1
|
Victoria S, Leyens J, Meckes LM, Vavouras Syrigos G, Turk G, Schindler M. CD4+ T cells facilitate replication of primary HIV-1 strains in macrophages and formation of macrophage internal virus-containing compartments. J Virol 2025; 99:e0018225. [PMID: 40130873 PMCID: PMC11998544 DOI: 10.1128/jvi.00182-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 02/24/2025] [Indexed: 03/26/2025] Open
Abstract
HIV-1 replication in macrophages is highly variable with internal virus accumulation in so-called virus-containing compartments (VCCs). VCCs represent a reservoir that is shielded from the antiviral immune response. VCC formation has been studied in lab-adapted HIV-1, but it has not been investigated whether primary HIV-1 strains induce VCCs. Furthermore, although macrophages transmit HIV-1 from VCCs to CD4+ T cells, the effect of T cells on VCCs is unknown. We analyzed the ability of primary and lab-adapted HIV-1 to replicate in macrophages, the effect of non-infected CD4+ T cell coculture, and VCC formation. All HIV-1 strains replicated in CD4+ T cells, whereas only lab-adapted HIV-1 replicated efficiently in macrophage monocultures. Coculture with non-infected CD4+ T cells enhanced the replication of primary HIV-1 in macrophages, a process associated with increased VCC formation and dependent on direct cell-to-cell contact. Broadly neutralizing antibodies differentially affected CD4+ T cell-mediated enhancement of HIV-1 replication in macrophages. CD4 antibody treatment of macrophages phenocopied the infection-promoting effect of CD4+ T cell coculture. In conclusion, non-infected CD4+ T cells facilitate primary HIV-1 replication in macrophages, and the induction of VCCs appears to be a proxy for this phenotype. VCC formation and HIV-1 replication in macrophages are promoted by non-infected CD4+ T cells in a CD4- and GP120-dependent manner. Our findings highlight the critical role of T cell-macrophage interaction in HIV-1 replication dynamics and VCC formation and call for strategies to interfere with VCCs in order to target the HIV-1 reservoir in macrophages.IMPORTANCEHere, we focus on the intimate interplay between HIV-1-infected macrophages and CD4+ T cells. Specifically, we analyzed whether primary HIV-1 strains induce virus-containing compartments (VCCs) within macrophages, which are thought to serve as viral sanctuaries and macrophage reservoirs. Notably, primary HIV-1 strains were unable to replicate in macrophages and induce VCCs unless they were cocultured with non-infected CD4+ T cells, leading to enhanced VCC formation and viral replication. This suggests an essential role for non-infected CD4+ T cells in facilitating primary HIV-1 replication in macrophages. Our data highlight the importance of not only addressing the latent HIV-1 T cell reservoir but also targeting VCC formation in macrophages to achieve the ultimate goal of functional HIV-1 cure.
Collapse
Affiliation(s)
- Sabina Victoria
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Johanna Leyens
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Lea Marie Meckes
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Georgios Vavouras Syrigos
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Gabriela Turk
- CONICET–Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Michael Schindler
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Weiss S, Alvarez RA, Goff M, Li H, Acosta E, Chen P, Seedhom HM, Swartz TH, Gartland M, Clark A, Aberg JA, Chen BK. High HIV-1 viremia and low anti-Env antibody responses are associated with delayed treatment response to fostemsavir in highly treatment-experienced individuals. Antiviral Res 2025; 235:106096. [PMID: 39889907 DOI: 10.1016/j.antiviral.2025.106096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
Fostemsavir (FTR) is an approved first-in-class small molecule Env antagonist for treating multi-drug resistant (MDR) HIV-1 infection. In the BRIGHTE study, viral suppression rates in heavily treatment-experienced people with HIV (PWH) increased from week 48 through week 96. Factors that contribute to this late response are not well understood. Given FTR's ability to stabilize a native HIV-1 envelope trimer conformational state, we examined anti-HIV humoral immune responses in the BRIGHTE study to explore how evolving antibody responses in the presence of drug correlate with delayed viral suppression. 16 BRIGHTE study participants (ppt) were selected based on their time to first viremic suppression: eight early (EVS) and eight late viral suppressors (LVS). Immune responses were also analyzed in eight ppt from the SAILING study that evaluated dolutegravir. Anti-HIV Env IgG titer, cell-free and cell-to-cell neutralization activity, FcγRIIa- and FcγRIIIa-signaling, and plasma cytokines at weeks 0, 4 and 108 were examined and correlated with clinical variables associated with treatment response. FTR treatment did not significantly enhance antibody responses against reference strain of HIV in LVS compared to EVS. However, at baseline, LVS had significantly lower anti-HIV IgG titers, higher VL, lower CD4+ T-cell counts and experienced greater increases in CD4+ T-cell counts than EVS. Additionally, IL-8 levels were increased in LVS vs. EVS at treatment initiation. In comparison, SAILING ppt showed increased FcγRIIa signaling during drug treatment compared to the FTR groups. Further studies will determine if pre-treatment characteristics influence timing to viral suppression in FTR-treated individuals with MDR-HIV.
Collapse
Affiliation(s)
- Svenja Weiss
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, 10029, New York, NY, USA
| | - Raymond A Alvarez
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, 10029, New York, NY, USA; Ichor Biologics, LLC, New York, NY, USA, Imprint Labs, New York, NY, USA
| | - Marisa Goff
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, 10029, New York, NY, USA
| | - Hongru Li
- Generate Biomedicines, Inc, 02143, Somerville, MA, USA
| | - Eric Acosta
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, 10029, New York, NY, USA
| | - Ping Chen
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, 10029, New York, NY, USA
| | - Helen M Seedhom
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, 10029, New York, NY, USA
| | - Talia H Swartz
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, 10029, New York, NY, USA
| | | | - Andrew Clark
- ViiV Healthcare, GSK House, Brentford, TW8 9GS, Middlesex, United Kingdom
| | - Judith A Aberg
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, 10029, New York, NY, USA.
| | - Benjamin K Chen
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, 10029, New York, NY, USA.
| |
Collapse
|
3
|
Borrajo A. Breaking Barriers to an HIV-1 Cure: Innovations in Gene Editing, Immune Modulation, and Reservoir Eradication. Life (Basel) 2025; 15:276. [PMID: 40003685 PMCID: PMC11856976 DOI: 10.3390/life15020276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/04/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Recent advances in virology, particularly in the study of HIV-1, have significantly progressed the pursuit of a definitive cure for the disease. Emerging therapeutic strategies encompass innovative gene-editing technologies, immune-modulatory interventions, and next-generation antiretroviral agents. Efforts to eliminate or control viral reservoirs have also gained momentum, with the aim of achieving durable viral remission without the continuous requirement for antiretroviral therapy. Despite these promising developments, critical challenges persist in bridging the gap between laboratory findings and clinical implementation. This review provides a comprehensive analysis of recent breakthroughs, ongoing clinical trials, and the barriers that must be addressed to translate these advancements into effective treatments, emphasizing the multifaceted approaches being pursued to achieve a curative solution for HIV-1 infection.
Collapse
Affiliation(s)
- Ana Borrajo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
4
|
Nagashima S, Primadharsini PP, Takahashi M, Nishiyama T, Murata K, Okamoto H. Role of Rab13, Protein Kinase A, and Zonula Occludens-1 in Hepatitis E Virus Entry and Cell-to-Cell Spread: Comparative Analysis of Quasi-Enveloped and Non-Enveloped Forms. Pathogens 2024; 13:1130. [PMID: 39770389 PMCID: PMC11678111 DOI: 10.3390/pathogens13121130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Hepatitis E virus (HEV) exists in two distinct forms: a non-enveloped form (neHEV), which is present in feces and bile, and a quasi-enveloped form (eHEV), found in circulating blood and culture supernatants. This study aimed to elucidate the roles of Ras-associated binding 13 (Rab13) and protein kinase A (PKA) in the entry mechanisms of both eHEV and neHEV, utilizing small interfering RNA (siRNA) and chemical inhibitors. The results demonstrated that the entry of both viral forms is dependent on Rab13 and PKA. Further investigation into the involvement of tight junction (TJ) proteins revealed that the targeted knockdown of zonula occludens-1 (ZO-1) significantly impaired the entry of both eHEV and neHEV. In addition, in ZO-1 knockout (KO) cells inoculated with either viral form, HEV RNA levels in culture supernatants did not increase, even up to 16 days post-inoculation. Notably, the absence of ZO-1 did not affect the adsorption efficiency of eHEV or neHEV, nor did it influence HEV RNA replication. In cell-to-cell spread assays, ZO-1 KO cells inoculated with eHEV showed a lack of expression of HEV ORF2 and ORF3 proteins. In contrast, neHEV-infected ZO-1 KO cells showed markedly reduced ORF2 and ORF3 protein expression within virus-infected foci, compared to non-targeting knockout (NC KO) cells. These findings underscore the crucial role of ZO-1 in facilitating eHEV entry and mediating the cell-to-cell spread of neHEV in infected cells.
Collapse
Affiliation(s)
- Shigeo Nagashima
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-shi 329-0498, Tochigi, Japan; (P.P.P.); (M.T.); (T.N.); (K.M.)
| | | | | | | | | | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-shi 329-0498, Tochigi, Japan; (P.P.P.); (M.T.); (T.N.); (K.M.)
| |
Collapse
|
5
|
Heindel DW, Figueroa Acosta DM, Goff M, Yengo CK, Jan M, Liu X, Wang XH, Petrova MI, Zhang M, Sagar M, Barnette P, Pandey S, Hessell AJ, Chan KW, Kong XP, Chen BK, Mahal LK, Bensing BA, Hioe CE. HIV-1 interaction with an O-glycan-specific bacterial lectin enhances virus infectivity and resistance to neutralizing antibodies. iScience 2024; 27:110390. [PMID: 39108723 PMCID: PMC11301080 DOI: 10.1016/j.isci.2024.110390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/21/2023] [Accepted: 06/25/2024] [Indexed: 10/13/2024] Open
Abstract
Bacteria dysbiosis and its accompanying inflammation or compromised mucosal integrity is associated with an increased risk of HIV-1 transmission. However, HIV-1 may also bind bacteria or bacterial products to impact infectivity and transmissibility. This study evaluated HIV-1 interactions with bacteria through glycan-binding lectins. The Streptococcal Siglec-like lectin SLBR-N, a part of the fimbriae shrouding the bacteria surface that recognizes α2,3 sialyated O-linked glycans, was noted for its ability to enhance HIV-1 infectivity in the context of cell-free infection and cell-to-cell transfer. Enhancing effects were recapitulated with O-glycan-binding plant lectins, signifying the importance of O-glycans. N-glycan-binding bacterial lectins FimH and Msl had no effect. SLBR-N was demonstrated to capture and transfer infectious HIV-1 virions, bind to O-glycans on HIV-1 Env, and increase HIV-1 resistance to neutralizing antibodies targeting different regions of Env. This study highlights the potential contribution of O-glycan-binding lectins from commensal bacteria at the mucosa in promoting HIV-1 infection.
Collapse
Affiliation(s)
- Daniel W. Heindel
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dania M. Figueroa Acosta
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marisa Goff
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Clauvis Kunkeng Yengo
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Muzafar Jan
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xiaomei Liu
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xiao-Hong Wang
- VA New York Harbor Healthcare System-Manhattan, New York, NY, USA
| | - Mariya I. Petrova
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Mo Zhang
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Manish Sagar
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Phillip Barnette
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Shilpi Pandey
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Ann J. Hessell
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Kun-Wei Chan
- Department of Biochemistry and Molecular Pharmacology New York University Grossman School of Medicine, New York, NY, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology New York University Grossman School of Medicine, New York, NY, USA
| | - Benjamin K. Chen
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lara K. Mahal
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Barbara A. Bensing
- Department of Medicine, San Francisco Veterans Affairs Medical Center and University of California, San Francisco, CA, USA
| | - Catarina E. Hioe
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, Bronx, NY, USA
| |
Collapse
|
6
|
Mazurov D, Herschhorn A. Ultrasensitive quantification of HIV-1 cell-to-cell transmission in primary human CD4 + T cells measures viral sensitivity to broadly neutralizing antibodies. mBio 2024; 15:e0242823. [PMID: 38063394 PMCID: PMC10790777 DOI: 10.1128/mbio.02428-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/07/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE HIV-1 can efficiently transmit from one cell to another but accurate quantification of this mode of transmission is still challenging. Here, we developed an ultrasensitive assay to measure HIV-1 transmission between cells and to evaluate HIV-1 escape from broadly neutralizing antibodies in primary human T cells. This assay will contribute to understanding the fundamental mechanisms of HIV-1 cell-to-cell transmission, allow evaluation of pre-existing or acquired HIV-1 resistance in clinical trials, and can be adapted to study the biology of other retroviruses.
