cotesia vestalis bracovirus reveals the complexity of a polydnavirus genome. Virology 2011; 414:42-50. [PMID: 21470650 DOI: 10.1016/j.virol.2011.03.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 01/26/2011] [Accepted: 03/10/2011] [Indexed: 01/05/2023]
Abstract
Here we completed the whole genome sequence of Cotesia vestalis bracovirus (CvBV) by deep sequencing and compared the genome features of CvBV to those of other polydnaviruses (PDVs). The genome is 540,215 base pairs divided into 35 genomic segments that range from 2.6 to 39.2kb. Comparison of CvBV with other PDVs shows that more segments are found, including new segments that have no corresponding segments in other phylogenetically related PDVs, which suggests that there might be still more segments not being sequenced in the present known PDVs. We identified eight gene families and five genes in CvBV, including new genes which were first found in PDVs. Strikingly, we identified a putative helicase protein displaying similarity to human Pif1 helicase, which has never been reported for other PDVs. This finding will bring new insights in research of these special viruses.
Collapse
Affiliation(s)
- Ya-Feng Chen
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | | | | | |
Collapse
|
38
|
Kwon B, Song S, Choi JY, Je YH, Kim Y. Transient expression of specific Cotesia plutellae bracoviral segments induces prolonged larval development of the diamondback moth, Plutella xylostella. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:650-658. [PMID: 20138886 DOI: 10.1016/j.jinsphys.2010.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 01/29/2010] [Accepted: 01/29/2010] [Indexed: 05/28/2023]
Abstract
A polydnavirus, Cotesia plutellae bracovirus (CpBV), possesses a segmented and dispersed genome that is located on chromosome(s) of its symbiotic endoparasitic wasp, C. plutellae. When the host wasp parasitizes larvae of the diamondback moth, Plutella xylostella, at least 27 viral genome segments are delivered to the parasitized host along with the wasp egg. The parasitized P. xylostella exhibits significant immunosuppression and a prolonged larval development. Parasitized larvae take about 2 days longer than nonparasitized larvae to develop until the wandering stage of the final larval instar, and die after egress of the full grown wasp larvae. Developmental analysis using juvenile hormone and ecdysteroid analogs suggests that altering endocrine signals could induce the retardation of larval developmental rate in P. xylostella. In this study we used a transient expression technique to micro-inject individual CpBV genome segments, and tested their ability to induce delayed larval development of P. xylostella. We demonstrated that a CpBV segment was able to express its own encoded genes when it was injected into nonparasitized larvae, in which the expression patterns of the segment genes were similar to those in the larvae parasitized by C. plutellae. Twenty three CpBV genome segments were individually cloned and injected into the second instar larvae of P. xylostella and their effects assessed by measuring the time taken for host development to the cocooning stage. Three CpBV genome segments markedly interfered with the host larval development. When the putative genes of these segments were analyzed, it was found that they did not share any common genes. Among these segments able to delay host development, segment S27 was predicted to encode seven protein tyrosine phosphatases (CpBV-PTPs), some of which were mutated by insertional inactivation with transposons, while other encoded gene expressions were unaffected. The mutant segments were unable to induce prolonged larval development of P. xylostella. These results suggest that CpBV can induce prolonged larval development of P. xylostella, and that at least some CpBV-PTPs may contribute to the parasitic role probably by altering titers of developmental hormones.
Collapse
Affiliation(s)
- Bowon Kwon
- Department of Bioresource Sciences, Andong National University, Andong 760-749, Republic of Korea
| | | | | | | | | |
Collapse
|
39
|
Pruijssers AJ, Falabella P, Eum JH, Pennacchio F, Brown MR, Strand MR. Infection by a symbiotic polydnavirus induces wasting and inhibits metamorphosis of the moth Pseudoplusia includens. ACTA ACUST UNITED AC 2009; 212:2998-3006. [PMID: 19717683 DOI: 10.1242/jeb.030635] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Insect pathogens and parasites often affect the growth and development of their hosts, but understanding of these processes is fragmentary. Among the most species-rich and important mortality agents of insects are parasitoid wasps that carry symbiotic polydnaviruses (PDVs). Like many PDV-carrying wasps, Microplitis demolitor inhibits growth and pupation of its lepidopteran host, Pseudoplusia includens, by causing host hemolymph juvenile hormone (JH) titers to remain elevated and preventing ecdysteroid titers from rising. Here we report these alterations only occurred if P. includens was parasitized prior to achieving critical weight, and were fully mimicked by infection with only M. demolitor bracovirus (MdBV). Metabolic assays revealed that MdBV infection of pre-critical weight larvae caused a rapid and persistent state of hyperglycemia and reduced nutrient stores. In vitro ecdysteroid assays further indicated that prothoracic glands from larvae infected prior to achieving critical weight remained in a refractory state of ecdysteroid release, whereas infection of post-critical weight larvae had little or no effect on ecdysteroid release by prothoracic glands. Taken together, our results suggest MdBV causes alterations in metabolic physiology, which prevent the host from achieving critical weight. This in turn inhibits the endocrine events that normally trigger metamorphosis.
