1
|
Wang D, Yang G, Liu B. Structure of the measles virus ternary polymerase complex. Nat Commun 2025; 16:3819. [PMID: 40268911 PMCID: PMC12019284 DOI: 10.1038/s41467-025-58985-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/08/2025] [Indexed: 04/25/2025] Open
Abstract
Measles virus (MeV) is a highly contagious pathogen that causes significant morbidity worldwide. Its polymerase machinery, composed of the large protein (L) and phosphoprotein (P), is crucial for viral replication and transcription, making it a promising target for antiviral drug development. Here we present cryo-electron microscopy structures of two distinct MeV polymerase complexes: Lcore-P and Lfull-P-C. The Lcore-P complex characterizes the N-terminal domain, RNA-dependent RNA polymerase (RdRp), and GDP poly-ribonucleotidyltransferase of the L protein, along with the tetrameric P of varying lengths. The Lfull-P-C complex reveals that C protein dimer binds at the cleft between RdRp and the flexible domains of the L protein: the connecting domain, methyltransferase domain, and C-terminal domain. This interaction results in the visualization of these domains and creates an extended RNA channel, remodeling the putative nascent replicated RNA exit and potentially regulating RNA synthesis processivity. Our findings reveal the architecture and molecular details of MeV polymerase complexes, providing new insights into their mechanisms and suggesting potential intervention targets for antiviral therapy.
Collapse
Affiliation(s)
- Dong Wang
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Ge Yang
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Bin Liu
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN, USA.
| |
Collapse
|
2
|
Gaur SK, Jain J, Chaudhary Y, Kaul R. Insights into the mechanism of Morbillivirus induced immune suppression. Virology 2024; 600:110212. [PMID: 39232265 DOI: 10.1016/j.virol.2024.110212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/26/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Viruses enter the host cell, and various strategies are employed to evade the host immune system. These include overcoming the various components of the immune system, including modulation of the physical and chemical barriers, non-specific innate response and specific adaptive immune response. Morbilliviruses impose immune modulation by utilizing various approaches including hindering antigen presentation to T-Helper (TH) cells, hematopoiesis and suppression of effector molecule activities. These viruses can also impede the early stages of T cell activation. Despite the availability of effective vaccines, morbilliviruses are still a significant threat to mankind. After infection, they also induce a state of immune suppression in the host. The molecular mechanisms employed by morbilliviruses to induce the state of immune suppression in the infected host are still being investigated. This review is an attempt to summarize insights into some of the strategies adopted by morbilliviruses to mediate immune modulation in the host.
Collapse
Affiliation(s)
- Sharad Kumar Gaur
- Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India
| | - Juhi Jain
- Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India
| | - Yash Chaudhary
- Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India
| | - Rajeev Kaul
- Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
3
|
Rallabandi R, Sharp B, Majerus S, Royster A, Hoffer S, Ikeda M, Devaux P. Engineering single-cycle MeV vector for CRISPR-Cas9 gene editing. Mol Ther Methods Clin Dev 2024; 32:101290. [PMID: 39070290 PMCID: PMC11283025 DOI: 10.1016/j.omtm.2024.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
CRISPR-Cas9-mediated gene editing has vast applications in basic and clinical research and is a promising tool for several disorders. Our lab previously developed a non-integrating RNA virus, measles virus (MeV), as a single-cycle reprogramming vector by replacing the viral attachment protein with the reprogramming factors for induced pluripotent stem cell generation. Encouraged by the MeV reprogramming vector efficiency, in this study, we develop a single-cycle MeV vector to deliver the gRNA(s) and Cas9 nuclease to human cells for efficient gene editing. We show that the MeV vector achieved on-target gene editing of the reporter (mCherry) and endogenous genes (HBB and FANCD1) in human cells. Additionally, the MeV vector achieved precise knock-in via homology-directed repair using a single-stranded oligonucleotide donor. The MeV vector is a new and flexible platform for gene knock-out and knock-in modifications in human cells, capable of incorporating new technologies as they are developed.
Collapse
Affiliation(s)
- Ramya Rallabandi
- Mayo Clinic Graduate School of Biomedical Sciences, Virology and Gene Therapy Graduate Track, Mayo Clinic, Rochester, MN 55905, USA
| | - Brenna Sharp
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Spencer Majerus
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Austin Royster
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Sarrianna Hoffer
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Mia Ikeda
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Patricia Devaux
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Virology and Gene Therapy Graduate Track, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Acklin JA, Patel AR, Kurland AP, Horiuchi S, Moss AS, DeGrace EJ, Ikegame S, Carmichael J, Kowdle S, Thibault PA, Imai N, Ueno H, Tweel B, Johnson JR, Rosenberg BR, Lee B, Lim JK. Immunological landscape of human lymphoid explants during measles virus infection. JCI Insight 2024; 9:e172261. [PMID: 39253971 PMCID: PMC11385098 DOI: 10.1172/jci.insight.172261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/23/2024] [Indexed: 09/11/2024] Open
Abstract
In humans, lymph nodes are the primary site of measles virus (MeV) replication. To understand the immunological events that occur at this site, we infected human lymphoid tissue explants using a pathogenic strain of MeV that expresses GFP. We found that MeV infected 5%-15% of cells across donors. Using single-cell RNA-Seq and flow cytometry, we found that while most of the 29 cell populations identified in the lymphoid culture were susceptible to MeV, there was a broad preferential infection of B cells and reduced infection of T cells. Further subsetting of T cells revealed that this reduction may be driven by the decreased infection of naive T cells. Transcriptional changes in infected B cells were dominated by an interferon-stimulated gene (ISG) signature. To determine which of these ISGs were most substantial, we evaluated the proteome of MeV-infected Raji cells by mass spectrometry. We found that IFIT1, IFIT2, IFIT3, ISG15, CXCL10, MX2, and XAF1 proteins were the most highly induced and positively correlated with their expression in the transcriptome. These data provide insight into the immunological events that occur in lymph nodes during infection and may lead to the development of therapeutic interventions.