Collapse
Affiliation(s)
- Dmitriy Mazurov
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Alon Herschhorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Engineering in Medicine, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
- The College of Veterinary Medicine Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
7
|
Abstract
Neutralizing antibodies (nAbs) are being increasingly used as passive antiviral reagents in prophylactic and therapeutic modalities and to guide viral vaccine design. In vivo, nAbs can mediate antiviral functions through several mechanisms, including neutralization, which is defined by in vitro assays in which nAbs block viral entry to target cells, and antibody effector functions, which are defined by in vitro assays that evaluate nAbs against viruses and infected cells in the presence of effector systems. Interpreting in vivo results in terms of these in vitro assays is challenging but important in choosing optimal passive antibody and vaccine strategies. Here, I review findings from many different viruses and conclude that, although some generalizations are possible, deciphering the relative contributions of different antiviral mechanisms to the in vivo efficacy of antibodies currently requires consideration of individual antibody-virus interactions.
Collapse
Affiliation(s)
- Dennis R Burton
- Department of Immunology and Microbiology, Consortium for HIV/AIDS Vaccine Development, International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
| |
Collapse
|
8
|
Suphaphiphat K, Desjardins D, Lorin V, Dimant N, Bouchemal K, Bossevot L, Galpin-Lebreau M, Dereuddre-Bosquet N, Mouquet H, Le Grand R, Cavarelli M. Mucosal application of the broadly neutralizing antibody 10-1074 protects macaques from cell-associated SHIV vaginal exposure. Nat Commun 2023; 14:6224. [PMID: 37803011 PMCID: PMC10558491 DOI: 10.1038/s41467-023-41966-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023] Open
Abstract
Passive immunization using broadly neutralizing antibodies (bNAbs) is investigated in clinical settings to inhibit HIV-1 acquisition due to the lack of a preventive vaccine. However, bNAbs efficacy against highly infectious cell-associated virus transmission has been overlooked. HIV-1 transmission mediated by infected cells present in body fluids likely dominates infection and aids the virus in evading antibody-based immunity. Here, we show that the anti-N-glycans/V3 loop HIV-1 bNAb 10-1074 formulated for topical vaginal application in a microbicide gel provides significant protection against repeated cell-associated SHIV162P3 vaginal challenge in non-human primates. The treated group has a significantly lower infection rate than the control group, with 5 out of 6 animals fully protected from the acquisition of infection. The findings suggest that mucosal delivery of potent bnAbs may be a promising approach for preventing transmission mediated by infected cells and support the use of anti-HIV-antibody-based strategies as potential microbicides in human clinical trials.
Collapse
Affiliation(s)
- Karunasinee Suphaphiphat
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Delphine Desjardins
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Valérie Lorin
- Laboratory of Humoral Immunology, Institut Pasteur, Université Paris Cité, INSERM U1222, 75015, Paris, France
| | - Nastasia Dimant
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Kawthar Bouchemal
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, CNRS UMR 8247, 75005, Paris, France
| | - Laetitia Bossevot
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Maxence Galpin-Lebreau
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Nathalie Dereuddre-Bosquet
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Hugo Mouquet
- Laboratory of Humoral Immunology, Institut Pasteur, Université Paris Cité, INSERM U1222, 75015, Paris, France
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Mariangela Cavarelli
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France.
| |
Collapse
|
9
|
Kim JW, Kim HJ, Heo K, Lee Y, Jang HJ, Lee HY, Park JW, Cho YB, Lee JH, Shin HG, Yang HR, Choi HL, Shim HB, Lee S. A novel bispecific antibody dual-targeting approach for enhanced neutralization against fast-evolving SARS-CoV-2 variants. Front Immunol 2023; 14:1271508. [PMID: 37822941 PMCID: PMC10562541 DOI: 10.3389/fimmu.2023.1271508] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023] Open
Abstract
Introduction The emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has caused unprecedented health and socioeconomic crises, necessitating the immediate development of highly effective neutralizing antibodies. Despite recent advancements in anti-SARS-CoV-2 receptor-binding domain (RBD)-specific monoclonal antibodies (mAbs) derived from convalescent patient samples, their efficacy against emerging variants has been limited. In this study, we present a novel dual-targeting strategy using bispecific antibodies (bsAbs) that specifically recognize both the SARS-CoV-2 RBD and fusion peptide (FP), crucial domains for viral attachment to the host cell membrane and fusion in SARS-CoV-2 infection. Methods Using phage display technology, we rapidly isolated FP-specific mAbs from an established human recombinant antibody library, identifying K107.1 with a nanomolar affinity for SARS-CoV-2 FP. Furthermore, we generated K203.A, a new bsAb built in immunoglobulin G4-(single-chain variable fragment)2 forms and demonstrating a high manufacturing yield and nanomolar affinity to both the RBD and FP, by fusing K102.1, our previously reported RBD-specific mAb, with K107.1. Results Our comprehensive in vitro functional analyses revealed that the K203.A bsAb significantly outperformed the parental RBD-specific mAb in terms of neutralization efficacy against SARS-CoV-2 variants. Furthermore, intravenous monotherapy with K203.A demonstrated potent in vivo neutralizing activity without significant in vivo toxicity in a mouse model infected with a SARS-CoV-2 variant. Conclusion These findings present a novel bsAb dual-targeting strategy, directed at SARS-CoV-2 RBD and FP, as an effective approach for rapid development and management against continuously evolving SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Ji Woong Kim
- Department of Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Hyun Jung Kim
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Kyun Heo
- Department of Chemistry, Kookmin University, Seoul, Republic of Korea
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
- Antibody Research Institute, Kookmin University, Seoul, Republic of Korea
| | - Yoonwoo Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Hui Jeong Jang
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Ho-Young Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Jun Won Park
- Division of Biomedical Convergence, Kangwon National University, Chuncheon, Republic of Korea
| | - Yea Bin Cho
- Department of Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Ji Hyun Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Ha Gyeong Shin
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Ha Rim Yang
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Hye Lim Choi
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Hyun Bo Shim
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Sukmook Lee
- Department of Chemistry, Kookmin University, Seoul, Republic of Korea
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
- Antibody Research Institute, Kookmin University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Enhanced fitness of SARS-CoV-2 B.1.617.2 Delta variant in ferrets. Virology 2023; 582:57-61. [PMID: 37028126 PMCID: PMC10073010 DOI: 10.1016/j.virol.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023]
Abstract
Competition assays were conducted in vitro and in vivo to examine how the Delta (B.1.617.2) variant displaced the prototype Washington/1/2020 (WA/1) strain. While WA/1 virus exhibited a moderately increased proportion compared to that in the inoculum following co-infection in human respiratory cells, Delta variant possessed a substantial in vivo fitness advantage as this virus becoming predominant in both inoculated and contact animals. This work identifies critical traits of the Delta variant that likely played a role in it becoming a dominant variant and highlights the necessities of employing multiple model systems to assess the fitness of newly emerged SARS-CoV-2 variants.
Collapse
|
11
|
Subtle Longitudinal Alterations in Env Sequence Potentiate Differences in Sensitivity to Broadly Neutralizing Antibodies following Acute HIV-1 Subtype C Infection. J Virol 2022; 96:e0127022. [PMID: 36453881 PMCID: PMC9769376 DOI: 10.1128/jvi.01270-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs) for HIV-1 prevention or cure strategies must inhibit transmitted/founder and reservoir viruses. Establishing sensitivity of circulating viruses to bNAbs and genetic patterns affecting neutralization variability may guide rational bNAbs selection for clinical development. We analyzed 326 single env genomes from nine individuals followed longitudinally following acute HIV-1 infection, with samples collected at ~1 week after the first detection of plasma viremia; 300 to 1,709 days postinfection but prior to initiating antiretroviral therapy (ART) (median = 724 days); and ~1 year post ART initiation. Sequences were assessed for phylogenetic relatedness, potential N- and O-linked glycosylation, and variable loop lengths (V1 to V5). A total of 43 env amplicons (median = 3 per patient per time point) were cloned into an expression vector and the TZM-bl assay was used to assess the neutralization profiles of 15 bNAbs targeting the CD4 binding site, V1/V2 region, V3 supersite, MPER, gp120/gp41 interface, and fusion peptide. At 1 μg/mL, the neutralization breadths were as follows: VRC07-LS and N6.LS (100%), VRC01 (86%), PGT151 (81%), 10-1074 and PGT121 (80%), and less than 70% for 10E8, 3BNC117, CAP256.VRC26, 4E10, PGDM1400, and N123-VRC34.01. Features associated with low sensitivity to V1/V2 and V3 bNAbs were higher potential glycosylation sites and/or relatively longer V1 and V4 domains, including known "signature" mutations. The study shows significant variability in the breadth and potency of bNAbs against circulating HIV-1 subtype C envelopes. VRC07-LS, N6.LS, VRC01, PGT151, 10-1074, and PGT121 display broad activity against subtype C variants, and major determinants of sensitivity to most bNAbs were within the V1/V4 domains. IMPORTANCE Broadly neutralizing antibodies (bNAbs) have potential clinical utility in HIV-1 prevention and cure strategies. However, bNAbs target diverse epitopes on the HIV-1 envelope and the virus may evolve to evade immune responses. It is therefore important to identify antibodies with broad activity in high prevalence settings, as well as the genetic patterns that may lead to neutralization escape. We investigated 15 bNAbs with diverse biophysical properties that target six epitopes of the HIV-1 Env glycoprotein for their ability to inhibit viruses that initiated infection, viruses circulating in plasma at chronic infection before antiretroviral treatment (ART), or viruses that were archived in the reservoir during ART in subtype C infected individuals in South Africa, a high burden country. We identify the antibodies most likely to be effective for clinical use in this setting and describe mutational patterns associated with neutralization escape from these antibodies.
Collapse
|
12
|
Abstract
The HIV Env glycoprotein is the surface glycoprotein responsible for viral entry into CD4+ immune cells. During infection, Env also serves as a primary target for antibody responses, which are robust but unable to control virus replication. Immune evasion by HIV-1 Env appears to employ complex mechanisms to regulate what antigenic states are presented to the immune system. Immunodominant features appear to be distinct from epitopes that interfere with Env functions in mediating infection. Further, cell-cell transmission studies indicate that vulnerable conformational states are additionally hidden from recognition on infected cells, even though the presence of Env at the cell surface is required for viral infection through the virological synapse. Cell-cell infection studies support that Env on infected cells is presented in distinct conformations from that on virus particles. Here we review data regarding the regulation of conformational states of Env and assess how regulated sorting of Env within the infected cell may underlie mechanisms to distinguish Env on the surface of virus particles versus Env on the surface of infected cells. These mechanisms may allow infected cells to avoid opsonization, providing cell-to-cell infection by HIV with a selective advantage during evolution within an infected individual. Understanding how distinct Env conformations are presented on cells versus viruses may be essential to designing effective vaccine approaches and therapeutic strategies to clear infected cell reservoirs.
