1
|
Schneider SM, Tebaldi G, Gianopulos KA, Weed DJ, Pritchard SM, Leach C, Nicola AV. Herpes simplex virus 1 glycoprotein C promotes virus penetration from endosomes during entry, independent of interaction with heparan sulfate. Front Microbiol 2025; 16:1549349. [PMID: 40270821 PMCID: PMC12014576 DOI: 10.3389/fmicb.2025.1549349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/21/2025] [Indexed: 04/25/2025] Open
Abstract
Herpes simplex virus 1 (HSV-1) gC is a multi-functional glycoprotein present in the viral envelope and on the surface of infected cells. Virion gC, and to a lesser extent the fusion protein gB, interacts with host heparan sulfate to mediate HSV-1 attachment to the cell surface. Virion gC selectively facilitates HSV-1 entry into cells that support entry by a low pH-dependent endocytic pathway. gC regulates fusion-associated conformational changes in gB. Here we investigated the mechanism by which gC plays a post-attachment role in HSV-1 entry into cells. HSV-1 entered HS-deficient cells by a low pH-dependent route. Similarly, HSV-1 deleted for HS-binding domains entered HS-bearing cells by a low pH pathway. Thus, the presence of HS on cells and the ability of HSV-1 to engage HS do not direct HSV-1 to a pH-dependent entry pathway. HSV-1 lacking gC accumulated in endosomes during viral entry, supporting the notion that gC influences viral penetration from endosomes. Interestingly, the pH-neutral cell-cell fusion mediated by HSV-1 glycoproteins gB, gD, and gH/gL was not altered by gC. Soluble heparin inhibited cell-cell fusion regardless of the presence of gC or heparan sulfate. The kinetics of endocytic uptake of gC-null HSV-1 was rapid and very similar to wild type virus. Thus, the role of gC in regulating low pH entry of HSV-1 occurs downstream of internalization of enveloped particles from the plasma membrane. Together, the results presented here and elsewhere support a post-attachment, post-internalization function for gC in HSV-1 entry that is independent of HS.
Collapse
Affiliation(s)
- Seth M. Schneider
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Giulia Tebaldi
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Katrina A. Gianopulos
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Darin J. Weed
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Suzanne M. Pritchard
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Chloe Leach
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Anthony V. Nicola
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| |
Collapse
|
2
|
Zhang Z, Ren X, Zhang Y, Zhang J, Li X, Zeng F, Yue R, Li Q, Zhang H, Ma D, Liao Y, Liao Y, Li D, Yu L, Jiang G, Zhao H, Zheng H, Li H, Zhao X, Liu L, Li Q. Analysis of the Interaction Between the Attenuated HSV-1 Strain M6 and Macrophages Indicates Its Potential as an Effective Vaccine Immunogen. Viruses 2025; 17:392. [PMID: 40143320 PMCID: PMC11945479 DOI: 10.3390/v17030392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a very concerning pathogen due to its ability to persist in the host's nervous system and continuously interfere with the immune system, which complicates treatment. Therefore, the development of an effective HSV-1 vaccine is crucial. In this study, we focused on an HSV-1 mutant strain, M6, which includes several deleted genes associated with viral infection virulence and latent infection function, and explored its infection of macrophages and immunological characteristics. The study found that both the attenuated strain M6 and the wild-type strain infect macrophages through the binding of the gD protein to the HVEM receptor on the macrophage surface. Compared to the wild-type strain, the attenuated M6 strain induced a milder immune response, characterized by the lower expression of immune signaling molecules and inflammatory cytokine levels. Upon reintroducing macrophages infected with the two strains into mice, the M6 strain induced lower levels of inflammatory cytokines and higher levels of chemokines in spleen cells and also slightly lower humoral and cellular immune responses than the wild-type strain. Further histopathological analysis revealed that mice in the attenuated M6 group showed more stable body weight changes and milder pathological damage in immune organs such as the liver, spleen, and lymph nodes. In conclusion, the attenuated M6 strain exhibits good immunogenicity and mild pathological side effects, suggesting its potential as an effective immunogen.
Collapse
MESH Headings
- Animals
- Macrophages/immunology
- Macrophages/virology
- Mice
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/genetics
- Vaccines, Attenuated/immunology
- Female
- Cytokines/metabolism
- Herpes Simplex/immunology
- Herpes Simplex/virology
- Herpes Simplex/prevention & control
- Viral Envelope Proteins/immunology
- Viral Envelope Proteins/genetics
- Mice, Inbred BALB C
- Receptors, Tumor Necrosis Factor, Member 14/immunology
- Receptors, Tumor Necrosis Factor, Member 14/genetics
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- Chlorocebus aethiops
- Herpes Simplex Virus Vaccines/immunology
- Herpes Simplex Virus Vaccines/genetics
- Vero Cells
- Antibodies, Viral/immunology
- Immunity, Cellular
Collapse
Affiliation(s)
- Zhenxiao Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; (Z.Z.); (X.R.); (Y.Z.)
- Key Laboratory of Systemic Innovative Research on Virus Vaccines, Kunming 650118, China
| | - Xiaohong Ren
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; (Z.Z.); (X.R.); (Y.Z.)
- Key Laboratory of Systemic Innovative Research on Virus Vaccines, Kunming 650118, China
| | - Ying Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; (Z.Z.); (X.R.); (Y.Z.)
- Key Laboratory of Systemic Innovative Research on Virus Vaccines, Kunming 650118, China
| | - Jingjing Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; (Z.Z.); (X.R.); (Y.Z.)
| | - Xinghang Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; (Z.Z.); (X.R.); (Y.Z.)
- Key Laboratory of Systemic Innovative Research on Virus Vaccines, Kunming 650118, China
| | - Fengyuan Zeng
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; (Z.Z.); (X.R.); (Y.Z.)
| | - Rong Yue
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; (Z.Z.); (X.R.); (Y.Z.)
| | - Qi Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; (Z.Z.); (X.R.); (Y.Z.)
- Key Laboratory of Systemic Innovative Research on Virus Vaccines, Kunming 650118, China
| | - Haobo Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; (Z.Z.); (X.R.); (Y.Z.)
- Key Laboratory of Systemic Innovative Research on Virus Vaccines, Kunming 650118, China
| | - Danjing Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; (Z.Z.); (X.R.); (Y.Z.)
| | - Yuansheng Liao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; (Z.Z.); (X.R.); (Y.Z.)
- Key Laboratory of Systemic Innovative Research on Virus Vaccines, Kunming 650118, China
| | - Yun Liao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; (Z.Z.); (X.R.); (Y.Z.)
- Key Laboratory of Systemic Innovative Research on Virus Vaccines, Kunming 650118, China
| | - Dandan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; (Z.Z.); (X.R.); (Y.Z.)
- Key Laboratory of Systemic Innovative Research on Virus Vaccines, Kunming 650118, China
| | - Li Yu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; (Z.Z.); (X.R.); (Y.Z.)
- Key Laboratory of Systemic Innovative Research on Virus Vaccines, Kunming 650118, China
| | - Guorun Jiang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; (Z.Z.); (X.R.); (Y.Z.)
- Key Laboratory of Systemic Innovative Research on Virus Vaccines, Kunming 650118, China
| | - Heng Zhao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; (Z.Z.); (X.R.); (Y.Z.)
- Key Laboratory of Systemic Innovative Research on Virus Vaccines, Kunming 650118, China
| | - Huiwen Zheng
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; (Z.Z.); (X.R.); (Y.Z.)
- Key Laboratory of Systemic Innovative Research on Virus Vaccines, Kunming 650118, China
| | - Heng Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; (Z.Z.); (X.R.); (Y.Z.)
- Key Laboratory of Systemic Innovative Research on Virus Vaccines, Kunming 650118, China
| | - Xin Zhao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; (Z.Z.); (X.R.); (Y.Z.)
- Key Laboratory of Systemic Innovative Research on Virus Vaccines, Kunming 650118, China
| | - Longding Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; (Z.Z.); (X.R.); (Y.Z.)
- Key Laboratory of Systemic Innovative Research on Virus Vaccines, Kunming 650118, China
| | - Qihan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China; (Z.Z.); (X.R.); (Y.Z.)
| |
Collapse
|
3
|
Chen Y, Gao J, Hua R, Zhang G. Pseudorabies virus as a zoonosis: scientific and public health implications. Virus Genes 2025; 61:9-25. [PMID: 39692808 DOI: 10.1007/s11262-024-02122-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/26/2024] [Indexed: 12/19/2024]
Abstract
Pseudorabies virus (PRV) is a herpes virus, also known as Aujeszky's disease virus (ADV), which can cause a highly infectious disease pseudorabies (PR) in a variety of mammals. In the past, it has been debated whether PRV can infect humans, but more and more cases of PRV infection have been reported since 2017. The illness has claimed many victims and left survivors with serious sequelae. This indicates that humans may ignore the zoonotic ability of PRV. This review aims to summarize the pathology and pathogenesis of PRV and speculate on how it infects humans. This paper provides a comprehensive overview of the progression of PRV, including its virology characteristics, genomic organization, and genetic evolution. It also synthesises the existing literature on PRV infection in humans, and analyses the factors contributing to PRV zoonosis. Finally, the pathogenesis of PRV-infected pigs and other mammals was summarized, and the pathogenesis of PRV-infected humans was speculated.
Collapse
Affiliation(s)
- Yumei Chen
- School of Life Sciences, Zhengzhou University, No. 100, Science Avenue, 450001, Zhengzhou City, Henan Province, People's Republic of China
- Longhu Laboratory, No. 218, Ping AN Avenue, Zhengdong New District, 450046, Zhengzhou City, Henan Province, People's Republic of China
| | - Jie Gao
- School of Life Sciences, Zhengzhou University, No. 100, Science Avenue, 450001, Zhengzhou City, Henan Province, People's Republic of China
- Longhu Laboratory, No. 218, Ping AN Avenue, Zhengdong New District, 450046, Zhengzhou City, Henan Province, People's Republic of China
| | - Rongqian Hua
- School of Life Sciences, Zhengzhou University, No. 100, Science Avenue, 450001, Zhengzhou City, Henan Province, People's Republic of China
- Longhu Laboratory, No. 218, Ping AN Avenue, Zhengdong New District, 450046, Zhengzhou City, Henan Province, People's Republic of China
| | - Gaiping Zhang
- School of Life Sciences, Zhengzhou University, No. 100, Science Avenue, 450001, Zhengzhou City, Henan Province, People's Republic of China.
- Longhu Laboratory, No. 218, Ping AN Avenue, Zhengdong New District, 450046, Zhengzhou City, Henan Province, People's Republic of China.
| |
Collapse
|
4
|
Vallbracht M, Schnell M, Seyfarth A, Fuchs W, Küchler R, Mettenleiter TC, Klupp BG. A Single Amino Acid Substitution in the Transmembrane Domain of Glycoprotein H Functionally Compensates for the Absence of gL in Pseudorabies Virus. Viruses 2023; 16:26. [PMID: 38257727 PMCID: PMC10819001 DOI: 10.3390/v16010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Herpesvirus entry requires the coordinated action of at least four viral glycoproteins. Virus-specific binding to a cellular receptor triggers a membrane fusion cascade involving the conserved gH/gL complex and gB. Although gB is the genuine herpesvirus fusogen, it requires gH/gL for fusion, but how activation occurs is still unclear. To study the underlying mechanism, we used a gL-deleted pseudorabies virus (PrV) mutant characterized by its limited capability to directly infect neighboring cells that was exploited for several independent serial passages in cell culture. Unlike previous revertants that acquired mutations in the gL-binding N-terminus of gH, we obtained a variant, PrV-ΔgLPassV99, that unexpectedly contained two amino acid substitutions in the gH transmembrane domain (TMD). One of these mutations, I662S, was sufficient to compensate for gL function in virus entry and in in vitro cell-cell fusion assays in presence of wild type gB, but barely for cell-to-cell spread. Additional expression of receptor-binding PrV gD, which is dispensable for cell-cell fusion mediated by native gB, gH and gL, resulted in hyperfusion in combination with gH V99. Overall, our results uncover a yet-underestimated role of the gH TMD in fusion regulation, further shedding light on the complexity of herpesvirus fusion involving all structural domains of the conserved entry glycoproteins.
Collapse
Affiliation(s)
- Melina Vallbracht
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (M.V.); (R.K.)
- Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Marina Schnell
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (M.V.); (R.K.)
| | - Annemarie Seyfarth
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (M.V.); (R.K.)