Collapse
Affiliation(s)
- Joshua A Acklin
- Department of Microbiology
- Graduate School of Biomedical Sciences, and
| | - Aum R Patel
- Department of Microbiology
- Graduate School of Biomedical Sciences, and
| | | | | | | | - Emma J DeGrace
- Department of Microbiology
- Graduate School of Biomedical Sciences, and
| | | | | | | | | | | | | | - Benjamin Tweel
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | | | | |
Collapse
|
5
|
Zhou L, Kang H, Xu S, Chen J, Wang X, Long H, Li G, Xu P, He B. Tailam paramyxovirus C protein inhibits viral replication. J Virol 2024; 98:e0165423. [PMID: 38169290 PMCID: PMC10804977 DOI: 10.1128/jvi.01654-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 11/03/2023] [Indexed: 01/05/2024] Open
Abstract
Jeilongviruses are emerging single-stranded negative-sense RNA viruses in the Paramyxoviridae family. Tailam paramyxovirus (TlmPV) is a Jeilongvirus that was identified in 2011. Very little is known about the mechanisms that regulate viral replication in these newly emerging viruses. Among the non-structural viral proteins of TlmPV, the C protein is predicted to be translated from an open reading frame within the phosphoprotein gene through alternative translation initiation. Though the regulatory roles of C proteins in virus replication of other paramyxoviruses have been reported before, the function of the TlmPV C protein and the relevant molecular mechanisms have not been reported. Here, we show that the C protein is expressed in TlmPV-infected cells and negatively modulates viral RNA replication. The TlmPV C protein interacts with the P protein, negatively impacting the interaction between N and P, resulting in inhibition of viral RNA replication. Deletion mutagenesis studies indicate that the 50 amino-terminal amino acid residues of the C protein are dispensable for its inhibition of virus RNA replication and interaction with the P protein.IMPORTANCETailam paramyxovirus (TlmPV) is a newly identified paramyxovirus belonging to the Jeilongvirus genus, of which little is known. In this work, we confirmed the expression of the C protein in TlmPV-infected cells, assessed its function, and defined a potential mechanism of action. This is the first time that the existence of a Jeilongvirus C protein has been confirmed and its role in viral replication has been reported.
Collapse
Affiliation(s)
- Lu Zhou
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Guangzhou CyanVaccine Biotechnology Company Ltd., Guangzhou, China
| | - Haixian Kang
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Guangzhou CyanVaccine Biotechnology Company Ltd., Guangzhou, China
| | - Shuya Xu
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Guangzhou CyanVaccine Biotechnology Company Ltd., Guangzhou, China
| | - Jinbi Chen
- Guangzhou CyanVaccine Biotechnology Company Ltd., Guangzhou, China
| | - Xianyang Wang
- School of Chinese Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haishang Long
- School of Chinese Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Geng Li
- School of Chinese Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pei Xu
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Biao He
- Guangzhou CyanVaccine Biotechnology Company Ltd., Guangzhou, China
| |
Collapse
|
6
|
Jain J, Chaudhary Y, Gaur SK, Tembhurne P, Sekar SC, Dhanavelu M, Sehrawat S, Kaul R. Peste des petits ruminants virus non-structural V and C proteins interact with the NF-κB p65 subunit and modulate pro-inflammatory cytokine gene induction. J Gen Virol 2023; 104. [PMID: 37831061 DOI: 10.1099/jgv.0.001907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Peste des petits ruminants virus (PPRV) is known to induce transient immunosuppression in infected small ruminants by modulating several cellular pathways involved in the antiviral immune response. Our study shows that the PPRV-coded non-structural proteins C and V can interact with the cellular NF-κB p65 subunit. The PPRV-C protein interacts with the transactivation domain (TAD) while PPRV-V interacts with the Rel homology domain (RHD) of the NF-κB p65 subunit. Both viral proteins can suppress the NF-κB transcriptional activity and NF-κB-mediated transcription of cellular genes. PPRV-V protein expression can significantly inhibit the nuclear translocation of NF-κB p65 upon TNF-α stimulation, whereas PPRV-C does not affect it. The NF-κB-mediated pro-inflammatory cytokine gene expression is significantly downregulated in cells expressing PPRV-C or PPRV-V protein. Our study provides evidence suggesting a role of PPRV non-structural proteins V and C in the modulation of NF-κB signalling through interaction with the NF-κB p65 subunit.
Collapse
Affiliation(s)
- Juhi Jain
- Department of Microbiology, University of Delhi, South Campus, New Delhi, India
| | - Yash Chaudhary
- Department of Microbiology, University of Delhi, South Campus, New Delhi, India
| | - Sharad Kumar Gaur
- Department of Microbiology, University of Delhi, South Campus, New Delhi, India
| | | | | | | | - Sharvan Sehrawat
- Indian Institute of Science Education and Research, Mohali, India
| | - Rajeev Kaul
- Department of Microbiology, University of Delhi, South Campus, New Delhi, India
| |
Collapse
|
7
|
Roy A, Chan Mine E, Gaifas L, Leyrat C, Volchkova VA, Baudin F, Martinez-Gil L, Volchkov VE, Karlin DG, Bourhis JM, Jamin M. Orthoparamyxovirinae C Proteins Have a Common Origin and a Common Structural Organization. Biomolecules 2023; 13:biom13030455. [PMID: 36979390 PMCID: PMC10046310 DOI: 10.3390/biom13030455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
The protein C is a small viral protein encoded in an overlapping frame of the P gene in the subfamily Orthoparamyxovirinae. This protein, expressed by alternative translation initiation, is a virulence factor that regulates viral transcription, replication, and production of defective interfering RNA, interferes with the host-cell innate immunity systems and supports the assembly of viral particles and budding. We expressed and purified full-length and an N-terminally truncated C protein from Tupaia paramyxovirus (TupV) C protein (genus Narmovirus). We solved the crystal structure of the C-terminal part of TupV C protein at a resolution of 2.4 Å and found that it is structurally similar to Sendai virus C protein, suggesting that despite undetectable sequence conservation, these proteins are homologous. We characterized both truncated and full-length proteins by SEC-MALLS and SEC-SAXS and described their solution structures by ensemble models. We established a mini-replicon assay for the related Nipah virus (NiV) and showed that TupV C inhibited the expression of NiV minigenome in a concentration-dependent manner as efficiently as the NiV C protein. A previous study found that the Orthoparamyxovirinae C proteins form two clusters without detectable sequence similarity, raising the question of whether they were homologous or instead had originated independently. Since TupV C and SeV C are representatives of these two clusters, our discovery that they have a similar structure indicates that all Orthoparamyxovirine C proteins are homologous. Our results also imply that, strikingly, a STAT1-binding site is encoded by exactly the same RNA region of the P/C gene across Paramyxovirinae, but in different reading frames (P or C), depending on which cluster they belong to.