Collapse
Affiliation(s)
- Connie Zhao
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hongru Li
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Talia H. Swartz
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Benjamin K. Chen
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
13
|
Kleinman AJ, Pandrea I, Apetrei C. So Pathogenic or So What?-A Brief Overview of SIV Pathogenesis with an Emphasis on Cure Research. Viruses 2022; 14:135. [PMID: 35062339 PMCID: PMC8781889 DOI: 10.3390/v14010135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/10/2021] [Accepted: 12/25/2021] [Indexed: 02/07/2023] Open
Abstract
HIV infection requires lifelong antiretroviral therapy (ART) to control disease progression. Although ART has greatly extended the life expectancy of persons living with HIV (PWH), PWH nonetheless suffer from an increase in AIDS-related and non-AIDS related comorbidities resulting from HIV pathogenesis. Thus, an HIV cure is imperative to improve the quality of life of PWH. In this review, we discuss the origins of various SIV strains utilized in cure and comorbidity research as well as their respective animal species used. We briefly detail the life cycle of HIV and describe the pathogenesis of HIV/SIV and the integral role of chronic immune activation and inflammation on disease progression and comorbidities, with comparisons between pathogenic infections and nonpathogenic infections that occur in natural hosts of SIVs. We further discuss the various HIV cure strategies being explored with an emphasis on immunological therapies and "shock and kill".
Collapse
Affiliation(s)
- Adam J. Kleinman
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Ivona Pandrea
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| |
Collapse
|
14
|
Abstract
It is currently unknown if SARS-CoV-2 can spread through cell–cell contacts, and if so, the underlying mechanisms and implications. In this work, we show, by using lentiviral pseudotyped virus, that the spike protein of SARS-CoV-2 mediates the viral cell-to-cell transmission, with an efficiency higher than that of SARS-CoV. We also find that cell–cell fusion contributes to cell-to-cell transmission, yet ACE2 is not absolutely required. While the authentic variants of concern (VOCs) B.1.1.7 (alpha) and B.1.351 (beta) differ in cell-free infectivity from wild type and from each other, these VOCs have similar cell-to-cell transmission capability and exhibit differential sensitivity to neutralization by vaccinee sera. Results from our study will contribute to a better understanding of SARS-CoV-2 spread and pathogenesis. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible coronavirus responsible for the global COVID-19 pandemic. Herein, we provide evidence that SARS-CoV-2 spreads through cell–cell contact in cultures, mediated by the spike glycoprotein. SARS-CoV-2 spike is more efficient in facilitating cell-to-cell transmission than is SARS-CoV spike, which reflects, in part, their differential cell–cell fusion activity. Interestingly, treatment of cocultured cells with endosomal entry inhibitors impairs cell-to-cell transmission, implicating endosomal membrane fusion as an underlying mechanism. Compared with cell-free infection, cell-to-cell transmission of SARS-CoV-2 is refractory to inhibition by neutralizing antibody or convalescent sera of COVID-19 patients. While angiotensin-converting enzyme 2 enhances cell-to-cell transmission, we find that it is not absolutely required. Notably, despite differences in cell-free infectivity, the authentic variants of concern (VOCs) B.1.1.7 (alpha) and B.1.351 (beta) have similar cell-to-cell transmission capability. Moreover, B.1.351 is more resistant to neutralization by vaccinee sera in cell-free infection, whereas B.1.1.7 is more resistant to inhibition by vaccinee sera in cell-to-cell transmission. Overall, our study reveals critical features of SARS-CoV-2 spike-mediated cell-to-cell transmission, with important implications for a better understanding of SARS-CoV-2 spread and pathogenesis.
Collapse
|
15
|
Wang L, Sandmeyer A, Hübner W, Li H, Huser T, Chen BK. A Replication-Competent HIV Clone Carrying GFP-Env Reveals Rapid Env Recycling at the HIV-1 T Cell Virological Synapse. Viruses 2021; 14:v14010038. [PMID: 35062242 PMCID: PMC8781834 DOI: 10.3390/v14010038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/08/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022] Open
Abstract
HIV-1 infection is enhanced by cell-cell adhesions between infected and uninfected T cells called virological synapses (VS). VS are initiated by the interactions of cell-surface HIV-1 envelope glycoprotein (Env) and CD4 on target cells and act as sites of viral assembly and viral transfer between cells. To study the process that recruits and retains HIV-1 Env at the VS, a replication-competent HIV-1 clone carrying an Env-sfGFP fusion protein was designed to enable live tracking of Env within infected cells. Combined use of surface pulse-labeling of Env and fluorescence recovery after photobleaching (FRAP) studies, enabled the visualization of the targeted accumulation and sustained recycling of Env between endocytic compartments (EC) and the VS. We observed dynamic exchange of Env at the VS, while the viral structural protein, Gag, was largely immobile at the VS. The disparate exchange rates of Gag and Env at the synapse support that the trafficking and/or retention of a majority of Env towards the VS is not maintained by entrapment by a Gag lattice or immobilization by binding to CD4 on the target cell. A FRAP study of an Env endocytosis mutant showed that recycling is not required for accumulation at the VS, but is required for the rapid exchange of Env at the VS. We conclude that the mechanism of Env accumulation at the VS and incorporation into nascent particles involves continuous internalization and targeted secretion rather than irreversible interactions with the budding virus, but that this recycling is largely dispensable for VS formation and viral transfer across the VS.
Collapse
Affiliation(s)
- Lili Wang
- Department of Medicine, Division of Infectious Disease, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (L.W.); (H.L.)
| | - Alice Sandmeyer
- Biomolecular Photonics, Department of Physics, University of Bielefeld, 33615 Bielefeld, Germany; (A.S.); (W.H.); (T.H.)
| | - Wolfgang Hübner
- Biomolecular Photonics, Department of Physics, University of Bielefeld, 33615 Bielefeld, Germany; (A.S.); (W.H.); (T.H.)
| | - Hongru Li
- Department of Medicine, Division of Infectious Disease, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (L.W.); (H.L.)
| | - Thomas Huser
- Biomolecular Photonics, Department of Physics, University of Bielefeld, 33615 Bielefeld, Germany; (A.S.); (W.H.); (T.H.)
| | - Benjamin K. Chen
- Department of Medicine, Division of Infectious Disease, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (L.W.); (H.L.)
- Correspondence:
| |
Collapse
|
16
|
Single-chain variable fragments of broadly neutralizing antibodies prevent HIV cell-cell transmission. J Virol 2021; 96:e0193421. [PMID: 34935437 DOI: 10.1128/jvi.01934-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs) are able to prevent HIV infection following passive administration. Single-chain variable fragments (scFv) may have advantages over IgG as their smaller size permits improved diffusion into mucosal tissues. We have previously shown that scFv of bNAbs retain significant breadth and potency against cell-free viral transmission in a TZM-bl assay. However, scFv have not been tested for their ability to block cell-cell transmission, a model in which full-sized bNAbs lose potency. We tested 4 scFv (CAP256.25, PGT121, 3BNC117 and 10E8v4) compared to IgG, in free-virus and cell-cell neutralization assays in A3.01 cells, against a panel of seven heterologous viruses. We show that free-virus neutralization titers in the TZM-bl and A3.01 assays were not significantly different, and confirm that scFv show a 1 to 32-fold reduction in activity in the cell-free model, compared to IgG. However, whereas IgG show 3.4 to 19-fold geometric mean potency loss in cell-cell neutralization compared to free-virus transmission, scFv had more comparable activity in the two assays, with only a 1.3 to 2.3-fold reduction. Geometric mean IC50 of scFv for cell-cell transmission ranged from 0.65 μg/ml (10E8v4) to 2.3 μg/ml (3BNC117) with IgG and scFv neutralization showing similar potency against cell-associated transmission. Therefore, despite the reduced activity of scFv in cell-free assays, their retention of activity in the cell-cell format may make scFv useful for the prevention of both modes of transmission in HIV prevention studies. Importance Broadly neutralizing antibodies (bNAbs) are a major focus for passive immunization against HIV, with the recently concluded HVTN AMP (Antibody Mediated Protection) trial providing proof of concept. Most studies focus on cell-free HIV, however cell-associated virus may play a significant role in HIV infection, pathogenesis and latency. Single-chain variable fragments (scFv) of antibodies may have increased tissue penetration, and reduced immunogenicity. We previously demonstrated that scFv of four HIV-directed bNAbs (CAP256-VRC26.25, PGT121, 3BNC117 and 10E8v4) retain significant potency and breadth against cell-free HIV. As some bNAbs have been shown to lose potency against cell-associated virus, we investigated the ability of bNAb scFv to neutralize this mode of transmission. We demonstrate that unlike IgG, scFv of bNAbs are able to neutralize cell-free and cell-associated virus with similar potency. These scFv, which show functional activity in the therapeutic range, may therefore be suitable for further development as passive immunity for HIV prevention.
Collapse
|
17
|
Sobia P, Archary D. Preventive HIV Vaccines-Leveraging on Lessons from the Past to Pave the Way Forward. Vaccines (Basel) 2021; 9:vaccines9091001. [PMID: 34579238 PMCID: PMC8472969 DOI: 10.3390/vaccines9091001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/05/2022] Open
Abstract
Almost four decades on, since the 1980’s, with hundreds of HIV vaccine candidates tested in both non-human primates and humans, and several HIV vaccines trials later, an efficacious HIV vaccine continues to evade us. The enormous worldwide genetic diversity of HIV, combined with HIV’s inherent recombination and high mutation rates, has hampered the development of an effective vaccine. Despite the advent of antiretrovirals as pre-exposure prophylaxis and preventative treatment, which have shown to be effective, HIV infections continue to proliferate, highlighting the great need for a vaccine. Here, we provide a brief history for the HIV vaccine field, with the most recent disappointments and advancements. We also provide an update on current passive immunity trials, testing proof of the concept of the most clinically advanced broadly neutralizing monoclonal antibodies for HIV prevention. Finally, we include mucosal immunity, the importance of vaccine-elicited immune responses and the challenges thereof in the most vulnerable environment–the female genital tract and the rectal surfaces of the gastrointestinal tract for heterosexual and men who have sex with men transmissions, respectively.
Collapse
Affiliation(s)
- Parveen Sobia
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa;
| | - Derseree Archary
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa;
- Department of Medical Microbiology, University of KwaZulu-Natal, Durban 4001, South Africa
- Correspondence: ; Tel.: +27-(0)-31-655-0540
| |
Collapse
|
18
|
Ruiz-Rivera MB, Gómez-Icazbalceta G, Lamoyi E, Huerta L. Host membrane proteins in the HIV-induced membrane fusion: Role in pathogenesis and therapeutic potential of autoantibodies. Curr Opin Pharmacol 2021; 60:241-248. [PMID: 34481334 DOI: 10.1016/j.coph.2021.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/11/2021] [Accepted: 07/12/2021] [Indexed: 11/27/2022]
Abstract
Host proteins such as receptors, adhesion and signaling molecules, promote virus-cell fusion, virus cell-cell transmission, and formation of multinucleated cells with outstanding properties. These events are implicated in virus dissemination and the induction of pathological effects such as the infection of the gut-associated lymphoid tissue, placenta infection, and neurological complications. Antibodies directed to the host membrane proteins are produced during the natural HIV infection and may contribute significantly to virus inhibition. Antibodies against the HIV receptor have been approved for therapy and others targeting additional host membrane proteins are currently under evaluation. This review emphasizes the relevance of the different pathways of HIV spreading between cells and of antibodies directed to host membrane components in the development of broad-range therapeutics against HIV.