- Department of Hematology, Oncology and Tumor Immunology, CBF, Charité—Universitätsmedizin, Corporate Member of Freie Universität Berlin und Humboldt—Universität zu Berlin, 12200 Berlin, Germany
| | - Walter Fuchs
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (M.V.); (R.K.)
| | - Richard Küchler
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (M.V.); (R.K.)
| | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (M.V.); (R.K.)
| | - Barbara G. Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (M.V.); (R.K.)
| |
Collapse
|
5
|
Zhou M, Vollmer B, Machala E, Chen M, Grünewald K, Arvin AM, Chiu W, Oliver SL. Targeted mutagenesis of the herpesvirus fusogen central helix captures transition states. Nat Commun 2023; 14:7958. [PMID: 38042814 PMCID: PMC10693595 DOI: 10.1038/s41467-023-43011-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 10/27/2023] [Indexed: 12/04/2023] Open
Abstract
Herpesviruses remain a burden for animal and human health, including the medically important varicella-zoster virus (VZV). Membrane fusion mediated by conserved core glycoproteins, the fusogen gB and the heterodimer gH-gL, enables herpesvirus cell entry. The ectodomain of gB orthologs has five domains and is proposed to transition from a prefusion to postfusion conformation but the functional relevance of the domains for this transition remains poorly defined. Here we describe structure-function studies of the VZV gB DIII central helix targeting residues 526EHV528. Critically, a H527P mutation captures gB in a prefusion conformation as determined by cryo-EM, a loss of membrane fusion in a virus free assay, and failure of recombinant VZV to spread in cell monolayers. Importantly, two predominant cryo-EM structures of gB[H527P] are identified by 3D classification and focused refinement, suggesting they represented gB conformations in transition. These studies reveal gB DIII as a critical element for herpesvirus gB fusion function.
Collapse
Affiliation(s)
- Momei Zhou
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Benjamin Vollmer
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- Department of Chemistry, University of Hamburg, Hamburg, Germany
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Emily Machala
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- Department of Chemistry, University of Hamburg, Hamburg, Germany
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Muyuan Chen
- Division of Cryo-EM and Bioimaging SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Kay Grünewald
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- Department of Chemistry, University of Hamburg, Hamburg, Germany
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Ann M Arvin
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Vir Biotechnology Inc, San Francisco, CA, USA
| | - Wah Chiu
- Division of Cryo-EM and Bioimaging SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Bioengineering, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Stefan L Oliver
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
6
|
Rahangdale R, Tender T, Balireddy S, Goswami K, Pasupuleti M, Hariharapura RC. A critical review on antiviral peptides derived from viral glycoproteins and host receptors to decoy herpes simplex virus. Microb Biotechnol 2023; 16:2036-2052. [PMID: 37740682 PMCID: PMC10616652 DOI: 10.1111/1751-7915.14342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023] Open
Abstract
The health of the human population has been continuously challenged by viral infections. Herpes simplex virus (HSV) is one of the common causes of illness and can lead to death in immunocompromised patients. Existing anti-HSV therapies are not completely successful in eliminating the infection due to anti-viral drug resistance, ineffectiveness against the latent virus and high toxicity over prolonged use. There is a need to update our knowledge of the current challenges faced in anti-HSV therapeutics and realize the necessity of developing alternative treatment approaches. Protein therapeutics are now being explored as a novel approach due to their high specificity and low toxicity. This review highlights the significance of HSV viral glycoproteins and host receptors in the pathogenesis of HSV infection. Proteins or peptides derived from HSV glycoproteins gC, gB, gD, gH and host cell receptors (HSPG, nectin and HVEM) that act as decoys to inhibit HSV attachment, entry, or fusion have been discussed. Few researchers have tried to improve the efficacy and stability of the identified peptides by modifying them using a peptidomimetic approach. With these efforts, we think developing an alternative treatment option for immunocompromised patients and drug-resistant organisms is not far off.
Collapse
Affiliation(s)
- Rakesh Rahangdale
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical SciencesManipal Academy of Higher EducationManipalKarnatakaIndia
| | - Tenzin Tender
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical SciencesManipal Academy of Higher EducationManipalKarnatakaIndia
| | - Sridevi Balireddy
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical SciencesManipal Academy of Higher EducationManipalKarnatakaIndia
| | - Kamini Goswami
- Microbiology Division, Council of Scientific and Industrial ResearchCentral Drug Research InstituteLucknowUttar PradeshIndia
| | - Mukesh Pasupuleti
- Microbiology Division, Council of Scientific and Industrial ResearchCentral Drug Research InstituteLucknowUttar PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Raghu Chandrashekar Hariharapura
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical SciencesManipal Academy of Higher EducationManipalKarnatakaIndia
| |
Collapse
|
7
|
Fan Q, Hippler DP, Yang Y, Longnecker R, Connolly SA. Multiple Sites on Glycoprotein H (gH) Functionally Interact with the gB Fusion Protein to Promote Fusion during Herpes Simplex Virus (HSV) Entry. mBio 2023; 14:e0336822. [PMID: 36629412 PMCID: PMC9973363 DOI: 10.1128/mbio.03368-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 01/12/2023] Open
Abstract
Enveloped virus entry requires fusion of the viral envelope with a host cell membrane. Herpes simplex virus 1 (HSV-1) entry is mediated by a set of glycoproteins that interact to trigger the viral fusion protein glycoprotein B (gB). In the current model, receptor-binding by gD signals a gH/gL heterodimer to trigger a refolding event in gB that fuses the membranes. To explore functional interactions between gB and gH/gL, we used a bacterial artificial chromosome (BAC) to generate two HSV-1 mutants that show a small plaque phenotype due to changes in gB. We passaged the viruses to select for restoration of plaque size and analyzed second-site mutations that arose in gH. HSV-1 gB was replaced either by gB from saimiriine herpesvirus 1 (SaHV-1) or by a mutant form of HSV-1 gB with three alanine substitutions in domain V (gB3A). To shift the selective pressure away from gB, the gB3A virus was passaged in cells expressing gB3A. Sequencing of passaged viruses identified two interesting mutations in gH, including gH-H789Y in domain IV and gH-S830N in the cytoplasmic tail (CT). Characterization of these gH mutations indicated they are responsible for the enhanced plaque size. Rather than being globally hyperfusogenic, both gH mutations partially rescued function of the specific gB version present during their selection. These sites may represent functional interaction sites on gH/gL for gB. gH-H789 may alter the positioning of a membrane-proximal flap in the gH ectodomain, whereas gH-S830 may contribute to an interaction between the gB and gH CTs. IMPORTANCE Enveloped viruses enter cells by fusing their envelope with the host cell membrane. Herpes simplex virus 1 (HSV-1) entry requires the coordinated interaction of several viral glycoproteins, including gH/gL and gB. gH/gL and gB are essential for virus replication and both proteins are targets of neutralizing antibodies. gB fuses the membranes after being activated by gH/gL, but the details of how gH/gL activates gB are not known. This study examined the gH/gL-gB interaction using HSV-1 mutants that displayed reduced virus entry due to changes in gB. The mutant viruses were grown over time to select for additional mutations that could partially restore entry. Two mutations in gH (H789Y and S830N) were identified. The positions of the mutations in gH/gL may represent sites that contribute to gB activation during virus entry.
Collapse
Affiliation(s)
- Qing Fan
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Daniel P. Hippler
- Department of Health Sciences, DePaul University, Chicago, Illinois, USA
- Department of Biological Sciences, DePaul University, Chicago, Illinois, USA
| | - Yueqi Yang
- Yuanpei College, Peking University, Beijing, China
| | - Richard Longnecker
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Sarah A. Connolly
- Department of Health Sciences, DePaul University, Chicago, Illinois, USA
- Department of Biological Sciences, DePaul University, Chicago, Illinois, USA
| |
Collapse
|
8
|
Ebel H, Benecke T, Vollmer B. Stabilisation of Viral Membrane Fusion Proteins in Prefusion Conformation by Structure-Based Design for Structure Determination and Vaccine Development. Viruses 2022; 14:1816. [PMID: 36016438 PMCID: PMC9415420 DOI: 10.3390/v14081816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
The membrane surface of enveloped viruses contains dedicated proteins enabling the fusion of the viral with the host cell membrane. Working with these proteins is almost always challenging because they are membrane-embedded and naturally metastable. Fortunately, based on a range of different examples, researchers now have several possibilities to tame membrane fusion proteins, making them amenable for structure determination and immunogen generation. This review describes the structural and functional similarities of the different membrane fusion proteins and ways to exploit these features to stabilise them by targeted mutational approaches. The recent determination of two herpesvirus membrane fusion proteins in prefusion conformation holds the potential to apply similar methods to this group of viral fusogens. In addition to a better understanding of the herpesviral fusion mechanism, the structural insights gained will help to find ways to further stabilise these proteins using the methods described to obtain stable immunogens that will form the basis for the development of the next generation of vaccines and antiviral drugs.
Collapse
Affiliation(s)
- Henriette Ebel
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany
- Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany
- Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
| | - Tim Benecke
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany
- Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany
- Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
| | - Benjamin Vollmer
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany
- Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany
- Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
| |
Collapse
|
9
|
Abstract
Herpesviruses—ubiquitous pathogens that cause persistent infections—have some of the most complex cell entry mechanisms. Entry of the prototypical herpes simplex virus 1 (HSV-1) requires coordinated efforts of 4 glycoproteins, gB, gD, gH, and gL. The current model posits that the glycoproteins do not interact before receptor engagement and that binding of gD to its receptor causes a “cascade” of sequential pairwise interactions, first activating the gH/gL complex and subsequently activating gB, the viral fusogen. But how these glycoproteins interact remains unresolved. Here, using a quantitative split-luciferase approach, we show that pairwise HSV-1 glycoprotein complexes form before fusion, interact at a steady level throughout fusion, and do not depend on the presence of the cellular receptor. Based on our findings, we propose a revised “conformational cascade” model of HSV-1 entry. We hypothesize that all 4 glycoproteins assemble into a complex before fusion, with gH/gL positioned between gD and gB. Once gD binds to a cognate receptor, the proximity of the glycoproteins within this complex allows for efficient transmission of the activating signal from the receptor-activated gD to gH/gL to gB through sequential conformational changes, ultimately triggering the fusogenic refolding of gB. Our results also highlight previously unappreciated contributions of the transmembrane and cytoplasmic domains to glycoprotein interactions and fusion. Similar principles could be at play in other multicomponent viral entry systems, and the split-luciferase approach used here is a powerful tool for investigating protein-protein interactions in these and a variety of other systems.
Collapse
|
10
|
Pataki Z, Sanders EK, Heldwein EE. A surface pocket in the cytoplasmic domain of the herpes simplex virus fusogen gB controls membrane fusion. PLoS Pathog 2022; 18:e1010435. [PMID: 35767585 PMCID: PMC9275723 DOI: 10.1371/journal.ppat.1010435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/12/2022] [Accepted: 06/03/2022] [Indexed: 12/27/2022] Open
Abstract
Membrane fusion during the entry of herpesviruses is carried out by the viral fusogen gB that is activated by its partner protein gH in some manner. The fusogenic activity of gB is controlled by its cytoplasmic (or intraviral) domain (gBCTD) and, according to the current model, the gBCTD is a trimeric, inhibitory clamp that restrains gB in the prefusion conformation. But how the gBCTD clamp is released by gH is unclear. Here, we identified two new regulatory elements within gB and gH from the prototypical herpes simplex virus 1: a surface pocket within the gBCTD and residue V831 within the gH cytoplasmic tail. Mutagenesis and structural modeling suggest that gH V831 interacts with the gB pocket. The gB pocket is located above the interface between adjacent protomers, and we hypothesize that insertion of the gH V831 wedge into the pocket serves to push the protomers apart, which releases the inhibitory clamp. In this manner, gH activates the fusogenic activity of gB. Both gB and gH are conserved across all herpesviruses, and this activation mechanism could be used by other gB homologs. Our proposed mechanism emphasizes a central role for the cytoplasmic regions in regulating the activity of a viral fusogen.
Collapse
Affiliation(s)
- Zemplen Pataki
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Erin K. Sanders
- Graduate Program in Cellular, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Ekaterina E. Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Cellular, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
11
|
Wang C, Liang Q, Sun D, He Y, Jiang J, Guo R, Malla T, Hamrah P, Liu X, Huang Z, Hu K. Nectin-1 and Non-muscle Myosin Heavy Chain-IIB: Major Mediators of Herpes Simplex Virus-1 Entry Into Corneal Nerves. Front Microbiol 2022; 13:830699. [PMID: 35295302 PMCID: PMC8919962 DOI: 10.3389/fmicb.2022.830699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Herpes Simplex Virus 1 (HSV-1) invades corneal nerves upon its infection of the cornea and then establishes latency in the trigeminal ganglion (TG). The latent virus in TG is often reactivated and travels back to the cornea, causing recurrent herpes simplex keratitis (HSK). The entry of HSV-1 into the corneal nerve is considered the initial step of infection resulting in HSV-1 latency and HSK recurrence. Several gD and gB receptors have been identified, including nectin-1, herpes virus entry medium (HVEM) and 3-O-sulfated heparan sulfate (3-OS-HS) as gD receptors, and non-muscle myosin heavy chain IIA (NMHC-IIA), NMHC-IIB and myelin-associated glycoprotein (MAG) as gB receptors. However, which receptors contribute to the entry of HSV-1 into corneal nerves are yet to be determined. This study observed that receptors nectin-1, HVEM, 3-OS-HS, NMHC-IIA, and NMHC-IIB, not MAG, were expressed in healthy corneal nerves. Further, we cultured TG neurons extracted from mice in vitro to screen for functional gD/gB receptors. Both in vitro siRNA knockdown and in vivo antibody blocking of either nectin-1 or NMHC-IIB reduced the entry and the replication of HSV-1 as shown by qPCR analysis and immunofluorescence measure, respectively. Also, we observed that the re-localization and the upregulation expression of NMHC-IIB after HSV-1 exposure were inhibited when gD receptor nectin-1 was knocked down. These data suggest that nectin-1 was the main gD receptor and NMHC-IIB was the main gB receptor in mediating HSV-1 entry and hold promise as therapeutic targets for resolving HSV-1 latency and HSK recurrence.