Collapse
Affiliation(s)
- Ada Roy
- Institut de Biologie Structurale, Université Grenoble Alpes, CNRS, CEA, 38000 Grenoble, France
| | - Emeric Chan Mine
- Molecular Basis of Viral Pathogenicity, Centre International de Recherche en Infectiologie (CIRI), INSERMU1111-CNRS UMR5308, Université Claude Bernard Lyon 1, ENS de Lyon, 69365 Lyon, France
| | - Lorenzo Gaifas
- Institut de Biologie Structurale, Université Grenoble Alpes, CNRS, CEA, 38000 Grenoble, France
| | - Cédric Leyrat
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Valentina A. Volchkova
- Molecular Basis of Viral Pathogenicity, Centre International de Recherche en Infectiologie (CIRI), INSERMU1111-CNRS UMR5308, Université Claude Bernard Lyon 1, ENS de Lyon, 69365 Lyon, France
| | - Florence Baudin
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Luis Martinez-Gil
- Department of Biochemistry and Molecular Biology, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, 46010 Valencia, Spain
| | - Viktor E. Volchkov
- Molecular Basis of Viral Pathogenicity, Centre International de Recherche en Infectiologie (CIRI), INSERMU1111-CNRS UMR5308, Université Claude Bernard Lyon 1, ENS de Lyon, 69365 Lyon, France
| | - David G. Karlin
- Division Phytomedicine, Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Lentzeallee 55/57, 14195 Berlin, Germany
- Correspondence: (D.G.K.); (J.-M.B.); (M.J.); Tel.: +33-4-57-42-86-36 (J.-M.B.); +33-4-76-20-94-62 (M.J.)
| | - Jean-Marie Bourhis
- Institut de Biologie Structurale, Université Grenoble Alpes, CNRS, CEA, 38000 Grenoble, France
- Correspondence: (D.G.K.); (J.-M.B.); (M.J.); Tel.: +33-4-57-42-86-36 (J.-M.B.); +33-4-76-20-94-62 (M.J.)
| | - Marc Jamin
- Institut de Biologie Structurale, Université Grenoble Alpes, CNRS, CEA, 38000 Grenoble, France
- Correspondence: (D.G.K.); (J.-M.B.); (M.J.); Tel.: +33-4-57-42-86-36 (J.-M.B.); +33-4-76-20-94-62 (M.J.)
| |
Collapse
|
8
|
Su CM, Du Y, Rowland RRR, Wang Q, Yoo D. Reprogramming viral immune evasion for a rational design of next-generation vaccines for RNA viruses. Front Immunol 2023; 14:1172000. [PMID: 37138878 PMCID: PMC10149994 DOI: 10.3389/fimmu.2023.1172000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 05/05/2023] Open
Abstract
Type I interferons (IFNs-α/β) are antiviral cytokines that constitute the innate immunity of hosts to fight against viral infections. Recent studies, however, have revealed the pleiotropic functions of IFNs, in addition to their antiviral activities, for the priming of activation and maturation of adaptive immunity. In turn, many viruses have developed various strategies to counteract the IFN response and to evade the host immune system for their benefits. The inefficient innate immunity and delayed adaptive response fail to clear of invading viruses and negatively affect the efficacy of vaccines. A better understanding of evasion strategies will provide opportunities to revert the viral IFN antagonism. Furthermore, IFN antagonism-deficient viruses can be generated by reverse genetics technology. Such viruses can potentially serve as next-generation vaccines that can induce effective and broad-spectrum responses for both innate and adaptive immunities for various pathogens. This review describes the recent advances in developing IFN antagonism-deficient viruses, their immune evasion and attenuated phenotypes in natural host animal species, and future potential as veterinary vaccines.
Collapse
Affiliation(s)
- Chia-Ming Su
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yijun Du
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Raymond R. R. Rowland
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Qiuhong Wang
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Dongwan Yoo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Dongwan Yoo,
| |
Collapse
|
9
|
Amurri L, Reynard O, Gerlier D, Horvat B, Iampietro M. Measles Virus-Induced Host Immunity and Mechanisms of Viral Evasion. Viruses 2022; 14:v14122641. [PMID: 36560645 PMCID: PMC9781438 DOI: 10.3390/v14122641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/15/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The immune system deploys a complex network of cells and signaling pathways to protect host integrity against exogenous threats, including measles virus (MeV). However, throughout its evolutionary path, MeV developed various mechanisms to disrupt and evade immune responses. Despite an available vaccine, MeV remains an important re-emerging pathogen with a continuous increase in prevalence worldwide during the last decade. Considerable knowledge has been accumulated regarding MeV interactions with the innate immune system through two antagonistic aspects: recognition of the virus by cellular sensors and viral ability to inhibit the induction of the interferon cascade. Indeed, while the host could use several innate adaptors to sense MeV infection, the virus is adapted to unsettle defenses by obstructing host cell signaling pathways. Recent works have highlighted a novel aspect of innate immune response directed against MeV unexpectedly involving DNA-related sensing through activation of the cGAS/STING axis, even in the absence of any viral DNA intermediate. In addition, while MeV infection most often causes a mild disease and triggers a lifelong immunity, its tropism for invariant T-cells and memory T and B-cells provokes the elimination of one primary shield and the pre-existing immunity against previously encountered pathogens, known as "immune amnesia".
Collapse
Affiliation(s)
- Lucia Amurri
- Centre International de Recherche en Infectiologie (CIRI), Team Immunobiology of Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Olivier Reynard
- Centre International de Recherche en Infectiologie (CIRI), Team Immunobiology of Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Denis Gerlier
- Centre International de Recherche en Infectiologie (CIRI), Team Neuro-Invasion, TROpism and VIRal Encephalitis, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Branka Horvat
- Centre International de Recherche en Infectiologie (CIRI), Team Immunobiology of Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Mathieu Iampietro
- Centre International de Recherche en Infectiologie (CIRI), Team Immunobiology of Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
- Correspondence:
| |
Collapse
|
10
|
Rashid F, Xie Z, Suleman M, Shah A, Khan S, Luo S. Roles and functions of SARS-CoV-2 proteins in host immune evasion. Front Immunol 2022; 13:940756. [PMID: 36003396 PMCID: PMC9394213 DOI: 10.3389/fimmu.2022.940756] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/07/2022] [Indexed: 12/27/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evades the host immune system through a variety of regulatory mechanisms. The genome of SARS-CoV-2 encodes 16 non-structural proteins (NSPs), four structural proteins, and nine accessory proteins that play indispensable roles to suppress the production and signaling of type I and III interferons (IFNs). In this review, we discussed the functions and the underlying mechanisms of different proteins of SARS-CoV-2 that evade the host immune system by suppressing the IFN-β production and TANK-binding kinase 1 (TBK1)/interferon regulatory factor 3 (IRF3)/signal transducer and activator of transcription (STAT)1 and STAT2 phosphorylation. We also described different viral proteins inhibiting the nuclear translocation of IRF3, nuclear factor-κB (NF-κB), and STATs. To date, the following proteins of SARS-CoV-2 including NSP1, NSP6, NSP8, NSP12, NSP13, NSP14, NSP15, open reading frame (ORF)3a, ORF6, ORF8, ORF9b, ORF10, and Membrane (M) protein have been well studied. However, the detailed mechanisms of immune evasion by NSP5, ORF3b, ORF9c, and Nucleocapsid (N) proteins are not well elucidated. Additionally, we also elaborated the perspectives of SARS-CoV-2 proteins.