Collapse
Affiliation(s)
- Mirna B Ruiz-Rivera
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Edmundo Lamoyi
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Leonor Huerta
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
19
|
Walsh SR, Seaman MS. Broadly Neutralizing Antibodies for HIV-1 Prevention. Front Immunol 2021; 12:712122. [PMID: 34354713 PMCID: PMC8329589 DOI: 10.3389/fimmu.2021.712122] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/05/2021] [Indexed: 01/12/2023] Open
Abstract
Given the absence of an effective vaccine for protection against HIV-1 infection, passive immunization strategies that utilize potent broadly neutralizing antibodies (bnAbs) to block acquisition of HIV-1 are being rigorously pursued in the clinical setting. bnAbs have demonstrated robust protection in preclinical animal models, and several leading bnAb candidates have shown favorable safety and pharmacokinetic profiles when tested individually or in combinations in early phase human clinical trials. Furthermore, passive administration of bnAbs in HIV-1 infected individuals has resulted in prolonged suppression of viral rebound following interruption of combination antiretroviral therapy, and robust antiviral activity when administered to viremic individuals. Recent results from the first efficacy trials testing repeated intravenous administrations of the anti-CD4 binding site bnAb VRC01 have demonstrated positive proof of concept that bnAb passive immunization can confer protection against HIV-1 infection in humans, but have also highlighted the considerable barriers that remain for such strategies to effectively contribute to control of the epidemic. In this review, we discuss the current status of clinical studies evaluating bnAbs for HIV-1 prevention, highlight lessons learned from the recent Antibody Mediated Prevention (AMP) efficacy trials, and provide an overview of strategies being employed to improve the breadth, potency, and durability of antiviral protection.
Collapse
Affiliation(s)
- Stephen R Walsh
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
20
|
Enhancement of Antibody-Dependent Cellular Cytotoxicity and Phagocytosis in Anti-HIV-1 Human-Bovine Chimeric Broadly Neutralizing Antibodies. J Virol 2021; 95:e0021921. [PMID: 33853957 DOI: 10.1128/jvi.00219-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
No prophylactic vaccine has provided robust protection against human immunodeficiency virus type 1 (HIV-1). Vaccine-induced broadly neutralizing antibodies (bNAbs) have not been achieved in humans and most animals; however, cows vaccinated with HIV-1 envelope trimers produce bNAbs with unusually long third heavy complementarity-determining regions (CDRH3s). Alongside neutralization, Fc-mediated effector functions, including antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADP), may be critical for in vivo bNAb antiviral activity. Here, we aimed to augment the Fc-dependent effector functions of a chimeric human-bovine bNAb, NC-Cow1, which binds the CD4 binding site (CD4bs) and exhibits broader and more potent neutralization than most human CD4bs bNAbs by using an exceptionally long 60-amino acid (aa) CDRH3. The bovine variable region of NC-Cow1 was paired with a human IgG1 Fc region mutated to create the following three variants: G236R/L328R (GRLR) that abrogates Fc-gamma receptor (FcγR) binding, and two variants that enhance binding, namely, G236A/S239D/I332E (GASDIE) and G236A/S239D/A330L/I332E (GASDALIE). Both GASDIE and GASDALIE improved binding to human FcγRIIA and FcγRIIIA, enhanced human natural killer (NK) cell activation, and mediated higher levels of ADCC and ADP activity than the wild-type human IgG1 Fc. GASDALIE mediated higher phagocytic activity than GASDIE. As expected, GRLR eliminated binding to FcγRs and did not mediate ADCC or ADP. We demonstrated that mutations in the human Fc region of bovine chimeric antibodies with ultralong CDRH3s could enhance antibody effector functions while maintaining envelope binding and neutralization. This study will have significant implications in the development of multifunctional anti-HIV antibodies, which may be important to prevent HIV-1 transmission in an antibody-based topical microbicide. IMPORTANCE Despite successful antiviral chemotherapy, human immunodeficiency virus (HIV) is still a lifelong persistent virus, and no vaccine yet prevents HIV transmission. Topical microbicides offer an important alternative method to prevent sexual transmission of HIV-1. With the production of highly potent anti-HIV-1 broadly neutralizing antibodies (bNAbs) and multifunctional antibodies, monoclonal antibodies are now important prophylactic agents. Recently discovered anti-HIV-1 bovine bNAbs (with higher potency and breadth than most human bNAbs) could be novel candidates as potent topical microbicides. Our study is significant as it demonstrates the compatibility of combining bovine-derived neutralization with human-derived antibody-effector functions. This study is a new approach to antibody engineering that strengthens the feasibility of using high-potency bovine variable region bNAbs with augmented Fc function and promotes them as a strong candidate for antibody-mediated therapies.
Collapse
|
21
|
Atkins AJ, Allen AG, Dampier W, Haddad EK, Nonnemacher MR, Wigdahl B. HIV-1 cure strategies: why CRISPR? Expert Opin Biol Ther 2021; 21:781-793. [PMID: 33331178 PMCID: PMC9777058 DOI: 10.1080/14712598.2021.1865302] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Antiretroviral therapy (ART) has transformed prognoses for HIV-1-infected individuals but requires lifelong adherence to prevent viral resurgence. Targeted elimination or permanent deactivation of the latently infected reservoir harboring integrated proviral DNA, which drives viral rebound, is a major focus of HIV-1 research. AREAS COVERED This review covers the current approaches to developing curative strategies for HIV-1 that target the latent reservoir. Discussed herein are shock and kill, broadly neutralizing antibodies (bNAbs), block and lock, Chimeric antigen receptor (CAR) T cells, immune checkpoint modulation, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) coreceptor ablation, and CRISPR/Cas9 proviral excision. Emphasis is placed on CRISPR/Cas9 proviral excision/inactivation. Recent advances and future directions toward discovery and translation of HIV-1 therapeutics are discussed. EXPERT OPINION CRISPR/Cas9 proviral targeting fills a niche amongst HIV-1 cure strategies by directly targeting the integrated provirus without the necessity of an innate or adaptive immune response. Each strategy discussed in this review has shown promising results with the potential to yield curative or adjuvant therapies. CRISPR/Cas9 is singular among these in that it addresses the root of the problem, integrated proviral DNA, with the capacity to permanently remove or deactivate the source of HIV-1 recrudescence.
Collapse
Affiliation(s)
- Andrew J. Atkins
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Alexander G. Allen
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Elias K. Haddad
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA,Division of Infectious Diseases and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA 19129, USA,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA,Correspondence should be addressed to B.W. (), 245 N 15th St, Rm 18301, MS1013A, Philadelphia, PA, 19102, Tel: 215-991-8352, Fax: 215-849-4808
| |
Collapse
|
22
|
Zeng C, Evans JP, King T, Zheng YM, Oltz EM, Whelan SPJ, Saif L, Peeples ME, Liu SL. SARS-CoV-2 Spreads through Cell-to-Cell Transmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34100011 PMCID: PMC8183005 DOI: 10.1101/2021.06.01.446579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible coronavirus responsible for the global COVID-19 pandemic. Herein we provide evidence that SARS-CoV-2 spreads through cell-cell contact in cultures, mediated by the spike glycoprotein. SARS-CoV-2 spike is more efficient in facilitating cell-to-cell transmission than SARS-CoV spike, which reflects, in part, their differential cell-cell fusion activity. Interestingly, treatment of cocultured cells with endosomal entry inhibitors impairs cell-to-cell transmission, implicating endosomal membrane fusion as an underlying mechanism. Compared with cell-free infection, cell-to-cell transmission of SARS-CoV-2 is refractory to inhibition by neutralizing antibody or convalescent sera of COVID-19 patients. While ACE2 enhances cell-to-cell transmission, we find that it is not absolutely required. Notably, despite differences in cell-free infectivity, the variants of concern (VOC) B.1.1.7 and B.1.351 have similar cell-to-cell transmission capability. Moreover, B.1.351 is more resistant to neutralization by vaccinee sera in cell-free infection, whereas B.1.1.7 is more resistant to inhibition by vaccine sera in cell-to-cell transmission. Overall, our study reveals critical features of SARS-CoV-2 spike-mediated cell-to-cell transmission, with important implications for a better understanding of SARS-CoV-2 spread and pathogenesis.
Collapse
|
23
|
Spencer DA, Shapiro MB, Haigwood NL, Hessell AJ. Advancing HIV Broadly Neutralizing Antibodies: From Discovery to the Clinic. Front Public Health 2021; 9:690017. [PMID: 34123998 PMCID: PMC8187619 DOI: 10.3389/fpubh.2021.690017] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
Despite substantial progress in confronting the global HIV-1 epidemic since its inception in the 1980s, better approaches for both treatment and prevention will be necessary to end the epidemic and remain a top public health priority. Antiretroviral therapy (ART) has been effective in extending lives, but at a cost of lifelong adherence to treatment. Broadly neutralizing antibodies (bNAbs) are directed to conserved regions of the HIV-1 envelope glycoprotein trimer (Env) and can block infection if present at the time of viral exposure. The therapeutic application of bNAbs holds great promise, and progress is being made toward their development for widespread clinical use. Compared to the current standard of care of small molecule-based ART, bNAbs offer: (1) reduced toxicity; (2) the advantages of extended half-lives that would bypass daily dosing requirements; and (3) the potential to incorporate a wider immune response through Fc signaling. Recent advances in discovery technology can enable system-wide mining of the immunoglobulin repertoire and will continue to accelerate isolation of next generation potent bNAbs. Passive transfer studies in pre-clinical models and clinical trials have demonstrated the utility of bNAbs in blocking or limiting transmission and achieving viral suppression. These studies have helped to define the window of opportunity for optimal intervention to achieve viral clearance, either using bNAbs alone or in combination with ART. None of these advances with bNAbs would be possible without technological advancements and expanding the cohorts of donor participation. Together these elements fueled the remarkable growth in bNAb development. Here, we review the development of bNAbs as therapies for HIV-1, exploring advances in discovery, insights from animal models and early clinical trials, and innovations to optimize their clinical potential through efforts to extend half-life, maximize the contribution of Fc effector functions, preclude escape through multiepitope targeting, and the potential for sustained delivery.
Collapse
Affiliation(s)
- David A. Spencer
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - Mariya B. Shapiro
- Molecular Microbiology & Immunology Department, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Nancy L. Haigwood
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
- Molecular Microbiology & Immunology Department, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Ann J. Hessell
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| |
Collapse
|
24
|
Lamptey H, Bonney EY, Adu B, Kyei GB. Are Fc Gamma Receptor Polymorphisms Important in HIV-1 Infection Outcomes and Latent Reservoir Size? Front Immunol 2021; 12:656894. [PMID: 34017334 PMCID: PMC8129575 DOI: 10.3389/fimmu.2021.656894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Fc gamma receptors (FcγR) are cell surface glycoproteins which trigger specific effector-cell responses when cross-linked with the Fc portions of immunoglobulin (IgG) antibodies. During HIV-1 infection, the course of disease progression, ART response, and viral reservoir size vary in different individuals. Several factors may account for these differences; however, Fc gamma receptor gene polymorphisms, which influence receptor binding to IgG antibodies, are likely to play a key role. FcγRIIa (CD32) was recently reported as a potential marker for latent HIV reservoir, however, this assertion is still inconclusive. Whether FcγR polymorphisms influence the size of the viral reservoir, remains an important question in HIV cure studies. In addition, potential cure or viral suppression methods such as broadly neutralizing antibody (bNAbs) may depend on FcγRs to control the virus. Here, we discuss the current evidence on the potential role played by FcγR polymorphisms in HIV-1 infection, treatment and vaccine trial outcomes. Importantly, we highlight contrasting findings that may be due to multiple factors and the relatively limited data from African populations. We recommend further studies especially in sub-Saharan Africa to confirm the role of FcγRIIa in the establishment of latent reservoir and to determine their influence in therapies involving bNAbs.