Collapse
Affiliation(s)
- Chenchen Wang
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Ophthalmology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qi Liang
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Dong Sun
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yun He
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jiaxuan Jiang
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Rongjie Guo
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Tejsu Malla
- Tej Eye Care & Health Support Center, Kathmandu, Nepal
| | - Pedram Hamrah
- Tufts Medical Center, Schepens Eye Research Institute, Boston, MA, United States
| | - Xun Liu
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhenping Huang
- Department of Ophthalmology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Kai Hu
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
12
|
Tang J, Frascaroli G, Zhou X, Knickmann J, Brune W. Cell Fusion and Syncytium Formation in Betaherpesvirus Infection. Viruses 2021; 13:v13101973. [PMID: 34696402 PMCID: PMC8537622 DOI: 10.3390/v13101973] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022] Open
Abstract
Cell–cell fusion is a fundamental and complex process that occurs during reproduction, organ and tissue growth, cancer metastasis, immune response, and infection. All enveloped viruses express one or more proteins that drive the fusion of the viral envelope with cellular membranes. The same proteins can mediate the fusion of the plasma membranes of adjacent cells, leading to the formation of multinucleated syncytia. While cell–cell fusion triggered by alpha- and gammaherpesviruses is well-studied, much less is known about the fusogenic potential of betaherpesviruses such as human cytomegalovirus (HCMV) and human herpesviruses 6 and 7 (HHV-6 and HHV-7). These are slow-growing viruses that are highly prevalent in the human population and associated with several diseases, particularly in individuals with an immature or impaired immune system such as fetuses and transplant recipients. While HHV-6 and HHV-7 are strictly lymphotropic, HCMV infects a very broad range of cell types including epithelial, endothelial, mesenchymal, and myeloid cells. Syncytia have been observed occasionally for all three betaherpesviruses, both during in vitro and in vivo infection. Since cell–cell fusion may allow efficient spread to neighboring cells without exposure to neutralizing antibodies and other host immune factors, viral-induced syncytia may be important for viral dissemination, long-term persistence, and pathogenicity. In this review, we provide an overview of the viral and cellular factors and mechanisms identified so far in the process of cell–cell fusion induced by betaherpesviruses and discuss the possible consequences for cellular dysfunction and pathogenesis.
Collapse
Affiliation(s)
- Jiajia Tang
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (J.T.); (G.F.); (X.Z.); (J.K.)
- Center for Single-Cell Omics, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Giada Frascaroli
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (J.T.); (G.F.); (X.Z.); (J.K.)
| | - Xuan Zhou
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (J.T.); (G.F.); (X.Z.); (J.K.)
| | - Jan Knickmann
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (J.T.); (G.F.); (X.Z.); (J.K.)
| | - Wolfram Brune
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; (J.T.); (G.F.); (X.Z.); (J.K.)
- Correspondence:
| |
Collapse
|
13
|
Two Sides to Every Story: Herpes Simplex Type-1 Viral Glycoproteins gB, gD, gH/gL, gK, and Cellular Receptors Function as Key Players in Membrane Fusion. Viruses 2021; 13:v13091849. [PMID: 34578430 PMCID: PMC8472851 DOI: 10.3390/v13091849] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 12/21/2022] Open
Abstract
Herpes simplex virus type-1 (HSV-1) and type-2 (HSV-2) are prototypical alphaherpesviruses that are characterized by their unique properties to infect trigeminal and dorsal root ganglionic neurons, respectively, and establish life-long latent infections. These viruses initially infect mucosal epithelial tissues and subsequently spread to neurons. They are associated with a significant disease spectrum, including orofacial and ocular infections for HSV-1 and genital and neonatal infections for HSV-2. Viral glycoproteins within the virion envelope bind to specific cellular receptors to mediate virus entry into cells. This is achieved by the fusion of the viral envelope with the plasma membrane. Similarly, viral glycoproteins expressed on cell surfaces mediate cell-to-cell fusion and facilitate virus spread. An interactive complex of viral glycoproteins gB, gD/gH/gL, and gK and other proteins mediate these membrane fusion phenomena with glycoprotein B (gB), the principal membrane fusogen. The requirement for the virion to enter neuronal axons suggests that the heterodimeric protein complex of gK and membrane protein UL20, found only in alphaherpesviruses, constitute a critical determinant for neuronal entry. This hypothesis was substantiated by the observation that a small deletion in the amino terminus of gK prevents entry into neuronal axons while allowing entry into other cells via endocytosis. Cellular receptors and receptor-mediated signaling synergize with the viral membrane fusion machinery to facilitate virus entry and intercellular spread. Unraveling the underlying interactions among viral glycoproteins, envelope proteins, and cellular receptors will provide new innovative approaches for antiviral therapy against herpesviruses and other neurotropic viruses.
Collapse
|
14
|
López-Muñoz AD, Rastrojo A, Kropp KA, Viejo-Borbolla A, Alcamí A. Combination of long- and short-read sequencing fully resolves complex repeats of herpes simplex virus 2 strain MS complete genome. Microb Genom 2021; 7. [PMID: 34170814 PMCID: PMC8461477 DOI: 10.1099/mgen.0.000586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Herpes simplex virus serotype 2 (HSV-2) is a ubiquitous human pathogen that causes recurrent genital infections and ulcerations. Many HSV-2 strains with different biological properties have been identified, but only the genomes of HSV-2 strains HG52, SD90e and 333 have been reported as complete and fully characterized sequences. We de novo assembled, annotated and manually curated the complete genome sequence of HSV-2 strain MS, a highly neurovirulent strain, originally isolated from a multiple sclerosis patient. We resolved both DNA ends, as well as the complex inverted repeats regions present in HSV genomes, usually undisclosed in previous published partial herpesvirus genomes, using long reads from Pacific Biosciences (PacBio) technology. Additionally, we identified isomeric genomes by determining the alternative relative orientation of unique fragments in the genome of the sequenced viral population. Illumina short-read sequencing was crucial to examine genetic variability, such as nucleotide polymorphisms, insertion/deletions and sequence determinants of strain-specific virulence factors. We used Illumina data to fix two disrupted open reading frames found in coding homopolymers after PacBio assembly. These results support the combination of long- and short-read sequencing technologies as a precise and effective approach for the accurate de novo assembly and curation of complex microbial genomes.
Collapse
Affiliation(s)
- Alberto Domingo López-Muñoz
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain.,Present address: Cellular Biology Section, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Alberto Rastrojo
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain
| | - Kai A Kropp
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | - Antonio Alcamí
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain
| |
Collapse
|
15
|
In Vitro Viral Evolution Identifies a Critical Residue in the Alphaherpesvirus Fusion Glycoprotein B Ectodomain That Controls gH/gL-Independent Entry. mBio 2021; 12:mBio.00557-21. [PMID: 33947756 PMCID: PMC8262866 DOI: 10.1128/mbio.00557-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesvirus entry and spread requires fusion of viral and host cell membranes, which is mediated by the conserved surface glycoprotein B (gB). Upon activation, gB undergoes a major conformational change and transits from a metastable prefusion to a stable postfusion conformation. Although gB is a structural homolog of low-pH-triggered class III fusogens, its fusion activity depends strictly on the presence of the conserved regulatory gH/gL complex and nonconserved receptor binding proteins, which ensure that fusion occurs at the right time and space. How gB maintains its prefusion conformation and how gB fusogenicity is controlled remain poorly understood. Here, we report the isolation and characterization of a naturally selected pseudorabies virus (PrV) gB able to mediate efficient gH/gL-independent virus-cell and cell-cell fusion. We found that the control exerted on gB by the accompanying viral proteins is mediated via its cytosolic domain (CTD). Whereas gB variants lacking the CTD are inactive, a single mutation of a conserved asparagine residue in an alpha-helical motif of the ectodomain recently shown to be at the core of the gB prefusion trimer compensated for CTD absence and uncoupled gB from regulatory viral proteins, resulting in a hyperfusion phenotype. This phenotype was transferred to gB homologs from different alphaherpesvirus genera. Overall, our data propose a model in which the central helix acts as a molecular switch for the gB pre-to-postfusion transition by conveying the structural status of the endo- to the ectodomain, thereby governing their cross talk for fusion activation, providing a new paradigm for herpesvirus fusion regulation.
Collapse
|
16
|
Li C, Wang M, Cheng A, Jia R, Yang Q, Wu Y, Zhu D, Zhao X, Chen S, Liu M, Zhang S, Ou X, Mao S, Gao Q, Sun D, Wen X, Tian B. The Roles of Envelope Glycoprotein M in the Life Cycle of Some Alphaherpesviruses. Front Microbiol 2021; 12:631523. [PMID: 33679658 PMCID: PMC7933518 DOI: 10.3389/fmicb.2021.631523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022] Open
Abstract
The envelope glycoprotein M (gM), a surface virion component conserved among alphaherpesviruses, is a multiple-transmembrane domain-containing glycoprotein with a complex N-linked oligosaccharide. The gM mediates a diverse range of functions during the viral life cycle. In this review, we summarize the biological features of gM, including its characterization and function in some specicial alphaherpesviruses. gM modulates the virus-induced membrane fusion during virus invasion, transports other proteins to the appropriate intracellular membranes for primary and secondary envelopment during virion assembly, and promotes egress of the virus. The gM can interact with various viral and cellular components, and the focus of recent research has also been on interactions related to gM. And we will discuss how gM participates in the life cycle of alphaherpesviruses.
Collapse
Affiliation(s)
- Chunmei Li
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xingjian Wen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
17
|
Madavaraju K, Koganti R, Volety I, Yadavalli T, Shukla D. Herpes Simplex Virus Cell Entry Mechanisms: An Update. Front Cell Infect Microbiol 2021; 10:617578. [PMID: 33537244 PMCID: PMC7848091 DOI: 10.3389/fcimb.2020.617578] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/02/2020] [Indexed: 12/17/2022] Open
Abstract
Herpes simplex virus (HSV) can infect a broad host range and cause mild to life threating infections in humans. The surface glycoproteins of HSV are evolutionarily conserved and show an extraordinary ability to bind more than one receptor on the host cell surface. Following attachment, the virus fuses its lipid envelope with the host cell membrane and releases its nucleocapsid along with tegument proteins into the cytosol. With the help of tegument proteins and host cell factors, the nucleocapsid is then docked into the nuclear pore. The viral double stranded DNA is then released into the host cell’s nucleus. Released viral DNA either replicates rapidly (more commonly in non-neuronal cells) or stays latent inside the nucleus (in sensory neurons). The fusion of the viral envelope with host cell membrane is a key step. Blocking this step can prevent entry of HSV into the host cell and the subsequent interactions that ultimately lead to production of viral progeny and cell death or latency. In this review, we have discussed viral entry mechanisms including the pH-independent as well as pH-dependent endocytic entry, cell to cell spread of HSV and use of viral glycoproteins as an antiviral target.
Collapse
Affiliation(s)
- Krishnaraju Madavaraju
- Shukla Lab, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Raghuram Koganti
- Shukla Lab, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Ipsita Volety
- Shukla Lab, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Tejabhiram Yadavalli
- Shukla Lab, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Deepak Shukla
- Shukla Lab, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States.,Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
18
|
Vallbracht M, Klupp BG, Mettenleiter TC. Influence of N-glycosylation on Expression and Function of Pseudorabies Virus Glycoprotein gB. Pathogens 2021; 10:61. [PMID: 33445487 PMCID: PMC7827564 DOI: 10.3390/pathogens10010061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 01/13/2023] Open
Abstract
Envelope glycoprotein (g)B is conserved throughout the Herpesviridae and mediates fusion of the viral envelope with cellular membranes for infectious entry and spread. Like all viral envelope fusion proteins, gB is modified by asparagine (N)-linked glycosylation. Glycans can contribute to protein function, intracellular transport, trafficking, structure and immune evasion. gB of the alphaherpesvirus pseudorabies virus (PrV) contains six consensus sites for N-linked glycosylation, but their functional relevance is unknown. Here, we investigated the occupancy and functional relevance of N-glycosylation sites in PrV gB. To this end, all predicted N-glycosylation sites were inactivated either singly or in combination by the introduction of conservative mutations (N➔Q). The resulting proteins were tested for expression, fusion activity in cell-cell fusion assays and complementation of a gB-deficient PrV mutant. Our results indicate that all six sites are indeed modified. However, while glycosylation at most sites was dispensable for gB expression and fusogenicity, inactivation of N154 and N700 affected gB processing by furin cleavage and surface localization. Although all single mutants were functional in cell-cell fusion and viral entry, simultaneous inactivation of all six N-glycosylation sites severely impaired fusion activity and viral entry, suggesting a critical role of N-glycans for maintaining gB structure and function.