Collapse
Affiliation(s)
- Farooq Rashid
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Zhixun Xie
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
- *Correspondence: Zhixun Xie,
| | - Muhammad Suleman
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Abdullah Shah
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal, Pakistan
| | - Suliman Khan
- Department of Medical Lab Technology, The University of Haripur, Haripur, Pakistan
| | - Sisi Luo
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
| |
Collapse
|
11
|
Type I and Type II Interferon Antagonism Strategies Used by Paramyxoviridae: Previous and New Discoveries, in Comparison. Viruses 2022; 14:v14051107. [PMID: 35632848 PMCID: PMC9145045 DOI: 10.3390/v14051107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
Paramyxoviridae is a viral family within the order of Mononegavirales; they are negative single-strand RNA viruses that can cause significant diseases in both humans and animals. In order to replicate, paramyxoviruses–as any other viruses–have to bypass an important protective mechanism developed by the host’s cells: the defensive line driven by interferon. Once the viruses are recognized, the cells start the production of type I and type III interferons, which leads to the activation of hundreds of genes, many of which encode proteins with the specific function to reduce viral replication. Type II interferon is produced by active immune cells through a different signaling pathway, and activates a diverse range of genes with the same objective to block viral replication. As a result of this selective pressure, viruses have evolved different strategies to avoid the defensive function of interferons. The strategies employed by the different viral species to fight the interferon system include a number of sophisticated mechanisms. Here we analyzed the current status of the various strategies used by paramyxoviruses to subvert type I, II, and III interferon responses.
Collapse
|
12
|
Siering O, Cattaneo R, Pfaller CK. C Proteins: Controllers of Orderly Paramyxovirus Replication and of the Innate Immune Response. Viruses 2022; 14:v14010137. [PMID: 35062341 PMCID: PMC8778822 DOI: 10.3390/v14010137] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 01/07/2023] Open
Abstract
Particles of many paramyxoviruses include small amounts of proteins with a molecular weight of about 20 kDa. These proteins, termed “C”, are basic, have low amino acid homology and some secondary structure conservation. C proteins are encoded in alternative reading frames of the phosphoprotein gene. Some viruses express nested sets of C proteins that exert their functions in different locations: In the nucleus, they interfere with cellular transcription factors that elicit innate immune responses; in the cytoplasm, they associate with viral ribonucleocapsids and control polymerase processivity and orderly replication, thereby minimizing the activation of innate immunity. In addition, certain C proteins can directly bind to, and interfere with the function of, several cytoplasmic proteins required for interferon induction, interferon signaling and inflammation. Some C proteins are also required for efficient virus particle assembly and budding. C-deficient viruses can be grown in certain transformed cell lines but are not pathogenic in natural hosts. C proteins affect the same host functions as other phosphoprotein gene-encoded proteins named V but use different strategies for this purpose. Multiple independent systems to counteract host defenses may ensure efficient immune evasion and facilitate virus adaptation to new hosts and tissue environments.
Collapse
Affiliation(s)
- Oliver Siering
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, 63225 Langen, Germany;
| | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55906, USA
- Correspondence: (R.C.); (C.K.P.)
| | - Christian K. Pfaller
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, 63225 Langen, Germany;
- Correspondence: (R.C.); (C.K.P.)
| |
Collapse
|
13
|
Hirschenberger M, Hayn M, Laliberté A, Koepke L, Kirchhoff F, Sparrer KMJ. Luciferase reporter assays to monitor interferon signaling modulation by SARS-CoV-2 proteins. STAR Protoc 2021; 2:100781. [PMID: 34405154 PMCID: PMC8361205 DOI: 10.1016/j.xpro.2021.100781] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We present a protocol for analyzing the impact of SARS-CoV-2 proteins in interferon signaling using luciferase reporter assays. Here, the induction of defined promoters can be quantitatively assessed with high sensitivity and broad linear range. The results are similar to those obtained using qPCR to measure endogenous mRNA induction. The assay requires stringent normalization and confirmation of the results in more physiological settings. The protocol is adaptable for other viruses and other innate immune stimuli. For complete details on the use and execution of this protocol, please refer to Hayn et al. (2021).
Collapse
Affiliation(s)
- Maximilian Hirschenberger
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Baden-Württemberg, Germany
| | - Manuel Hayn
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Baden-Württemberg, Germany
| | - Alexandre Laliberté
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Baden-Württemberg, Germany
| | - Lennart Koepke
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Baden-Württemberg, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Baden-Württemberg, Germany
| | | |
Collapse
|
14
|
Bai C, Zhong Q, Gao GF. Overview of SARS-CoV-2 genome-encoded proteins. SCIENCE CHINA-LIFE SCIENCES 2021; 65:280-294. [PMID: 34387838 PMCID: PMC8362648 DOI: 10.1007/s11427-021-1964-4] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023]
Abstract
Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) has spread rapidly throughout the world. SARS-CoV-2 is an enveloped, plus-stranded RNA virus with a single-stranded RNA genome of approximately 30,000 nucleotides. The SARS-CoV-2 genome encodes 29 proteins, including 16 nonstructural, 4 structural and 9 accessory proteins. To date, over 1,228 experimental structures of SARS-CoV-2 proteins have been deposited in the Protein Data Bank (PDB), including 16 protein structures, two functional domain structures of nucleocapsid (N) protein, and scores of complexes. Overall, they exhibit high similarity to SARS-CoV proteins. Here, we summarize the progress of structural and functional research on SARS-CoV-2 proteins. These studies provide structural and functional insights into proteins of SARS-CoV-2, and further elucidate the daedal relationship between different components at the atomic level in the viral life cycle, including attachment to the host cell, viral genome replication and transcription, genome packaging and assembly, and virus release. It is important to understand the structural and functional properties of SARS-CoV-2 proteins as it will facilitate the development of anti-CoV drugs and vaccines to prevent and control the current SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Chongzhi Bai
- CAS Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,Central Laboratory, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, 030012, China.,Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China
| | - Qiming Zhong
- Central Laboratory, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, 030012, China
| | - George Fu Gao
- CAS Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China.
| |
Collapse
|
15
|
Hayn M, Hirschenberger M, Koepke L, Nchioua R, Straub JH, Klute S, Hunszinger V, Zech F, Prelli Bozzo C, Aftab W, Christensen MH, Conzelmann C, Müller JA, Srinivasachar Badarinarayan S, Stürzel CM, Forne I, Stenger S, Conzelmann KK, Münch J, Schmidt FI, Sauter D, Imhof A, Kirchhoff F, Sparrer KMJ. Systematic functional analysis of SARS-CoV-2 proteins uncovers viral innate immune antagonists and remaining vulnerabilities. Cell Rep 2021; 35:109126. [PMID: 33974846 PMCID: PMC8078906 DOI: 10.1016/j.celrep.2021.109126] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/03/2021] [Accepted: 04/22/2021] [Indexed: 12/23/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evades most innate immune responses but may still be vulnerable to some. Here, we systematically analyze the impact of SARS-CoV-2 proteins on interferon (IFN) responses and autophagy. We show that SARS-CoV-2 proteins synergize to counteract anti-viral immune responses. For example, Nsp14 targets the type I IFN receptor for lysosomal degradation, ORF3a prevents fusion of autophagosomes and lysosomes, and ORF7a interferes with autophagosome acidification. Most activities are evolutionarily conserved. However, SARS-CoV-2 Nsp15 antagonizes IFN signaling less efficiently than the orthologs of closely related RaTG13-CoV and SARS-CoV-1. Overall, SARS-CoV-2 proteins counteract autophagy and type I IFN more efficiently than type II or III IFN signaling, and infection experiments confirm potent inhibition by IFN-γ and -λ1. Our results define the repertoire and selected mechanisms of SARS-CoV-2 innate immune antagonists but also reveal vulnerability to type II and III IFN that may help to develop safe and effective anti-viral approaches.