Collapse
Affiliation(s)
- Helena Lamptey
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Evelyn Y. Bonney
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Bright Adu
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - George B. Kyei
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- Department of Medicine, Washington University School of Medicine in St Louis, St. Louis, MO, United States
- Medical and Scientific Research Centre, University of Ghana Medical Centre, University of Ghana, Accra, Ghana
| |
Collapse
|
25
|
Curreli F, Ahmed S, Benedict Victor SM, Iusupov IR, Spiridonov EA, Belov DS, Altieri A, Kurkin AV, Debnath AK. Design, synthesis, and antiviral activity of a series of CD4-mimetic small-molecule HIV-1 entry inhibitors. Bioorg Med Chem 2021; 32:116000. [PMID: 33461144 DOI: 10.1016/j.bmc.2021.116000] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/31/2020] [Indexed: 11/28/2022]
Abstract
We presented our continuing stride to optimize the second-generation NBD entry antagonist targeted to the Phe43 cavity of HIV-1 gp120. We have synthesized thirty-eight new and novel analogs of NBD-14136, earlier designed based on a CH2OH "positional switch" hypothesis, and derived a comprehensive SAR. The antiviral data confirmed that the linear alcohol towards the "N" (C4) of the thiazole ring yielded more active inhibitors than those towards the "S" (C5) of the thiazole ring. The best inhibitor, NBD-14273 (compound 13), showed both improved antiviral activity and selectivity index (SI) against HIV-1HXB2 compared to NBD-14136. We also tested NBD-14273 against a large panel of 50 HIV-1 Env-pseudotyped viruses representing clinical isolates of diverse subtypes. The overall mean data indicate that antiviral potency against these isolates improved by ~3-fold, and SI also improved ~3-fold compared to NBD-14136. This new and novel inhibitor is expected to pave the way for further optimization to a more potent and clinically relevant inhibitor against HIV-1.
Collapse
Affiliation(s)
- Francesca Curreli
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute, New York Blood Center, 310 E 67th Street, New York, NY 10065, USA
| | - Shahad Ahmed
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute, New York Blood Center, 310 E 67th Street, New York, NY 10065, USA
| | - Sofia M Benedict Victor
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute, New York Blood Center, 310 E 67th Street, New York, NY 10065, USA
| | - Ildar R Iusupov
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Evgeny A Spiridonov
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Dmitry S Belov
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Andrea Altieri
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Alexander V Kurkin
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Asim K Debnath
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute, New York Blood Center, 310 E 67th Street, New York, NY 10065, USA.
| |
Collapse
|
26
|
Bruxelle JF, Trattnig N, Mureithi MW, Landais E, Pantophlet R. HIV-1 Entry and Prospects for Protecting against Infection. Microorganisms 2021; 9:microorganisms9020228. [PMID: 33499233 PMCID: PMC7911371 DOI: 10.3390/microorganisms9020228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/19/2022] Open
Abstract
Human Immunodeficiency Virus type-1 (HIV-1) establishes a latent viral reservoir soon after infection, which poses a major challenge for drug treatment and curative strategies. Many efforts are therefore focused on blocking infection. To this end, both viral and host factors relevant to the onset of infection need to be considered. Given that HIV-1 is most often transmitted mucosally, strategies designed to protect against infection need to be effective at mucosal portals of entry. These strategies need to contend also with cell-free and cell-associated transmitted/founder (T/F) virus forms; both can initiate and establish infection. This review will discuss how insight from the current model of HIV-1 mucosal transmission and cell entry has highlighted challenges in developing effective strategies to prevent infection. First, we examine key viral and host factors that play a role in transmission and infection. We then discuss preventive strategies based on antibody-mediated protection, with emphasis on targeting T/F viruses and mucosal immunity. Lastly, we review treatment strategies targeting viral entry, with focus on the most clinically advanced entry inhibitors.
Collapse
Affiliation(s)
- Jean-François Bruxelle
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Correspondence: (J.-F.B.); (R.P.)
| | - Nino Trattnig
- Chemical Biology and Drug Discovery, Utrecht University, 3584 CG Utrecht, The Netherlands;
| | - Marianne W. Mureithi
- KAVI—Institute of Clinical Research, College of Health Sciences, University of Nairobi, P.O. Box, Nairobi 19676–00202, Kenya;
| | - Elise Landais
- IAVI Neutralizing Antibody Center, La Jolla, CA 92037, USA;
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Ralph Pantophlet
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Correspondence: (J.-F.B.); (R.P.)
| |
Collapse
|
27
|
Cavarelli M, Le Grand R. The importance of semen leukocytes in HIV-1 transmission and the development of prevention strategies. Hum Vaccin Immunother 2020; 16:2018-2032. [PMID: 32614649 PMCID: PMC7553688 DOI: 10.1080/21645515.2020.1765622] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
HIV-1 sexual transmission occurs mostly through contaminated semen, which is a complex mixture of soluble factors with immunoregulatory functions and cells. It is well established that semen cells from HIV-1-infected men are able to produce the virus and that are harnessed to efficiently interact with mucosal barriers exposed during sexual intercourse. Several cofactors contribute to semen infectivity and may enhance the risk of HIV-1 transmission to a partner by increasing local HIV-1 replication in the male genital tract, thereby increasing the number of HIV-1-infected cells and the local HIV-1 shedding in semen. The introduction of combination antiretroviral therapy has improved the life expectancy of HIV-1 infected individuals; however, there is evidence that systemic viral suppression does not always reflect full viral suppression in the seminal compartment. This review focus on the role semen leukocytes play in HIV-1 transmission and discusses implications of the increased resistance of cell-mediated transmission to immune-based prevention strategies.
Collapse
Affiliation(s)
- Mariangela Cavarelli
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT) , Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT) , Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| |
Collapse
|
28
|
Suphaphiphat K, Tolazzi M, Hua S, Desjardins D, Lorin V, Dereuddre-Bosquet N, Mouquet H, Scarlatti G, Grand RL, Cavarelli M. Broadly neutralizing antibodies potently inhibit cell-to-cell transmission of semen leukocyte-derived SHIV162P3. EBioMedicine 2020; 57:102842. [PMID: 32619962 PMCID: PMC7334370 DOI: 10.1016/j.ebiom.2020.102842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/24/2020] [Accepted: 06/02/2020] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND HIV-1 sexual transmission occurs mostly through infected semen, which contains both free virions and infected leukocytes. Transmission initiated by infected cells has been shown by several in vitro and in vivo studies and a reduced capacity of broadly neutralizing antibodies (bNAbs) to inhibit cell-to-cell transmission has also been reported. However, due to limitations of available experimental models, there is yet no clarity to which extend bNAbs can prevent transmission mediated by semen leukocytes. METHODS We developed a novel in vitro assay to measure cell-cell transmission that makes use of splenocytes or CD45+ semen leukocytes collected from acutely SHIV162P3-infected cynomolgus macaques. A panel of 11 bNAbs was used either alone or in combination to assess their inhibitory potential against both cell-free and cell-cell infection. FINDINGS Splenocytes and semen leucocytes displayed a similar proportion of CD4+T-cell subsets. Either cell type transferred infection in vitro to target TZM-bl cells and PBMCs. Moreover, infection of macaques was achieved following intravaginal challenge with splenocytes. The anti-N-glycans/V3 loop bNAb 10-1074 was highly efficient against cell-associated transmission mediated by infected spleen cells and its potency was maintained when transmission was mediated by CD45+ semen leukocytes. INTERPRETATION These results support the use of bNAbs in preventative or therapeutic studies aiming to block transmission events mediated not only by free viral particles but also by infected cells. Our experimental system could be used to predict in vivo efficacy of bNAbs. FUNDING This work was funded by the ANRS and the European Commission.
Collapse
Affiliation(s)
- Karunasinee Suphaphiphat
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases ≫ (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Monica Tolazzi
- Viral Evolution and Transmission Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stéphane Hua
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases ≫ (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Delphine Desjardins
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases ≫ (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Valerie Lorin
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, INSERM U1222, Paris, France
| | - Nathalie Dereuddre-Bosquet
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases ≫ (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Hugo Mouquet
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, INSERM U1222, Paris, France
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases ≫ (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Mariangela Cavarelli
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases ≫ (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France.
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW To present the data that suggest that antibodies to HIV may prevent HIV-1 infection. RECENT FINDINGS Many human monoclonal broadly neutralizing antibodies (bnAbs) have been isolated over the last decade. Numerous experiments of passive immunization in nonhuman primate models have allowed to accumulate strong evidences that bnAbs, opposed to nonneutralizing antibodies, are the best candidates to prevent HIV-1 infection. bnAbs counteract HIV-1 by both blocking the virus at the portal of entry and clearing rapidly viral foci established at distance after dissemination of the virus following infection. Cocktails of bnAbs or modified bi/trispecific antibodies will be necessary to counter the large and evolving antigenic diversity of the HIV-1 species. Two large multicenter phase IIb clinical trials have been initiated. Even if they are not conducted with the most recent and most potent bnAb, the results which are expected in 2022 will inform us on the real potency of bnAbs at preventing HIV-1 acquisition in the real life. SUMMARY If these trials demonstrate the efficacy of bnAbs, they will open the trail toward new strategies for preexposure prophylaxis, eventually postexposure prophylaxis and prevention of mother-to-child transmission.
Collapse
|
30
|
Curreli F, Ahmed S, Benedict Victor SM, Iusupov IR, Belov DS, Markov PO, Kurkin AV, Altieri A, Debnath AK. Preclinical Optimization of gp120 Entry Antagonists as anti-HIV-1 Agents with Improved Cytotoxicity and ADME Properties through Rational Design, Synthesis, and Antiviral Evaluation. J Med Chem 2020; 63:1724-1749. [PMID: 32031803 DOI: 10.1021/acs.jmedchem.9b02149] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We previously reported a milestone in the optimization of NBD-11021, an HIV-1 gp120 antagonist, by developing a new and novel analogue, NBD-14189 (Ref1), which showed antiviral activity against HIV-1HXB2, with a half maximal inhibitory concentration of 89 nM. However, cytotoxicity remained high, and the absorption, distribution, metabolism, and excretion (ADME) data showed relatively poor aqueous solubility. To optimize these properties, we replaced the phenyl ring in the compound with a pyridine ring and synthesized a set of 48 novel compounds. One of the new analogues, NBD-14270 (8), showed a marked improvement in cytotoxicity, with 3-fold and 58-fold improvements in selectivity index value compared with that of Ref1 and NBD-11021, respectively. Furthermore, the in vitro ADME data clearly showed improvements in aqueous solubility and other properties compared with those for Ref1. The data for 8 indicated that the pyridine scaffold is a good bioisostere for phenyl, allowing the further optimization of this molecule.
Collapse
Affiliation(s)
- Francesca Curreli
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute , New York Blood Center , 310 E 67th Street , New York 10065 , New York , United States
| | - Shahad Ahmed
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute , New York Blood Center , 310 E 67th Street , New York 10065 , New York , United States
| | - Sofia M Benedict Victor
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute , New York Blood Center , 310 E 67th Street , New York 10065 , New York , United States
| | - Ildar R Iusupov
- EDASA Scientific, Scientific Park , Moscow State University , Leninskie Gory Bld. 75, 77-101b , Moscow 119992 , Russia
| | - Dmitry S Belov
- EDASA Scientific, Scientific Park , Moscow State University , Leninskie Gory Bld. 75, 77-101b , Moscow 119992 , Russia
| | - Pavel O Markov
- EDASA Scientific, Scientific Park , Moscow State University , Leninskie Gory Bld. 75, 77-101b , Moscow 119992 , Russia
| | - Alexander V Kurkin
- EDASA Scientific, Scientific Park , Moscow State University , Leninskie Gory Bld. 75, 77-101b , Moscow 119992 , Russia
| | - Andrea Altieri
- EDASA Scientific, Scientific Park , Moscow State University , Leninskie Gory Bld. 75, 77-101b , Moscow 119992 , Russia
| | - Asim K Debnath
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute , New York Blood Center , 310 E 67th Street , New York 10065 , New York , United States
| |
Collapse
|
31
|
Titanji B, Kelley CF. What's Hot in HIV in 2019-A Basic and Translational Science Summary for Clinicians From IDWeek 2019. Open Forum Infect Dis 2020; 7:ofaa053. [PMID: 32154324 PMCID: PMC7052744 DOI: 10.1093/ofid/ofaa053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/10/2020] [Indexed: 11/17/2022] Open
Abstract
The field of HIV research is constantly evolving, and every year brings advances that draw us closer to ending the HIV epidemic. Here, we present a nonexhaustive overview of select notable studies in HIV prevention, cure, and treatment, published in the last year as presented at IDWeek 2019: What’s Hot in HIV Basic Science. The past year brought interesting results on the use of broadly neutralizing antibodies for treatment and prevention, gene-editing approaches to HIV cure, and new ways to measure the HIV reservoir. We also saw encouraging results on novel HIV vaccine delivery strategies and how these may influence effective immune responses. Lastly, in the area of inflammation, some mechanistic insights were made into the contribution of cotrimoxazole prophylaxis and potential new targets to reduce HIV-associated chronic inflammation. The future from where we stand is bright for HIV research, with much more to look forward to in 2020.
