1
|
Mjelle R, Castro Í, Aass KR. The viral landscape in metastatic solid cancers. Heliyon 2025; 11:e42548. [PMID: 40028540 PMCID: PMC11870251 DOI: 10.1016/j.heliyon.2025.e42548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 01/17/2025] [Accepted: 02/07/2025] [Indexed: 03/05/2025] Open
Abstract
Here, we analyze the viral landscape in blood and tissue from 4918 metastatic cancer patients across 38 solid cancer types from the Hartwig Medical Foundation (HMF) cohort, the largest pan-cancer study on metastatic cancer. Using a coverage-based filtering approach, we detected 25 unique viral genera across 32 different cancer types, with a total of 747 unique virus-positive tissue samples. We detected 336 virus-positive blood samples across 29 cancer types, dominated by Torque teno virus and Alphatorquevirus. The tissue samples were dominated by Alphapapillomavirus and Roseolovirus. Alphapapillomavirus was significantly enriched in genital, anal, and colorectal cancers and was associated with host mutational signatures and transcriptional programs related to immunity and DNA repair. Host genes with Alphapapillomavirus integration tended to be more highly expressed and samples with HPV integration had higher somatic mutation rates and higher number of extrachromosomal DNA elements. Alphapapillomavirus was also detected in a significant proportion of blood samples from cervix and anal cancers, suggesting a potential blood-based biomarker.
Collapse
Affiliation(s)
- Robin Mjelle
- Department of Cancer and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Pathology, St.Olavs Hospital, Trondheim, Norway
| | | | - Kristin Roseth Aass
- Department of Cancer and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
2
|
Janiszewska J, Kostrzewska-Poczekaj M, Wierzbicka M, Brenner JC, Giefing M. HPV-driven oncogenesis-much more than the E6 and E7 oncoproteins. J Appl Genet 2025; 66:63-71. [PMID: 38907809 PMCID: PMC11761861 DOI: 10.1007/s13353-024-00883-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/24/2024]
Abstract
High-risk human papillomaviruses are well-established drivers of several cancer types including cervical, head and neck, penile as well as anal cancers. While the E6 and E7 viral oncoproteins have proven to be critical for malignant transformation, evidence is also beginning to emerge suggesting that both host pathways and additional viral genes may also be pivotal for malignant transformation. Here, we focus on the role of host APOBEC genes, which have an important role in molecular editing including in the response to the viral DNA and their role in HPV-driven carcinogenesis. Further, we also discuss data developed suggesting the existence of HPV-derived miRNAs in HPV + tumors and their potential role in regulating the host transcriptome. Collectively, while recent advances in these two areas have added complexity to the working model of papillomavirus-induced oncogenesis, these discoveries have also shed a light onto new areas of research that will be required to fully understand the process.
Collapse
Affiliation(s)
- J Janiszewska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - M Kostrzewska-Poczekaj
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - M Wierzbicka
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
- Research & Development Centre, Regional Specialist Hospital Wroclaw, Wroclaw, Poland
- Faculty of Medicine, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - J C Brenner
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - M Giefing
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland.
| |
Collapse
|
3
|
Yang F, Xiao H, Dai X, Xu M, Li M, Bai J, Dai N. Impact of APOBEC3s on the occurrence, development and prognosis of esophageal squamous cell carcinoma. Future Oncol 2025; 21:117-125. [PMID: 39840662 PMCID: PMC11852747 DOI: 10.1080/14796694.2024.2442300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a severe malignant tumor of the digestive system that poses a significant threat to human health. Despite its significance, the complex molecular mechanism regulating the occurrence and development of ESCC remain elusive. The apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3 (APOBEC3) members constitute a pivotal subfamily of the APOBEC family that possess cytidine deaminase activity. In recent years, APOBEC3s (A3s) have received increasing attention due to their pivotal roles in the occurrence, development, and prognosis of ESCC. This comprehensive review systematically summarizes the latest research progress on the mechanisms of action of A3s in ESCC and discusses their impact on the development and therapeutic considerations for ESCC, with a particular focus on their potential role in immunotherapy. These insights may be of great value in continued exploration of ESCC pathogenesis and provides a theoretical foundation for the development of clinical treatment strategies for ESCC.
Collapse
Affiliation(s)
- Fan Yang
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, China
| | - He Xiao
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaoyan Dai
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, China
| | - Mingfang Xu
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, China
| | - Mengxia Li
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jianying Bai
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Nan Dai
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
4
|
Smith NJ, Reddin I, Policelli P, Oh S, Zainal N, Howes E, Jenkins B, Tracy I, Edmond M, Sharpe B, Amendra D, Zheng K, Egawa N, Doorbar J, Rao A, Mahadevan S, Carpenter MA, Harris RS, Ali S, Hanley C, Buisson R, King E, Thomas GJ, Fenton TR. Differentiation signals induce APOBEC3A expression via GRHL3 in squamous epithelia and squamous cell carcinoma. EMBO J 2025; 44:1-29. [PMID: 39548236 PMCID: PMC11696371 DOI: 10.1038/s44318-024-00298-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/17/2024] Open
Abstract
Two APOBEC DNA cytosine deaminase enzymes, APOBEC3A and APOBEC3B, generate somatic mutations in cancer, thereby driving tumour development and drug resistance. Here, we used single-cell RNA sequencing to study APOBEC3A and APOBEC3B expression in healthy and malignant mucosal epithelia, validating key observations with immunohistochemistry, spatial transcriptomics and functional experiments. Whereas APOBEC3B is expressed in keratinocytes entering mitosis, we show that APOBEC3A expression is confined largely to terminally differentiating cells and requires grainyhead-like transcription factor 3 (GRHL3). Thus, in normal tissue, neither deaminase appears to be expressed at high levels during DNA replication, the cell-cycle stage associated with APOBEC-mediated mutagenesis. In contrast, in squamous cell carcinoma we find that, there is expansion of GRHL3expression and activity to a subset of cells undergoing DNA replication and concomitant extension of APOBEC3A expression to proliferating cells. These findings suggest that APOBEC3A may play a functional role during keratinocyte differentiation, and offer a mechanism for acquisition of APOBEC3A mutagenic activity in tumours.
Collapse
Affiliation(s)
- Nicola J Smith
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- School of Biosciences, University of Kent, Canterbury, UK
| | - Ian Reddin
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Bio-R Bioinformatics Research Facility, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Paige Policelli
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Cell, Gene and RNA Therapies, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Sunwoo Oh
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Nur Zainal
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Emma Howes
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Benjamin Jenkins
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ian Tracy
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Mark Edmond
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Benjamin Sharpe
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Damian Amendra
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ke Zheng
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Nagayasu Egawa
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - John Doorbar
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Anjali Rao
- Gilead Sciences, Research Department, 324 Lakeside Dr, Foster City, CA, 94404, USA
| | - Sangeetha Mahadevan
- Gilead Sciences, Research Department, 324 Lakeside Dr, Foster City, CA, 94404, USA
| | - Michael A Carpenter
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Simak Ali
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Christopher Hanley
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Emma King
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Gareth J Thomas
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Tim R Fenton
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
- Institute for Life Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
5
|
Lehle J, Soleimanpour M, Mokhtari S, Ebrahimi D. Viral infection, APOBEC3 dysregulation, and cancer. Front Genet 2024; 15:1489324. [PMID: 39764440 PMCID: PMC11701051 DOI: 10.3389/fgene.2024.1489324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/26/2024] [Indexed: 03/06/2025] Open
Abstract
Viral infection plays a significant role in the development and progression of many cancers. Certain viruses, such as Human Papillomavirus (HPV), Epstein-Barr Virus (EBV), and Hepatitis B and C viruses (HBV, HCV), are well-known for their oncogenic potential. These viruses can dysregulate specific molecular and cellular processes through complex interactions with host cellular mechanisms. One such interaction involves a family of DNA mutators known as APOBEC3 (Apolipoprotein B mRNA Editing Catalytic Polypeptide-like 3). The primary function of these cytidine deaminases is to provide protection against viral infections by inducing viral mutagenesis. However, induction and dysregulation of A3 enzymes, driven by viral infection, can inadvertently lead to cellular DNA tumorigenesis. This review focuses on the current knowledge regarding the interplay between viral infection, A3 dysregulation, and cancer, highlighting the molecular mechanisms underlying this relationship.
Collapse
Affiliation(s)
- Jake Lehle
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Mohadeseh Soleimanpour
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Samira Mokhtari
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Diako Ebrahimi
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, United States
- Department Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
6
|
Suzuki T, Yasui K, Komatsu Y, Kamiya H. Untargeted Mutation Triggered by Ribonucleoside Embedded in DNA. Int J Mol Sci 2024; 25:13708. [PMID: 39769470 PMCID: PMC11679520 DOI: 10.3390/ijms252413708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/30/2025] Open
Abstract
DNA polymerases frequently misincorporate ribonucleoside 5'-triphosphates into nascent DNA strands. This study examined the effects of an incorporated ribonucleoside on untargeted mutations in human cells. Riboguanosine (rG) was introduced into the downstream region of the supF gene to preferentially detect the untargeted mutations. The plasmid containing rG was transfected into U2OS cells and the replicated DNA was recovered after 48 h. The mutation analysis using the indicator Escherichia coli RF01 strain showed the frequent induction of untargeted base substitutions at the G bases of 5'-GpA-3' dinucleotides, similar to action-at-a-distance mutations induced by an oxidatively damaged base, 8-oxo-7,8-dihydroguanine, and an apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3 (APOBEC3) cytosine deaminase. APOBEC3B was then knocked down by RNA interference and the plasmid bearing rG was introduced into the knockdown cells. The untargeted mutations at 5'-GpA-3' sites were reduced by ~80%. These results suggested that ribonucleosides embedded in DNA induce base substitution mutations at G bases in the same strand by an APOBEC3B-dependent mechanism, implying that ribonucleosides contribute to APOBEC3-dependent cancer initiation events.
Collapse
Affiliation(s)
- Tetsuya Suzuki
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (T.S.)
| | - Kiyoharu Yasui
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (T.S.)
| | - Yasuo Komatsu
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8560, Japan;
| | - Hiroyuki Kamiya
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (T.S.)
| |
Collapse
|
7
|
Kono T, Ozawa H, Laimins L. The roles of DNA damage repair and innate immune surveillance pathways in HPV pathogenesis. Virology 2024; 600:110266. [PMID: 39433009 DOI: 10.1016/j.virol.2024.110266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
Human papillomaviruses (HPV) infect epithelial tissues and induce a variety of proliferative lesions. A subset of HPV types are also the causative agents of many anogenital as well as oropharyngeal cancers. Following infection of basal epithelial cells, HPVs establish their genomes as episomes in undifferentiated cells and require differentiation for their productive life cycles. During HPV infections, viral oncoproteins alter cellular pathways such as those for DNA damage repair and innate immune surveillances to regulate their productive life cycles. These pathways provide potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Takeyuki Kono
- Dept of Otolaryngology-Head Neck Surgery, Keio University, School of Medicine, Tokyo, Japan; Dept of Microbiology-Immunology, Northwestern University, Chicago, IL, 60611, USA
| | - Hiroyuki Ozawa
- Dept of Otolaryngology-Head Neck Surgery, Keio University, School of Medicine, Tokyo, Japan
| | - Laimonis Laimins
- Dept of Microbiology-Immunology, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
8
|
Li S, Li X, Yang YB, Wu SF. YAP/TAZ-TEAD activity promotes the malignant transformation of cervical intraepithelial neoplasia through enhancing the characteristics and Warburg effect of cancer stem cells. Apoptosis 2024; 29:1198-1210. [PMID: 38553612 PMCID: PMC11263238 DOI: 10.1007/s10495-023-01935-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2023] [Indexed: 07/23/2024]
Abstract
A number of studies have confirmed that Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ)-transcriptional enhanced associate domain (TEAD) activity is the driver of cancer development. However, the role and mechanism of the YAP/TAZ-TEAD pathway in cervical intraepithelial neoplasia (CIN) remain to be clarified. Therefore, this study was designed to observe the effect of YAP/TAZ-TEAD activity on the development of CIN and provide new ideas for the diagnosis and treatment of CIN. Firstly, cervical tissues were collected from CIN patients in different stages [CIN grade 1 (CIN1) tissue, CIN grade 2/3 (CIN 2/3) and squamous cell carcinoma (SCC)] and healthy volunteers. Next, the expression levels of YAP, TAZ and TEAD in cervical tissues and cells were observed by immunohistochemistry, qRT-PCR and western blot. Besides, Z172 and Z183 cells were transfected with siRNA-YAP/TAZ (si-YAP/TAZ) and YAP/TAZ overexpression vector (YAP-5SA). Also, Z172 cells were co-transfected with YAP-5SA and si-TEAD2/4. Subsequently, the stemness characteristics, glycolysis level and malignant transformation of cells in each group were observed by sphere-formation assay, commercial kit, MTT, Transwell, scratch experiment, xenotransplantation and western blot.The expression of YAP, TAZ and TEAD increased significantly in cervical cancer tissue and cell line at the stage of CIN2/3 and SCC. When YAP/TAZ was knocked down, the stemness characteristics, glycolysis level and malignant transformation of cancer cells were notably inhibited; while activating YAP/TAZ exhibited a completely opposite result. In addition, activating YAP/TAZ and knocking down the TEAD expression at the same time significant weakened the effect of activated YAP/TAZ signal on precancerous cells and reduced inhibitory effect of knocking down TEAD alone. YAP/TAZ-TEAD signal activates the characteristics and Warburg effect of cancer stem cells, thereby promoting the malignant transformation of CIN.