Collapse
Affiliation(s)
- Manuel Hayn
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Lennart Koepke
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Rayhane Nchioua
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Jan Hendrik Straub
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Susanne Klute
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Victoria Hunszinger
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Fabian Zech
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Wasim Aftab
- Biomedical Center, Zentrallabor für Proteinanalytik (Protein Analysis Unit), Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany; Graduate School for Quantitative Biosciences (QBM), Ludwig-Maximilians-University of Munich, 81377 Munich, Germany
| | | | - Carina Conzelmann
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Smitha Srinivasachar Badarinarayan
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany
| | | | - Ignasi Forne
- Biomedical Center, Zentrallabor für Proteinanalytik (Protein Analysis Unit), Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Steffen Stenger
- Institute for Medical Microbiology and Hygiene, Ulm University Medical Center, 89081 Ulm, Germany
| | - Karl-Klaus Conzelmann
- Max von Pettenkofer-Institute of Virology, Medical Faculty, and Gene Center, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Florian Ingo Schmidt
- Institute of Innate Immunity, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Axel Imhof
- Biomedical Center, Zentrallabor für Proteinanalytik (Protein Analysis Unit), Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | | |
Collapse
|
16
|
Linjie L, Xiaoling S, Xiaoxia M, Xin C, Ali A, Jialin B. Peste des petits ruminants virus non-structural C protein inhibits the induction of interferon-β by potentially interacting with MAVS and RIG-I. Virus Genes 2021; 57:60-71. [PMID: 33389635 PMCID: PMC7870622 DOI: 10.1007/s11262-020-01811-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022]
Abstract
Peste des petits ruminants virus (PPRV) causes an acute and highly contagious disease in domestic and wild small ruminants throughout the world, mainly by invoking immunosuppression in its natural hosts. It has been suggested that the non-structural C protein of PPRV helps in evading host responses but the molecular mechanisms by which it antagonizes the host responses have not been fully characterized. Here, we report the antagonistic effect of PPRV C protein on the expression of interferon-β (IFN-β) through both MAVS and RIG-I mediated pathways in vitro. Dual luciferase reporter assay and direct expression of IFN-β mRNA analysis indicated that PPRV C significantly down regulates IFN-β via its potential interaction with MAVS and RIG-I signaling molecules. Results further indicated that PPRV C protein significantly suppresses endogenous and exogenous IFN-β-induced anti-viral effects in PPRV, EMCV and SVS infections in vitro. Moreover, PPRV C protein not only down regulates IFN-β but also the downstream cytokines of interferon stimulated genes 56 (ISG56), ISG15, C-X-C motif chemokine (CXCL10) and RIG-I mediated activation of IFN promoter elements of ISRE and NF-κB. Further, this study deciphers that PPRV C protein could significantly inhibit the phosphorylation of STAT1 and interferes with the signal transmission in JAK-STAT signaling pathway. Collectively, this study indicates that PPRV C protein is important for innate immune evasion and disease progression.
Collapse
Affiliation(s)
- Li Linjie
- Key Laboratory of Bioengineering & Biotechnology of the National Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China
| | - Shi Xiaoling
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Ma Xiaoxia
- Key Laboratory of Bioengineering & Biotechnology of the National Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Cao Xin
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China
| | - Amjad Ali
- Key Laboratory of Bioengineering & Biotechnology of the National Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Bai Jialin
- Key Laboratory of Bioengineering & Biotechnology of the National Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China.
| |
Collapse
|
17
|
C Protein is Essential for Canine Distemper Virus Virulence and Pathogenicity in Ferrets. J Virol 2021; 95:JVI.01840-20. [PMID: 33239455 PMCID: PMC7851556 DOI: 10.1128/jvi.01840-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Paramyxoviruses, including members of the genus Morbillivirus, express accessory proteins with ancillary functions during viral replication. One of these, the C protein, is expressed from an alternate open reading frame (ORF) located in the P gene. The measles virus (MeV) C protein has been implicated in modulation of interferon signaling, but has more recently been shown to play a vital role in regulation of viral transcription and replication, preventing the excessive production of double-stranded RNA. Failure to do so, as seen with C-deficient MeV, leads to early activation of innate immune responses resulting in restriction of viral replication and attenuation in the host. One puzzling aspect of morbillivirus C protein biology has been the finding that a C-deficient canine distemper virus (CDV) generated with a similar mutagenesis strategy displayed no attenuation in ferrets, an animal model commonly used to evaluate CDV pathogenesis. To resolve how virus lacking this protein could maintain virulence, we re-visited the CDV C protein and found that truncated C proteins are expressed from the CDV gene using alternative downstream start codons even when the first start codon was disrupted. We introduced an additional point mutation abrogating expression of these truncated C proteins. A new CDV with this mutation was attenuated in vitro and led to increased activation of protein kinase R. It was also strongly attenuated in ferrets, inducing only mild disease in infected animals, thus replicating the phenotype of C-deficient MeV. Our results demonstrate the crucial role of morbillivirus C proteins in pathogenesis.IMPORTANCE The measles (MeV) and canine distemper viruses (CDV) express accessory proteins that regulate the host immune response and enhance replication. The MeV C protein is critical in preventing the generation of excess immunostimulatory double-stranded RNA. C protein-deficient MeV is strongly attenuated compared to wild-type virus, whereas CDV with a similarly disrupted C open reading frame is fully pathogenic. Here we show that CDV can compensate the disrupting mutations by expression of truncated, but apparently functional C proteins from several alternative start codons. We generated a new recombinant CDV that does not express these truncated C protein. This virus was attenuated both in cell culture and in ferrets, and finally resolves the paradox of the MeV and CDV C proteins, showing that both in fact have similar functions important for viral pathogenesis.