Collapse
Affiliation(s)
- A J Pruijssers
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | |
Collapse
|
40
|
Fath-Goodin A, Kroemer JA, Webb BA. The Campoletis sonorensis ichnovirus vankyrin protein P-vank-1 inhibits apoptosis in insect Sf9 cells. INSECT MOLECULAR BIOLOGY 2009; 18:497-506. [PMID: 19453763 DOI: 10.1111/j.1365-2583.2009.00892.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The Campoletis sonorensis ichnovirus (CsIV) vankyrin genes encode proteins containing truncated ankyrin repeat domains with sequence homology to the inhibitory domains of NF-kappaB transcription factor inhibitors, IkappaBs. The CsIV vankyrin proteins are thought to be involved in the suppression of NF-kappaB activity during immune response and/or developmental events in the parasitized host. Here we report that when P-vank-1 was expressed stably from Sf9 cells, prolonged survival of these cells was observed after baculovirus infection, UV irradiation, and treatment with the apoptosis-inducing chemical camptothecin compared to untransformed Sf9 cells. Furthermore, P-vank-1 inhibited nuclear and internucleosomal degradation and caspase activity after induction of apoptosis in Sf9 cells stably expressing P-vank-1. This is the first report of a polydnavirus protein with anti-apoptotic function.
Collapse
Affiliation(s)
- A Fath-Goodin
- Department of Entomology, University of Kentucky, Lexington, Kentucky 40546-0091, USA.
| | | | | |
Collapse
|
41
|
Poirié M, Carton Y, Dubuffet A. Virulence strategies in parasitoid Hymenoptera as an example of adaptive diversity. C R Biol 2008; 332:311-20. [PMID: 19281961 DOI: 10.1016/j.crvi.2008.09.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 09/11/2008] [Indexed: 12/01/2022]
Abstract
Parasitoids are mostly insects that develop at the expense of other arthropods, which will die as a result of the interaction. Their reproductive success thus totally depends on their ability to successfully infest their host whose reproductive success relies on its own ability to avoid or overcome parasitism. Such intense selective pressures have resulted in extremely diverse adaptations in parasitoid strategies that ensure parasitism success. For instance, wasp-specific viruses (polydnaviruses) are injected into the host by parasitoid females to modulate its physiology and immunity. This article synthesizes available physiological and molecular data on parasitoid virulence strategies and discusses the evolutionary processes at work.
Collapse
Affiliation(s)
- Marylène Poirié
- UMR "Interactions biotiques et santé végétale", Université Nice Sophia Antipolis-CNRS (UMR 6243)-INRA (UMR 1301), 400 Route des Chappes, 06903 Sophia-Antipolis, France.
| | | | | |
Collapse
|
42
|
Labropoulou V, Douris V, Stefanou D, Magrioti C, Swevers L, Iatrou K. Endoparasitoid wasp bracovirus-mediated inhibition of hemolin function and lepidopteran host immunosuppression. Cell Microbiol 2008; 10:2118-28. [DOI: 10.1111/j.1462-5822.2008.01195.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Suderman RJ, Pruijssers AJ, Strand MR. Protein tyrosine phosphatase-H2 from a polydnavirus induces apoptosis of insect cells. J Gen Virol 2008; 89:1411-1420. [PMID: 18474557 DOI: 10.1099/vir.0.2008/000307-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The family Polydnaviridae is a large group of immunosuppressive insect viruses that are symbiotically associated with parasitoid wasps. The polydnavirus Microplitis demolitor bracovirus (MdBV) causes several alterations that disable the cellular and humoral immune defences of host insects, including apoptosis of the primary phagocytic population of circulating immune cells (haemocytes), called granulocytes. Here, we show that MdBV infection causes granulocytes in the lepidopteran Spodoptera frugiperda to apoptose. An expression screen conducted in the S. frugiperda 21 cell line identified the MdBV gene ptp-H2 as an apoptosis inducer, as indicated by cell fragmentation, annexin V binding, mitochondrial membrane depolarization and caspase activation. PTP-H2 is a classical protein tyrosine phosphatase that has been shown previously to function as an inhibitor of phagocytosis. PTP-H2-mediated death of Sf-21 cells was blocked by the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-(O-methyl) Asp-fluoromethylketone (Z-VAD-FMK), but cells maintained in this inhibitor still exhibited a suppressed phagocytic response. Mutagenesis experiments indicated that the essential catalytic cysteine residue required for the phosphatase activity of PTP-H2 was required for apoptotic activity in Sf-21 cells. Loss of adhesion was insufficient to stimulate apoptosis of Sf-21 cells. PTP-H2 expression, however, did significantly reduce proliferation of Sf-21 cells, which could contribute to the apoptotic activity of this viral gene. Overall, our results indicate that specific genes expressed by MdBV induce apoptosis of certain insect cells and that this activity contributes to immunosuppression of hosts.