Collapse
MESH Headings
- Humans
- Female
- Transcription Factors/genetics
- Transcription Factors/metabolism
- YAP-Signaling Proteins/metabolism
- YAP-Signaling Proteins/genetics
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Uterine Cervical Neoplasms/genetics
- Uterine Cervical Neoplasms/metabolism
- Uterine Cervical Neoplasms/pathology
- Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Uterine Cervical Dysplasia/pathology
- Uterine Cervical Dysplasia/genetics
- Uterine Cervical Dysplasia/metabolism
- Animals
- Trans-Activators/genetics
- Trans-Activators/metabolism
- TEA Domain Transcription Factors/metabolism
- Cell Line, Tumor
- Mice
- Warburg Effect, Oncologic
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Cell Proliferation/genetics
- Mice, Nude
- Gene Expression Regulation, Neoplastic
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
Collapse
Affiliation(s)
- Shu Li
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xing Li
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yong-Bin Yang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Su-Fang Wu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
9
|
Smith NJ, Reddin I, Policelli P, Oh S, Zainal N, Howes E, Jenkins B, Tracy I, Edmond M, Sharpe B, Amendra D, Zheng K, Egawa N, Doorbar J, Rao A, Mahadevan S, Carpenter MA, Harris RS, Ali S, Hanley C, Buisson R, King E, Thomas GJ, Fenton TR. Differentiation signals induce APOBEC3A expression via GRHL3 in squamous epithelia and squamous cell carcinoma. RESEARCH SQUARE 2024:rs.3.rs-3997426. [PMID: 38496447 PMCID: PMC10942551 DOI: 10.21203/rs.3.rs-3997426/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Two APOBEC (apolipoprotein-B mRNA editing enzyme catalytic polypeptide-like) DNA cytosine deaminase enzymes (APOBEC3A and APOBEC3B) generate somatic mutations in cancer, driving tumour development and drug resistance. Here we used single cell RNA sequencing to study APOBEC3A and APOBEC3B expression in healthy and malignant mucosal epithelia, validating key observations with immunohistochemistry, spatial transcriptomics and functional experiments. Whereas APOBEC3B is expressed in keratinocytes entering mitosis, we show that APOBEC3A expression is confined largely to terminally differentiating cells and requires Grainyhead-like transcription factor 3 (GRHL3). Thus, in normal tissue, neither deaminase appears to be expressed at high levels during DNA replication, the cell cycle stage associated with APOBEC-mediated mutagenesis. In contrast, we show that in squamous cell carcinoma tissues, there is expansion of GRHL3 expression and activity to a subset of cells undergoing DNA replication and concomitant extension of APOBEC3A expression to proliferating cells. These findings indicate a mechanism for acquisition of APOBEC3A mutagenic activity in tumours.
Collapse
Affiliation(s)
- Nicola J. Smith
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
- School of Biosciences, University of Kent, UK
| | - Ian Reddin
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
- Bio-R Bioinformatics Research Facility, Faculty of Medicine, University of Southampton, UK
| | - Paige Policelli
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Sunwoo Oh
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Nur Zainal
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Emma Howes
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Benjamin Jenkins
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Ian Tracy
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Mark Edmond
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Benjamin Sharpe
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Damian Amendra
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Ke Zheng
- Department of Pathology, University of Cambridge, UK
| | | | - John Doorbar
- Department of Pathology, University of Cambridge, UK
| | - Anjali Rao
- Gilead Sciences, Research Department, 324 Lakeside Dr. Foster City, CA 94404, USA
| | - Sangeetha Mahadevan
- Gilead Sciences, Research Department, 324 Lakeside Dr. Foster City, CA 94404, USA
| | - Michael A. Carpenter
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Reuben S. Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Simak Ali
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Christopher Hanley
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Emma King
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Gareth J. Thomas
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
- Institute for Life Sciences, University of Southampton, UK
| | - Tim R. Fenton
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
- Institute for Life Sciences, University of Southampton, UK
| |
Collapse
|
10
|
Lovšin N, Gangupam B, Bergant Marušič M. The Intricate Interplay between APOBEC3 Proteins and DNA Tumour Viruses. Pathogens 2024; 13:187. [PMID: 38535531 PMCID: PMC10974850 DOI: 10.3390/pathogens13030187] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/11/2025] Open
Abstract
APOBEC3 proteins are cytidine deaminases that play a crucial role in the innate immune response against viruses, including DNA viruses. Their main mechanism for restricting viral replication is the deamination of cytosine to uracil in viral DNA during replication. This process leads to hypermutation of the viral genome, resulting in loss of viral fitness and, in many cases, inactivation of the virus. APOBEC3 proteins inhibit the replication of a number of DNA tumour viruses, including herpesviruses, papillomaviruses and hepadnaviruses. Different APOBEC3s restrict the replication of different virus families in different ways and this restriction is not limited to one APOBEC3. Infection with DNA viruses often leads to the development and progression of cancer. APOBEC3 mutational signatures have been detected in various cancers, indicating the importance of APOBEC3s in carcinogenesis. Inhibition of DNA viruses by APOBEC3 proteins appears to play a dual role in this process. On the one hand, it is an essential component of the innate immune response to viral infections, and, on the other hand, it contributes to the pathogenesis of persistent viral infections and the progression of cancer. The current review examines the complex interplay between APOBEC3 proteins and DNA viruses and sheds light on the mechanisms of action, viral countermeasures and the impact on carcinogenesis. Deciphering the current issues in the interaction of APOBEC/DNA viruses should enable the development of new targeted cancer therapies.
Collapse
Affiliation(s)
- Nika Lovšin
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| | - Bhavani Gangupam
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia;
| | - Martina Bergant Marušič
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia;
| |
Collapse
|
11
|
Mori S, Ishii Y, Takeuchi T, Kukimoto I. Nuclear proinflammatory cytokine S100A9 enhances expression of human papillomavirus oncogenes via transcription factor TEAD1. J Virol 2023; 97:e0081523. [PMID: 37578237 PMCID: PMC10506480 DOI: 10.1128/jvi.00815-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/20/2023] [Indexed: 08/15/2023] Open
Abstract
Transcription of the human papillomavirus (HPV) oncogenes, E6 and E7, is regulated by the long control region (LCR) of the viral genome. Although various transcription factors have been reported to bind to the LCR, little is known about the transcriptional cofactors that modulate HPV oncogene expression in association with these transcription factors. Here, we performed in vitro DNA-pulldown purification of nuclear proteins in cervical cancer cells, followed by proteomic analyses to identify transcriptional cofactors that bind to the HPV16 LCR via the transcription factor TEAD1. We detected the proinflammatory cytokine S100A9 that localized to the nucleus of cervical cancer cells and associated with the LCR via direct interaction with TEAD1. Nuclear S100A9 levels and its association with the LCR were increased in cervical cancer cells by treatment with a proinflammatory phorbol ester. Knockdown of S100A9 decreased HPV oncogene expression and reduced the growth of cervical cancer cells and their susceptibility to cisplatin, whereas forced nuclear expression of S100A9 using nuclear localization signals exerted opposite effects. Thus, we conclude that nuclear S100A9 binds to the HPV LCR via TEAD1 and enhances viral oncogene expression by acting as a transcriptional coactivator. IMPORTANCE Human papillomavirus (HPV) infection is the primary cause of cervical cancer, and the viral oncogenes E6 and E7 play crucial roles in carcinogenesis. Although cervical inflammation contributes to the development of cervical cancer, the molecular mechanisms underlying the role of these inflammatory responses in HPV carcinogenesis are not fully understood. Our study shows that S100A9, a proinflammatory cytokine, is induced in the nucleus of cervical cancer cells by inflammatory stimuli, and it enhances HPV oncogene expression by acting as a transcriptional coactivator of TEAD1. These findings provide new molecular insights into the relationship between inflammation and viral carcinogenesis.
Collapse
Affiliation(s)
- Seiichiro Mori
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshiyuki Ishii
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takamasa Takeuchi
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Iwao Kukimoto
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
12
|
Roelofs PA, Martens JW, Harris RS, Span PN. Clinical Implications of APOBEC3-Mediated Mutagenesis in Breast Cancer. Clin Cancer Res 2023; 29:1658-1669. [PMID: 36478188 PMCID: PMC10159886 DOI: 10.1158/1078-0432.ccr-22-2861] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/30/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
Over recent years, members of the APOBEC3 family of cytosine deaminases have been implicated in increased cancer genome mutagenesis, thereby contributing to intratumor and intertumor genomic heterogeneity and therapy resistance in, among others, breast cancer. Understanding the available methods for clinical detection of these enzymes, the conditions required for their (dysregulated) expression, the clinical impact they have, and the clinical implications they may offer is crucial in understanding the current impact of APOBEC3-mediated mutagenesis in breast cancer. Here, we provide a comprehensive review of recent developments in the detection of APOBEC3-mediated mutagenesis and responsible APOBEC3 enzymes, summarize the pathways that control their expression, and explore the clinical ramifications and opportunities they pose. We propose that APOBEC3-mediated mutagenesis can function as a helpful predictive biomarker in several standard-of-care breast cancer treatment plans and may be a novel target for treatment.
Collapse
Affiliation(s)
- Pieter A. Roelofs
- Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - John W.M. Martens
- Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Paul N. Span
- Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
13
|
Starrett GJ, Yu K, Golubeva Y, Lenz P, Piaskowski ML, Petersen D, Dean M, Israni A, Hernandez BY, Tucker TC, Cheng I, Gonsalves L, Morris CR, Hussain SK, Lynch CF, Harris RS, Prokunina-Olsson L, Meltzer PS, Buck CB, Engels EA. Evidence for virus-mediated oncogenesis in bladder cancers arising in solid organ transplant recipients. eLife 2023; 12:e82690. [PMID: 36961501 PMCID: PMC10446826 DOI: 10.7554/elife.82690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 03/22/2023] [Indexed: 03/25/2023] Open
Abstract
A small percentage of bladder cancers in the general population have been found to harbor DNA viruses. In contrast, up to 25% of tumors of solid organ transplant recipients, who are at an increased risk of developing bladder cancer and have an overall poorer outcomes, harbor BK polyomavirus (BKPyV). To better understand the biology of the tumors and the mechanisms of carcinogenesis from potential oncoviruses, we performed whole genome and transcriptome sequencing on bladder cancer specimens from 43 transplant patients. Nearly half of the tumors from this patient population contained viral sequences. The most common were from BKPyV (N=9, 21%), JC polyomavirus (N=7, 16%), carcinogenic human papillomaviruses (N=3, 7%), and torque teno viruses (N=5, 12%). Immunohistochemistry revealed variable Large T antigen expression in BKPyV-positive tumors ranging from 100% positive staining of tumor tissue to less than 1%. In most cases of BKPyV-positive tumors, the viral genome appeared to be clonally integrated into the host chromosome consistent with microhomology-mediated end joining and coincided with focal amplifications of the tumor genome similar to other virus-mediated cancers. Significant changes in host gene expression consistent with the functions of BKPyV Large T antigen were also observed in these tumors. Lastly, we identified four mutation signatures in our cases, with those attributable to APOBEC3 and SBS5 being the most abundant. Mutation signatures associated with an antiviral drug, ganciclovir, and aristolochic acid, a nephrotoxic compound found in some herbal medicines, were also observed. The results suggest multiple pathways to carcinogenesis in solid organ transplant recipients with a large fraction being virus-associated.
Collapse
Affiliation(s)
| | - Kelly Yu
- DCEG, NCI, NIHRockvilleUnited States
| | | | - Petra Lenz
- Leidos Biomedical Research IncFrederickUnited States
| | | | | | | | - Ajay Israni
- Department of Medicine, Nephrology Division, Hennepin Healthcare System, University of MinnesotaMinneapolisUnited States
| | | | - Thomas C Tucker
- The Kentucky Cancer Registry, University of KentuckyLexingtonUnited States
| | - Iona Cheng
- Department of Epidemiology and Biostatistics,and Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoFremontUnited States
| | - Lou Gonsalves
- Connecticut Tumor Registry, Connecticut Department of Public HealthHartfordUnited States
| | - Cyllene R Morris
- California Cancer Reporting and Epidemiologic Surveillance Program, University of California, DavisDavisUnited States
| | - Shehnaz K Hussain
- Cedars-Sinai Cancer and Department of Medicine, Cedars-Sinai Medical CenterLos AngelesUnited States
| | - Charles F Lynch
- The Iowa Cancer Registry, University of IowaIowa CityUnited States
| | - Reuben S Harris
- Howard Hughes Medical Institute, University of MinnesotaMinneapolisUnited States
| | | | | | | | | |
Collapse
|
14
|
Argyris PP, Naumann J, Jarvis MC, Wilkinson PE, Ho DP, Islam MN, Bhattacharyya I, Gopalakrishnan R, Li F, Koutlas IG, Giubellino A, Harris RS. Primary mucosal melanomas of the head and neck are characterised by overexpression of the DNA mutating enzyme APOBEC3B. Histopathology 2023; 82:608-621. [PMID: 36416305 PMCID: PMC10107945 DOI: 10.1111/his.14843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/12/2022] [Accepted: 09/23/2022] [Indexed: 11/24/2022]
Abstract
AIMS Primary head/neck mucosal melanomas (MMs) are rare and exhibit aggressive biologic behaviour and elevated mutational loads. The molecular mechanisms responsible for high genomic instability observed in head/neck MMs remain elusive. The DNA cytosine deaminase APOBEC3B (A3B) constitutes a major endogenous source of mutation in human cancer. A3B-related mutations are identified through C-to-T/-G base substitutions in 5'-TCA/T motifs. Herein, we present immunohistochemical and genomic data supportive of a role for A3B in head/neck MMs. METHODS AND RESULTS A3B protein levels were assessed in oral (n = 13) and sinonasal (n = 13) melanomas, and oral melanocytic nevi (n = 13) by immunohistochemistry using a custom rabbit α-A3B mAb (5210-87-13). Heterogeneous, selective-to-diffuse, nuclear only, A3B immunopositivity was observed in 12 of 13 (92.3%) oral melanomas (H-score range = 9-72, median = 40) and 8 of 13 (62%) sinonasal melanomas (H-score range = 1-110, median = 24). Two cases negative for A3B showed prominent cytoplasmic staining consistent with A3G. A3B protein levels were significantly higher in oral and sinonasal MMs than intraoral melanocytic nevi (P < 0.0001 and P = 0.0022, respectively), which were A3B-negative (H-score range = 1-8, median = 4). A3B levels, however, did not differ significantly between oral and sinonasal tumours (P > 0.99). NGS performed in 10 sinonasal MMs revealed missense NRAS mutations in 50% of the studied cases and one each KIT and HRAS mutations. Publicly available whole-genome sequencing (WGS) data disclosed that the number of C-to-T mutations and APOBEC3 enrichment score were markedly elevated in head/neck MMs (n = 2). CONCLUSION The above data strongly indicate a possible role for the mutagenic enzyme A3B in head/neck melanomagenesis, but not benign melanocytic neoplasms.