Collapse
|
18
|
Meignié A, Combredet C, Santolini M, Kovács IA, Douché T, Gianetto QG, Eun H, Matondo M, Jacob Y, Grailhe R, Tangy F, Komarova AV. Proteomic Analysis Uncovers Measles Virus Protein C Interaction With p65-iASPP Protein Complex. Mol Cell Proteomics 2021; 20:100049. [PMID: 33515806 PMCID: PMC7950213 DOI: 10.1016/j.mcpro.2021.100049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 11/30/2022] Open
Abstract
Viruses manipulate the central machineries of host cells to their advantage. They prevent host cell antiviral responses to create a favorable environment for their survival and propagation. Measles virus (MV) encodes two nonstructural proteins MV-V and MV-C known to counteract the host interferon response and to regulate cell death pathways. Several molecular mechanisms underlining MV-V regulation of innate immunity and cell death pathways have been proposed, whereas MV-C host-interacting proteins are less studied. We suggest that some cellular factors that are controlled by MV-C protein during viral replication could be components of innate immunity and the cell death pathways. To determine which host factors are targeted by MV-C, we captured both direct and indirect host-interacting proteins of MV-C protein. For this, we used a strategy based on recombinant viruses expressing tagged viral proteins followed by affinity purification and a bottom-up mass spectrometry analysis. From the list of host proteins specifically interacting with MV-C protein in different cell lines, we selected the host targets that belong to immunity and cell death pathways for further validation. Direct protein interaction partners of MV-C were determined by applying protein complementation assay and the bioluminescence resonance energy transfer approach. As a result, we found that MV-C protein specifically interacts with p65–iASPP protein complex that controls both cell death and innate immunity pathways and evaluated the significance of these host factors on virus replication. Measles virus controls immune response and cell death pathways to achieve replication. Host proteins interaction network with measles virulence factor C protein. Cellular p65–iASPP complex is targeted by measles virus C protein.
Collapse
Affiliation(s)
- Alice Meignié
- Viral Genomics and Vaccination Unit, Department of Virology, Institut Pasteur, CNRS UMR-3569, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Chantal Combredet
- Viral Genomics and Vaccination Unit, Department of Virology, Institut Pasteur, CNRS UMR-3569, Paris, France
| | - Marc Santolini
- Center for Research and Interdisciplinarity (CRI), Université de Paris, INSERM U1284, Paris, France; Network Science Institute and Department of Physics, Northeastern University, Boston, Massachusetts, USA
| | - István A Kovács
- Network Science Institute and Department of Physics, Northeastern University, Boston, Massachusetts, USA; Department of Physics and Astronomy, Northwestern University, Evanston, Illinois, USA; Department of Network and Data Science, Central European University, Budapest, Hungary
| | - Thibaut Douché
- Proteomics platform, Mass Spectrometry for Biology Unit (MSBio), Institut Pasteur, CNRS USR 2000, Paris, France
| | - Quentin Giai Gianetto
- Proteomics platform, Mass Spectrometry for Biology Unit (MSBio), Institut Pasteur, CNRS USR 2000, Paris, France; Bioinformatics and Biostatistics Hub, Computational Biology Department, Institut Pasteur, CNRS USR 3756, Paris, France
| | - Hyeju Eun
- Technology Development Platform, Institut Pasteur Korea, Seongnam-si, Republic of Korea
| | - Mariette Matondo
- Proteomics platform, Mass Spectrometry for Biology Unit (MSBio), Institut Pasteur, CNRS USR 2000, Paris, France
| | - Yves Jacob
- Laboratory of Molecular Genetics of RNA Viruses, Institut Pasteur, CNRS UMR-3569, Paris, France
| | - Regis Grailhe
- Technology Development Platform, Institut Pasteur Korea, Seongnam-si, Republic of Korea
| | - Frédéric Tangy
- Viral Genomics and Vaccination Unit, Department of Virology, Institut Pasteur, CNRS UMR-3569, Paris, France.
| | - Anastassia V Komarova
- Viral Genomics and Vaccination Unit, Department of Virology, Institut Pasteur, CNRS UMR-3569, Paris, France; Laboratory of Molecular Genetics of RNA Viruses, Institut Pasteur, CNRS UMR-3569, Paris, France.
| |
Collapse
|
19
|
The Role of Protein Disorder in Nuclear Transport and in Its Subversion by Viruses. Cells 2020; 9:cells9122654. [PMID: 33321790 PMCID: PMC7764567 DOI: 10.3390/cells9122654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
The transport of host proteins into and out of the nucleus is key to host function. However, nuclear transport is restricted by nuclear pores that perforate the nuclear envelope. Protein intrinsic disorder is an inherent feature of this selective transport barrier and is also a feature of the nuclear transport receptors that facilitate the active nuclear transport of cargo, and the nuclear transport signals on the cargo itself. Furthermore, intrinsic disorder is an inherent feature of viral proteins and viral strategies to disrupt host nucleocytoplasmic transport to benefit their replication. In this review, we highlight the role that intrinsic disorder plays in the nuclear transport of host and viral proteins. We also describe viral subversion mechanisms of the host nuclear transport machinery in which intrinsic disorder is a feature. Finally, we discuss nuclear import and export as therapeutic targets for viral infectious disease.
Collapse
|
20
|
Viral pathogen-induced mechanisms to antagonize mammalian interferon (IFN) signaling pathway. Cell Mol Life Sci 2020; 78:1423-1444. [PMID: 33084946 PMCID: PMC7576986 DOI: 10.1007/s00018-020-03671-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022]
Abstract
Antiviral responses of interferons (IFNs) are crucial in the host immune response, playing a relevant role in controlling viralw infections. Three types of IFNs, type I (IFN-α, IFN-β), II (IFN-γ) and III (IFN-λ), are classified according to their receptor usage, mode of induction, biological activity and amino acid sequence. Here, we provide a comprehensive review of type I IFN responses and different mechanisms that viruses employ to circumvent this response. In the first part, we will give an overview of the different induction and signaling cascades induced in the cell by IFN-I after virus encounter. Next, highlights of some of the mechanisms used by viruses to counteract the IFN induction will be described. And finally, we will address different mechanism used by viruses to interference with the IFN signaling cascade and the blockade of IFN induced antiviral activities.
Collapse
|
21
|
Lawler C, Brady G. Poxviral Targeting of Interferon Regulatory Factor Activation. Viruses 2020; 12:v12101191. [PMID: 33092186 PMCID: PMC7590177 DOI: 10.3390/v12101191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/21/2022] Open
Abstract
As viruses have a capacity to rapidly evolve and continually alter the coding of their protein repertoires, host cells have evolved pathways to sense viruses through the one invariable feature common to all these pathogens-their nucleic acids. These genomic and transcriptional pathogen-associated molecular patterns (PAMPs) trigger the activation of germline-encoded anti-viral pattern recognition receptors (PRRs) that can distinguish viral nucleic acids from host forms by their localization and subtle differences in their chemistry. A wide range of transmembrane and cytosolic PRRs continually probe the intracellular environment for these viral PAMPs, activating pathways leading to the activation of anti-viral gene expression. The activation of Nuclear Factor Kappa B (NFκB) and Interferon (IFN) Regulatory Factor (IRF) family transcription factors are of central importance in driving pro-inflammatory and type-I interferon (TI-IFN) gene expression required to effectively restrict spread and trigger adaptive responses leading to clearance. Poxviruses evolve complex arrays of inhibitors which target these pathways at a variety of levels. This review will focus on how poxviruses target and inhibit PRR pathways leading to the activation of IRF family transcription factors.