Collapse
Affiliation(s)
| | | | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (M.V.); (B.G.K.)
| |
Collapse
|
19
|
Abstract
Herpesviruses are ubiquitous, double-stranded DNA, enveloped viruses that establish lifelong infections and cause a range of diseases. Entry into host cells requires binding of the virus to specific receptors, followed by the coordinated action of multiple viral entry glycoproteins to trigger membrane fusion. Although the core fusion machinery is conserved for all herpesviruses, each species uses distinct receptors and receptor-binding glycoproteins. Structural studies of the prototypical herpesviruses herpes simplex virus 1 (HSV-1), HSV-2, human cytomegalovirus (HCMV) and Epstein-Barr virus (EBV) entry glycoproteins have defined the interaction sites for glycoprotein complexes and receptors, and have revealed conformational changes that occur on receptor binding. Recent crystallography and electron microscopy studies have refined our model of herpesvirus entry into cells, clarifying both the conserved features and the unique features. In this Review, we discuss recent insights into herpesvirus entry by analysing the structures of entry glycoproteins, including the diverse receptor-binding glycoproteins (HSV-1 glycoprotein D (gD), EBV glycoprotein 42 (gp42) and HCMV gH-gL-gO trimer and gH-gL-UL128-UL130-UL131A pentamer), as well gH-gL and the fusion protein gB, which are conserved in all herpesviruses.
Collapse
|
20
|
Abstract
Alphaherpesviruses are enveloped viruses that enter cells by fusing the viral membrane with a host cell membrane, either within an endocytic vesicle or at the plasma membrane. This entry event is mediated by a set of essential entry glycoproteins, including glycoprotein D (gD), gHgL, and gB. gHgL and gB are conserved among herpesviruses, but gD is unique to the alphaherpesviruses and is not encoded by all alphaherpesviruses. gD is a receptor-binding protein, the heterodimer gHgL serves as a fusion regulator, and gB is a class III viral fusion protein. Sequential interactions among these glycoproteins are thought to trigger the virus to fuse at the right place and time. Structural studies of these glycoproteins from multiple alphaherpesviruses has enabled the design and interpretation of functional studies. The structures of gD in a receptor- bound and in an unliganded form reveal a conformational change in the C terminus of the gD ectodomain upon receptor binding that may serve as a signal for fusion. By mapping neutralizing antibodies to the gHgL structures and constructing interspecies chimeric forms of gHgL, interaction sites for both gD and gB on gHgL have been proposed. A comparison of the post fusion structure of gB and an alternative conformation of gB visualized using cryo- electron tomography suggests that gB undergoes substantial refolding to execute membrane fusion. Although these structures have provided excellent insights into the entry mechanism, many questions remain about how these viruses coordinate the interactions and conformational changes required for entry.
Collapse
Affiliation(s)
- Tina M Cairns
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sarah A Connolly
- Departments of Health Sciences and Biological Sciences, College of Science and Health, DePaul University, Chicago, Illinois, USA
| |
Collapse
|
21
|
Vollmer B, Grünewald K. Herpesvirus membrane fusion - a team effort. Curr Opin Struct Biol 2020; 62:112-120. [PMID: 31935542 DOI: 10.1016/j.sbi.2019.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/18/2019] [Accepted: 12/02/2019] [Indexed: 12/01/2022]
Abstract
One of the essential steps in every viral 'life' cycle is entry into the host cell. Membrane-enveloped viruses carry dedicated proteins to catalyse the fusion of the viral and cellular membrane. Herpesviruses feature a set of essential, structurally diverse glycoproteins on the viral surface that form a multicomponent fusion machinery, necessary for the entry mechanism. For Herpes simplex virus 1, these essential glycoproteins are gD, gH, gL and gB. In this review we describe the functions of the individual components, the potential interactions between them as well as the influence of post-translational modifications on the fusion mechanism.
Collapse
Affiliation(s)
- Benjamin Vollmer
- Centre for Structural Systems Biology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, University of Hamburg, Hamburg, Germany; Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kay Grünewald
- Centre for Structural Systems Biology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, University of Hamburg, Hamburg, Germany; Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
22
|
Kuny CV, Bowen CD, Renner DW, Johnston CM, Szpara ML. In vitro evolution of herpes simplex virus 1 (HSV-1) reveals selection for syncytia and other minor variants in cell culture. Virus Evol 2020; 6:veaa013. [PMID: 32296542 PMCID: PMC7151645 DOI: 10.1093/ve/veaa013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The large dsDNA virus herpes simplex virus 1 (HSV-1) is considered to be genetically stable, yet it can rapidly evolve in response to strong selective pressures such as antiviral treatment. Deep sequencing has revealed that clinical and laboratory isolates of this virus exist as populations that contain a mixture of minor alleles or variants, similar to many RNA viruses. The classic virology approach of plaque purifying virus creates a genetically homogenous population, but it is not clear how closely this represents the mixed virus populations found in nature. We sought to study the evolution of mixed versus highly purified HSV-1 populations in controlled cell culture conditions, to examine the impact of this genetic diversity on evolution. We found that a mixed population of HSV-1 acquired more genetic diversity and underwent a more dramatic phenotypic shift than a plaque-purified population, producing a viral population that was almost entirely syncytial after just ten passages. At the genomic level, adaptation and genetic diversification occurred at the level of minor alleles or variants in the viral population. Certain genetic variants in the mixed viral population appeared to be positively selected in cell culture, and this shift was also observed in clinical samples during their first passages in vitro. In contrast, the plaque-purified viral population did not appear to change substantially in phenotype or overall quantity of minor allele diversity. These data indicate that HSV-1 is capable of evolving rapidly in a given environment, and that this evolution is facilitated by diversity in the viral population.
Collapse
Affiliation(s)
- Chad V Kuny
- Departments of Biology, and Biochemistry and Molecular Biology, The Huck Institutes of the Life Sciences, and Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | - Christopher D Bowen
- Departments of Biology, and Biochemistry and Molecular Biology, The Huck Institutes of the Life Sciences, and Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | - Daniel W Renner
- Departments of Biology, and Biochemistry and Molecular Biology, The Huck Institutes of the Life Sciences, and Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | - Christine M Johnston
- Department of Medicine, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Moriah L Szpara
- Departments of Biology, and Biochemistry and Molecular Biology, The Huck Institutes of the Life Sciences, and Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
23
|
Cooper RS, Heldwein EE. Expression, Purification, and Crystallization of Full-Length HSV-1 gB for Structure Determination. Methods Mol Biol 2020; 2060:395-407. [PMID: 31617193 PMCID: PMC10167678 DOI: 10.1007/978-1-4939-9814-2_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
HSV glycoproteins play important roles in the viral life cycle, particularly viral cell entry. Here we describe the protocol for expression, purification, and crystallization of full-length HSV-1 glycoprotein B. The protocol provides a framework for incorporating transmembrane domain-stabilizing amphipols into the crystallization setup and can be adapted to isolate other complete HSV glycoproteins.
Collapse
Affiliation(s)
- Rebecca S Cooper
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Ekaterina E Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
24
|
Vallbracht M, Backovic M, Klupp BG, Rey FA, Mettenleiter TC. Common characteristics and unique features: A comparison of the fusion machinery of the alphaherpesviruses Pseudorabies virus and Herpes simplex virus. Adv Virus Res 2019; 104:225-281. [PMID: 31439150 DOI: 10.1016/bs.aivir.2019.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Membrane fusion is a fundamental biological process that allows different cellular compartments delimited by a lipid membrane to release or exchange their respective contents. Similarly, enveloped viruses such as alphaherpesviruses exploit membrane fusion to enter and infect their host cells. For infectious entry the prototypic human Herpes simplex viruses 1 and 2 (HSV-1 and -2, collectively termed HSVs) and the porcine Pseudorabies virus (PrV) utilize four different essential envelope glycoproteins (g): the bona fide fusion protein gB and the regulatory heterodimeric gH/gL complex that constitute the "core fusion machinery" conserved in all members of the Herpesviridae; and the subfamily specific receptor binding protein gD. These four components mediate attachment and fusion of the virion envelope with the host cell plasma membrane through a tightly regulated sequential activation process. Although PrV and the HSVs are closely related and employ the same set of glycoproteins for entry, they show remarkable differences in the requirements for fusion. Whereas the HSVs strictly require all four components for membrane fusion, PrV can mediate cell-cell fusion without gD. Moreover, in contrast to the HSVs, PrV provides a unique opportunity for reversion analyses of gL-negative mutants by serial cell culture passaging, due to a limited cell-cell spread capacity of gL-negative PrV not observed in the HSVs. This allows a more direct analysis of the function of gH/gL during membrane fusion. Unraveling the molecular mechanism of herpesvirus fusion has been a goal of fundamental research for years, and yet important mechanistic details remain to be uncovered. Nevertheless, the elucidation of the crystal structures of all key players involved in PrV and HSV membrane fusion, coupled with a wealth of functional data, has shed some light on this complex puzzle. In this review, we summarize and discuss the contemporary knowledge on the molecular mechanism of entry and membrane fusion utilized by the alphaherpesvirus PrV, and highlight similarities but also remarkable differences in the requirements for fusion between PrV and the HSVs.
Collapse
Affiliation(s)
- Melina Vallbracht
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany.
| | - Marija Backovic
- Institut Pasteur, Unité de Virologie Structurale, UMR3569 (CNRS), Paris, France
| | - Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Felix A Rey
- Institut Pasteur, Unité de Virologie Structurale, UMR3569 (CNRS), Paris, France
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| |
Collapse
|
25
|
Xu X, Zhang Y, Li Q. Characteristics of herpes simplex virus infection and pathogenesis suggest a strategy for vaccine development. Rev Med Virol 2019; 29:e2054. [PMID: 31197909 PMCID: PMC6771534 DOI: 10.1002/rmv.2054] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/03/2019] [Accepted: 04/27/2019] [Indexed: 12/15/2022]
Abstract
Herpes simplex virus (HSV) can cause oral or genital ulcerative lesions and even encephalitis in various age groups with high infection rates. More seriously, HSV may lead to a wide range of recurrent diseases throughout a lifetime. No vaccines against HSV are currently available. The accumulated clinical research data for HSV vaccines reveal that the effects of HSV interacting with the host, especially the host immune system, may be important for the development of HSV vaccines. HSV vaccine development remains a major challenge. Thus, we focus on the research data regarding the interactions of HSV and host immune cells, including dendritic cells (DCs), innate lymphoid cells (ILCs), macrophages, and natural killer (NK) cells, and the related signal transduction pathways involved in immune evasion and cytokine production. The aim is to explore possible strategies to develop new effective HSV vaccines.
Collapse
Affiliation(s)
- Xingli Xu
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical SciencesPeking Union Medical CollegeKunmingChina
| | - Ying Zhang
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical SciencesPeking Union Medical CollegeKunmingChina
| | - Qihan Li
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical SciencesPeking Union Medical CollegeKunmingChina
| |
Collapse
|
26
|
Abstract
In this chapter, we present an overview on betaherpesvirus entry, with a focus on human cytomegalovirus, human herpesvirus 6A and human herpesvirus 6B. Human cytomegalovirus (HCMV) is a complex human pathogen with a genome of 235kb encoding more than 200 genes. It infects a broad range of cell types by switching its viral ligand on the virion, using the trimer gH/gL/gO for infection of fibroblasts and the pentamer gH/gL/UL128/UL130/UL131 for infection of other cells such as epithelial and endothelial cells, leading to membrane fusion mediated by the fusion protein gB. Adding to this scenario, however, accumulating data reveal the actual complexity in the viral entry process of HCMV with an intricate interplay among viral and host factors. Key novel findings include the identification of entry receptors platelet-derived growth factor-α receptor (PDGFRα) and Netropilin-2 (Nrp2) for trimer and pentamer, respectively, the determination of atomic structures of the fusion protein gB and the pentamer, and the in situ visualization of the state and arrangement of functional glycoproteins on virion. This is covered in the first part of this review. The second part focusses on HHV-6 which is a T lymphotropic virus categorized as two distinct virus species, HHV-6A and HHV-6B based on differences in epidemiological, biological, and immunological aspects, although homology of their entire genome sequences is nearly 90%. HHV-6B is a causative agent of exanthema subitum (ES), but the role of HHV-6A is unknown. HHV-6B reactivation occasionally causes encephalitis in patients with hematopoietic stem cell transplant. The HHV-6 specific envelope glycoprotein complex, gH/gL/gQ1/gQ2 is a viral ligand for the entry receptor. Recently, each virus has been found to recognize a different cellular receptor, CD46 for HHV 6A amd CD134 for HHV 6B. These findings show that distinct receptor recognition differing between both viruses could explain their different pathogenesis.