Collapse
Affiliation(s)
- Prokopios P Argyris
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMNUSA
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisMNUSA
- Institute for Molecular VirologyUniversity of MinnesotaMinneapolisMNUSA
- Center for Genome EngineeringUniversity of MinnesotaMinneapolisMNUSA
- Howard Hughes Medical InstituteUniversity of MinnesotaMinneapolisMNUSA
- Division of Oral and Maxillofacial PathologySchool of Dentistry, University of MinnesotaMinneapolisMNUSA
| | - Jordan Naumann
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMNUSA
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisMNUSA
- Institute for Molecular VirologyUniversity of MinnesotaMinneapolisMNUSA
- Center for Genome EngineeringUniversity of MinnesotaMinneapolisMNUSA
| | - Matthew C Jarvis
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMNUSA
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisMNUSA
- Institute for Molecular VirologyUniversity of MinnesotaMinneapolisMNUSA
- Center for Genome EngineeringUniversity of MinnesotaMinneapolisMNUSA
| | - Peter E Wilkinson
- Department of Diagnostic and Biological SciencesSchool of Dentistry, University of MinnesotaMinneapolisMNUSA
| | - Dan P Ho
- Department of Diagnostic and Biological SciencesSchool of Dentistry, University of MinnesotaMinneapolisMNUSA
| | - Mohammed N Islam
- Department of Oral and Maxillofacial Diagnostic SciencesUniversity of Florida College of DentistryGainesvilleFLUSA
| | - Indraneel Bhattacharyya
- Department of Oral and Maxillofacial Diagnostic SciencesUniversity of Florida College of DentistryGainesvilleFLUSA
| | - Rajaram Gopalakrishnan
- Division of Oral and Maxillofacial PathologySchool of Dentistry, University of MinnesotaMinneapolisMNUSA
| | - Faqian Li
- Department of Laboratory Medicine and PathologyMedical School, University of MinnesotaMinneapolisMNUSA
| | - Ioannis G Koutlas
- Division of Oral and Maxillofacial PathologySchool of Dentistry, University of MinnesotaMinneapolisMNUSA
| | - Alessio Giubellino
- Department of Laboratory Medicine and PathologyMedical School, University of MinnesotaMinneapolisMNUSA
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMNUSA
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisMNUSA
- Institute for Molecular VirologyUniversity of MinnesotaMinneapolisMNUSA
- Center for Genome EngineeringUniversity of MinnesotaMinneapolisMNUSA
- Howard Hughes Medical InstituteUniversity of MinnesotaMinneapolisMNUSA
| |
Collapse
|
15
|
Argyris PP, Saavedra F, Malz C, Stone IA, Wei Y, Boyle WS, Johnstone KF, Khammanivong A, Herzberg MC. Intracellular calprotectin (S100A8/A9) facilitates DNA damage responses and promotes apoptosis in head and neck squamous cell carcinoma. Oral Oncol 2023; 137:106304. [PMID: 36608459 PMCID: PMC9877195 DOI: 10.1016/j.oraloncology.2022.106304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/01/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
OBJECTIVES In head and neck squamous cell carcinoma (HNSCC), poor prognosis and low survival rates are associated with downregulated calprotectin. Calprotectin (S100A8/A9) inhibits cancer cell migration and invasion and facilitates G2/M cell cycle arrest. We investigated whether S100A8/A9 regulates DNA damage responses (DDR) and apoptosis in HNSCC after chemoradiation. MATERIALS AND METHODS Human HNSCC cases in TCGA were analyzed for relationships between S100A8/A9 and expression of apoptosis-related genes. Next, S100A8/A9-expressing and non-expressing carcinoma lines (two different lineages) were exposed to genotoxic agents and assessed for 53BP1 and γH2AX expression and percent of viable/dead cells. Finally, S100A8/A9-wild-type and S100A8/A9null C57BL/6j mice were treated with 4-NQO to induce oral dysplastic and carcinomatous lesions, which were compared for levels of 53BP1. RESULTS In S100A8/A9-high HNSCC tumors, apoptosis-related caspase family member genes were upregulated, whereas genes limiting apoptosis were significantly downregulated based on TCGA analyses. After X-irradiation or camptothecin treatment, S100A8/A9-expressing carcinoma cells (i.e., TR146 and KB-S100A8/A9) showed significantly higher 53BP1 and γH2AX expression, DNA fragmentation, proportions of dead cells, and greater sensitivity to cisplatin than wild-type KB or TR146-S100A8/A9-KD cells. Interestingly, KB-S100A8/A9Δ113-114 cells showed similar 53BP1 and γH2AX levels to S100A8/A9-negative KB and KB-EGFP cells. After 4-NQO treatment, 53BP1 expression in oral lesions was significantly greater in calprotectin+/+ than S100A8/A9null mice. CONCLUSIONS In HNSCC cells, intracellular calprotectin is strongly suggested to potentiate DDR and promote apoptosis in response to genotoxic agents. Hence, patients with S100A8/A9-high HNSCC may encounter more favorable outcomes because more tumor cells enter apoptosis with increased sensitivity to chemoradiation therapy.
Collapse
Affiliation(s)
- Prokopios P Argyris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA; Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN, USA; Division of Oral and Maxillofacial Pathology, School of Dentistry, University of Minnesota, Minneapolis, MN, USA.
| | - Flávia Saavedra
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Chris Malz
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Ian A Stone
- Department of Immunology, Microbiology and Virology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Yuping Wei
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - William S Boyle
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Karen F Johnstone
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Ali Khammanivong
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Mark C Herzberg
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
16
|
Ishii Y, Mori S, Kukimoto I. [Identification of new host factors supporting the human papillomavirus life cycle]. Uirusu 2023; 73:189-198. [PMID: 39343554 DOI: 10.2222/jsv.73.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
|
17
|
High APOBEC3B mRNA Expression Is Associated with Human Papillomavirus Type 18 Infection in Cervical Cancer. Viruses 2022; 14:v14122653. [PMID: 36560657 PMCID: PMC9784603 DOI: 10.3390/v14122653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The APOBEC3 (A3) proteins are cytidine deaminases that exhibit the ability to insert mutations in DNA and/or RNA sequences. APOBEC3B (A3B) has been evidenced as a DNA mutagen with consistent high expression in several cancer types. Data concerning the A3B influence on HPV infection and cervical cancer are limited and controversial. We investigated the role of A3B expression levels in cervical cancer in affected women positive for infection by different HPV types. Tumor biopsies from cancerous uterine cervix were collected from 216 women registered at Hospital do Câncer II of Instituto Nacional de Câncer, and infecting HPV was typed. A3B expression levels were quantified from RNA samples extracted from cervical biopsies using real-time quantitative PCR. Median A3B expression levels were higher among HPV18+ samples when compared to HPV16+ counterparts and were also increased compared to samples positive for other HPV types. In squamous cell carcinoma, HPV18+ samples also showed increased median A3B expression when compared to HPV Alpha-9 species or only to HPV16+ samples. Our findings suggest that A3B expression is differentially upregulated in cervical cancer samples infected with HPV18. A3B could be potentially used as a biomarker for HPV infection and as a prognostic tool for clinical outcomes in the context of cervical cancer.
Collapse
|
18
|
Abstract
Human papillomavirus (HPV) infection is a causative agent of multiple human cancers, including cervical and head and neck cancers. In these HPV-positive tumors, somatic mutations are caused by aberrant activation of DNA mutators such as members of the apolipoprotein B messenger RNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) family of cytidine deaminases. APOBEC3 proteins are most notable for their restriction of various viruses, including anti-HPV activity. However, the potential role of APOBEC3 proteins in HPV-induced cancer progression has recently garnered significant attention. Ongoing research stems from the observations that elevated APOBEC3 expression is driven by HPV oncogene expression and that APOBEC3 activity is likely a significant contributor to somatic mutagenesis in HPV-positive cancers. This review focuses on recent advances in the study of APOBEC3 proteins and their roles in HPV infection and HPV-driven oncogenesis. Further, we discuss critical gaps and unanswered questions in our understanding of APOBEC3 in virus-associated cancers.
Collapse
Affiliation(s)
- Cody J Warren
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Mario L Santiago
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA;
| | - Dohun Pyeon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA;
| |
Collapse
|
19
|
McIlroy D, Peltier C, Nguyen ML, Manceau L, Mobuchon L, Le Baut N, Nguyen NK, Tran MC, Nguyen TC, Bressollette-Bodin C. Quantification of APOBEC3 Mutation Rates Affecting the VP1 Gene of BK Polyomavirus In Vivo. Viruses 2022; 14:v14092077. [PMID: 36146883 PMCID: PMC9504301 DOI: 10.3390/v14092077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Mutations in the BK polyomavirus (BKPyV) capsid accumulate in kidney transplant (KTx) recipients with persistent virus replication. They are associated with neutralization escape and appear to arise as a result of cytosine deamination by host cell APOBEC3A/B enzymes. To study the mutagenic processes occurring in patients, we amplified the typing region of the VP1 gene, sequenced the amplicons to a depth of 5000–10,000×, and identified rare mutations, which were fitted to COSMIC mutational signatures. Background mutations were identified in amplicons from plasmids carrying the BKPyV genome and compared to mutations observed in 148 samples from 23 KTx recipients in France and in Vietnam. Three mutational signatures were consistently observed in urine, serum, and kidney biopsy samples, two of which, SBS2 and SBS13, corresponded to APOBEC3A/B activity. In addition, a third signature with no known etiology, SBS89, was detected both in patient samples, and in cells infected in vitro with BKPyV. Quantitatively, APOBEC3A/B mutation rates in urine samples were strongly correlated with urine viral load, and also appeared to vary between individuals. These results confirm that APOBEC3A/B is a major, but not the only, source of BKPyV genome mutations in patients.
Collapse
Affiliation(s)
- Dorian McIlroy
- Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes Université, CHU Nantes, INSERM, F-44000 Nantes, France
- Faculté des Sciences et des Techniques, Nantes Université, 44093 Nantes, France
- Correspondence: ; Tel.: +33-02-44-76-81-82
| | - Cécile Peltier
- Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes Université, CHU Nantes, INSERM, F-44000 Nantes, France
| | - My-Linh Nguyen
- Department of Medical Microbiology, Hanoi Medical University, Hanoi 116001, Vietnam
| | - Louise Manceau
- Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes Université, CHU Nantes, INSERM, F-44000 Nantes, France
- CHU Nantes, Nantes Université, Service de Virologie, 44093 Nantes, France
| | - Lenha Mobuchon
- Molecular Biology and Sequencing Services, CHU Nantes, 44000 Nantes, France
| | - Nicolas Le Baut
- Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes Université, CHU Nantes, INSERM, F-44000 Nantes, France
| | - Ngoc-Khanh Nguyen
- Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes Université, CHU Nantes, INSERM, F-44000 Nantes, France
| | - Minh-Chau Tran
- Department of Kidney Diseases and Dialysis, Vietduc University Hospital, Hanoi 110214, Vietnam
| | - The-Cuong Nguyen
- Department of Medical Microbiology, Hanoi Medical University, Hanoi 116001, Vietnam
| | - Céline Bressollette-Bodin
- Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes Université, CHU Nantes, INSERM, F-44000 Nantes, France
- CHU Nantes, Nantes Université, Service de Virologie, 44093 Nantes, France
| |
Collapse
|
20
|
Crane J, Shi Q, Xi Y, Lai J, Pham K, Wang H. Emerging Trends in the Pathological Research of Human Papillomavirus-positive Oropharyngeal Squamous Cell Carcinoma. JOURNAL OF CLINICAL AND TRANSLATIONAL PATHOLOGY 2022; 2:31-36. [PMID: 36275841 PMCID: PMC9585478 DOI: 10.14218/jctp.2022.00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Oropharyngeal squamous cell carcinomas (OPSCCs) have shown an alarming rate of increase in incidence over the past several decades, markedly in men. In the United States, transcriptionally-active human papillomavirus (HPV), particularly HPV 16, has become the highest contributive agent of OPSCCs, affecting approximately 16,000 people a year. Compared to patients with HPV-negative OPSCCs, patients with HPV-positive OPSCCs exhibit better health responses to chemoradiotherapy and an overall increase in long-term survival. Despite promising treatment options, many OPSCCs are discovered at an advanced stage, and ~20% of cases will recur after definitive treatment. Therefore, extensive research is ongoing to identify new targets for precision treatment and to stratify tumor prognosis. The aim of this review is to capture the most updated research on HPV-positive OPSCCs, emphasizing their relevance as potential new targets for precision medicine and survival prognosis.