Collapse
Affiliation(s)
- Richard J Suderman
- Department of Entomology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Andrea J Pruijssers
- Department of Entomology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Michael R Strand
- Department of Entomology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
44
|
Lu Z, Beck MH, Wang Y, Jiang H, Strand MR. The viral protein Egf1.0 is a dual activity inhibitor of prophenoloxidase-activating proteinases 1 and 3 from Manduca sexta. J Biol Chem 2008; 283:21325-33. [PMID: 18519564 DOI: 10.1074/jbc.m801593200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Some pathogens are capable of suppressing the melanization response of host insects, but the virulence factors responsible are largely unknown. The insect pathogen Microplitis demolitor bracovirus encodes the Egf family of small serine proteinase inhibitors. One family member, Egf1.0, was recently shown to suppress melanization of hemolymph in Manduca sexta in part by inhibiting the enzymatic activity of prophenoloxidase activating proteinase 3 (PAP3). However, other experiments suggested this viral protein suppresses melanization by more than one mechanism. Here we report that Egf1.0 inhibited the amidolytic activity of PAP1 and dose-dependently blocked processing of pro-PAP1 and pro-PAP3. Consistent with its PAP inhibitory activity, Egf1.0 also prevented processing of pro-phenoloxidase, serine proteinase homolog (SPH) 1, and SPH2. Isolation of Egf1.0-protein complexes from plasma indicated that Egf1.0 binds PAPs through its C-terminal repeat domain. Egf1.0 also potentially interacts with SPH2 and two other proteins, ferritin and gloverin, not previously associated with the phenoloxidase cascade. Overall, our results indicate that Egf1.0 is a dual activity PAP inhibitor that strongly suppresses the insect melanization response.
Collapse
Affiliation(s)
- Zhiqiang Lu
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | |
Collapse
|
45
|
Shi M, Chen YF, Yao Y, Huang F, Chen XX. Characterization of a protein tyrosine phosphatase gene CvBV202 from Cotesia vestalis polydnavirus (CvBV). Virus Genes 2008; 36:595-601. [DOI: 10.1007/s11262-008-0225-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 03/13/2008] [Indexed: 11/28/2022]
|
46
|
Colinet D, Schmitz A, Depoix D, Crochard D, Poirié M. Convergent use of RhoGAP toxins by eukaryotic parasites and bacterial pathogens. PLoS Pathog 2007; 3:e203. [PMID: 18166080 PMCID: PMC2156102 DOI: 10.1371/journal.ppat.0030203] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 11/15/2007] [Indexed: 01/14/2023] Open
Abstract
Inactivation of host Rho GTPases is a widespread strategy employed by bacterial pathogens to manipulate mammalian cellular functions and avoid immune defenses. Some bacterial toxins mimic eukaryotic Rho GTPase-activating proteins (GAPs) to inactivate mammalian GTPases, probably as a result of evolutionary convergence. An intriguing question remains whether eukaryotic pathogens or parasites may use endogenous GAPs as immune-suppressive toxins to target the same key genes as bacterial pathogens. Interestingly, a RhoGAP domain-containing protein, LbGAP, was recently characterized from the parasitoid wasp Leptopilina boulardi, and shown to protect parasitoid eggs from the immune response of Drosophila host larvae. We demonstrate here that LbGAP has structural characteristics of eukaryotic RhoGAPs but that it acts similarly to bacterial RhoGAP toxins in mammals. First, we show by immunocytochemistry that LbGAP enters Drosophila immune cells, plasmatocytes and lamellocytes, and that morphological changes in lamellocytes are correlated with the quantity of LbGAP they contain. Demonstration that LbGAP displays a GAP activity and specifically interacts with the active, GTP-bound form of the two Drosophila Rho GTPases Rac1 and Rac2, both required for successful encapsulation of Leptopilina eggs, was then achieved using biochemical tests, yeast two-hybrid analysis, and GST pull-down assays. In addition, we show that the overall structure of LbGAP is similar to that of eukaryotic RhoGAP domains, and we identify distinct residues involved in its interaction with Rac GTPases. Altogether, these results show that eukaryotic parasites can use endogenous RhoGAPs as virulence factors and that despite their differences in sequence and structure, eukaryotic and bacterial RhoGAP toxins are similarly used to target the same immune pathways in insects and mammals.