Collapse
Affiliation(s)
- Mitsuhiro Nishimura
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuko Mori
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|
27
|
Yamamoto Y, Yamamoto T, Aoyama Y, Fujimoto W. Cell-to-cell transmission of HSV-1 in differentiated keratinocytes promotes multinucleated giant cell formation. J Dermatol Sci 2019; 93:14-23. [DOI: 10.1016/j.jdermsci.2018.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/29/2018] [Accepted: 09/12/2018] [Indexed: 11/26/2022]
|
28
|
Si Z, Zhang J, Shivakoti S, Atanasov I, Tao CL, Hui WH, Zhou K, Yu X, Li W, Luo M, Bi GQ, Zhou ZH. Different functional states of fusion protein gB revealed on human cytomegalovirus by cryo electron tomography with Volta phase plate. PLoS Pathog 2018; 14:e1007452. [PMID: 30507948 PMCID: PMC6307773 DOI: 10.1371/journal.ppat.1007452] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/27/2018] [Accepted: 11/02/2018] [Indexed: 11/25/2022] Open
Abstract
Human cytomegalovirus (HCMV) enters host by glycoprotein B (gB)-mediated membrane fusion upon receptor-binding to gH/gL-related complexes, causing devastating diseases such as birth defects. Although an X-ray crystal structure of the recombinant gB ectodomain at postfusion conformation is available, the structures of prefusion gB and its complex with gH/gL on the viral envelope remain elusive. Here, we demonstrate the utility of cryo electron tomography (cryoET) with energy filtering and the cutting-edge technologies of Volta phase plate (VPP) and direct electron-counting detection to capture metastable prefusion viral fusion proteins and report the structures of glycoproteins in the native environment of HCMV virions. We established the validity of our approach by obtaining cryoET in situ structures of the vesicular stomatitis virus (VSV) glycoprotein G trimer (171 kD) in prefusion and postfusion conformations, which agree with the known crystal structures of purified G trimers in both conformations. The excellent contrast afforded by these technologies has enabled us to identify gB trimers (303kD) in two distinct conformations in HCMV tomograms and obtain their in situ structures at up to 21 Å resolution through subtomographic averaging. The predominant conformation (79%), which we designate as gB prefusion conformation, fashions a globular endodomain and a Christmas tree-shaped ectodomain, while the minority conformation (21%) has a columnar tree-shaped ectodomain that matches the crystal structure of the "postfusion" gB ectodomain. We also observed prefusion gB in complex with an "L"-shaped density attributed to the gH/gL complex. Integration of these structures of HCMV glycoproteins in multiple functional states and oligomeric forms with existing biochemical data and domain organization of other class III viral fusion proteins suggests that gH/gL receptor-binding triggers conformational changes of gB endodomain, which in turn triggers two essential steps to actuate virus-cell membrane fusion: exposure of gB fusion loops and unfurling of gB ectodomain.
Collapse
Affiliation(s)
- Zhu Si
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P.R. China
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, United States of America
| | - Jiayan Zhang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, United States of America
- Molecular Biology Institute, UCLA, Los Angeles, CA, United States of America
| | - Sakar Shivakoti
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, United States of America
| | - Ivo Atanasov
- California NanoSystems Institute, UCLA, Los Angeles, CA, United States of America
| | - Chang-Lu Tao
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Wong H. Hui
- California NanoSystems Institute, UCLA, Los Angeles, CA, United States of America
| | - Kang Zhou
- California NanoSystems Institute, UCLA, Los Angeles, CA, United States of America
| | - Xuekui Yu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, United States of America
| | - Weike Li
- Department of Chemistry, Georgia State University, Atlanta, GA, United States of America
| | - Ming Luo
- Department of Chemistry, Georgia State University, Atlanta, GA, United States of America
| | - Guo-Qiang Bi
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Z. Hong Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, United States of America
- Molecular Biology Institute, UCLA, Los Angeles, CA, United States of America
- California NanoSystems Institute, UCLA, Los Angeles, CA, United States of America
| |
Collapse
|
29
|
Liu XQ, Xin HY, Lyu YN, Ma ZW, Peng XC, Xiang Y, Wang YY, Wu ZJ, Cheng JT, Ji JF, Zhong JX, Ren BX, Wang XW, Xin HW. Oncolytic herpes simplex virus tumor targeting and neutralization escape by engineering viral envelope glycoproteins. Drug Deliv 2018; 25:1950-1962. [PMID: 30799657 PMCID: PMC6282442 DOI: 10.1080/10717544.2018.1534895] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/02/2018] [Accepted: 10/08/2018] [Indexed: 12/02/2022] Open
Abstract
Oncolytic herpes simplex viruses (oHSVs) have been approved for clinical usage and become more and more popular for tumor virotherapy. However, there are still many issues for the oHSVs used in clinics and clinical trials. The main issues are the limited anti-tumor effects, intratumor injection, and some side effects. To overcome such challenges, here we review the genetic engineering of the envelope glycoproteins for oHSVs to target tumors specifically, and at the same time we summarize the many neutralization antibodies against the envelope glycoproteins and align the neutralization epitopes with functional domains of the respective glycoproteins for future identification of new functions of the glycoproteins and future engineering of the epitopes to escape from host neutralization.
Collapse
Affiliation(s)
- Xiao-Qin Liu
- Faculty of Medicine, The Second School of Clinical Medicine, Yangtze University, Nanhuan, Jingzhou, Hubei, China
- Laboratory of Oncology, Faculty of Medicine, Center for Molecular Medicine, School of Basic Medicine, Yangtze University, Jingzhou, Hubei, China
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Yangtze University, Jingzhou, Hubei, China
- Department of Nursing and Medical Imaging Technology, Yangtze University, Jingzhou, Hubei, China
| | - Hong-Yi Xin
- Star Array Pte Ltd, JTC Medtech Hub, Singapore, Singapore
| | - Yan-Ning Lyu
- Institute for Infectious Diseases and Endemic Diseases Prevention and Control, Beijing Center for Diseases Prevention and Control, Beijing, China
| | - Zhao-Wu Ma
- Faculty of Medicine, The Second School of Clinical Medicine, Yangtze University, Nanhuan, Jingzhou, Hubei, China
- Laboratory of Oncology, Faculty of Medicine, Center for Molecular Medicine, School of Basic Medicine, Yangtze University, Jingzhou, Hubei, China
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Yangtze University, Jingzhou, Hubei, China
| | - Xiao-Chun Peng
- Faculty of Medicine, The Second School of Clinical Medicine, Yangtze University, Nanhuan, Jingzhou, Hubei, China
- Laboratory of Oncology, Faculty of Medicine, Center for Molecular Medicine, School of Basic Medicine, Yangtze University, Jingzhou, Hubei, China
- Faculty of Medicine, Department of Pathophysiology, School of Basic Medicine, Yangtze University, Jingzhou, Hubei, China
| | - Ying Xiang
- Faculty of Medicine, The Second School of Clinical Medicine, Yangtze University, Nanhuan, Jingzhou, Hubei, China
- Laboratory of Oncology, Faculty of Medicine, Center for Molecular Medicine, School of Basic Medicine, Yangtze University, Jingzhou, Hubei, China
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Yangtze University, Jingzhou, Hubei, China
| | - Ying-Ying Wang
- Faculty of Medicine, The Second School of Clinical Medicine, Yangtze University, Nanhuan, Jingzhou, Hubei, China
- Laboratory of Oncology, Faculty of Medicine, Center for Molecular Medicine, School of Basic Medicine, Yangtze University, Jingzhou, Hubei, China
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Yangtze University, Jingzhou, Hubei, China
| | - Zi-Jun Wu
- Faculty of Medicine, The Second School of Clinical Medicine, Yangtze University, Nanhuan, Jingzhou, Hubei, China
- Laboratory of Oncology, Faculty of Medicine, Center for Molecular Medicine, School of Basic Medicine, Yangtze University, Jingzhou, Hubei, China
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Yangtze University, Jingzhou, Hubei, China
- Department of Nursing and Medical Imaging Technology, Yangtze University, Jingzhou, Hubei, China
| | - Jun-Ting Cheng
- Faculty of Medicine, The Second School of Clinical Medicine, Yangtze University, Nanhuan, Jingzhou, Hubei, China
- Laboratory of Oncology, Faculty of Medicine, Center for Molecular Medicine, School of Basic Medicine, Yangtze University, Jingzhou, Hubei, China
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Yangtze University, Jingzhou, Hubei, China
| | - Jia-Fu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Haidian, Beijing, China
| | - Ji-Xin Zhong
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, USA
| | - Bo-Xu Ren
- Faculty of Medicine, The Second School of Clinical Medicine, Yangtze University, Nanhuan, Jingzhou, Hubei, China
- Department of Nursing and Medical Imaging Technology, Yangtze University, Jingzhou, Hubei, China
| | - Xian-Wang Wang
- Faculty of Medicine, The Second School of Clinical Medicine, Yangtze University, Nanhuan, Jingzhou, Hubei, China
- Laboratory of Oncology, Faculty of Medicine, Center for Molecular Medicine, School of Basic Medicine, Yangtze University, Jingzhou, Hubei, China
- Faculty of Medicine, Department of Laboratory Medicine, School of Basic Medicine, Yangtze University, Jingzhou, Hubei, China
| | - Hong-Wu Xin
- Faculty of Medicine, The Second School of Clinical Medicine, Yangtze University, Nanhuan, Jingzhou, Hubei, China
- Laboratory of Oncology, Faculty of Medicine, Center for Molecular Medicine, School of Basic Medicine, Yangtze University, Jingzhou, Hubei, China
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
30
|
Vallbracht M, Fuchs W, Klupp BG, Mettenleiter TC. Functional Relevance of the Transmembrane Domain and Cytoplasmic Tail of the Pseudorabies Virus Glycoprotein H for Membrane Fusion. J Virol 2018; 92:e00376-18. [PMID: 29618646 PMCID: PMC5974499 DOI: 10.1128/jvi.00376-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/29/2018] [Indexed: 12/18/2022] Open
Abstract
Herpesvirus membrane fusion depends on the core fusion machinery, comprised of glycoproteins B (gB) and gH/gL. Although gB structurally resembles autonomous class III fusion proteins, it strictly depends on gH/gL to drive membrane fusion. Whether the gH/gL complex needs to be membrane anchored to fulfill its function and which role the gH cytoplasmic (CD) and transmembrane domains (TMD) play in fusion is unclear. While the gH CD and TMD play an important role during infection, soluble gH/gL of herpes simplex virus 1 (HSV-1) seems to be sufficient to mediate cell-cell fusion in transient assays, arguing against an essential contribution of the CD and TMD. To shed more light on this apparent discrepancy, we investigated the role of the CD and TMD of the related alphaherpesvirus pseudorabies virus (PrV) gH. For this purpose, we expressed C-terminally truncated and soluble gH and replaced the TMD with a glycosylphosphatidylinositol (gpi) anchor. We also generated chimeras containing the TMD and/or CD of PrV gD or HSV-1 gH. Proteins were characterized in cell-based fusion assays and during virus infection. Although truncation of the CD resulted in decreased membrane fusion activity, the mutant proteins still supported replication of gH-negative PrV, indicating that the PrV gH CD is dispensable for viral replication. In contrast, PrV gH lacking the TMD, membrane-anchored via a lipid linker, or comprising the PrV gD TMD were nonfunctional, highlighting the essential role of the gH TMD for function. Interestingly, despite low sequence identity, the HSV-1 gH TMD could substitute for the PrV gH TMD, pointing to functional conservation.IMPORTANCE Enveloped viruses depend on membrane fusion for virus entry. While this process can be mediated by only one or two proteins, herpesviruses depend on the concerted action of at least three different glycoproteins. Although gB has features of bona fide fusion proteins, it depends on gH and its complex partner, gL, for fusion. Whether gH/gL prevents premature fusion or actively triggers gB-mediated fusion is unclear, and there are contradictory results on whether gH/gL function requires stable membrane anchorage or whether the ectodomains alone are sufficient. Our results show that in pseudorabies virus gH, the transmembrane anchor plays an essential role for gB-mediated fusion while the cytoplasmic tail is not strictly required.
Collapse
Affiliation(s)
- Melina Vallbracht
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Walter Fuchs
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
31
|
Cooper RS, Georgieva ER, Borbat PP, Freed JH, Heldwein EE. Structural basis for membrane anchoring and fusion regulation of the herpes simplex virus fusogen gB. Nat Struct Mol Biol 2018; 25:416-424. [PMID: 29728654 PMCID: PMC5942590 DOI: 10.1038/s41594-018-0060-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/28/2018] [Indexed: 11/26/2022]
Abstract
Viral fusogens merge viral and cell membranes during cell penetration. Their ectodomains drive fusion by undergoing large-scale refolding, but little is known about the functionally important regions located within or near the membrane. Here, we report the crystal structure of the full-length glycoprotein B, the fusogen from Herpes Simplex Virus, complemented by electron spin resonance measurements. The membrane-proximal (MPR), transmembrane (TMD), and cytoplasmic (CTD) domains form a uniquely folded trimeric pedestal beneath the ectodomain, which balances dynamic flexibility with extensive, stabilizing membrane interactions. Hyperfusogenic mutations within the CTD destabilize it, targeting trimeric interfaces, structural motifs, and membrane-interacting elements. Thus, we propose that the CTD trimer observed in the structure stabilizes gB in its prefusion state despite being appended to the postfusion ectodomain. Our data suggest a model for how this dynamic, membrane-dependent “clamp” controls the fusogenic refolding of gB.