Collapse
|
22
|
Thoms M, Buschauer R, Ameismeier M, Koepke L, Denk T, Hirschenberger M, Kratzat H, Hayn M, Mackens-Kiani T, Cheng J, Straub JH, Stürzel CM, Fröhlich T, Berninghausen O, Becker T, Kirchhoff F, Sparrer KMJ, Beckmann R. Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2. Science 2020; 369:1249-1255. [PMID: 32680882 PMCID: PMC7402621 DOI: 10.1126/science.abc8665] [Citation(s) in RCA: 597] [Impact Index Per Article: 119.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the current coronavirus disease 2019 (COVID-19) pandemic. A major virulence factor of SARS-CoVs is the nonstructural protein 1 (Nsp1), which suppresses host gene expression by ribosome association. Here, we show that Nsp1 from SARS-CoV-2 binds to the 40S ribosomal subunit, resulting in shutdown of messenger RNA (mRNA) translation both in vitro and in cells. Structural analysis by cryo-electron microscopy of in vitro-reconstituted Nsp1-40S and various native Nsp1-40S and -80S complexes revealed that the Nsp1 C terminus binds to and obstructs the mRNA entry tunnel. Thereby, Nsp1 effectively blocks retinoic acid-inducible gene I-dependent innate immune responses that would otherwise facilitate clearance of the infection. Thus, the structural characterization of the inhibitory mechanism of Nsp1 may aid structure-based drug design against SARS-CoV-2.
Collapse
MESH Headings
- Betacoronavirus/chemistry
- Betacoronavirus/immunology
- Betacoronavirus/metabolism
- Betacoronavirus/physiology
- Binding Sites
- COVID-19
- Coronavirus Infections/immunology
- Coronavirus Infections/virology
- Cryoelectron Microscopy
- DEAD Box Protein 58/genetics
- DEAD Box Protein 58/metabolism
- Humans
- Immune Evasion
- Immunity, Innate
- Interferon-beta/genetics
- Interferon-beta/metabolism
- Models, Molecular
- Pandemics
- Pneumonia, Viral/immunology
- Pneumonia, Viral/virology
- Protein Binding
- Protein Biosynthesis
- Protein Domains
- Protein Interaction Domains and Motifs
- Protein Structure, Secondary
- RNA, Messenger/metabolism
- Receptors, Immunologic
- Ribosome Subunits, Small, Eukaryotic/chemistry
- Ribosome Subunits, Small, Eukaryotic/metabolism
- SARS-CoV-2
- Viral Nonstructural Proteins/chemistry
- Viral Nonstructural Proteins/metabolism
Collapse
Affiliation(s)
- Matthias Thoms
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Robert Buschauer
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Michael Ameismeier
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Lennart Koepke
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Timo Denk
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | | | - Hanna Kratzat
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Manuel Hayn
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Timur Mackens-Kiani
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Jingdong Cheng
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Jan H Straub
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Christina M Stürzel
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Thomas Fröhlich
- Laboratory of Functional Genome Analysis, University of Munich, Munich, Germany
| | - Otto Berninghausen
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Thomas Becker
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | | | - Roland Beckmann
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich, Germany.
| |
Collapse
|
23
|
Comerlato J, Albina E, Puech C, Franco AC, Minet C, Eloiflin RJ, Rodrigues V, Servan de Almeida R. Identification of a murine cell line that distinguishes virulent from attenuated isolates of the morbillivirus Peste des Petits Ruminants, a promising tool for virulence studies. Virus Res 2020; 286:198035. [PMID: 32461190 DOI: 10.1016/j.virusres.2020.198035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 11/18/2022]
Abstract
Comprehensive pathogenesis studies on Peste des Petits Ruminants virus (PPRV) have been delayed so far by the absence of a small animal model reproducing the disease or an in vitro biological system revealing virulence differences. In this study, a mouse 10T1/2 cell line has been identified as presenting different susceptibility to virulent and attenuated PPRV strains. As evidenced by immunofluorescence test and RT-PCR, both virulent and attenuated PPR viruses penetrated and initiated the replication cycle in 10T1/2 cells, independently of the presence of the SLAM goat receptor. However, only virulent strains successfully completed their replication cycle while the vaccine strains did not. Since 10T1/2 cells are interferon-producing cells, the role of the type I interferon (type I IFN) response on this differentiated replication between virulent and attenuated strains was verified by stimulation or repression. Modulation of the type I IFN response did not improve the replication of the vaccine strains, indicating that other cell factor(s) not yet established may hinder the replication of attenuated PPRV in 10T1/2. This 10T1/2 cell line can be proposed as a new in vitro tool for PPRV-host interaction and virulence studies.
Collapse
Affiliation(s)
- Juliana Comerlato
- CIRAD, UMR ASTRE, F-34398, Montpellier, France; Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, ICBS UFRGS. Rua Sarmento Leite, 500, Porto Alegre. CEP 90050-170, RS, Brazil
| | - Emmanuel Albina
- CIRAD, UMR ASTRE, F-97170, Petit-Bourg, Guadeloupe, France; ASTRE, CIRAD, INRA, Univ Montpellier, Montpellier, France
| | - Carinne Puech
- INRA, UMR ASTRE, F-34398 Montpellier, France; ASTRE, CIRAD, INRA, Univ Montpellier, Montpellier, France
| | - Ana C Franco
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, ICBS UFRGS. Rua Sarmento Leite, 500, Porto Alegre. CEP 90050-170, RS, Brazil
| | - Cécile Minet
- CIRAD, UMR ASTRE, F-34398, Montpellier, France; INTERTRYP, Univ Montpellier, CIRAD, IRD, Montpellier, France
| | | | - Valérie Rodrigues
- CIRAD, UMR ASTRE, F-34398, Montpellier, France; ASTRE, CIRAD, INRA, Univ Montpellier, Montpellier, France
| | - Renata Servan de Almeida
- CIRAD, UMR ASTRE, F-34398, Montpellier, France; ASTRE, CIRAD, INRA, Univ Montpellier, Montpellier, France.
| |
Collapse
|
24
|
Ayasoufi K, Pfaller CK. Seek and hide: the manipulating interplay of measles virus with the innate immune system. Curr Opin Virol 2020; 41:18-30. [PMID: 32330821 DOI: 10.1016/j.coviro.2020.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 01/17/2023]
Abstract
The innate immune system is the first line of defense against infections with pathogens. It provides direct antiviral mechanisms to suppress the viral life cycle at multiple steps. Innate immune cells are specialized to recognize pathogen infections and activate and modulate adaptive immune responses through antigen presentation, co-stimulation and release of cytokines and chemokines. Measles virus, which causes long-lasting immunosuppression and immune-amnesia, primarily infects and replicates in innate and adaptive immune cells, such as dendritic cells, macrophages, T cells and B cells. To achieve efficient replication, measles virus has evolved multiple mechanisms to manipulate innate immune responses by both stimulation and blocking of specific signals necessary for antiviral immunity. This review will highlight our current knowledge in this and address open questions.