Collapse
Affiliation(s)
- Joshua Crane
- Department of Laboratory Medicine and Pathology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Yibo Xi
- Department of Laboratory Medicine and Pathology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Kien Pham
- Department of Laboratory Medicine and Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - He Wang
- Department of Laboratory Medicine and Pathology, Yale University School of Medicine, New Haven, CT, USA
- Correspondence to: He Wang, Department of Laboratory Medicine and Pathology, Yale University School of Medicine, 310 Cedar Street, New Haven, CT 06510, USA. Tel: +1-203-214-2786, Fax: +1-203-214-2764,
| |
Collapse
|
21
|
Scholtes GK, Sawyer AM, Vaca CC, Clerc I, Roh M, Song C, D'Aquila RT. The von Hippel-Lindau Cullin-RING E3 ubiquitin ligase regulates APOBEC3 cytidine deaminases. Transl Res 2021; 237:1-15. [PMID: 34004371 PMCID: PMC8440357 DOI: 10.1016/j.trsl.2021.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
The 7 members of the A3 family of cytidine deaminases (A3A to A3H) share a conserved catalytic activity that converts cytidines in single-stranded (ss) DNA into uridines, thereby inducing mutations. After their initial identification as cell-intrinsic defenses against HIV and other retroviruses, A3s were also found to impair many additional viruses. Moreover, some of the A3 proteins (A3A, A3B, and A3H haplotype I) are dysregulated in cancer cells, thereby causing chromosomal mutations that can be selected to fuel progression of malignancy. Viral mechanisms that increase transcription of A3 genes or induce proteasomal degradation of A3 proteins have been characterized. However, only a few underlying biological mechanisms regulating levels of A3s in uninfected cells have been described. Here, we characterize that the von Hippel-Lindau tumor suppressor (pVHL), via its CRLpVHL, induces degradation of all 7 A3 proteins. Two independent lines of evidence supported the conclusion that the multiprotein CRLpVHL complex is necessary for A3 degradation. CRLpVHL more effectively induced degradation of nuclear, procancer A3 (A3B) than the cytoplasmic, antiretroviral A3 (A3G). These results identify specific cellular factors that regulate A3s post-translationally.
Collapse
Affiliation(s)
- Gael K Scholtes
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Aubrey M Sawyer
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Cristina C Vaca
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Isabelle Clerc
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Meejeon Roh
- Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Chisu Song
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Richard T D'Aquila
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
22
|
Kono T, Laimins L. Genomic Instability and DNA Damage Repair Pathways Induced by Human Papillomaviruses. Viruses 2021; 13:1821. [PMID: 34578402 PMCID: PMC8472259 DOI: 10.3390/v13091821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/29/2021] [Accepted: 09/08/2021] [Indexed: 12/22/2022] Open
Abstract
Human papillomaviruses (HPV) are the causative agents of cervical and other anogenital cancers as well as those of the oropharynx. HPV proteins activate host DNA damage repair factors to promote their viral life cycle in stratified epithelia. Activation of both the ATR pathway and the ATM pathway are essential for viral replication and differentiation-dependent genome amplification. These pathways are also important for maintaining host genomic integrity and their dysregulation or mutation is often seen in human cancers. The APOBEC3 family of cytidine deaminases are innate immune factors that are increased in HPV positive cells leading to the accumulation of TpC mutations in cellular DNAs that contribute to malignant progression. The activation of DNA damage repair factors may corelate with expression of APOBEC3 in HPV positive cells. These pathways may actively drive tumor development implicating/suggesting DNA damage repair factors and APOBEC3 as possible therapeutic targets.
Collapse
Affiliation(s)
- Takeyuki Kono
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Department of Otolaryngology Head and Neck Surgery, School of Medicine, Keio University, Tokyo 1608582, Japan
| | - Laimonis Laimins
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| |
Collapse
|
23
|
Li R, Li W, He F, Zhang M, Luo H, Tang H. Systematic screening identifies a TEAD4-S100A13 axis modulating cisplatin sensitivity of oral squamous cell carcinoma cells. J Oral Pathol Med 2021; 50:882-890. [PMID: 34358353 DOI: 10.1111/jop.13224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/12/2021] [Accepted: 07/28/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND This study aimed to screen prognosis-related S100 protein family members in human paxpillomaviruses (HPV)-negative oral squamous cell carcinoma (OSCC) and their molecular regulations. METHODS Bioinformatic screening was conducted based on single-cell RNA-seq data from Puram 2017 dataset and bulk-seq data from the Cancer Genome Atlas (TCGA). HPV-negative OSCC cell lines CAL-27 and SCC-4 were used as in vitro cell models. RESULTS Among 21 S100 protein family member genes, S100A13 upregulation was associated with unfavorable progression-free survival and disease-specific survival of OSCC patients. Gene Set Enrichment Analysis showed that the higher S100A13 expression group had elevated genes enriched in DNA repair and oxidative phosphorylation. S100A13 knockdown increased cisplatin sensitivity, while its overexpression decreased the sensitivity of CAL-27 and SCC-4 cells. S100A13 gene had complex alternative transcription patterns. ENST00000440685 is one of the major protein-coding transcripts and was the only transcript elevated in the tumor group. TEAD4 could bind to the promoter of ENST00000440685 and increase its transcription. TEAD4 overexpression alleviated the tumor-suppressive effect of cisplatin in terms of colony formation, the expression of apoptotic proteins, and DNA damage. However, S100A13 knockdown partly abrogated the protective effects of TEAD4 overexpression. CONCLUSION This study revealed a novel TEAD4-S100A13 axis that might modulate cisplatin sensitivity of OSCC tumor cells.
Collapse
Affiliation(s)
- Ruicen Li
- Health Promotion Center, West China hospital, Sichuan University, Chengdu, China
| | - Wenyu Li
- Health Promotion Center, West China hospital, Sichuan University, Chengdu, China
| | - Fenghui He
- Tongren Municipal People's Hospital, Guizhou, China.,Department of Thyroid and Breast Surgery, Pingluo People's Hospital, Ningxia, China
| | - Ming Zhang
- Department of Thyroid and Breast Surgery, Pingluo People's Hospital, Ningxia, China.,Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Han Luo
- Department of Thyroid and Breast Surgery, Pingluo People's Hospital, Ningxia, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Huairong Tang
- Health Promotion Center, West China hospital, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Abstract
Abstract We have considered viruses and their contribution to breast cancer. Mouse mammary tumour virus The prevalence of mouse mammary tumour virus (MMTV) is 15-fold higher in human breast cancer than in normal and benign human breast tissue controls. Saliva is the most plausible means of transmission. MMTV has been identified in dogs, cats, monkeys, mice and rats. The causal mechanisms include insertional oncogenesis and mutations in the protective enzyme ABOBEC3B. Human papilloma virus The prevalence of high risk human papilloma viruses (HPV) is frequently six fold higher in breast cancer than in normal and benign breast tissue controls. Women who develop HPV associated cervical cancer are at higher than normal risk of developing HPV associated breast cancer. Koilocytes have been identified in breast cancers which is an indication of HPV oncogenicity. The causal mechanisms of HPVs in breast cancer appear to differ from cervical cancer. Sexual activity is the most common form of HPV transmission. HPVs are probably transmitted from the cervix to the breast by circulating extra cellular vesicles. Epstein Barr virus The prevalence of Epstein Barr virus (EBV) is five fold higher in breast cancer than in normal and benign breast tissue controls. EBV is mostly transmitted from person to person via saliva. EBV infection predisposes breast epithelial cells to malignant transformation through activation of HER2/HER3 signalling cascades. EBV EBNA genes contribute to tumour growth and metastasis and have the ability to affect the mesenchymal transition of cells. Bovine leukemia virus Bovine leukemia virus (BLV) infects beef and dairy cattle and leads to various cancers. The prevalence of BLV is double in human breast cancers compared to controls. Breast cancer is more prevalent in red meat eating and cow’s milk consuming populations. BLV may be transmitted to humans from cattle by the consumption of red meat and cow’s milk. Conclusion The evidence that MMTV, high risk HPVs and EBVs have causal roles in human breast cancer is compelling. The evidence with respect to BLV is more limited but it is likely to also have a causal role in human breast cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13027-021-00366-3.
Collapse
Affiliation(s)
- James S Lawson
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.
| | - Wendy K Glenn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
25
|
Infection of Bronchial Epithelial Cells by the Human Adenoviruses A12, B3, and C2 Differently Regulates the Innate Antiviral Effector APOBEC3B. J Virol 2021; 95:e0241320. [PMID: 33853956 DOI: 10.1128/jvi.02413-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Human adenoviruses (HAdVs) are a large family of DNA viruses that include more than 100 genotypes divided into seven species (A to G) and induce respiratory tract infections, gastroenteritis, and conjunctivitis. Genetically modified adenoviruses are also used as vaccines, gene therapies, and anticancer treatments. The APOBEC3s are a family of cytidine deaminases that restrict viruses by introducing mutations in their genomes. Viruses developed different strategies to cope with the APOBEC3 selection pressure, but nothing is known on the interplay between the APOBEC3s and the HAdVs. In this study, we focused on three HAdV strains: the B3 and C2 strains, as they are very frequent, and the A12 strain, which is less common but is oncogenic in animal models. We demonstrated that the three HAdV strains induce a similar APOBEC3B upregulation at the transcriptional level. At the protein level, however, APOBEC3B is abundantly expressed during HAdV-A12 and -C2 infection and shows a nuclear distribution. On the contrary, APOBEC3B is barely detectable in HAdV-B3-infected cells. APOBEC3B deaminase activity is detected in total protein extracts upon HAdV-A12 and -C2 infection. Bioinformatic analysis demonstrates that the HAdV-A12 genome bears a stronger APOBEC3 evolutionary footprint than that of the HAdV-C2 and HAdV-B3 genomes. Our results show that HAdV infection triggers the transcriptional upregulation of the antiviral innate effector APOBEC3B. The discrepancies between the APOBEC3B mRNA and protein levels might reflect the ability of some HAdV strains to antagonize the APOBEC3B protein. These findings point toward an involvement of APOBEC3B in HAdV restriction and evolution. IMPORTANCE The APOBEC3 family of cytosine deaminases has important roles in antiviral innate immunity and cancer. Notably, APOBEC3A and APOBEC3B are actively upregulated by several DNA tumor viruses and contribute to transformation by introducing mutations in the cellular genome. Human adenoviruses (HAdVs) are a large family of DNA viruses that cause generally asymptomatic infections in immunocompetent adults. HAdVs encode several oncogenes, and some HAdV strains, like HAdV-A12, induce tumors in hamsters and mice. Here, we show that HAdV infection specifically promotes the expression of the APOBEC3B gene. We report that infection with the A12 strain induces a strong expression of an enzymatically active APOBEC3B protein in bronchial epithelial cells. We provide bioinformatic evidence that HAdVs' genomes and notably the A12 genome are under APOBEC3 selection pressure. Thus, APOBEC3B might contribute to adenoviral restriction, diversification, and oncogenic potential of particular strains.
Collapse
|
26
|
Law EK, Levin-Klein R, Jarvis MC, Kim H, Argyris PP, Carpenter MA, Starrett GJ, Temiz NA, Larson LK, Durfee C, Burns MB, Vogel RI, Stavrou S, Aguilera AN, Wagner S, Largaespada DA, Starr TK, Ross SR, Harris RS. APOBEC3A catalyzes mutation and drives carcinogenesis in vivo. J Exp Med 2021; 217:152061. [PMID: 32870257 PMCID: PMC7953736 DOI: 10.1084/jem.20200261] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/08/2020] [Accepted: 07/22/2020] [Indexed: 12/24/2022] Open
Abstract
The APOBEC3 family of antiviral DNA cytosine deaminases is implicated as the second largest source of mutation in cancer. This mutational process may be a causal driver or inconsequential passenger to the overall tumor phenotype. We show that human APOBEC3A expression in murine colon and liver tissues increases tumorigenesis. All other APOBEC3 family members, including APOBEC3B, fail to promote liver tumor formation. Tumor DNA sequences from APOBEC3A-expressing animals display hallmark APOBEC signature mutations in TCA/T motifs. Bioinformatic comparisons of the observed APOBEC3A mutation signature in murine tumors, previously reported APOBEC3A and APOBEC3B mutation signatures in yeast, and reanalyzed APOBEC mutation signatures in human tumor datasets support cause-and-effect relationships for APOBEC3A-catalyzed deamination and mutagenesis in driving multiple human cancers.