Collapse
Affiliation(s)
- Rebecca S Cooper
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Elka R Georgieva
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.,National Biomedical Center for Advanced Electron Spin Resonance Technology (ACERT), Cornell University, Ithaca, NY, USA
| | - Peter P Borbat
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.,National Biomedical Center for Advanced Electron Spin Resonance Technology (ACERT), Cornell University, Ithaca, NY, USA
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.,National Biomedical Center for Advanced Electron Spin Resonance Technology (ACERT), Cornell University, Ithaca, NY, USA
| | - Ekaterina E Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
32
|
Arii J, Kawaguchi Y. The Role of HSV Glycoproteins in Mediating Cell Entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:3-21. [PMID: 29896660 DOI: 10.1007/978-981-10-7230-7_1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The successful entry of herpes simplex virus (HSV) into a cell is a complex process requiring the interaction of several surface viral glycoproteins with host cell receptors. These viral glycoproteins are currently thought to work sequentially to trigger fusogenic activity, but the process is complicated by the fact that each glycoprotein is known to interact with a range of target cell surface receptor molecules. The glycoproteins concerned are gB, gD, and gH/gL, with at least four host cell receptor molecules known to bind to gB and gD alone. Redundancy among gD receptors is also evident and binding to both the gB and gD receptors simultaneously is known to be required for successful membrane fusion. Receptor type and tissue distribution are commonly considered to define the extent of viral tropism and thus the magnitude of pathogenesis. Viral entry receptors are therefore attractive pharmaceutical target molecules for the prevention and/or treatment of viral infections. However, the large number of HSV glycoprotein receptors makes a comprehensive understanding of HSV pathogenesis in vivo difficult. Here we summarize our current understanding of the various HSV glycoprotein cell surface receptors, define their redundancy and binding specificity, and discuss the significance of these interactions for viral pathogenesis.
Collapse
Affiliation(s)
- Jun Arii
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan.
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan.
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan.
| | - Yasushi Kawaguchi
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| |
Collapse
|
33
|
Möhl BS, Chen J, Park SJ, Jardetzky TS, Longnecker R. Epstein-Barr Virus Fusion with Epithelial Cells Triggered by gB Is Restricted by a gL Glycosylation Site. J Virol 2017; 91:e01255-17. [PMID: 28956769 PMCID: PMC5686762 DOI: 10.1128/jvi.01255-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/21/2017] [Indexed: 12/17/2022] Open
Abstract
Epstein-Barr virus (EBV) entry into epithelial cells is mediated by the conserved core fusion machinery, composed of the fusogen gB and the receptor-binding complex gH/gL. The heterodimeric gH/gL complex binds to the EBV epithelial cell receptor or gp42, which binds to the B-cell receptor, triggering gB-mediated fusion of the virion envelope with cellular membranes. Our previous study found that the gL glycosylation mutant N69L/S71V had an epithelial cell-specific hyperfusogenic phenotype. To study the influence of this gL mutant on the initiation and kinetics of gB-driven epithelial cell fusion, we established a virus-free split-green fluorescent protein cell-cell fusion assay that enables real-time measurements of membrane fusion using live cells. The gL_N69L/S71V mutant had a large increase in epithelial cell fusion activity of up to 300% greater than that of wild-type gL starting at early time points. The hyperfusogenicity of the gL mutant was not a result of alterations in complex formation with gH or alterations in cellular localization. Moreover, the hyperfusogenic phenotype of the gL mutant correlated with the formation of enlarged syncytia. In summary, our present findings highlight an important role of gL in the kinetics of gB-mediated epithelial cell fusion, adding to previous findings indicating a direct interaction between gL and gB in EBV membrane fusion.IMPORTANCE EBV predominantly infects epithelial cells and B lymphocytes, which are the cells of origin for the EBV-associated malignancies Hodgkin and Burkitt lymphoma as well as nasopharyngeal carcinoma. Contrary to the other key players of the core fusion machinery, gL has the most elusive role during EBV-induced membrane fusion. We found that the glycosylation site N69/S71 of gL is involved in restricting epithelial cell fusion activity, strongly correlating with syncytium size. Interestingly, our data showed that the gL glycosylation mutant increases the fusion activity of the hyperfusogenic gB mutants, indicating that this gL mutant and the gB mutants target different steps during fusion. Our studies on how gL and gB work together to modulate epithelial cell fusion kinetics are essential to understand the highly tuned tropism of EBV for epithelial cells and B lymphocytes and may result in novel strategies for therapies preventing viral entry into target host cells. Finally, making our results of particular interest is the absence of gL syncytial mutants in other herpesviruses.
Collapse
Affiliation(s)
- Britta S Möhl
- Department of Microbiology and Immunology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jia Chen
- Department of Microbiology and Immunology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Seo Jin Park
- Department of Microbiology and Immunology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Theodore S Jardetzky
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Richard Longnecker
- Department of Microbiology and Immunology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
34
|
The UL21 Tegument Protein of Herpes Simplex Virus 1 Is Differentially Required for the Syncytial Phenotype. J Virol 2017; 91:JVI.01161-17. [PMID: 28794039 DOI: 10.1128/jvi.01161-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/04/2017] [Indexed: 12/28/2022] Open
Abstract
The initial goal of this study was to reexamine the requirement of UL21 for herpes simplex virus 1 (HSV-1) replication. Previous studies suggested that UL21 is dispensable for replication in cell cultures, but a recent report on HSV-2 challenges those findings. As was done for the HSV-2 study, a UL21-null virus was made and propagated on complementing cells to discourage selection of compensating mutations. This HSV-1 mutant was able to replicate in noncomplementing cells, even at a low multiplicity of infection (MOI), though a reduction in titer was observed. Also, increased proportions of empty capsids were observed in the cytoplasm, suggesting a role for UL21 in preventing their exit from the nucleus. Surprisingly, passage of the null mutant resulted in rapid outgrowth of syncytial (Syn) variants. This was unexpected because UL21 has been shown to be required for the Syn phenotype. However, earlier experiments made use of only the A855V syncytial mutant of glycoprotein B (gB), and the Syn phenotype can also be produced by substitutions in glycoprotein K (gK), UL20, and UL24. Sequencing of the syncytial variants revealed mutations in the gK locus, but UL21 was shown to be dispensable for UL20Syn and UL24Syn To test whether UL21 is needed only for the A855V mutant, additional gBSyn derivatives were examined in the context of the null virus, and all produced lytic rather than syncytial sites of infection. Thus, UL21 is required only for the gBSyn phenotype. This is the first example of a differential requirement for a viral protein across the four syn loci.IMPORTANCE UL21 is conserved among alphaherpesviruses, but its role is poorly understood. This study shows that HSV-1 can replicate without UL21, although the virus titers are greatly reduced. The null virus had greater proportions of empty (DNA-less) capsids in the cytoplasm of infected cells, suggesting that UL21 may play a role in retaining them in the nucleus. This is consistent with reports showing UL21 to be capsid associated and localized to the nuclei of infected cells. UL21 also appears to be needed for viral membrane activities. It was found to be required for virus-mediated cell fusion, but only for mutants that harbor syncytial mutations in gB (not variants of gK, UL20, or UL24). The machinery needed for syncytial formation is similar to that needed for direct spread of the virus through cell junctions, and these studies show that UL21 is required for cell-to-cell spread even in the absence of syncytial mutations.
Collapse
|
35
|
The Fusion Loops of the Initial Prefusion Conformation of Herpes Simplex Virus 1 Fusion Protein Point Toward the Membrane. mBio 2017; 8:mBio.01268-17. [PMID: 28830949 PMCID: PMC5565971 DOI: 10.1128/mbio.01268-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
All enveloped viruses, including herpesviruses, must fuse their envelope with the host membrane to deliver their genomes into target cells, making this essential step subject to interference by antibodies and drugs. Viral fusion is mediated by a viral surface protein that transits from an initial prefusion conformation to a final postfusion conformation. Strikingly, the prefusion conformation of the herpesvirus fusion protein, gB, is poorly understood. Herpes simplex virus (HSV), a model system for herpesviruses, causes diseases ranging from mild skin lesions to serious encephalitis and neonatal infections. Using cryo-electron tomography and subtomogram averaging, we have characterized the structure of the prefusion conformation and fusion intermediates of HSV-1 gB. To this end, we have set up a system that generates microvesicles displaying full-length gB on their envelope. We confirmed proper folding of gB by nondenaturing electrophoresis-Western blotting with a panel of monoclonal antibodies (MAbs) covering all gB domains. To elucidate the arrangement of gB domains, we labeled them by using (i) mutagenesis to insert fluorescent proteins at specific positions, (ii) coexpression of gB with Fabs for a neutralizing MAb with known binding sites, and (iii) incubation of gB with an antibody directed against the fusion loops. Our results show that gB starts in a compact prefusion conformation with the fusion loops pointing toward the viral membrane and suggest, for the first time, a model for gB’s conformational rearrangements during fusion. These experiments further illustrate how neutralizing antibodies can interfere with the essential gB structural transitions that mediate viral entry and therefore infectivity. The herpesvirus family includes herpes simplex virus (HSV) and other human viruses that cause lifelong infections and a variety of diseases, like skin lesions, encephalitis, and cancers. As enveloped viruses, herpesviruses must fuse their envelope with the host membrane to start an infection. This process is mediated by a viral surface protein that transitions from an initial conformation (prefusion) to a final, more stable, conformation (postfusion). However, the prefusion conformation of the herpesvirus fusion protein (gB) is poorly understood. To elucidate the structure of the prefusion conformation of HSV type 1 gB, we have employed cryo-electron microscopy to study gB molecules expressed on the surface of vesicles. Using different approaches to label gB’s domains allowed us to model the structures of the prefusion and intermediate conformations of gB. Overall, our findings enhance our understanding of HSV fusion and lay the groundwork for the development of new ways to prevent and block HSV infection.