Collapse
Affiliation(s)
- Boghuma Titanji
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Colleen F Kelley
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
32
|
Liu Y, Cao W, Sun M, Li T. Broadly neutralizing antibodies for HIV-1: efficacies, challenges and opportunities. Emerg Microbes Infect 2020; 9:194-206. [PMID: 31985356 PMCID: PMC7040474 DOI: 10.1080/22221751.2020.1713707] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/13/2019] [Accepted: 01/02/2020] [Indexed: 01/26/2023]
Abstract
Combination antiretroviral therapy (cART) is effective but not curative, and no successful vaccine is currently available for human immunodeficiency virus-1 (HIV-1). Broadly neutralizing antibodies (bNAbs) provide a new approach to HIV-1 prevention and treatment, and these promising candidates advancing into clinical trials have shown certain efficacies in infected individuals. In addition, bNAbs have the potential to kill HIV-1-infected cells and to affect the course of HIV-1 infection by directly engaging host immunity. Nonetheless, challenges accompany the use of bNAbs, including transient suppression of viraemia, frequent emergence of resistant viruses in rebound viraemia, suboptimal efficacy in virus cell-to-cell transmission, and unclear effects on the cell-associated HIV-1 reservoir. In this review, we discuss opportunities and potential strategies to address current challenges to promote the future use of immunotherapy regimens.
Collapse
Affiliation(s)
- Yubin Liu
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Wei Cao
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Ming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, People’s Republic of China
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People’s Republic of China
| | - Taisheng Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Tsinghua University Medical College, Beijing, People’s Republic of China
| |
Collapse
|
33
|
Alam MM, Kuwata T, Tanaka K, Alam M, Takahama S, Shimura K, Matsuoka M, Fukuda N, Morioka H, Tamamura H, Matsushita S. Synergistic inhibition of cell-to-cell HIV-1 infection by combinations of single chain variable fragments and fusion inhibitors. Biochem Biophys Rep 2019; 20:100687. [PMID: 31650039 PMCID: PMC6804516 DOI: 10.1016/j.bbrep.2019.100687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/16/2019] [Indexed: 11/26/2022] Open
Abstract
Cell-to-cell spread of HIV permits ongoing viral replication in the presence of antiretroviral therapy and is suggested to be a major contributor to sexual transmission by mucosal routes. Fusion inhibitors that prevent viral entry have been developed, but their clinical applications have been limited by weak antiviral activity, short half-life, and the low genetic barrier to development of resistance. We examined the inhibitory activities of a series of single-chain variable fragments (scFvs) targeting the V3 and CD4i epitopes against both cell-free and cell-to-cell HIV infection. We found that all anti-V3 scFvs, including two newly constructed scFvs, showed broad neutralization activity against a panel of subtype B viruses compared with the corresponding IgGs. All scFvs neutralized cell-free infection by HIV-1JR-FL WT and fusion inhibitor-resistant mutants. In addition, all anti-V3 scFvs and some CD4i scFvs significantly inhibited cell fusion, while their IgG counterparts did not. Furthermore, scFvs-fusion inhibitors combinations, such as C34 and SC34, showed synergistic inhibition of cell fusion by both HIV-1JR-FL WT and fusion inhibitor-resistant mutants. The most prominent combinational effect was observed for 916B2 CD4i scFv with SC34. The delayed fusion kinetics of fusion inhibitor-resistant mutants partly explain their synergistic inhibition by such combinations. Our data demonstrate the advantages of using scFvs over their parent IgGs for inhibiting both cell-free and cell-to-cell infection. High synergistic inhibition of cell fusion by using scFvs-fusion inhibitors combinations suggests the possibility of intensification therapy adding this combination to current anti-HIV treatment regimens. Newly constructed anti-V3 scFvs showed broader HIV-1 neutralization activity. HIV-1 cell fusion was inhibited by scFvs better than the corresponding IgGs. Combinations of scFvs with fusion inhibitors synergistically inhibit cell fusion. Combination therapy with scFvs and fusion inhibitors may be effective.
Collapse
Affiliation(s)
- Mohammad Mamun Alam
- Clinical Retrovirology, Joint Research Center for Human Retrovirus Infection Clinical Retrovirology, Kumamoto University, Kumamoto, Japan
| | - Takeo Kuwata
- Clinical Retrovirology, Joint Research Center for Human Retrovirus Infection Clinical Retrovirology, Kumamoto University, Kumamoto, Japan
| | - Kazuki Tanaka
- Clinical Retrovirology, Joint Research Center for Human Retrovirus Infection Clinical Retrovirology, Kumamoto University, Kumamoto, Japan
| | - Muntasir Alam
- Clinical Retrovirology, Joint Research Center for Human Retrovirus Infection Clinical Retrovirology, Kumamoto University, Kumamoto, Japan
| | - Shokichi Takahama
- Clinical Retrovirology, Joint Research Center for Human Retrovirus Infection Clinical Retrovirology, Kumamoto University, Kumamoto, Japan
| | - Kazuya Shimura
- Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Masao Matsuoka
- Department of Hematology, Rheumatology and Infectious Disease, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Natsuki Fukuda
- Department of Analytical and Biophysical Chemistry, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Morioka
- Department of Analytical and Biophysical Chemistry, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shuzo Matsushita
- Clinical Retrovirology, Joint Research Center for Human Retrovirus Infection Clinical Retrovirology, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
34
|
Allers K, Kunkel D, Hofmann J, Stahl-Hennig C, Moos V, Schneider T. Cell-Associated Simian Immunodeficiency Virus Accelerates Initial Virus Spread and CD4+ T-Cell Depletion in the Intestinal Mucosa. J Infect Dis 2019; 217:1421-1425. [PMID: 29390066 DOI: 10.1093/infdis/jiy055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/25/2018] [Indexed: 11/12/2022] Open
Abstract
Cell-free and cell-associated human immunodeficiency virus (HIV) may differently affect the immune system and the efficacy of prevention strategies. Here we examined mucosal events in simian immunodeficiency virus (SIV) infection, using infected cells together with cell-free virus and cell-free virus alone. Intravenously inoculated SIV-infected cells disseminated virus to the intestine within 16 hours. Infection with both virus forms accelerated viral dissemination in the intestinal mucosa and the loss of mucosal CD4+ T cells as compared to infection with cell-free virus only. As all natural sources of HIV infection contain both virus forms, future prevention studies should focus on efficacy against both cell-free and cell-associated virus.
Collapse
Affiliation(s)
- Kristina Allers
- Department of Gastroenterology, Infectious Diseases, and Rheumatology
| | - Désirée Kunkel
- Department of Gastroenterology, Infectious Diseases, and Rheumatology
| | - Jörg Hofmann
- Institute of Medical Virology, Charité-Universitätsmedizin Berlin, Berlin
| | | | - Verena Moos
- Department of Gastroenterology, Infectious Diseases, and Rheumatology
| | - Thomas Schneider
- Department of Gastroenterology, Infectious Diseases, and Rheumatology
| |
Collapse
|
35
|
Inhibition of HIV-1 envelope-dependent membrane fusion by serum antilymphocyte autoantibodies is associated with low plasma viral load. Immunol Lett 2019; 211:33-40. [PMID: 31059733 DOI: 10.1016/j.imlet.2019.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/12/2019] [Accepted: 05/02/2019] [Indexed: 01/02/2023]
Abstract
The HIV-1 envelope protein (Env) mediates the membrane fusion process allowing virus entry to target cells and the efficiency to induce membrane fusion is an important determinant of HIV-1 pathogenicity. In addition to virus receptors, other adhesion/signaling molecules on infected and target cells and virus particles can enhance fusion. The presence of antilymphocyte autoantibodies (ALA) in HIV patients' serum suggests that they may contribute to the inhibition of Env-mediated membrane fusion. Here, sera from 38 HIV-1 infected treatment-naïve men and 30 healthy donors were analyzed for the presence of IgG and IgM able to bind to CD4-negative Jurkat cells. The use of CD4-negative cells precluded the binding of virus-antibody immune complexes, and allowed detection of ALA different from anti-CD4 antibodies. IgG and IgM antibodies binding to Jurkat CD4-negative cells was detected in 74% and 84% of HIV-positive sera, respectively. Then, the activity of sera on fusion of CD4+ with HIV Env+ Jurkat cells was determined before and after their adsorption on CD4-negative Jurkat cells to remove ALA. Sera inhibited fusion at variable extents, and inhibitory activity decreased in 58% of serum samples after adsorption, indicating that ALA contributed to fusion inhibition in these sera (herein called fusion inhibitory ALA). The contribution of ALA to fusion inhibition in individual sera was highly variable, with an average of 33%. IgG purified from a pool of HIV+ sera inhibited fusion of primary CD4 T lymphocytes with Jurkat Env+, and adsorption of IgG on CD4-negative Jurkat cells diminished the fusion inhibitory activity. Thus, the inhibitory activity of sera was related to IgG ALA. Our observations suggest that fusion inhibitory ALA other than anti-CD4 antibodies may contribute significantly to the inhibition of Env-mediated cell-cell fusion. Fusion inhibitory ALA, but not total ALA levels, associated with low plasma viral loads, suggesting that specific ALA may participate in virus containment by inhibiting virus-cell fusion in a significant fraction of HIV-infected patients.
Collapse
|
36
|
Pedro KD, Henderson AJ, Agosto LM. Mechanisms of HIV-1 cell-to-cell transmission and the establishment of the latent reservoir. Virus Res 2019; 265:115-121. [PMID: 30905686 DOI: 10.1016/j.virusres.2019.03.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 02/06/2023]
Abstract
HIV-1 spreads through both the release of cell-free particles and by cell-to-cell transmission. Mounting evidence indicates that cell-to-cell transmission is more efficient than cell-free transmission of particles and likely influences the pathogenesis of HIV-1 infection. This mode of viral transmission also influences the generation and maintenance of the latent reservoir, which represents the main obstacle for curing the infection. In this review we will discuss general cell contact-dependent mechanisms that HIV-1 utilizes for its spread and the evidence pointing to cell-to-cell transmission as a mechanism for the establishment and maintenance of latent infection.