Collapse
Affiliation(s)
- Emily K Law
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Rena Levin-Klein
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Matthew C Jarvis
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Hyoung Kim
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Prokopios P Argyris
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN.,Division of Oral and Maxillofacial Pathology, School of Dentistry, University of Minnesota, Minneapolis, MN
| | - Michael A Carpenter
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Gabriel J Starrett
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN.,Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Nuri A Temiz
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Health Informatics, University of Minnesota, Minneapolis, MN
| | - Lindsay K Larson
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Cameron Durfee
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Michael B Burns
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN.,Department of Biology, Loyola University, Chicago, IL
| | - Rachel I Vogel
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, MN
| | - Spyridon Stavrou
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Alexya N Aguilera
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Sandra Wagner
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - David A Largaespada
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Timothy K Starr
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, MN
| | - Susan R Ross
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Reuben S Harris
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| |
Collapse
|
27
|
Fan Q, Huang T, Sun X, Wang YW, Wang J, Liu Y, Ni T, Gu SL, Li YH, Wang YD. HPV-16/18 E6-induced APOBEC3B expression associates with proliferation of cervical cancer cells and hypomethylation of Cyclin D1. Mol Carcinog 2021; 60:313-330. [PMID: 33631046 DOI: 10.1002/mc.23292] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/13/2022]
Abstract
Oncogenic high-risk human papillomavirus (HR-HPV) infection causes a majority of cases of cervical cancer and pre-cancerous cervical lesions. However, the mechanisms underlying the direct evolution from HPV-16/18-infected epithelium to cervical intraepithelial neoplasia (CIN) III, which can progress to cervical cancer, remain poorly identified. Here, we performed RNA-seq after laser capture microdissection, and found that APOBEC3B was highly expressed in cervical cancer specimens compared with CIN III with HPV-16/18 infection. Furthermore, immunohistochemical analysis confirmed that high levels of APOBEC3B were correlated with lymph node metastasis in cervical cancer. Subsequent experiments revealed that HPV-16 E6 could upregulate APOBEC3B through direct binding to the promoter of APOBEC3B in cervical cancer cells. Silencing of APOBEC3B by stable short hairpin RNA-mediated knockdown reduced the proliferative capacity of Caski and HeLa cells in vitro and in vivo, but had only a small effect on the migration and invasion of two cervical cancer cell lines. Finally, we identified the changes in gene expression following APOBEC3B silencing in Caski cells by microarray, demonstrating a biological link between APOBEC3B and CCND1 in cervical cancer cells. Importantly, through methyl-capture sequencing and pyrosequencing, APOBEC3B was found to affect the levels of the downstream protein Cyclin D1 (which is encoded by the CCND1 gene) through hypomethylation of the CCND1 promoter. In conclusion, our study supports HPV-16 E6-induced APOBEC3B expression associates with proliferation of cervical cancer cells and hypomethylation of Cyclin D1. Thus, APOBEC3B may be a potential therapeutic target in human cervical cancer.
Collapse
Affiliation(s)
- Qiong Fan
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Ting Huang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Xiao Sun
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Yi-Wei Wang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Wang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Liu
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Ni
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sheng-Lan Gu
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Hong Li
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Dong Wang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| |
Collapse
|
28
|
Endogenous APOBEC3B overexpression characterizes HPV-positive and HPV-negative oral epithelial dysplasias and head and neck cancers. Mod Pathol 2021; 34:280-290. [PMID: 32632179 PMCID: PMC8261524 DOI: 10.1038/s41379-020-0617-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/10/2020] [Accepted: 06/23/2020] [Indexed: 12/17/2022]
Abstract
The DNA cytosine deaminase APOBEC3B (A3B) is a newly recognized endogenous source of mutations in a range of human tumors, including head/neck cancer. A3B inflicts C-to-T and C-to-G base substitutions in 5'-TCA/T trinucleotide motifs, contributes to accelerated rates of tumor development, and affects clinical outcomes in a variety of cancer types. High-risk human papillomavirus (HPV) infection causes A3B overexpression, and HPV-positive cervical and head/neck cancers are among tumor types with the highest degree of APOBEC signature mutations. A3B overexpression in HPV-positive tumor types is caused by the viral E6/E7 oncoproteins and may be an early off-to-on switch in tumorigenesis. In comparison, less is known about the molecular mechanisms responsible for A3B overexpression in HPV-negative head/neck cancers. Here, we utilize an immunohistochemical approach to determine whether A3B is turned from off-to-on or if it undergoes a more gradual transition to overexpression in HPV-negative head/neck cancers. As positive controls, almost all HPV-positive oral epithelial dysplasias and oropharyngeal cancers showed high levels of nuclear A3B staining regardless of diagnosis. As negative controls, A3B levels were low in phenotypically normal epithelium adjacent to cancer and oral epithelial hyperplasias. Interestingly, HPV-negative and low-grade oral epithelial dysplasias showed intermediate A3B levels, while high-grade oral dysplasias showed high A3B levels similar to oral squamous cell carcinomas. A3B levels were highest in grade 2 and grade 3 oral squamous cell carcinomas. In addition, a strong positive association was found between nuclear A3B and Ki67 scores suggesting a linkage to the cell cycle. Overall, these results support a model in which gradual activation of A3B expression occurs during HPV-negative tumor development and suggest that A3B overexpression may provide a marker for advanced grade oral dysplasia and cancer.
Collapse
|
29
|
Riva G, Albano C, Gugliesi F, Pasquero S, Pacheco SFC, Pecorari G, Landolfo S, Biolatti M, Dell’Oste V. HPV Meets APOBEC: New Players in Head and Neck Cancer. Int J Mol Sci 2021; 22:1402. [PMID: 33573337 PMCID: PMC7866819 DOI: 10.3390/ijms22031402] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
Besides smoking and alcohol, human papillomavirus (HPV) is a factor promoting head and neck squamous cell carcinoma (HNSCC). In some human tumors, including HNSCC, a number of mutations are caused by aberrantly activated DNA-modifying enzymes, such as the apolipoprotein B mRNA editing enzyme catalytic polypeptide-like (APOBEC) family of cytidine deaminases. As the enzymatic activity of APOBEC proteins contributes to the innate immune response to viruses, including HPV, the role of APOBEC proteins in HPV-driven head and neck carcinogenesis has recently gained increasing attention. Ongoing research efforts take the cue from two key observations: (1) APOBEC expression depends on HPV infection status in HNSCC; and (2) APOBEC activity plays a major role in HPV-positive HNSCC mutagenesis. This review focuses on recent advances on the role of APOBEC proteins in HPV-positive vs. HPV-negative HNSCC.
Collapse
Affiliation(s)
- Giuseppe Riva
- Otorhinolaryngology Division, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy; (G.R.); (G.P.)
| | - Camilla Albano
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (C.A.); (F.G.); (S.P.); (S.F.C.P.); (S.L.)
| | - Francesca Gugliesi
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (C.A.); (F.G.); (S.P.); (S.F.C.P.); (S.L.)
| | - Selina Pasquero
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (C.A.); (F.G.); (S.P.); (S.F.C.P.); (S.L.)
| | - Sergio Fernando Castillo Pacheco
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (C.A.); (F.G.); (S.P.); (S.F.C.P.); (S.L.)
| | - Giancarlo Pecorari
- Otorhinolaryngology Division, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy; (G.R.); (G.P.)
| | - Santo Landolfo
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (C.A.); (F.G.); (S.P.); (S.F.C.P.); (S.L.)
| | - Matteo Biolatti
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (C.A.); (F.G.); (S.P.); (S.F.C.P.); (S.L.)
| | - Valentina Dell’Oste
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (C.A.); (F.G.); (S.P.); (S.F.C.P.); (S.L.)
| |
Collapse
|
30
|
Zhang Z, Perković M, Gu Q, Balakrishnan K, Sangwiman A, Häussinger D, Lindemann D, Münk C. HIV-2 Vif and foamy virus Bet antagonize APOBEC3B by different mechanisms. Virology 2020; 554:17-27. [PMID: 33333348 DOI: 10.1016/j.virol.2020.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 11/17/2022]
Abstract
The family of human APOBEC3 (A3) restriction factors is formed by seven different proteins, A3A-D and A3F-H. Among these A3s, A3B harbors strong restriction activity against several retroviruses, such as SIV, and MLV. How lentiviruses and other retroviruses, prevalent in many primate species, counteract A3B is poorly understood. In this study, we found that A3B strongly inhibited SIVmac and HIV-2 infectivity, which was antagonized by their Vif proteins. Both SIVmac and HIV-2 Vifs diminished the protein level of A3B in viral producer cells, and hindered A3B incorporation into viral particles. We observed that HIV-2 Vif binds A3B and induces its degradation by assembly of an A3-Vif-CUL5-ElonginB/C E3-ligase complex. A3B and HIV-2 Vif localize and interact in the nucleus. In addition, we also found that the accessory protein Bet of prototype foamy virus (PFV) significantly antagonized the anti-SIVmac activity of A3B. Like Vif, Bet prevented the incorporation of A3B into viral particles. However, in contrast to Vif Bet did not induce the degradation of A3B. Rather, Bet binds A3B to block formation of high molecular weight A3B complexes and induces A3B cytoplasmic trapping. In summary, these findings indicate that A3B is recognized by diverse retroviruses and counteracted by virus-specific pathways that could be targeted to inhibit A3B mutating activity in cancers.
Collapse
Affiliation(s)
- Zeli Zhang
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Mario Perković
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Qinyong Gu
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Kannan Balakrishnan
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Anucha Sangwiman
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Dirk Lindemann
- Institute of Virology, Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, 01307, Dresden, Germany; CRTD/DFG-Center for Regenerative Therapies, Technische Universität Dresden, 01307, Dresden, Germany
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
31
|
Granadillo Rodríguez M, Flath B, Chelico L. The interesting relationship between APOBEC3 deoxycytidine deaminases and cancer: a long road ahead. Open Biol 2020; 10:200188. [PMID: 33292100 PMCID: PMC7776566 DOI: 10.1098/rsob.200188] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/26/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is considered a group of diseases characterized by uncontrolled growth and spread of abnormal cells and is propelled by somatic mutations. Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) family of enzymes are endogenous sources of somatic mutations found in multiple human cancers. While these enzymes normally act as an intrinsic immune defence against viruses, they can also catalyse 'off-target' cytidine deamination in genomic single-stranded DNA intermediates. The deamination of cytosine forms uracil, which is promutagenic in DNA. Key factors to trigger the APOBEC 'off-target' activity are overexpression in a non-normal cell type, nuclear localization and replication stress. The resulting uracil-induced mutations contribute to genomic variation, which may result in neutral, beneficial or harmful consequences for the cancer. This review summarizes the functional and biochemical basis of the APOBEC3 enzyme activity and highlights their relationship with the most well-studied cancers in this particular context such as breast, lung, bladder, and human papillomavirus-associated cancers. We focus on APOBEC3A, APOBEC3B and APOBEC3H haplotype I because they are the leading candidates as sources of somatic mutations in these and other cancers. Also, we discuss the prognostic value of the APOBEC3 expression in drug resistance and response to therapies.
Collapse
Affiliation(s)
| | | | - Linda Chelico
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
32
|
Kato M, Onoyama I, Kawakami M, Yoshida S, Kawamura K, Kodama K, Hori E, Cui L, Matsumura Y, Yagi H, Asanoma K, Yahata H, Itakura A, Takeda S, Kato K. Downregulation of 5-hydroxymethylcytosine is associated with the progression of cervical intraepithelial neoplasia. PLoS One 2020; 15:e0241482. [PMID: 33141854 PMCID: PMC7608920 DOI: 10.1371/journal.pone.0241482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 10/16/2020] [Indexed: 12/20/2022] Open
Abstract
Around the world, cervical cancer is one of the most common neoplastic diseases among women, and the prognosis of patients in an advanced stage remains poor. To reduce the mortality rate of cervical cancer, early diagnosis and treatment are essential. DNA methylation is an important aspect of gene regulation, and aberrant DNA methylation contributes to carcinogenesis and cancer progression in various cancers. Although 5-methylcytosine (5mC) has been analyzed intensively, the function of 5-hydroxymethylcytosine (5hmC) has not been clarified. The purpose of our study was to identify the molecular biomarkers for early diagnosis of cervical tumors due to epigenetic alterations. To assess the clinical relevance of DNA methylation, we used immunohistochemistry (IHC) to characterize the level of 5hmC in 102 archived human cervical intraepithelial neoplasia (CIN) samples and cervical cancer specimens. The level of 5hmC was significantly decreased between CIN2 and CIN3. The progression of cervical tumors is caused by a reduction of TP53 and RB1 because of HPV infection. We observed that Tp53 and Rb1 were knocked down in mouse embryonic fibroblasts (MEF), a model of normal cells. The level of 5hmC was reduced in Tp53-knockdown cells, and the expression levels of DNA methyltransferase 1 (DNMT1) and ten-eleven translocation methylcytosine dioxygenase 1 (TET1) were induced. In contrast, there was no significant change in Rb1-knockdown cells. Mechanistically, we focused on apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) 3B (A3B) as a cause of 5hmC reduction after TP53 knockdown. In the human cell line HHUA with a wild-type TP53 gene, A3B was induced in TP53-knockdown cells, and A3B knockdown recovered 5hmC levels in TP53-knockdown cells. These data indicate that TP53 suppression leads to 5hmC reduction in part through A3B induction. Moreover, IHC showed that expression levels of A3B in CIN3 were significantly higher than those in both normal epithelium and in CIN2. In conclusion, 5hmC levels are decreased between CIN2 and CIN3 through the TP53-A3B pathway. Since A3B could impair genome stability, 5hmC loss might increase the chances of accumulating mutations and of progressing from CIN3 to cervical cancer. Thus, these epigenetic changes could predict whether CINs are progressing to cancer or disappearing.