Collapse
|
36
|
Franci G, Falanga A, Zannella C, Folliero V, Martora F, Galdiero M, Galdiero S, Morelli G, Galdiero M. Infectivity inhibition by overlapping synthetic peptides derived from the gH/gL heterodimer of herpes simplex virus type 1. J Pept Sci 2017; 23:311-319. [PMID: 28194842 PMCID: PMC7168125 DOI: 10.1002/psc.2979] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 01/27/2023]
Abstract
Herpes simplex virus (HSV) is a human pathogen that infects epithelial cells. The cutaneous lesions, caused by the virus, spread to the nervous system creating several complications. Fusion of host membranes with the viral envelope is mandatory and mediated by a group of glycoproteins conserved in all Herpesviridae subfamilies, such as the glycoproteins B (gB), H (gH), L (gL) and D (gD). We investigated the inhibitory activity mediated by synthetic overlapping peptides spanning the entire ectodomains of gH and gL glycoproteins. We have performed a brute analysis of the complete gH/gL heterodimer in order to explore the inhibitory activity of peptides modelled on these glycoproteins against HSV‐1 infection. Twenty‐four of the gH peptides at a concentration of 150 μM reached the 50% of inhibition cut‐off. Interestingly, they are mainly located in the gH carboxy‐terminal domain. None of the gL peptides had a clear inhibiting effect. No peptide toxicity was observed by lactate dehydrogenase assay at the concentrations used in our experimental conditions. HSV‐1 therapy is based on acyclovir treatment, but some resistant strains are emerging. In this scenario, innovative approaches for HSV‐1 treatment are necessary. Our data support the direct involvement of the described domains in the process of virus penetration; therefore, these results are of relevance to the potential development of novel therapeutic compounds to prevent HSV‐1 infections. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Gianluigi Franci
- Department of Experimental MedicineUniversity of Campania “Luigi Vanvitelli”Via De Crecchio 780138NaplesItaly
- Centro Interuniversitario di Ricerca sui Peptidi BioattiviUniversity of Naples ‘Federico II’Via Mezzocannone 1680134NaplesItaly
| | - Annarita Falanga
- Centro Interuniversitario di Ricerca sui Peptidi BioattiviUniversity of Naples ‘Federico II’Via Mezzocannone 1680134NaplesItaly
- Department of PharmacyUniversity of Naples ‘Federico II’Via Mezzocannone 1680134NaplesItaly
| | - Carla Zannella
- Department of Experimental MedicineUniversity of Campania “Luigi Vanvitelli”Via De Crecchio 780138NaplesItaly
| | - Veronica Folliero
- Department of Experimental MedicineUniversity of Campania “Luigi Vanvitelli”Via De Crecchio 780138NaplesItaly
| | - Francesca Martora
- Department of Experimental MedicineUniversity of Campania “Luigi Vanvitelli”Via De Crecchio 780138NaplesItaly
| | - Marilena Galdiero
- Department of Experimental MedicineUniversity of Campania “Luigi Vanvitelli”Via De Crecchio 780138NaplesItaly
| | - Stefania Galdiero
- Centro Interuniversitario di Ricerca sui Peptidi BioattiviUniversity of Naples ‘Federico II’Via Mezzocannone 1680134NaplesItaly
| | - Giancarlo Morelli
- Centro Interuniversitario di Ricerca sui Peptidi BioattiviUniversity of Naples ‘Federico II’Via Mezzocannone 1680134NaplesItaly
- Department of PharmacyUniversity of Naples ‘Federico II’Via Mezzocannone 1680134NaplesItaly
| | - Massimiliano Galdiero
- Department of Experimental MedicineUniversity of Campania “Luigi Vanvitelli”Via De Crecchio 780138NaplesItaly
- Centro Interuniversitario di Ricerca sui Peptidi BioattiviUniversity of Naples ‘Federico II’Via Mezzocannone 1680134NaplesItaly
| |
Collapse
|
37
|
Niazy N, Temme S, Bocuk D, Giesen C, König A, Temme N, Ziegfeld A, Gregers TF, Bakke O, Lang T, Eis-Hübinger AM, Koch N. Misdirection of endosomal trafficking mediated by herpes simplex virus-encoded glycoprotein B. FASEB J 2017; 31:1650-1667. [PMID: 28119397 DOI: 10.1096/fj.201600521r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 01/01/2017] [Indexed: 01/01/2023]
Abstract
Herpes simplex virus (HSV)-encoded glycoprotein B (gB) is the most abundant protein in the viral envelope and promotes fusion of the virus with the cellular membrane. In the present study, we found that gB impacts on the major histocompatibility complex (MHC)-II pathway of antigen presentation by fostering homotypic fusion of early endosomes and trapping MHC-II molecules in these altered endosomes. By using an overexpression approach, we demonstrated that transient expression of gB induces giant vesicles of early endosomal origin, which contained Rab5, early endosomal antigen 1 (EEA1), and large amounts of MHC-II molecules [human leukocyte antigen (HLA)-DR, and HLA-DM], but no CD63. In HSV-1-infected and stably transfected cell lines that expressed lower amounts of gB, giant endosomes were not observed, but strongly increased amounts of HLA-DR and HLA-DM were found in EEA1+ early endosomes. We used these giant vesicles as a model system and revealed that gB interacts with Rab5 and EEA1, and that gB-induced homotypic fusion of early endosomes to giant endosomes requires phosphatidylinositol 3-phosphate, the activity of soluble N-ethylmaleimide-sensitive factor attachment protein receptors, and the cytosolic gB sequence 889YTQVPN894 We conclude that gB expression alters trafficking of molecules of the HLA-II processing pathway, which leads to increased retention of MHC-II molecules in early endosomal compartments, thereby intercepting antigen presentation.-Niazy, N., Temme, S., Bocuk, D., Giesen, C., König, A., Temme, N., Ziegfeld, A., Gregers, T. F., Bakke, O., Lang, T., Eis-Hübinger, A. M., Koch, N. Misdirection of endosomal trafficking mediated by herpes simplex virus-encoded glycoprotein B.
Collapse
Affiliation(s)
- Naima Niazy
- Section of Immunobiology, Institute of Genetics, University of Bonn, Bonn, Germany
| | - Sebastian Temme
- Section of Immunobiology, Institute of Genetics, University of Bonn, Bonn, Germany;
| | - Derya Bocuk
- Section of Immunobiology, Institute of Genetics, University of Bonn, Bonn, Germany
| | - Carmen Giesen
- Section of Immunobiology, Institute of Genetics, University of Bonn, Bonn, Germany
| | - Angelika König
- Section of Immunobiology, Institute of Genetics, University of Bonn, Bonn, Germany
| | - Nadine Temme
- Section of Immunobiology, Institute of Genetics, University of Bonn, Bonn, Germany
| | - Angelique Ziegfeld
- Section of Immunobiology, Institute of Genetics, University of Bonn, Bonn, Germany
| | - Tone F Gregers
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Oddmund Bakke
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Thorsten Lang
- Membrane Biochemistry, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | | | - Norbert Koch
- Section of Immunobiology, Institute of Genetics, University of Bonn, Bonn, Germany
| |
Collapse
|
38
|
Weed DJ, Nicola AV. Herpes simplex virus Membrane Fusion. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 223:29-47. [PMID: 28528438 PMCID: PMC5869023 DOI: 10.1007/978-3-319-53168-7_2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Herpes simplex virus mediates multiple distinct fusion events during infection. HSV entry is initiated by fusion of the viral envelope with either the limiting membrane of a host cell endocytic compartment or the plasma membrane. In the infected cell during viral assembly, immature, enveloped HSV particles in the perinuclear space fuse with the outer nuclear membrane in a process termed de-envelopment. A cell infected with some strains of HSV with defined mutations spread to neighboring cells by a fusion event called syncytium formation. Two experimental methods, the transient cell-cell fusion approach and fusion from without, are useful surrogate assays of HSV fusion. These five fusion processes are considered in terms of their requirements, mechanism, and regulation. The execution and modulation of these events require distinct yet often overlapping sets of viral proteins and host cell factors. The core machinery of HSV gB, gD, and the heterodimer gH/gL is required for most if not all of the HSV fusion mechanisms.
Collapse
Affiliation(s)
- Darin J Weed
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
| | - Anthony V Nicola
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
39
|
The Glycoprotein B Cytoplasmic Domain Lysine Cluster Is Critical for Varicella-Zoster Virus Cell-Cell Fusion Regulation and Infection. J Virol 2016; 91:JVI.01707-16. [PMID: 27795427 DOI: 10.1128/jvi.01707-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/18/2016] [Indexed: 12/22/2022] Open
Abstract
The conserved glycoproteins gB and gH-gL are essential for herpesvirus entry and cell-cell fusion induced syncytium formation, a characteristic of varicella-zoster virus (VZV) pathology in skin and sensory ganglia. VZV syncytium formation, which has been implicated in the painful condition of postherpetic neuralgia, is regulated by the cytoplasmic domains of gB (gBcyt) via an immunoreceptor tyrosine-based inhibition motif (ITIM) and gH (gHcyt). A lysine cluster (K894, K897, K898, and K900) in the VZV gBcyt was identified by sequence alignment to be conserved among alphaherpesviruses, suggesting a functional role. Alanine and arginine substitutions were used to determine if the positive charge and susceptibility to posttranslational modifications of these lysines contributed to gB/gH-gL cell-cell fusion. Critically, the positive charge of the lysine residues was necessary for fusion regulation, as alanine substitutions induced a 440% increase in fusion compared to that of the wild-type gBcyt while arginine substitutions had wild-type-like fusion levels in an in vitro gB/gH-gL cell fusion assay. Consistent with these results, the alanine substitutions in the viral genome caused exaggerated syncytium formation, reduced VZV titers (-1.5 log10), and smaller plaques than with the parental Oka (pOka) strain. In contrast, arginine substitutions resulted in syncytia with only 2-fold more nuclei, a -0.5-log10 reduction in titers, and pOka-like plaques. VZV mutants with both an ITIM mutation and either alanine or arginine substitutions had reduced titers and small plaques but differed in syncytium morphology. Thus, effective VZV propagation is dependent on cell-cell fusion regulation by the conserved gBcyt lysine cluster, in addition to the gBcyt ITIM and the gHcyt. IMPORTANCE Varicella-zoster virus (VZV) is a ubiquitous pathogen that causes chickenpox and shingles. Individuals afflicted with shingles risk developing the painful condition of postherpetic neuralgia (PHN), which has been difficult to treat because the underlying cause is not well understood. Additional therapies are needed, as the current vaccine is not recommended for immunocompromised individuals and its efficacy decreases with the age of the recipient. VZV is known to induce the formation of multinuclear cells in neuronal tissue, which has been proposed to be a factor contributing to PHN. This study examines the role of a lysine cluster in the cytoplasmic domain of the VZV fusion protein, gB, in the formation of VZV induced multinuclear cells and in virus replication kinetics and spread. The findings further elucidate how VZV self-regulates multinuclear cell formation and may provide insight into the development of new PHN therapies.
Collapse
|
40
|
Atanasiu D, Saw WT, Eisenberg RJ, Cohen GH. Regulation of Herpes Simplex Virus Glycoprotein-Induced Cascade of Events Governing Cell-Cell Fusion. J Virol 2016; 90:10535-10544. [PMID: 27630245 PMCID: PMC5110162 DOI: 10.1128/jvi.01501-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/09/2016] [Indexed: 01/06/2023] Open
Abstract
Receptor-dependent herpes simplex virus (HSV)-induced cell-cell fusion requires glycoproteins gD, gH/gL, and gB. Our current model posits that during fusion, receptor-activated conformational changes in gD activate gH/gL, which subsequently triggers the transformation of the prefusion form of gB into a fusogenic state. To examine the role of each glycoprotein in receptor-dependent cell-cell fusion, we took advantage of our discovery that fusion by wild-type herpes simplex virus 2 (HSV-2) glycoproteins occurs twice as fast as that achieved by HSV-1 glycoproteins. By sequentially swapping each glycoprotein between the two serotypes, we established that fusion speed was governed by gH/gL, with gH being the main contributor. While the mutant forms of gB fuse at distinct rates that are dictated by their molecular structure, these restrictions can be overcome by gH/gL of HSV-2 (gH2/gL2), thereby enhancing their activity. We also found that deregulated forms of gD of HSV-1 (gD1) and gH2/gL2 can alter the fusogenic potential of gB, promoting cell fusion in the absence of a cellular receptor, and that deregulated forms of gB can drive the fusion machinery to even higher levels. Low pH enhanced fusion by affecting the structure of both gB and gH/gL mutants. Together, our data highlight the complexity of the fusion machinery, the impact of the activation state of each glycoprotein on the fusion process, and the critical role of gH/gL in regulating HSV-induced fusion. IMPORTANCE Cell-cell fusion mediated by HSV glycoproteins requires gD, gH/gL, gB, and a gD receptor. Here, we show that fusion by wild-type HSV-2 glycoproteins occurs twice as fast as that achieved by HSV-1 glycoproteins. By sequentially swapping each glycoprotein between the two serotypes, we found that the fusion process was controlled by gH/gL. Restrictions imposed on the gB structure by mutations could be overcome by gH2/gL2, enhancing the activity of the mutants. Under low-pH conditions or when using deregulated forms of gD1 and gH2/gL2, the fusogenic potential of gB could only be increased in the absence of receptor, underlining the exquisite regulation that occurs in the presence of receptor. Our data highlight the complexity of the fusion machinery, the impact of the activation state of each glycoprotein on the fusion process, and the critical role of gH/gL in regulating HSV-induced fusion.
Collapse
Affiliation(s)
- Doina Atanasiu
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wan Ting Saw
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Roselyn J Eisenberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gary H Cohen
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
41
|
Syncytial Mutations Do Not Impair the Specificity of Entry and Spread of a Glycoprotein D Receptor-Retargeted Herpes Simplex Virus. J Virol 2016; 90:11096-11105. [PMID: 27707922 DOI: 10.1128/jvi.01456-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/12/2016] [Indexed: 12/18/2022] Open
Abstract
Membrane fusion, which is the key process for both initial cell entry and subsequent lateral spread of herpes simplex virus (HSV), requires the four envelope glycoproteins gB, gD, gH, and gL. Syncytial mutations, predominantly mapped to the gB and gK genes, confer hyperfusogenicity on HSV and cause multinucleated giant cells, termed syncytia. Here we asked whether interaction of gD with a cognate entry receptor remains indispensable for initiating membrane fusion of syncytial strains. To address this question, we took advantage of mutant viruses whose viral entry into cells relies on the uniquely specific interaction of an engineered gD with epidermal growth factor receptor (EGFR). We introduced selected syncytial mutations into gB and/or gK of the EGFR-retargeted HSV and found that these mutations, especially when combined, enabled formation of extensive syncytia by human cancer cell lines that express the target receptor; these syncytia were substantially larger than the plaques formed by the parental retargeted HSV strain. We assessed the EGFR dependence of entry and spread separately by using direct entry and infectious center assays, respectively, and we found that the syncytial mutations did not override the receptor specificity of the retargeted viruses at either stage. We discuss the implications of these results for the development of more effective targeted oncolytic HSV vectors. IMPORTANCE Herpes simplex virus (HSV) is investigated not only as a human pathogen but also as a promising agent for oncolytic virotherapy. We previously showed that both the initial entry and subsequent lateral spread of HSV can be retargeted to cells expressing tumor-associated antigens by single-chain antibodies fused to a receptor-binding-deficient envelope glycoprotein D (gD). Here we introduced syncytial mutations into the gB and/or gK gene of gD-retargeted HSVs to determine whether viral tropism remained dependent on the interaction of gD with the target receptor. Entry and spread profiles of the recombinant viruses indicated that gD retargeting does not abolish the hyperfusogenic activity of syncytial mutations and that these mutations do not eliminate the dependence of HSV entry and spread on a specific gD-receptor interaction. These observations suggest that syncytial mutations may be valuable for increasing the tumor-specific spreading of retargeted oncolytic HSV vectors.