Collapse
Affiliation(s)
- Kyle D Pedro
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; Department of Medicine, Section of Infectious Diseases, Boston University Medical Center, Boston, MA, USA
| | - Andrew J Henderson
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; Department of Medicine, Section of Infectious Diseases, Boston University Medical Center, Boston, MA, USA
| | - Luis M Agosto
- Department of Medicine, Section of Infectious Diseases, Boston University Medical Center, Boston, MA, USA.
| |
Collapse
|
37
|
Neutralization Synergy between HIV-1 Attachment Inhibitor Fostemsavir and Anti-CD4 Binding Site Broadly Neutralizing Antibodies against HIV. J Virol 2019; 93:JVI.01446-18. [PMID: 30518644 DOI: 10.1128/jvi.01446-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/20/2018] [Indexed: 02/08/2023] Open
Abstract
Attachment inhibitor (AI) BMS-626529 (fostemsavir) represents a novel class of antiretrovirals which target human immunodeficiency virus type 1 (HIV-1) gp120 and block CD4-induced conformational changes required for viral entry. It is now in phase III clinical trials and is expected to be approved by the U.S. Food and Drug Administration (FDA) in the near future. Although fostemsavir is very potent against HIV in vitro and in vivo, a number of resistant mutants have already been identified. Broadly neutralizing HIV antibodies (bNAbs) can potently inhibit a wide range of HIV-1 strains by binding to viral Env and are very promising candidates for HIV-1 prevention and therapy. Since both target viral Env to block viral entry, we decided to investigate the relationship between these two inhibitors. Our data show that Env mutants resistant to BMS-626529 retained susceptibility to bNAbs. A single treatment of bNAb NIH45-46G54W completely inhibited the replication of these escape mutants. Remarkable synergy was observed between BMS-626529 and CD4 binding site (CD4bs)-targeting bNAbs in neutralizing HIV-1 strains at low concentrations. This synergistic effect was enhanced against virus harboring mutations conferring resistance to BMS-626529. The mechanistic basis of the observed synergy is likely enhanced inhibition of CD4 binding to the HIV-1 Env trimer by the combination of BMS-626529 and CD4bs-targeting bNAbs. This work highlights the potential for positive interplay between small- and large-molecule therapeutics against HIV entry, which may prove useful as these agents enter clinical use.IMPORTANCE As the worldwide HIV pandemic continues, there is a continued need for novel drugs and therapies. A new class of drug, the attachment inhibitors, will soon be approved for the treatment of HIV. Broadly neutralizing antibodies are also promising candidates for HIV prevention and therapy. We investigated how this drug might work with these exciting antibodies that are very potent in blocking HIV infection of cells. These antibodies worked against virus known to be resistant to the new drug. In addition, a specific type of antibody worked really well with the new drug in blocking virus infection of cells. This work has implications for both the new drug and the antibodies that are poised to be used against HIV.
Collapse
|
38
|
Soare AY, Durham ND, Gopal R, Tweel B, Hoffman KW, Brown JA, O'Brien M, Bhardwaj N, Lim JK, Chen BK, Swartz TH. P2X Antagonists Inhibit HIV-1 Productive Infection and Inflammatory Cytokines Interleukin-10 (IL-10) and IL-1β in a Human Tonsil Explant Model. J Virol 2019; 93:e01186-18. [PMID: 30305360 PMCID: PMC6288349 DOI: 10.1128/jvi.01186-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/28/2018] [Indexed: 02/07/2023] Open
Abstract
HIV-1 causes a persistent infection of the immune system that is associated with chronic comorbidities. The mechanisms that underlie this inflammation are poorly understood. Emerging literature has implicated proinflammatory purinergic receptors and downstream signaling mediators in HIV-1 infection. This study probed whether inhibitors of purinergic receptors would reduce HIV-1 infection and HIV-1-stimulated inflammation. An ex vivo human tonsil histoculture infection model was developed to support HIV-1 productive infection and stimulated the inflammatory cytokine interleukin-1 beta (IL-1β) and the immunosuppressive cytokine interleukin-10 (IL-10). This study tests whether inhibitors of purinergic receptors would reduce HIV-1 infection and HIV-1-stimulated inflammation. The purinergic P2X1 receptor antagonist NF449, the purinergic P2X7 receptor antagonist A438079, and azidothymidine (AZT) were tested in HIV-1-infected human tonsil explants to compare levels of inhibition of HIV-1 infection and HIV-stimulated inflammatory cytokine production. All drugs limited HIV-1 productive infection, but P2X-selective antagonists (NF449 and A438079) significantly lowered HIV-stimulated IL-10 and IL-1β. We further observed that P2X1- and P2X7-selective antagonists can act differentially as inhibitors of both HIV-1 infection and HIV-1-stimulated inflammation. Our findings highlight the differential effects of HIV-1 on inflammation in peripheral blood compared to those in lymphoid tissue. For the first time, we demonstrate that P2X-selective antagonists act differentially as inhibitors of both HIV-1 infection and HIV-1-stimulated inflammation. Drugs that block these pathways can have independent inhibitory activities against HIV-1 infection and HIV-induced inflammation.IMPORTANCE Patients who are chronically infected with HIV-1 experience sequelae related to chronic inflammation. The mechanisms of this inflammation have not been elucidated. Here, we describe a class of drugs that target the P2X proinflammatory signaling receptors in a human tonsil explant model. This model highlights differences in HIV-1 stimulation of lymphoid tissue inflammation and peripheral blood. These drugs serve to block both HIV-1 infection and production of IL-10 and IL-1β in lymphoid tissue, suggesting a novel approach to HIV-1 therapeutics in which both HIV-1 replication and inflammatory signaling are simultaneously targeted.
Collapse
Affiliation(s)
- Alexandra Y Soare
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Natasha D Durham
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Molecular Biology and Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Ramya Gopal
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Benjamin Tweel
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kevin W Hoffman
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Julia A Brown
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Megan O'Brien
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nina Bhardwaj
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Benjamin K Chen
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Talia H Swartz
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
39
|
Allen AG, Chung CH, Atkins A, Dampier W, Khalili K, Nonnemacher MR, Wigdahl B. Gene Editing of HIV-1 Co-receptors to Prevent and/or Cure Virus Infection. Front Microbiol 2018; 9:2940. [PMID: 30619107 PMCID: PMC6304358 DOI: 10.3389/fmicb.2018.02940] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/15/2018] [Indexed: 12/26/2022] Open
Abstract
Antiretroviral therapy has prolonged the lives of people living with human immunodeficiency virus type 1 (HIV-1), transforming the disease into one that can be controlled with lifelong therapy. The search for an HIV-1 vaccine has plagued researchers for more than three decades with little to no success from clinical trials. Due to these failures, scientists have turned to alternative methods to develop next generation therapeutics that could allow patients to live with HIV-1 without the need for daily medication. One method that has been proposed has involved the use of a number of powerful gene editing tools; Zinc Finger Nucleases (ZFN), Transcription Activator–like effector nucleases (TALENs), and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 to edit the co-receptors (CCR5 or CXCR4) required for HIV-1 to infect susceptible target cells efficiently. Initial safety studies in patients have shown that editing the CCR5 locus is safe. More in depth in vitro studies have shown that editing the CCR5 locus was able to inhibit infection from CCR5-utilizing virus, but CXCR4-utilizing virus was still able to infect cells. Additional research efforts were then aimed at editing the CXCR4 locus, but this came with other safety concerns. However, in vitro studies have since confirmed that CXCR4 can be edited without killing cells and can confer resistance to CXCR4-utilizing HIV-1. Utilizing these powerful new gene editing technologies in concert could confer cellular resistance to HIV-1. While the CD4, CCR5, CXCR4 axis for cell-free infection has been the most studied, there are a plethora of reports suggesting that the cell-to-cell transmission of HIV-1 is significantly more efficient. These reports also indicated that while broadly neutralizing antibodies are well suited with respect to blocking cell-free infection, cell-to-cell transmission remains refractile to this approach. In addition to stopping cell-free infection, gene editing of the HIV-1 co-receptors could block cell-to-cell transmission. This review aims to summarize what has been shown with regard to editing the co-receptors needed for HIV-1 entry and how they could impact the future of HIV-1 therapeutic and prevention strategies.
Collapse
Affiliation(s)
- Alexander G Allen
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Cheng-Han Chung
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Andrew Atkins
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States.,School of Biomedical Engineering and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology, and Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Center for Translational AIDS Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
40
|
Parsons MS, Lee WS, Kristensen AB, Amarasena T, Khoury G, Wheatley AK, Reynaldi A, Wines BD, Hogarth PM, Davenport MP, Kent SJ. Fc-dependent functions are redundant to efficacy of anti-HIV antibody PGT121 in macaques. J Clin Invest 2018; 129:182-191. [PMID: 30475230 DOI: 10.1172/jci122466] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022] Open
Abstract
A considerable body of evidence suggests that Fc-dependent functions improve the capacity of broadly neutralizing antibodies (BnAbs) to protect against and control HIV-1 infection. This phenomenon, however, has not been formally tested in robust cell-associated macaque simian-human immunodeficiency virus (SHIV) models with newer-generation BnAbs. We studied both the WT BnAb PGT121 and a LALA mutant of PGT121 (which has impaired Fc-dependent functions) for their ability to protect pigtail macaques from an i.v. high-dose cell-associated SHIVSF162P3 challenge. We found that both WT and LALA PGT121 completely protected all 12 macaques studied. Further, partial depletion of NK cells, key mediators of Fc-dependent functions, did not abrogate the protective efficacy of PGT121 in 6 macaques. Additionally, in animals with established SHIVSF162P3 infection, SHIV viremia levels were equally rapidly reduced by LALA and WT PGT121. Our studies suggest that the potent neutralizing capacity of PGT121 renders the Fc-dependent functions of the Ab at least partially redundant. These findings have implications for Ab-mediated protection from and control of HIV-1 infection.
Collapse
Affiliation(s)
- Matthew S Parsons
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, and
| | - Wen Shi Lee
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, and
| | - Anne B Kristensen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, and
| | - Thakshila Amarasena
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, and
| | - Georges Khoury
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, and
| | - Adam K Wheatley
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, and.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Parkville, Victoria, Australia
| | - Arnold Reynaldi
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Bruce D Wines
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
| | - P Mark Hogarth
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
| | - Miles P Davenport
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, and.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Parkville, Victoria, Australia.,Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
41
|
Variable infectivity and conserved engagement in cell-to-cell viral transfer by HIV-1 Env from Clade B transmitted founder clones. Virology 2018; 526:189-202. [PMID: 30415130 DOI: 10.1016/j.virol.2018.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022]
Abstract
HIV-1 transmission is usually initiated by a single viral strain called transmitted/ founder (T/F) virus. In in vitro models, HIV-1 can efficiently spread via cell-free and virological synapse (VS)-mediated cell-to-cell infection. Both modes of infection require the viral glycoprotein Envelope (Env). The efficiency with which T/F Envs initiate VS and mediate cell-to-cell infection has not been well characterized. Here we tested a panel of isogenic HIV-1 molecular clones that carry different Clade B T/F Envs. We found that despite variable infectivity among different Env clones in the two modes of infection, T/F Envs generally mediated efficient VS formation and subsequent cell-to-cell transfer. In contrast, in vitro infectivity of the T/F Env clones was more variable and strongly correlated with intrinsic fusogenicity of various Envs. We speculate that the conservation of cell-to-cell transfer by T/F Env is indicative of a biologically important function of Env.
Collapse
|
42
|
Fernandez MV, Freed EO. Meeting Review: 2018 International Workshop on Structure and Function of the Lentiviral gp41 Cytoplasmic Tail. Viruses 2018; 10:E613. [PMID: 30405009 PMCID: PMC6266243 DOI: 10.3390/v10110613] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 01/09/2023] Open
Abstract
Recent developments in defining the role of the lentiviral envelope glycoprotein (Env) cytoplasmic tail (CT) in Env trafficking and incorporation into virus particles have advanced our understanding of viral replication and transmission. To stimulate additional progress in this field, the two-day International Workshop on Structure and Function of the Lentiviral gp41 Cytoplasmic Tail, co-organized by Eric Freed and James Hoxie, was held at the National Cancer Institute in Frederick, MD (26⁻27 April 2018). The meeting served to bring together experts focused on the role of gp41 in HIV replication and to discuss the emerging mechanisms of CT-dependent trafficking, Env conformation and structure, host protein interaction, incorporation, and viral transmission. The conference was organized around the following three main hot topics in gp41 research: the role of host factors in CT-dependent Env incorporation, Env structure, and CT-mediated trafficking and transmission. This review highlights important topics and the advances in gp41 research that were discussed during the conference.