Collapse
Affiliation(s)
- Masaya Kato
- Department of Obstetrics and Gynecology, School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Obstetrics and Gynecology, School of Medical Sciences, Juntendo University, Tokyo, Japan
| | - Ichiro Onoyama
- Department of Obstetrics and Gynecology, School of Medical Sciences, Kyushu University, Fukuoka, Japan
- * E-mail:
| | - Minoru Kawakami
- Department of Obstetrics and Gynecology, School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sachiko Yoshida
- Department of Obstetrics and Gynecology, School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keiko Kawamura
- Department of Obstetrics and Gynecology, School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keisuke Kodama
- Department of Obstetrics and Gynecology, School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Emiko Hori
- Department of Obstetrics and Gynecology, School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Lin Cui
- Department of Obstetrics and Gynecology, School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yumiko Matsumura
- Department of Obstetrics and Gynecology, School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Yagi
- Department of Obstetrics and Gynecology, School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuo Asanoma
- Department of Obstetrics and Gynecology, School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideaki Yahata
- Department of Obstetrics and Gynecology, School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Atsuo Itakura
- Department of Obstetrics and Gynecology, School of Medical Sciences, Juntendo University, Tokyo, Japan
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, School of Medical Sciences, Juntendo University, Tokyo, Japan
| | - Kiyoko Kato
- Department of Obstetrics and Gynecology, School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
33
|
Olmedo-Nieva L, Muñoz-Bello JO, Manzo-Merino J, Lizano M. New insights in Hippo signalling alteration in human papillomavirus-related cancers. Cell Signal 2020; 76:109815. [PMID: 33148514 DOI: 10.1016/j.cellsig.2020.109815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 02/09/2023]
Abstract
The persistent infection with high-risk human papillomavirus (HPV) is an etiologic factor for the development of different types of cancers, mainly attributed to the continuous expression of E6 and E7 HPV oncoproteins, which regulate several cell signalling pathways including the Hippo pathway. It has been demonstrated that E6 proteins promote the increase of the Hippo elements YAP, TAZ and TEAD, at protein level, as well as their transcriptional targets. Also, E6 and E7 oncoproteins promote nuclear YAP localization and a decrease in YAP negative regulators such as MST1, PTPN14 or SOCS6. Interestingly, Hippo signalling components modulate HPV activity, such as TEAD1 and the transcriptional co-factor VGLL1, induce the activation of HPV early and late promoters, while hyperactivation of YAP in specific cells facilitates virus infection by increasing putative HPV receptors and by evading innate immunity. Additionally, alterations in Hippo signalling elements have been found in HPV-related cancers and particularly, the involvement of HPV oncoproteins on the regulation of some of these Hippo components has been also proposed, although the precise mechanisms remain unclear. The present review addresses the recent findings describing the interplay between HPV and Hippo signalling in HPV-related cancers, a fact that highlights the importance of developing more in-depth studies in this field to establish key therapeutic targets.
Collapse
Affiliation(s)
- Leslie Olmedo-Nieva
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; Programa de Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
| | - J Omar Muñoz-Bello
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Sede sur, Mexico City 14330, Mexico
| | - Joaquín Manzo-Merino
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; Cátedras CONACyT-Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico.
| |
Collapse
|
34
|
Tian R, Zhou P, Li M, Tan J, Cui Z, Xu W, Wei J, Zhu J, Jin Z, Cao C, Fan W, Xie W, Huang Z, Xie H, You Z, Niu G, Wu C, Guo X, Weng X, Tian X, Yu F, Yu Z, Liang J, Hu Z. DeepHPV: a deep learning model to predict human papillomavirus integration sites. Brief Bioinform 2020; 22:5924410. [PMID: 33059369 DOI: 10.1093/bib/bbaa242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 01/09/2023] Open
Abstract
Human papillomavirus (HPV) integrating into human genome is the main cause of cervical carcinogenesis. HPV integration selection preference shows strong dependence on local genomic environment. Due to this theory, it is possible to predict HPV integration sites. However, a published bioinformatic tool is not available to date. Thus, we developed an attention-based deep learning model DeepHPV to predict HPV integration sites by learning environment features automatically. In total, 3608 known HPV integration sites were applied to train the model, and 584 reviewed HPV integration sites were used as the testing dataset. DeepHPV showed an area under the receiver-operating characteristic (AUROC) of 0.6336 and an area under the precision recall (AUPR) of 0.5670. Adding RepeatMasker and TCGA Pan Cancer peaks improved the model performance to 0.8464 and 0.8501 in AUROC and 0.7985 and 0.8106 in AUPR, respectively. Next, we tested these trained models on independent database VISDB and found the model adding TCGA Pan Cancer performed better (AUROC: 0.7175, AUPR: 0.6284) than the model adding RepeatMasker peaks (AUROC: 0.6102, AUPR: 0.5577). Moreover, we introduced attention mechanism in DeepHPV and enriched the transcription factor binding sites including BHLHA15, CHR, COUP-TFII, DMRTA2, E2A, HIC1, INR, NPAS, Nr5a2, RARa, SCL, Snail1, Sox10, Sox3, Sox4, Sox6, STAT6, Tbet, Tbx5, TEAD, Tgif2, ZNF189, ZNF416 near attention intensive sites. Together, DeepHPV is a robust and explainable deep learning model, providing new insights into HPV integration preference and mechanism. Availability: DeepHPV is available as an open-source software and can be downloaded from https://github.com/JiuxingLiang/DeepHPV.git, Contact: huzheng1998@163.com, liangjiuxing@m.scnu.edu.cn, lizheyzy@163.com.
Collapse
Affiliation(s)
- Rui Tian
- Translational Medicine of the First Affiliated Hospital, Sun Yat-sen University
| | - Ping Zhou
- Dongguan Maternal and Child Health Care Hospital
| | - Mengyuan Li
- Department of Obstetrics and Gynecology at the First Affiliated Hospital, Sun Yat-sen University
| | - Jinfeng Tan
- First Affiliated Hospital, Sun Yat-sen University
| | - Zifeng Cui
- First Affiliated Hospital, Sun Yat-sen University
| | - Wei Xu
- Department of Obstetrics and Gynecology at the First Affiliated Hospital, Sun Yat-sen University
| | - Jingyue Wei
- Department of Obstetrics and Gynecology at the First Affiliated Hospital, Sun Yat-sen University
| | - Jingjing Zhu
- Department of Obstetrics and Gynecology of the First Affiliated Hospital, Sun Yat-sen University
| | - Zhuang Jin
- First Affiliated Hospital, Sun Yat-sen University
| | - Chen Cao
- Central Hospital of Wuhan, China
| | - Weiwen Fan
- College of Medicine at the Sun Yat-sen University
| | - Weiling Xie
- First Affiliated Hospital, Sun Yat-sen University
| | | | | | - Zeshan You
- First Affiliated Hospital, Sun Yat-sen University
| | - Gang Niu
- Department of Obstetrics and Gynecology of the First Affiliated Hospital, Sun Yat-sen University
| | - Canbiao Wu
- Institute for Brain Research and Rehabilitation at the South China Normal University
| | - Xiaofang Guo
- Department of Medical Oncology of the Eastern Hospital at the First Affiliated Hospital, Sun Yat-sen University
| | - Xuchu Weng
- Institute for Brain Research and Rehabilitation at the South China Normal University
| | | | - Fubing Yu
- Dongguan Maternal and Child Health Care Hospital
| | - Zhiying Yu
- Department of Gynecology, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center
| | - Jiuxing Liang
- Institute for Brain Research and Rehabilitation at the South China Normal University
| | - Zheng Hu
- Gynecological Oncology of the First Affiliated Hospital, Precision Medicine Institute, Sun Yat-sen University
| |
Collapse
|
35
|
Roelofs PA, Goh CY, Chua BH, Jarvis MC, Stewart TA, McCann JL, McDougle RM, Carpenter MA, Martens JW, Span PN, Kappei D, Harris RS. Characterization of the mechanism by which the RB/E2F pathway controls expression of the cancer genomic DNA deaminase APOBEC3B. eLife 2020; 9:61287. [PMID: 32985974 PMCID: PMC7553775 DOI: 10.7554/elife.61287] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
APOBEC3B (A3B)-catalyzed DNA cytosine deamination contributes to the overall mutational landscape in breast cancer. Molecular mechanisms responsible for A3B upregulation in cancer are poorly understood. Here we show that a single E2F cis-element mediates repression in normal cells and that expression is activated by its mutational disruption in a reporter construct or the endogenous A3B gene. The same E2F site is required for A3B induction by polyomavirus T antigen indicating a shared molecular mechanism. Proteomic and biochemical experiments demonstrate the binding of wildtype but not mutant E2F promoters by repressive PRC1.6/E2F6 and DREAM/E2F4 complexes. Knockdown and overexpression studies confirm the involvement of these repressive complexes in regulating A3B expression. Altogether, these studies demonstrate that A3B expression is suppressed in normal cells by repressive E2F complexes and that viral or mutational disruption of this regulatory network triggers overexpression in breast cancer and provides fuel for tumor evolution.
Collapse
Affiliation(s)
- Pieter A Roelofs
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, United States.,Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Chai Yeen Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Boon Haow Chua
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Matthew C Jarvis
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, United States
| | - Teneale A Stewart
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, United States.,Mater Research Institute, The University of Queensland, Faculty of Medicine, Brisbane, Australia
| | - Jennifer L McCann
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, United States.,Howard Hughes Medical Institute, University of Minnesota, Minneapolis, United States
| | - Rebecca M McDougle
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, United States.,Hennepin Healthcare, Minneapolis, United States
| | - Michael A Carpenter
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, United States.,Howard Hughes Medical Institute, University of Minnesota, Minneapolis, United States
| | - John Wm Martens
- Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Paul N Span
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, United States.,Howard Hughes Medical Institute, University of Minnesota, Minneapolis, United States
| |
Collapse
|
36
|
Poulain F, Lejeune N, Willemart K, Gillet NA. Footprint of the host restriction factors APOBEC3 on the genome of human viruses. PLoS Pathog 2020; 16:e1008718. [PMID: 32797103 PMCID: PMC7449416 DOI: 10.1371/journal.ppat.1008718] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/26/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
APOBEC3 enzymes are innate immune effectors that introduce mutations into viral genomes. These enzymes are cytidine deaminases which transform cytosine into uracil. They preferentially mutate cytidine preceded by thymidine making the 5'TC motif their favored target. Viruses have evolved different strategies to evade APOBEC3 restriction. Certain viruses actively encode viral proteins antagonizing the APOBEC3s, others passively face the APOBEC3 selection pressure thanks to a depleted genome for APOBEC3-targeted motifs. Hence, the APOBEC3s left on the genome of certain viruses an evolutionary footprint. The aim of our study is the identification of these viruses having a genome shaped by the APOBEC3s. We analyzed the genome of 33,400 human viruses for the depletion of APOBEC3-favored motifs. We demonstrate that the APOBEC3 selection pressure impacts at least 22% of all currently annotated human viral species. The papillomaviridae and polyomaviridae are the most intensively footprinted families; evidencing a selection pressure acting genome-wide and on both strands. Members of the parvoviridae family are differentially targeted in term of both magnitude and localization of the footprint. Interestingly, a massive APOBEC3 footprint is present on both strands of the B19 erythroparvovirus; making this viral genome one of the most cleaned sequences for APOBEC3-favored motifs. We also identified the endemic coronaviridae as significantly footprinted. Interestingly, no such footprint has been detected on the zoonotic MERS-CoV, SARS-CoV-1 and SARS-CoV-2 coronaviruses. In addition to viruses that are footprinted genome-wide, certain viruses are footprinted only on very short sections of their genome. That is the case for the gamma-herpesviridae and adenoviridae where the footprint is localized on the lytic origins of replication. A mild footprint can also be detected on the negative strand of the reverse transcribing HIV-1, HIV-2, HTLV-1 and HBV viruses. Together, our data illustrate the extent of the APOBEC3 selection pressure on the human viruses and identify new putatively APOBEC3-targeted viruses.
Collapse
Affiliation(s)
- Florian Poulain
- Namur Research Institute for Life Sciences (NARILIS), Integrated Veterinary Research Unit (URVI), University of Namur, Namur, Belgium
| | - Noémie Lejeune
- Namur Research Institute for Life Sciences (NARILIS), Integrated Veterinary Research Unit (URVI), University of Namur, Namur, Belgium
| | - Kévin Willemart
- Namur Research Institute for Life Sciences (NARILIS), Integrated Veterinary Research Unit (URVI), University of Namur, Namur, Belgium
| | - Nicolas A. Gillet
- Namur Research Institute for Life Sciences (NARILIS), Integrated Veterinary Research Unit (URVI), University of Namur, Namur, Belgium
| |
Collapse
|
37
|
Yang C, Zheng J, Liu X, Xue Y, He Q, Dong Y, Wang D, Li Z, Liu L, Ma J, Cai H, Liu Y. Role of ANKHD1/LINC00346/ZNF655 Feedback Loop in Regulating the Glioma Angiogenesis via Staufen1-Mediated mRNA Decay. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:866-878. [PMID: 32464549 PMCID: PMC7256448 DOI: 10.1016/j.omtn.2020.05.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022]
Abstract
Accumulating evidence shows that long noncoding RNA (lncRNA) dysregulation plays a critical role in tumor angiogenesis. Glioma is characterized by abundant angiogenesis. Herein, we investigated the expression and function of LINC00346 in the regulation of glioma angiogenesis. The present study first demonstrated that ANKHD1 (ankyrin repeat and KH domain-containing protein 1) and LINC00346 were significantly increased in glioma-associated endothelial cells (GECs), whereas ZNF655 (zinc finger protein 655) was decreased in GECs. Meanwhile, ANKHD1 inhibition, LINC00346 inhibition, or ZNF655 overexpression impeded angiogenesis of GECs. Moreover, ANKHD1 targeted LINC00346 and enhanced the stability of LINC00346. In addition, LINC00346 bound to ZNF655 mRNA through their Alu elements so that LINC00346 facilitated the degradation of ZNF655 mRNA via a STAU1 (Staufen1)-mediated mRNA decay (SMD) mechanism. Futhermore, ZNF655 targeted the promoter region of ANKHD1 and formed an ANKHD1/LINC00346/ZNF655 feedback loop that regulated glioma angiogenesis. Finally, knockdown of ANKHD1 and LINC00346, combined with overexpression of ZNF655, resulted in a significant decrease in new vessels and hemoglobin content in vivo. The results identified an ANKHD1/LINC00346/ZNF655 feedback loop in the regulation of glioma angiogenesis that may provide new targets and strategies for targeted therapy against glioma.