Collapse
|
42
|
The Cytoplasmic Tail Domain of Epstein-Barr Virus gH Regulates Membrane Fusion Activity through Altering gH Binding to gp42 and Epithelial Cell Attachment. mBio 2016; 7:mBio.01871-16. [PMID: 27935841 PMCID: PMC5111410 DOI: 10.1128/mbio.01871-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epstein-Barr virus (EBV) is associated with infectious mononucleosis and a variety of cancers as well as lymphoproliferative disorders in immunocompromised patients. EBV mediates viral entry into epithelial and B cells using fusion machinery composed of four glycoproteins: gB, the gH/gL complex, and gp42. gB and gH/gL are required for both epithelial and B cell fusion. The specific role of gH/gL in fusion has been the most elusive among the required herpesvirus entry glycoproteins. Previous mutational studies have focused on the ectodomain of EBV gH and not on the gH cytoplasmic tail domain (CTD). In this study, we chose to examine the function of the gH CTD by making serial gH truncation mutants as well as amino acid substitution mutants to determine the importance of the gH CTD in epithelial and B cell fusion. Truncation of 8 amino acids (aa 698 to 706) of the gH CTD resulted in diminished fusion activity using a virus-free syncytium formation assay and fusion assay. The importance of the amino acid composition of the gH CTD was also investigated by amino acid substitutions that altered the hydrophobicity or hydrophilicity of the CTD. These mutations also resulted in diminished fusion activity. Interestingly, some of the gH CTD truncation mutants and hydrophilic tail substitution mutants lost the ability to bind to gp42 and epithelial cells. In summary, our studies indicate that the gH CTD is an important functional domain. Infection with Epstein-Barr virus (EBV) causes diseases ranging from the fairly benign infectious mononucleosis to life-threatening cancer. Entry into target cells is the first step for viral infection and is important for EBV to cause disease. Understanding the EBV entry mechanism is useful for the development of infection inhibitors and developing EBV vaccine approaches. Epithelial and B cells are the main target cells for EBV infection. The essential glycoproteins for EBV entry include gB, gH/gL, and gp42. We characterized the function of the EBV gH C-terminal cytoplasmic tail domain (CTD) in fusion using a panel of gH CTD truncation or substitution mutants. We found that the gH CTD regulates fusion by altering gp42 and epithelial cell attachment. Our studies may lead to a better understanding of EBV fusion and entry, which may result in novel therapies that target the EBV entry step.
Collapse
|
43
|
Multiple Roles of the Cytoplasmic Domain of Herpes Simplex Virus 1 Envelope Glycoprotein D in Infected Cells. J Virol 2016; 90:10170-10181. [PMID: 27581980 DOI: 10.1128/jvi.01396-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/23/2016] [Indexed: 01/27/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) envelope glycoprotein D (gD) plays an essential role in viral entry. The functional regions of gD responsible for viral entry have been mapped to its extracellular domain, whereas the gD cytoplasmic domain plays no obvious role in viral entry. Thus far, the role(s) of the gD cytoplasmic domain in HSV-1 replication has remained to be elucidated. In this study, we show that ectopic expression of gD induces microvillus-like tubular structures at the plasma membrane which resemble the reported projection structures of the plasma membrane induced in HSV-1-infected cells. Mutations in the arginine cluster (residues 365 to 367) in the gD cytoplasmic domain greatly reduced gD-induced plasma membrane remodeling. In agreement with this, the mutations in the arginine cluster in the gD cytoplasmic domain reduced the number of microvillus-like tubular structures at the plasma membrane in HSV-1-infected cells. In addition, the mutations produced an accumulation of unenveloped nucleocapsids in the cytoplasm and reduced viral replication and cell-cell spread. These results suggest that the arginine cluster in the gD cytoplasmic domain is required for the efficient induction of plasma membrane projections and viral final envelopment, and these functions of the gD domain may lead to efficient viral replication and cell-cell spread. IMPORTANCE The cytoplasmic domain of HSV-1 gD, an envelope glycoprotein essential for viral entry, was reported to promote viral replication and cell-cell spread, but the role(s) of the domain during HSV-1 infection has remained unknown. In this study, we clarify two functions of the arginine cluster in the HSV-1 gD cytoplasmic domain, both of which require host cell membrane remodeling, i.e., the formation of microvillus-like projections at the plasma membrane and viral final envelopment in HSV-1-infected cells. We also show that the gD arginine cluster is required for efficient HSV-1 replication and cell-cell spread. This is the first report clarifying not only the functions of the gD cytoplasmic domain but also identifying the gD arginine cluster to be the HSV-1 factor responsible for the induction of plasma membrane projections in HSV-1-infected cells. Our results elucidate some of the functions of this multifunctional envelope glycoprotein during HSV-1 infection.
Collapse
|
44
|
Characterization of Vesicular Stomatitis Virus Pseudotypes Bearing Essential Entry Glycoproteins gB, gD, gH, and gL of Herpes Simplex Virus 1. J Virol 2016; 90:10321-10328. [PMID: 27605677 DOI: 10.1128/jvi.01714-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 08/30/2016] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex viruses (HSVs) are unusual in that unlike most enveloped viruses, they require at least four entry glycoproteins, gB, gD, gH, and gL, for entry into target cells in addition to a cellular receptor for gD. The dissection of the herpes simplex virus 1 (HSV-1) entry mechanism is complicated by the presence of more than a dozen proteins on the viral envelope. To investigate HSV-1 entry requirements in a simplified system, we generated vesicular stomatitis virus (VSV) virions pseudotyped with HSV-1 essential entry glycoproteins gB, gD, gH, and gL but lacking the native VSV fusogen G. These virions, referred to here as VSVΔG-BHLD virions, infected a cell line expressing a gD receptor, demonstrating for the first time that the four essential entry glycoproteins of HSV-1 are not only required but also sufficient for cell entry. To our knowledge, this is the first time the VSV pseudotyping system has been successfully extended beyond two proteins. Entry of pseudotyped virions required a gD receptor and was inhibited by HSV-1 specific anti-gB or anti-gH/gL neutralizing antibodies, which suggests that membrane fusion during the entry of the pseudotyped virions shares common requirements with the membrane fusion involved in HSV-1 entry and HSV-1-mediated syncytium formation. The HSV pseudotyping system established in this study presents a novel tool for systematic exploration of the HSV entry and membrane fusion mechanisms. IMPORTANCE Herpes simplex viruses (HSVs) are human pathogens that can cause cold sores, genital herpes, and blindness. No vaccines or preventatives are available. HSV entry into cells-a prerequisite for a successful infection-is a complex process that involves multiple viral and host proteins and occurs by different routes. Detailed mechanistic knowledge of the HSV entry is important for understanding its pathogenesis and would benefit antiviral and vaccine development, yet the presence of more than a dozen proteins on the viral envelope complicates the dissection of the HSV entry mechanisms. In this study, we generated heterologous virions displaying the four essential entry proteins of HSV-1 and showed that they are capable of cell entry and, like HSV-1, require all four entry glycoproteins along with a gD receptor. This HSV pseudotyping system pioneered in this work opens doors for future systematic exploration of the herpesvirus entry mechanisms.
Collapse
|
45
|
Möhl BS, Chen J, Sathiyamoorthy K, Jardetzky TS, Longnecker R. Structural and Mechanistic Insights into the Tropism of Epstein-Barr Virus. Mol Cells 2016; 39:286-91. [PMID: 27094060 PMCID: PMC4844934 DOI: 10.14348/molcells.2016.0066] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 03/26/2016] [Indexed: 01/23/2023] Open
Abstract
Epstein-Barr virus (EBV) is the prototypical γ-herpesvirus and an obligate human pathogen that infects mainly epithelial cells and B cells, which can result in malignancies. EBV infects these target cells by fusing with the viral and cellular lipid bilayer membranes using multiple viral factors and host receptor(s) thus exhibiting a unique complexity in its entry machinery. To enter epithelial cells, EBV requires minimally the conserved core fusion machinery comprised of the glycoproteins gH/gL acting as the receptor-binding complex and gB as the fusogen. EBV can enter B cells using gp42, which binds tightly to gH/gL and interacts with host HLA class II, activating fusion. Previously, we published the individual crystal structures of EBV entry factors, such as gH/gL and gp42, the EBV/host receptor complex, gp42/HLA-DR1, and the fusion protein EBV gB in a postfusion conformation, which allowed us to identify structural determinants and regions critical for receptor-binding and membrane fusion. Recently, we reported different low resolution models of the EBV B cell entry triggering complex (gHgL/gp42/HLA class II) in "open" and "closed" states based on negative-stain single particle electron microscopy, which provide further mechanistic insights. This review summarizes the current knowledge of these key players in EBV entry and how their structures impact receptor-binding and the triggering of gB-mediated fusion.
Collapse
Affiliation(s)
- Britta S. Möhl
- Department of Microbiology and Immunology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois,
USA
| | - Jia Chen
- Department of Microbiology and Immunology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois,
USA
| | - Karthik Sathiyamoorthy
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California,
USA
| | - Theodore S. Jardetzky
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California,
USA
| | - Richard Longnecker
- Department of Microbiology and Immunology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois,
USA
| |
Collapse
|
46
|
Herpesvirus gB: A Finely Tuned Fusion Machine. Viruses 2015; 7:6552-69. [PMID: 26690469 PMCID: PMC4690880 DOI: 10.3390/v7122957] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/15/2015] [Accepted: 11/27/2015] [Indexed: 01/03/2023] Open
Abstract
Enveloped viruses employ a class of proteins known as fusogens to orchestrate the merger of their surrounding envelope and a target cell membrane. Most fusogens accomplish this task alone, by binding cellular receptors and subsequently catalyzing the membrane fusion process. Surprisingly, in herpesviruses, these functions are distributed among multiple proteins: the conserved fusogen gB, the conserved gH/gL heterodimer of poorly defined function, and various non-conserved receptor-binding proteins. We summarize what is currently known about gB from two closely related herpesviruses, HSV-1 and HSV-2, with emphasis on the structure of the largely uncharted membrane interacting regions of this fusogen. We propose that the unusual mechanism of herpesvirus fusion could be linked to the unique architecture of gB.
Collapse
|
47
|
Mutations in Pseudorabies Virus Glycoproteins gB, gD, and gH Functionally Compensate for the Absence of gL. J Virol 2015; 90:2264-72. [PMID: 26656712 DOI: 10.1128/jvi.02739-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/03/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Entry of herpesviruses depends on the combined action of viral glycoprotein B (gB) and the heterodimeric gH/gL complex, which are activated by binding of the virion to specific cellular receptors. While gB carries signatures of a bona fide fusion protein, efficient membrane fusion requires gH/gL. However, although gB and gH/gL are essential for entry, the alphaherpesvirus pseudorabies virus (PrV) is capable of limited cell-to-cell spread in the absence of gL. To understand gH/gL function in more detail, the limited spread of PrV-ΔgL was used for reversion analyses by serial cell culture passages. In a first experiment, an infectious gL-negative mutant in which gL function was replaced by generation of a gD-gH hybrid protein was isolated (B. G. Klupp and T. C. Mettenleiter, J Virol 73:3014-3022, 1999). In a second, independent experiment PrV-ΔgLPassB4.1, which also replicated productively without gL, was isolated. Sequence analysis revealed mutations in gH but also in gB and gD. In a transfection-based fusion assay, two amino acid substitutions in the N-terminal part of gH(B4.1) (L(70)P and W(103)R) were found to be sufficient to compensate for lack of gL, while mutations present in gB(B4.1) enhanced fusogenicity. Coexpression of gB(B4.1) with the homologous gH(B4.1) resulted in strongly increased syncytium formation, which was further augmented by truncation of the gB(B4.1) C-terminal 29 amino acids. Nevertheless, gH was still required for membrane fusion. Surprisingly, coexpression of gD(B4.1) blocked syncytium formation in the fusion assays, which could be attributed to a V(106)A substitution within the ectodomain of gD(B4.1). IMPORTANCE In contrast to many other enveloped viruses, herpesviruses rely on the concerted action of four viral glycoproteins for membrane fusion during infectious entry. Although the highly conserved gB shows signatures of a fusion protein, for fusion induction it requires the gH/gL complex, whose role is still elusive. Here we demonstrated fusion activation by gH in the absence of gL after reversion analysis of gL-deleted pseudorabies virus. This gL-independent fusion activity depended on single amino acid exchanges affecting the gL-binding domain in gH, increasing fusogenicity in gB and allowing negative fusion regulation by gD. Thus, our results provide novel information on the interplay in the fusion machinery of herpesviruses.
Collapse
|