Collapse
Affiliation(s)
- Melissa V Fernandez
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| | - Eric O Freed
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
43
|
Sok D, Burton DR. Recent progress in broadly neutralizing antibodies to HIV. Nat Immunol 2018; 19:1179-1188. [PMID: 30333615 DOI: 10.1038/s41590-018-0235-7] [Citation(s) in RCA: 296] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/12/2018] [Indexed: 12/18/2022]
Abstract
In this Review, we highlight some recent developments in the discovery and application of broadly neutralizing antibodies (bnAbs) to human immunodeficiency virus (HIV); i.e., antibodies able to neutralize diverse isolates of HIV. We consider the characterization of novel bnAbs, recent data on the effects of bnAbs in vivo in humans and animal models, and the importance of both kinds of data for the application of Abs to prophylaxis and therapy and to guide vaccine design. We seek to place newly discovered bnAbs in the context of existing bnAbs, and we explore the various characteristics of the antibodies that are most desirable for different applications.
Collapse
Affiliation(s)
- Devin Sok
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA. .,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA. .,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA. .,International AIDS Vaccine Initiative, New York, NY, USA.
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA. .,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA. .,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA. .,Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
| |
Collapse
|
44
|
Bayliss RJ, Piguet V. Masters of manipulation: Viral modulation of the immunological synapse. Cell Microbiol 2018; 20:e12944. [PMID: 30123959 PMCID: PMC6492149 DOI: 10.1111/cmi.12944] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/01/2018] [Accepted: 08/14/2018] [Indexed: 02/06/2023]
Abstract
In order to thrive, viruses have evolved to manipulate host cell machinery for their own benefit. One major obstacle faced by pathogens is the immunological synapse. To enable efficient replication and latency in immune cells, viruses have developed a range of strategies to manipulate cellular processes involved in immunological synapse formation to evade immune detection and control T-cell activation. In vitro, viruses such as human immunodeficiency virus 1 and human T-lymphotropic virus type 1 utilise structures known as virological synapses to aid transmission of viral particles from cell to cell in a process termed trans-infection. The formation of the virological synapse provides a gateway for virus to be transferred between cells avoiding the extracellular space, preventing antibody neutralisation or recognition by complement. This review looks at how viruses are able to subvert intracellular signalling to modulate immune function to their advantage and explores the role synapse formation has in viral persistence and cell-to-cell transmission.
Collapse
Affiliation(s)
- Rebecca J. Bayliss
- Division of Infection and Immunity, School of MedicineCardiff UniversityCardiffUK
| | - Vincent Piguet
- Division of Infection and Immunity, School of MedicineCardiff UniversityCardiffUK
- Division of Dermatology, Department of MedicineUniversity of TorontoTorontoOntarioCanada
- Division of DermatologyWomen's College HospitalTorontoOntarioCanada
| |
Collapse
|
45
|
Falkenhagen A, Joshi S. HIV Entry and Its Inhibition by Bifunctional Antiviral Proteins. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 13:347-364. [PMID: 30340139 PMCID: PMC6197789 DOI: 10.1016/j.omtn.2018.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 12/14/2022]
Abstract
HIV entry is a highly specific and time-sensitive process that can be divided into receptor binding, coreceptor binding, and membrane fusion. Bifunctional antiviral proteins (bAVPs) exploit the multi-step nature of the HIV entry process by binding to two different extracellular targets. They are generated by expressing a fusion protein containing two entry inhibitors with a flexible linker. The resulting fusion proteins exhibit exceptional neutralization potency and broad cross-clade inhibition. In this review, we summarize the HIV entry process and provide an overview of the design, antiviral potency, and methods of delivery of bAVPs. Additionally, we discuss the advantages and limitations of bAVPs for HIV prevention and treatment.
Collapse
Affiliation(s)
- Alexander Falkenhagen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E2, Canada
| | - Sadhna Joshi
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E2, Canada.
| |
Collapse
|
46
|
Parsons MS, Chung AW, Kent SJ. Importance of Fc-mediated functions of anti-HIV-1 broadly neutralizing antibodies. Retrovirology 2018; 15:58. [PMID: 30134945 PMCID: PMC6103878 DOI: 10.1186/s12977-018-0438-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/09/2018] [Indexed: 01/11/2023] Open
Abstract
Anti-HIV-1 broadly neutralizing antibodies (BnAbs) exhibit an impressive capacity to protect against chimeric SIV-HIV (SHIV) challenges in macaques and potently reduce viremia in both SHIV-infected macaques and HIV-1-infected humans. There is a body of evidence suggesting Fc-mediated functions of anti-HIV-1 binding antibodies are important in protecting from infection and controlling viremia. The degree to which the efficacy of BnAbs is assisted by Fc-mediated functions is of great interest. Challenge experiments with the older generation BnAb b12 showed that mutating the Fc region to abrogate Fcγ receptor binding reduced protective efficacy in macaques. Similar data have been generated with newer BnAbs using murine models of HIV-1. In addition, the degree to which therapeutically administered BnAbs reduce viremia suggests that elimination of infected cells through Fc-mediated functions may contribute to their efficacy. Fc-mediated functions that eliminate infected cells may be particularly important for challenge systems involving cell-associated virus. Herein we review data regarding the importance of Fc-mediated functions of BnAbs in mediating protective immunity and control of viremia.
Collapse
Affiliation(s)
- Matthew S Parsons
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria, Australia.
| | - Amy W Chung
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria, Australia. .,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Victoria, Australia. .,Melbourne Sexual Health Centre, Alfred Hospital, Monash University Central Clinical School, Victoria, Australia.
| |
Collapse
|
47
|
Dufloo J, Bruel T, Schwartz O. HIV-1 cell-to-cell transmission and broadly neutralizing antibodies. Retrovirology 2018; 15:51. [PMID: 30055632 PMCID: PMC6064125 DOI: 10.1186/s12977-018-0434-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022] Open
Abstract
HIV-1 spreads through contacts between infected and target cells. Polarized viral budding at the contact site forms the virological synapse. Additional cellular processes, such as nanotubes, filopodia, virus accumulation in endocytic or phagocytic compartments promote efficient viral propagation. Cell-to-cell transmission allows immune evasion and likely contributes to HIV-1 spread in vivo. Anti-HIV-1 broadly neutralizing antibodies (bNAbs) defeat the majority of circulating viral strains by binding to the viral envelope glycoprotein (Env). Several bNAbs have entered clinical evaluation during the last years. It is thus important to understand their mechanism of action and to determine how they interact with infected cells. In experimental models, HIV-1 cell-to-cell transmission is sensitive to neutralization, but the effect of antibodies is often less marked than during cell-free infection. This may be due to differences in the conformation or accessibility of Env at the surface of virions and cells. In this review, we summarize the current knowledge on HIV-1 cell-to-cell transmission and discuss the role of bNAbs during this process.
Collapse
Affiliation(s)
- Jérémy Dufloo
- Virus and Immunity Unit, Department of Virology, Institut Pasteur, Paris, France.,CNRS-UMR3569, Paris, France
| | - Timothée Bruel
- Virus and Immunity Unit, Department of Virology, Institut Pasteur, Paris, France.,CNRS-UMR3569, Paris, France.,Vaccine Research Institute, Créteil, France
| | - Olivier Schwartz
- Virus and Immunity Unit, Department of Virology, Institut Pasteur, Paris, France. .,CNRS-UMR3569, Paris, France. .,Vaccine Research Institute, Créteil, France.
| |
Collapse
|
48
|
Subbaraman H, Schanz M, Trkola A. Broadly neutralizing antibodies: What is needed to move from a rare event in HIV-1 infection to vaccine efficacy? Retrovirology 2018; 15:52. [PMID: 30055627 PMCID: PMC6064177 DOI: 10.1186/s12977-018-0433-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/21/2018] [Indexed: 02/06/2023] Open
Abstract
The elicitation of broadly neutralizing antibodies (bnAbs) is considered crucial for an effective, preventive HIV-1 vaccine. Led by the discovery of a new generation of potent bnAbs, the field has significantly advanced over the past decade. There is a wealth of knowledge about the development of bnAbs in natural infection, their specificity, potency, breadth and function. Yet, devising immunogens and vaccination regimens that evoke bnAb responses has not been successful. Where are the roadblocks in their development? What can we learn from natural infection, where bnAb induction is possible but rare? Herein, we will reflect on key discoveries and discuss open questions that may bear crucial insights needed to move towards creating effective bnAb vaccines.
Collapse
Affiliation(s)
- Harini Subbaraman
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Merle Schanz
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
49
|
Curreli F, Belov DS, Kwon YD, Ramesh R, Furimsky AM, O'Loughlin K, Byrge PC, Iyer LV, Mirsalis JC, Kurkin AV, Altieri A, Debnath AK. Structure-based lead optimization to improve antiviral potency and ADMET properties of phenyl-1H-pyrrole-carboxamide entry inhibitors targeted to HIV-1 gp120. Eur J Med Chem 2018; 154:367-391. [PMID: 29860061 PMCID: PMC5993640 DOI: 10.1016/j.ejmech.2018.04.062] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/24/2018] [Accepted: 04/29/2018] [Indexed: 11/20/2022]
Abstract
We are continuing our concerted effort to optimize our first lead entry antagonist, NBD-11021, which targets the Phe43 cavity of the HIV-1 envelope glycoprotein gp120, to improve antiviral potency and ADMET properties. In this report, we present a structure-based approach that helped us to generate working hypotheses to modify further a recently reported advanced lead entry antagonist, NBD-14107, which showed significant improvement in antiviral potency when tested in a single-cycle assay against a large panel of Env-pseudotyped viruses. We report here the synthesis of twenty-nine new compounds and evaluation of their antiviral activity in a single-cycle and multi-cycle assay to derive a comprehensive structure-activity relationship (SAR). We have selected three inhibitors with the high selectivity index for testing against a large panel of 55 Env-pseudotyped viruses representing a diverse set of clinical isolates of different subtypes. The antiviral activity of one of these potent inhibitors, 55 (NBD-14189), against some clinical isolates was as low as 63 nM. We determined the sensitivity of CD4-binding site mutated-pseudoviruses to these inhibitors to confirm that they target HIV-1 gp120. Furthermore, we assessed their ADMET properties and compared them to the clinical candidate attachment inhibitor, BMS-626529. The ADMET data indicate that some of these new inhibitors have comparable ADMET properties to BMS-626529 and can be optimized further to potential clinical candidates.
Collapse
Affiliation(s)
- Francesca Curreli
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute, New York Blood Center, 310 E 67th Street, New York, NY 10065, USA
| | - Dmitry S Belov
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Young Do Kwon
- Structural Biology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ranjith Ramesh
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute, New York Blood Center, 310 E 67th Street, New York, NY 10065, USA
| | - Anna M Furimsky
- SRI International, Biosciences Division, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Kathleen O'Loughlin
- SRI International, Biosciences Division, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Patricia C Byrge
- SRI International, Biosciences Division, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Lalitha V Iyer
- SRI International, Biosciences Division, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Jon C Mirsalis
- SRI International, Biosciences Division, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Alexander V Kurkin
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Andrea Altieri
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Asim K Debnath
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute, New York Blood Center, 310 E 67th Street, New York, NY 10065, USA.
| |
Collapse
|
50
|
Neutralizing Antibody-Based Prevention of Cell-Associated HIV-1 Infection. Viruses 2018; 10:v10060333. [PMID: 29912167 PMCID: PMC6024846 DOI: 10.3390/v10060333] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 01/01/2023] Open
Abstract
Improved vaccine-mediated protection against HIV-1 requires a thorough understanding of the mode of HIV-1 transmission and how various immune responses control transmission. Cell-associated HIV-1 is infectious and contributes to HIV-1 transmission in humans. Non-human primate models of cell-associated SIV infection demonstrate that cell-associated SIV is more infectious than cell-free SIV. In a recently described chimeric simian–human immunodeficiency virus (SHIV) macaque model, it was demonstrated that an occult infection with cell-associated SHIV can be established that evades passive protection with a broadly neutralizing antibody (bnAb). Indeed, considerable in vitro data shows that bnAbs have less efficacy against cell-associated HIV-1 than cell-free HIV-1. Optimizing the protective capacity of immune responses such as bnAbs against cell-associated infections may be needed to maximize their protective efficacy.
Collapse
|