Collapse
Affiliation(s)
- Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Qianru He
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Yiming Dong
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Di Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Libo Liu
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Jun Ma
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.
| |
Collapse
|
38
|
The Transcriptional Cofactor VGLL1 Drives Transcription of Human Papillomavirus Early Genes via TEAD1. J Virol 2020; 94:JVI.01945-19. [PMID: 32132238 DOI: 10.1128/jvi.01945-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/26/2020] [Indexed: 12/31/2022] Open
Abstract
The TEAD family of transcription factors requires associating cofactors to induce gene expression. TEAD1 is known to activate the early promoter of human papillomavirus (HPV), but the precise mechanisms of TEAD1-mediated transactivation of the HPV promoter, including its relevant cofactors, remain unexplored. Here, we reveal that VGLL1, a TEAD-interacting cofactor, contributes to HPV early gene expression. Knockdown of VGLL1 and/or TEAD1 led to a decrease in viral early gene expression in human cervical keratinocytes and cervical cancer cell lines. We identified 11 TEAD1 target sites in the HPV16 long control region (LCR) by in vitro DNA pulldown assays; 8 of these sites contributed to the transcriptional activation of the early promoter in luciferase reporter assays. VGLL1 bound to the HPV16 LCR via its interaction with TEAD1 both in vitro and in vivo Furthermore, introducing HPV16 and HPV18 whole genomes into primary human keratinocytes led to increased levels of VGLL1, due in part to the upregulation of TEADs. These results suggest that multiple VGLL1/TEAD1 complexes are recruited to the LCR to support the efficient transcription of HPV early genes.IMPORTANCE Although a number of transcription factors have been reported to be involved in HPV gene expression, little is known about the cofactors that support HPV transcription. In this study, we demonstrate that the transcriptional cofactor VGLL1 plays a prominent role in HPV early gene expression, dependent on its association with the transcription factor TEAD1. Whereas TEAD1 is ubiquitously expressed in a variety of tissues, VGLL1 displays tissue-specific expression and is implicated in the development and differentiation of epithelial lineage tissues, where HPV gene expression occurs. Our results suggest that VGLL1 may contribute to the epithelial specificity of HPV gene expression, providing new insights into the mechanisms that regulate HPV infection. Further, VGLL1 is also critical for the growth of cervical cancer cells and may represent a novel therapeutic target for HPV-associated cancers.
Collapse
|
39
|
The Prognostic Significance of APOBEC3B and PD-L1/PD-1 in Nasopharyngeal Carcinoma. Appl Immunohistochem Mol Morphol 2020; 29:239-244. [PMID: 32205739 DOI: 10.1097/pai.0000000000000852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 02/24/2020] [Indexed: 11/25/2022]
Abstract
PURPOSE Apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3B (APOBEC3B) is a recently discovered protein that is considered important in causing mutations in tumor cell genome bases. Whether APOBEC3B is expressed in nasopharyngeal carcinoma (NPC) still remains unknown. Studies have shown that programmed-cell-death receptor-1 ligand (PD-L1) is highly expressed in NPC, but its clinical significance has not been fully elucidated. We aimed to evaluate APOBEC3B and PD-L1 protein expression in NPC and also investigate their prognostic significance. MATERIALS AND METHODS One hundred and three patients with NPC were retrospectively collected in this study, and were followed-up for 5 years. The expression of APOBEC3B and PD-L1/PD-1 in NPC was detected by immunohistochemical staining. RESULTS High expression of APOBEC3B was observed in 42.7% of NPC patients. The high expression rate of APOBEC3B was 31.5% in patients without recurrence or metastasis within 5 years, and 55.1% in those patients with recurrence or metastasis, and the difference was statistically significant (P=0.016). There was no significant difference in APOBEC3B expression among patients with different sex, age group, and clinical stage (P>0.05). The positive expression rate of PD-L1 was 55.3% in all patients with NPC. There was no significant difference in PD-L1 expression among patients with different sex, age group, clinical stage, and tumor recurrence or metastasis condition (P> 0.05). There was no significant correlation between the expression of APOBEC3B and PD-L1 in NPC patients. The positive expression rate of PD-1 was 1.9% (2/103) in patients with NPC. CONCLUSIONS APOBEC3B showed association with aggressive behavior and poor outcome in NPC, and is also considered as a potential marker for predicting NPC recurrence or metastasis. PD-L1 is not associated with the aggressive behavior and poor outcome in NPC.
Collapse
|
40
|
Zhu B, Xiao Y, Yeager M, Clifford G, Wentzensen N, Cullen M, Boland JF, Bass S, Steinberg MK, Raine-Bennett T, Lee D, Burk RD, Pinheiro M, Song L, Dean M, Nelson CW, Burdett L, Yu K, Roberson D, Lorey T, Franceschi S, Castle PE, Walker J, Zuna R, Schiffman M, Mirabello L. Mutations in the HPV16 genome induced by APOBEC3 are associated with viral clearance. Nat Commun 2020; 11:886. [PMID: 32060290 PMCID: PMC7021686 DOI: 10.1038/s41467-020-14730-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 01/28/2020] [Indexed: 12/24/2022] Open
Abstract
HPV16 causes half of cervical cancers worldwide; for unknown reasons, most infections resolve within two years. Here, we analyze the viral genomes of 5,328 HPV16-positive case-control samples to investigate mutational signatures and the role of human APOBEC3-induced mutations in viral clearance and cervical carcinogenesis. We identify four de novo mutational signatures, one of which matches the COSMIC APOBEC-associated signature 2. The viral genomes of the precancer/cancer cases are less likely to contain within-host somatic HPV16 APOBEC3-induced mutations (Fisher's exact test, P = 6.2 x 10-14), and have a 30% lower nonsynonymous APOBEC3 mutation burden compared to controls. We replicate the low prevalence of HPV16 APOBEC3-induced mutations in 1,749 additional cases. APOBEC3 mutations also historically contribute to the evolution of HPV16 lineages. We demonstrate that cervical infections with a greater burden of somatic HPV16 APOBEC3-induced mutations are more likely to be benign or subsequently clear, suggesting they may reduce persistence, and thus progression, within the host.
Collapse
Affiliation(s)
- Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Yanzi Xiao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Gary Clifford
- Infections and Cancer Epidemiology Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372, Lyon, Cedex 08, France
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Michael Cullen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Joseph F Boland
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Sara Bass
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Mia K Steinberg
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Tina Raine-Bennett
- Women's Health Research Institute, Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - DongHyuk Lee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Robert D Burk
- Departments of Pediatrics, Microbiology and Immunology, and Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Maisa Pinheiro
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Lei Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Michael Dean
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Chase W Nelson
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
| | - Laurie Burdett
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - David Roberson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Thomas Lorey
- Regional Laboratory, Kaiser Permanente Northern California, Oakland, CA, USA
| | | | - Philip E Castle
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joan Walker
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rosemary Zuna
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Mark Schiffman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
41
|
Starrett GJ, Buck CB. The case for BK polyomavirus as a cause of bladder cancer. Curr Opin Virol 2019; 39:8-15. [PMID: 31336246 PMCID: PMC6901737 DOI: 10.1016/j.coviro.2019.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/17/2022]
Abstract
In 2014, the International Agency for Research on Cancer judged Merkel cell polyomavirus (MCPyV) to be a probable human carcinogen. BK polyomavirus (BKPyV, a distant cousin of MCPyV) was ruled a possible carcinogen. In this review, we argue that it has recently become reasonable to view both of these viruses as known human carcinogens. In particular, several complementary lines of evidence support a causal role for BKPyV in the development of bladder carcinomas affecting organ transplant patients. The expansion of inexpensive deep sequencing has opened new approaches to investigating the important question of whether BKPyV causes urinary tract cancers in the general population.
Collapse
Affiliation(s)
- Gabriel J Starrett
- National Cancer Institute, Building 37 Room 4118, 9000 Rockville Pike, Bethesda, MD 20892-4263, United States.
| | - Christopher B Buck
- National Cancer Institute, Building 37 Room 4118, 9000 Rockville Pike, Bethesda, MD 20892-4263, United States
| |
Collapse
|
42
|
Brown WL, Law EK, Argyris PP, Carpenter MA, Levin-Klein R, Ranum AN, Molan AM, Forster CL, Anderson BD, Lackey L, Harris RS. A Rabbit Monoclonal Antibody against the Antiviral and Cancer Genomic DNA Mutating Enzyme APOBEC3B. Antibodies (Basel) 2019; 8:antib8030047. [PMID: 31544853 PMCID: PMC6783943 DOI: 10.3390/antib8030047] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 12/18/2022] Open
Abstract
The DNA cytosine deaminase APOBEC3B (A3B) is normally an antiviral factor in the innate immune response. However, A3B has been implicated in cancer mutagenesis, particularly in solid tumors of the bladder, breast, cervix, head/neck, and lung. Here, we report data on the generation and characterization of a rabbit monoclonal antibody (mAb) for human A3B. One mAb, 5210-87-13, demonstrates utility in multiple applications, including ELISA, immunoblot, immunofluorescence microscopy, and immunohistochemistry. In head-to-head tests with commercial reagents, 5210-87-13 was the only rabbit monoclonal suitable for detecting native A3B and for immunohistochemical quantification of A3B in tumor tissues. This novel mAb has the potential to enable a wide range of fundamental and clinical studies on A3B in human biology and disease.
Collapse
Affiliation(s)
- William L Brown
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Emily K Law
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Prokopios P Argyris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Division of Oral and Maxillofacial Pathology, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael A Carpenter
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rena Levin-Klein
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alison N Ranum
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Amy M Molan
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Colleen L Forster
- Clinical and Translational Science Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brett D Anderson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lela Lackey
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA.
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
43
|
Lagström S, van der Weele P, Rounge TB, Christiansen IK, King AJ, Ambur OH. HPV16 whole genome minority variants in persistent infections from young Dutch women. J Clin Virol 2019; 119:24-30. [PMID: 31446251 DOI: 10.1016/j.jcv.2019.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Chronic infections by one of the oncogenic human papillomaviruses (HPVs) are responsible for near 5% of the global cancer burden and HPV16 is the type most often found in cancers. HPV genomes display unexpected levels of variation when deep-sequenced. Minor nucleotide variations (MNVs) may reveal HPV genomic instability and HPV-related carcinogenic transformation of host cells. OBJECTIVES The objective of this study was to investigate HPV16 genome variation at the minor variant level on persisting HPV16 cervical infections from a population of young Dutch women. STUDY DESIGN 15 HPV16 infections were sequenced using a whole-HPV genome deep sequencing protocol (TaME-seq). One infection was followed over a three-year period, eight were followed over a two-year period, three were followed over a one-year period and three infections had a single sampling point. RESULTS AND CONCLUSIONS Using a 1% variant frequency cutoff, we find on average 48 MNVs per HPV16 genome and 1717 MNVs in total when sequencing coverage was >100 × . We find the transition mutation T > C to be the most common, in contrast to other studies detecting APOBEC-related C > T mutation profiles in pre-cancerous and cancer samples. Our results suggest that the relative mutagenic footprint of HPV16 genomes may differ between the infections in this study and transforming lesions. In addition, we identify a number of MNVs that have previously been associated with higher incidence of high-grade lesions (CIN3+) in a population study. These findings may provide a starting point for future studies exploring causality between emerging HPV minor genomic variants and cancer development.
Collapse
Affiliation(s)
- Sonja Lagström
- Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway; Department of Research, Cancer Registry of Norway, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pascal van der Weele
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Research, Diagnostics and Screening, Bilthoven, the Netherlands; Vrije Universiteit-University Medical Center (VUmc), Department of Pathology, Amsterdam, the Netherlands
| | | | - Irene Kraus Christiansen
- Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway; Department of Clinical Molecular Biology (EpiGen), Division of Medicine, Akershus University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Audrey J King
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Research, Diagnostics and Screening, Bilthoven, the Netherlands.
| | - Ole Herman Ambur
- Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway.
| |
Collapse
|
44
|
Faden DL, Ding F, Lin Y, Zhai S, Kuo F, Chan TA, Morris LG, Ferris RL. APOBEC mutagenesis is tightly linked to the immune landscape and immunotherapy biomarkers in head and neck squamous cell carcinoma. Oral Oncol 2019; 96:140-147. [PMID: 31422205 DOI: 10.1016/j.oraloncology.2019.07.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/12/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022]
Abstract
HNSCC is an immunologically active tumor with high levels of immune cell infiltration, high mutational burden and a subset of patients who respond to immunotherapy. One of the primary sources of mutations in HNSCC is the cytidine deaminase APOBEC3, which is a known participant in innate immunity. Why particular HNSCCs have higher rates of APOBEC mutations and how these mutations relate to the immune microenvironment remains unknown. Utilizing whole exome and RNA-Seq datasets from TCGA HNSCCs we annotated APOBEC mutations, immune cell populations, activating and end effectors of immunity and neoantigens in order to interrogate the relationship between APOBEC mutations and the immune landscape. Immune cell populations and composite scores of immune activation were tightly associated with APOBEC mutational burden (p = 0.04-1.17e-5). HNSCC had the highest levels of IFNy across cancer types with high APOBEC mutational burden, with the highest IFNy scores in HPV mediated HNSCC. Tumor specific neoantigens were significantly correlated with APOBEC mutational burden while other sources of neoantigens were not (0.53 [0.24, 0.76] p = 8e-5). The presence of a germline APOBEC polymorphism was more prevalent in non-white, non-black patients and within this group, patients with the polymorphism had higher APOBEC mutational burden (p = 0.002). APOBEC mutations are tightly linked to immune activation and infiltration in HNSCC. Multiple mechanisms may exist within HNSCC leading to APOBEC mutations including immune upregulation in response to neoantigens and viral infection, via induction of IFNy. These mechanisms may be additive and not mutually exclusive, which could explain higher levels of APOBEC mutations in HPV mediated HNSCC.