Collapse
Affiliation(s)
- Dominique Colinet
- UMR 1112 UNSA-INRA Résponses des Organismes aux Stress Environnementaux, Sophia-Antipolis, France
| | | | | | | | | |
Collapse
|
47
|
Beck MH, Strand MR. A novel polydnavirus protein inhibits the insect prophenoloxidase activation pathway. Proc Natl Acad Sci U S A 2007; 104:19267-72. [PMID: 18032603 PMCID: PMC2148279 DOI: 10.1073/pnas.0708056104] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2007] [Indexed: 11/18/2022] Open
Abstract
Pathogens often suppress the melanization response of host insects, but the underlying molecular mechanisms are largely unknown. Here we report that Microplitis demolitor bracovirus (MdBV) carried by the wasp M. demolitor produces a protein, Egf1.0, which inhibits the phenoloxidase (PO) cascade. Egf1.0 belongs to a larger gene family that shares a cysteine-rich motif with similarities to the trypsin inhibitor-like (TIL) domains of small serine proteinase inhibitors (smapins). Gain-of-function and RNAi experiments indicated that the Egf genes are the only MdBV-encoded factors responsible for disabling the insect melanization response. Known smapins bind target proteinases in a substrate-like fashion and are cleaved at a single reactive site bond. The P1-P1' position for Egf1.0 has the sequence Arg-Phe, which suggested that its target proteinase is a prophenoloxidase-activating proteinase (PAP). Wild-type Egf1.0 inhibited PAP-3 from Manduca sexta, whereas Egf1.0(R51A), whose reactive-site arginine was replaced with an alanine, had no PAP-3 inhibitory activity. Other experiments using wild-type and mutant constructs indicated that Egf1.0 blocks activation of the PO cascade via PAP inhibition. Overall, our results identify a novel inhibitor of the PO cascade and indicate that suppression of the host melanization response is functionally important for both the virus and its associated wasp.
Collapse
Affiliation(s)
- Markus H. Beck
- Department of Entomology, University of Georgia, Athens, GA 30602
| | | |
Collapse
|
48
|
Ibrahim AMA, Kim Y. Transient expression of protein tyrosine phosphatases encoded in Cotesia plutellae bracovirus inhibits insect cellular immune responses. Naturwissenschaften 2007; 95:25-32. [PMID: 17646950 DOI: 10.1007/s00114-007-0290-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 05/21/2007] [Accepted: 06/28/2007] [Indexed: 10/23/2022]
Abstract
Several immunosuppressive factors are associated with parasitism of an endoparasitoid wasp, Cotesia plutellae, on the diamondback moth, Plutella xylostella. C. plutellae bracovirus (CpBV) encodes a large number of putative protein tyrosine phosphatases (PTPs), which may play a role in inhibiting host cellular immunity. To address this inhibitory hypothesis of CpBV-PTPs, we performed transient expression of individual CpBV-PTPs in hemocytes of the beet armyworm, Spodoptera exigua, and analyzed their cellular immune responses. Two different forms of CpBV-PTPs were chosen and cloned into a eukaryotic expression vector under the control of the p10 promoter of baculovirus: one with the normal cysteine active site (CpBV-PTP1) and the other with a mutated active site (CpBV-PTP5). The hemocytes transfected with CpBV-PTP1 significantly increased in PTP activity compared to control hemocytes, but those with CpBV-PTP5 exhibited a significant decrease in the PTP activity. All transfected hemocytes exhibited a significant reduction in both cell spreading and encapsulation activities compared to control hemocytes. Co-transfection of CpBV-PTP1 together with its double-stranded RNA reduced the messenger RNA (mRNA) level of CpBV-PTP1 and resulted in recovery of both hemocyte behaviors. This is the first report demonstrating that the polydnaviral PTPs can manipulate PTP activity of the hemocytes to interrupt cellular immune responses.
Collapse
Affiliation(s)
- Ahmed M A Ibrahim
- Department of Bioresource Sciences, Andong National University, Andong, 760-749, South Korea
| | | |
Collapse
|