Collapse
Affiliation(s)
- Daniel L Faden
- Head and Neck Surgical Oncology, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Broad Institute of MIT and Harvard, Cambridge, MA, United States.
| | - Fei Ding
- Biostatistics Facility, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Yan Lin
- Biostatistics Facility, UPMC Hillman Cancer Center, Pittsburgh, PA, United States; Department of Biostatistics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, United States
| | - Shuyan Zhai
- Biostatistics Facility, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Fengshen Kuo
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Timothy A Chan
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Luc G Morris
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Robert L Ferris
- Cancer Immunology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States; Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
45
|
Protein kinase A inhibits tumor mutator APOBEC3B through phosphorylation. Sci Rep 2019; 9:8307. [PMID: 31165764 PMCID: PMC6549188 DOI: 10.1038/s41598-019-44407-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 05/14/2019] [Indexed: 12/26/2022] Open
Abstract
APOBEC3B cytidine deaminase (A3B) catalyzes cytosine into uracil in single-strand DNA and induces C-to-T mutations in genomic DNA of various types of tumors. Accumulation of APOBEC signature mutations is correlated with a worse prognosis for patients with breast cancer or multiple myeloma, suggesting that A3B activity might be a cause of the unfavorable DNA mutations and clonal evolution in these tumors. Phosphorylation of conserved threonine residues of other cytidine deaminases, activation induced deaminase (AID) and APOBEC3G, inhibits their activity. Here we show that protein kinase A (PKA) physically binds to A3B and phosphorylates Thr214. In vitro deaminase assays and foreign DNA editing assays in cells confirm that phosphomimetic A3B mutants, T214D and T214E, completely lose deaminase activity. Molecular dynamics simulation of A3B phosphorylation reveals that Thr214 phosphorylation disrupts binding between the phospho-A3B catalytic core and ssDNA. These mutants still inhibit retroviral infectivity at least partially, and also retain full anti-retrotransposition activity. These results imply that PKA-mediated phosphorylation inhibits A3B mutagenic activity without destructing its innate immune functions. Therefore, PKA activation could reduce further accumulation of mutations in A3B overexpressing tumors.
Collapse
|
46
|
Smith NJ, Fenton TR. The APOBEC3 genes and their role in cancer: insights from human papillomavirus. J Mol Endocrinol 2019; 62:R269-R287. [PMID: 30870810 DOI: 10.1530/jme-19-0011] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 03/14/2019] [Indexed: 12/14/2022]
Abstract
The interaction between human papillomaviruses (HPV) and the apolipoprotein-B mRNA-editing catalytic polypeptide-like (APOBEC)3 (A3) genes has garnered increasing attention in recent years, with considerable efforts focused on understanding their apparent roles in both viral editing and in HPV-driven carcinogenesis. Here, we review these developments and highlight several outstanding questions in the field. We consider whether editing of the virus and mutagenesis of the host are linked or whether both are essentially separate events, coincidentally mediated by a common or distinct A3 enzymes. We discuss the viral mechanisms and cellular signalling pathways implicated in A3 induction in virally infected cells and examine which of the A3 enzymes might play the major role in HPV-associated carcinogenesis and in the development of therapeutic resistance. We consider the parallels between A3 induction in HPV-infected cells and what might be causing aberrant A3 activity in HPV-independent cancers such as those arising in the bladder, lung and breast. Finally, we discuss the implications of ongoing A3 activity in tumours under treatment and the therapeutic opportunities that this may present.
Collapse
Affiliation(s)
- Nicola J Smith
- School of Biosciences, University of Kent, Canterbury, Kent, UK
| | - Tim R Fenton
- School of Biosciences, University of Kent, Canterbury, Kent, UK
| |
Collapse
|
47
|
Polyomavirus T Antigen Induces APOBEC3B Expression Using an LXCXE-Dependent and TP53-Independent Mechanism. mBio 2019; 10:mBio.02690-18. [PMID: 30723127 PMCID: PMC6428753 DOI: 10.1128/mbio.02690-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
APOBEC3B is a single-stranded DNA cytosine deaminase with beneficial innate antiviral functions. However, misregulated APOBEC3B can also be detrimental by inflicting APOBEC signature C-to-T and C-to-G mutations in genomic DNA of multiple cancer types. Polyomavirus and papillomavirus oncoproteins induce APOBEC3B overexpression, perhaps to their own benefit, but little is known about the cellular mechanisms hijacked by these viruses to do so. Here we investigate the molecular mechanism of APOBEC3B upregulation by the polyomavirus large T antigen. First, we demonstrate that the upregulated APOBEC3B enzyme is strongly nuclear and partially localized to virus replication centers. Second, truncated T antigen (truncT) is sufficient for APOBEC3B upregulation, and the RB-interacting motif (LXCXE), but not the p53-binding domain, is required. Third, genetic knockdown of RB1 alone or in combination with RBL1 and/or RBL2 is insufficient to suppress truncT-mediated induction of APOBEC3B Fourth, CDK4/6 inhibition by palbociclib is also insufficient to suppress truncT-mediated induction of APOBEC3B Last, global gene expression analyses in a wide range of human cancers show significant associations between expression of APOBEC3B and other genes known to be regulated by the RB/E2F axis. These experiments combine to implicate the RB/E2F axis in promoting APOBEC3B transcription, yet they also suggest that the polyomavirus RB-binding motif has at least one additional function in addition to RB inactivation for triggering APOBEC3B upregulation in virus-infected cells.IMPORTANCE The APOBEC3B DNA cytosine deaminase is overexpressed in many different cancers and correlates with elevated frequencies of C-to-T and C-to-G mutations in 5'-TC motifs, oncogene activation, acquired drug resistance, and poor clinical outcomes. The mechanisms responsible for APOBEC3B overexpression are not fully understood. Here, we show that the polyomavirus truncated T antigen (truncT) triggers APOBEC3B overexpression through its RB-interacting motif, LXCXE, which in turn likely modulates the binding of E2F family transcription factors to promote APOBEC3B expression. This work strengthens the mechanistic linkage between active cell cycling, APOBEC3B overexpression, and cancer mutagenesis. Although this mutational mechanism damages cellular genomes, viruses may leverage it to promote evolution, immune escape, and pathogenesis. The cellular portion of the mechanism may also be relevant to nonviral cancers, where genetic mechanisms often activate the RB/E2F axis and APOBEC3B mutagenesis contributes to tumor evolution.
Collapse
|
48
|
Cannataro VL, Gaffney SG, Sasaki T, Issaeva N, Grewal NKS, Grandis JR, Yarbrough WG, Burtness B, Anderson KS, Townsend JP. APOBEC-induced mutations and their cancer effect size in head and neck squamous cell carcinoma. Oncogene 2019; 38:3475-3487. [PMID: 30647454 PMCID: PMC6499643 DOI: 10.1038/s41388-018-0657-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022]
Abstract
Recent studies have revealed the mutational signatures underlying the somatic evolution of cancer, and the prevalences of associated somatic genetic variants. Here we estimate the intensity of positive selection that drives mutations to high frequency in tumors, yielding higher prevalences than expected on the basis of mutation and neutral drift alone. We apply this approach to a sample of 525 head and neck squamous cell carcinoma exomes, producing a rank-ordered list of gene variants by selection intensity. Our results illustrate the complementarity of calculating the intensity of selection on mutations along with tallying the prevalence of individual substitutions in cancer: while many of the most prevalently-altered genes were heavily selected, their relative importance to the cancer phenotype differs from their prevalence and from their P value, with some infrequent variants exhibiting evidence of strong positive selection. Furthermore, we extend our analysis of effect size by quantifying the degree to which mutational processes (such as APOBEC mutagenesis) contributes mutations that are highly selected, driving head and neck squamous cell carcinoma. We calculate the substitutions caused by APOBEC mutagenesis that make the greatest contribution to cancer phenotype among patients. Lastly, we demonstrate via in vitro biochemical experiments that the APOBEC3B protein can deaminate the cytosine bases at two sites whose mutant states are subject to high net realized selection intensities-PIK3CA E545K and E542K. By quantifying the effects of mutations, we deepen the molecular understanding of carcinogenesis in head and neck squamous cell carcinoma.
Collapse
Affiliation(s)
- Vincent L Cannataro
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Stephen G Gaffney
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Tomoaki Sasaki
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Natalia Issaeva
- Yale Cancer Center, Yale University, New Haven, CT, USA.,Division of Otolaryngology, Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Nicholas K S Grewal
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Jennifer R Grandis
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Wendell G Yarbrough
- Yale Cancer Center, Yale University, New Haven, CT, USA.,Division of Otolaryngology, Department of Surgery, Yale School of Medicine, New Haven, CT, USA.,Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Barbara Burtness
- Yale Cancer Center, Yale University, New Haven, CT, USA.,Department of Medicine, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Karen S Anderson
- Department of Pharmacology, Yale University, New Haven, CT, USA.,Yale Cancer Center, Yale University, New Haven, CT, USA.,Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
| | - Jeffrey P Townsend
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA. .,Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA. .,Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA.
| |
Collapse
|
49
|
Gillison ML, Akagi K, Xiao W, Jiang B, Pickard RKL, Li J, Swanson BJ, Agrawal AD, Zucker M, Stache-Crain B, Emde AK, Geiger HM, Robine N, Coombes KR, Symer DE. Human papillomavirus and the landscape of secondary genetic alterations in oral cancers. Genome Res 2018; 29:1-17. [PMID: 30563911 PMCID: PMC6314162 DOI: 10.1101/gr.241141.118] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/30/2018] [Indexed: 12/15/2022]
Abstract
Human papillomavirus (HPV) is a necessary but insufficient cause of a subset of oral squamous cell carcinomas (OSCCs) that is increasing markedly in frequency. To identify contributory, secondary genetic alterations in these cancers, we used comprehensive genomics methods to compare 149 HPV-positive and 335 HPV-negative OSCC tumor/normal pairs. Different behavioral risk factors underlying the two OSCC types were reflected in distinctive genomic mutational signatures. In HPV-positive OSCCs, the signatures of APOBEC cytosine deaminase editing, associated with anti-viral immunity, were strongly linked to overall mutational burden. In contrast, in HPV-negative OSCCs, T>C substitutions in the sequence context 5'-ATN-3' correlated with tobacco exposure. Universal expression of HPV E6*1 and E7 oncogenes was a sine qua non of HPV-positive OSCCs. Significant enrichment of somatic mutations was confirmed or newly identified in PIK3CA, KMT2D, FGFR3, FBXW7, DDX3X, PTEN, TRAF3, RB1, CYLD, RIPK4, ZNF750, EP300, CASZ1, TAF5, RBL1, IFNGR1, and NFKBIA Of these, many affect host pathways already targeted by HPV oncoproteins, including the p53 and pRB pathways, or disrupt host defenses against viral infections, including interferon (IFN) and nuclear factor kappa B signaling. Frequent copy number changes were associated with concordant changes in gene expression. Chr 11q (including CCND1) and 14q (including DICER1 and AKT1) were recurrently lost in HPV-positive OSCCs, in contrast to their gains in HPV-negative OSCCs. High-ranking variant allele fractions implicated ZNF750, PIK3CA, and EP300 mutations as candidate driver events in HPV-positive cancers. We conclude that virus-host interactions cooperatively shape the unique genetic features of these cancers, distinguishing them from their HPV-negative counterparts.
Collapse
Affiliation(s)
- Maura L Gillison
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Keiko Akagi
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Weihong Xiao
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Bo Jiang
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Robert K L Pickard
- Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus, Ohio 43210, USA
| | - Jingfeng Li
- Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus, Ohio 43210, USA
| | - Benjamin J Swanson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Amit D Agrawal
- Department of Otolaryngology - Head and Neck Surgery, Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Mark Zucker
- Department of Biomedical Informatics, Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | | | | | | | | | - Kevin R Coombes
- Department of Biomedical Informatics, Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - David E Symer
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
50
|
High-Risk Human Papillomaviral Oncogenes E6 and E7 Target Key Cellular Pathways to Achieve Oncogenesis. Int J Mol Sci 2018; 19:ijms19061706. [PMID: 29890655 PMCID: PMC6032416 DOI: 10.3390/ijms19061706] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022] Open
Abstract
Infection with high-risk human papillomavirus (HPV) has been linked to several human cancers, the most prominent of which is cervical cancer. The integration of the viral genome into the host genome is one of the manners in which the viral oncogenes E6 and E7 achieve persistent expression. The most well-studied cellular targets of the viral oncogenes E6 and E7 are p53 and pRb, respectively. However, recent research has demonstrated the ability of these two viral factors to target many more cellular factors, including proteins which regulate epigenetic marks and splicing changes in the cell. These have the ability to exert a global change, which eventually culminates to uncontrolled proliferation and carcinogenesis.
Collapse
|