Collapse
Affiliation(s)
- Katayoun Ayasoufi
- Mayo Clinic, Department of Immunology, 200 First Street SW, Rochester, MN 55905, United States
| | - Christian K Pfaller
- Paul-Ehrlich-Institute, Division of Veterinary Medicine, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany.
| |
Collapse
|
25
|
The C Protein Is Recruited to Measles Virus Ribonucleocapsids by the Phosphoprotein. J Virol 2020; 94:JVI.01733-19. [PMID: 31748390 DOI: 10.1128/jvi.01733-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/08/2019] [Indexed: 11/20/2022] Open
Abstract
Measles virus (MeV), like all viruses of the order Mononegavirales, utilizes a complex consisting of genomic RNA, nucleoprotein, the RNA-dependent RNA polymerase, and a polymerase cofactor, the phosphoprotein (P), for transcription and replication. We previously showed that a recombinant MeV that does not express another viral protein, C, has severe transcription and replication deficiencies, including a steeper transcription gradient than the parental virus and generation of defective interfering RNA. This virus is attenuated in vitro and in vivo However, how the C protein operates and whether it is a component of the replication complex remained unclear. Here, we show that C associates with the ribonucleocapsid and forms a complex that can be purified by immunoprecipitation or ultracentrifugation. In the presence of detergent, the C protein is retained on purified ribonucleocapsids less efficiently than the P protein and the polymerase. The C protein is recruited to the ribonucleocapsid through its interaction with the P protein, as shown by immunofluorescence microscopy of cells expressing different combinations of viral proteins and by split luciferase complementation assays. Forty amino-terminal C protein residues are dispensable for the interaction with P, and the carboxyl-terminal half of P is sufficient for the interaction with C. Thus, the C protein, rather than being an "accessory" protein as qualified in textbooks so far, is a ribonucleocapsid-associated protein that interacts with P, thereby increasing replication accuracy and processivity of the polymerase complex.IMPORTANCE Replication of negative-strand RNA viruses relies on two components: a helical ribonucleocapsid and an RNA-dependent RNA polymerase composed of a catalytic subunit, the L protein, and a cofactor, the P protein. We show that the measles virus (MeV) C protein is an additional component of the replication complex. We provide evidence that the C protein is recruited to the ribonucleocapsid by the P protein and map the interacting segments of both C and P proteins. We conclude that the primary function of MeV C is to improve polymerase processivity and accuracy, rather than uniquely to antagonize the type I interferon response. Since most viruses of the Paramyxoviridae family express C proteins, their primary function may be conserved.
Collapse
|
26
|
Kennedy JM, Earle JP, Omar S, Abdullah H, Nielsen O, Roelke-Parker ME, Cosby SL. Canine and Phocine Distemper Viruses: Global Spread and Genetic Basis of Jumping Species Barriers. Viruses 2019; 11:E944. [PMID: 31615092 PMCID: PMC6833027 DOI: 10.3390/v11100944] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/23/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023] Open
Abstract
Canine distemper virus (CDV) and phocine distemper (PDV) are closely-related members of the Paramyxoviridae family, genus morbillivirus, in the order Mononegavirales. CDV has a broad host range among carnivores. PDV is thought to be derived from CDV through contact between terrestrial carnivores and seals. PDV has caused extensive mortality in Atlantic seals and other marine mammals, and more recently has spread to the North Pacific Ocean. CDV also infects marine carnivores, and there is evidence of morbillivirus infection of seals and other species in Antarctica. Recently, CDV has spread to felines and other wildlife species in the Serengeti and South Africa. Some CDV vaccines may also have caused wildlife disease. Changes in the virus haemagglutinin (H) protein, particularly the signaling lymphocyte activation molecule (SLAM) receptor binding site, correlate with adaptation to non-canine hosts. Differences in the phosphoprotein (P) gene sequences between disease and non-disease causing CDV strains may relate to pathogenicity in domestic dogs and wildlife. Of most concern are reports of CDV infection and disease in non-human primates raising the possibility of zoonosis. In this article we review the global occurrence of CDV and PDV, and present both historical and genetic information relating to these viruses crossing species barriers.
Collapse
Affiliation(s)
- Judith M. Kennedy
- Wellcome Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7BL, UK; (J.M.K.); (S.O.); (H.A.)
| | - J.A. Philip Earle
- Wellcome Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7BL, UK; (J.M.K.); (S.O.); (H.A.)
| | - Shadia Omar
- Wellcome Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7BL, UK; (J.M.K.); (S.O.); (H.A.)
| | - Hani’ah Abdullah
- Wellcome Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7BL, UK; (J.M.K.); (S.O.); (H.A.)
| | - Ole Nielsen
- Department of Fisheries and Oceans Canada, Winnipeg, Manitoba R3T 2N6, Canada;
| | | | - S. Louise Cosby
- Wellcome Wolfson Institute for Experimental Medicine, Queen’s University, Belfast BT9 7BL, UK; (J.M.K.); (S.O.); (H.A.)
- Virology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK
| |
Collapse
|
27
|
Generation of recombinant measles virus containing the wild-type P gene to improve its oncolytic efficiency. Microb Pathog 2019; 135:103631. [PMID: 31381964 DOI: 10.1016/j.micpath.2019.103631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 11/23/2022]
|
28
|
Pfaller CK, Donohue RC, Nersisyan S, Brodsky L, Cattaneo R. Extensive editing of cellular and viral double-stranded RNA structures accounts for innate immunity suppression and the proviral activity of ADAR1p150. PLoS Biol 2018; 16:e2006577. [PMID: 30496178 PMCID: PMC6264153 DOI: 10.1371/journal.pbio.2006577] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 10/26/2018] [Indexed: 01/09/2023] Open
Abstract
The interferon (IFN)-mediated innate immune response is the first line of defense against viruses. However, an IFN-stimulated gene, the adenosine deaminase acting on RNA 1 (ADAR1), favors the replication of several viruses. ADAR1 binds double-stranded RNA and converts adenosine to inosine by deamination. This form of editing makes duplex RNA unstable, thereby preventing IFN induction. To better understand how ADAR1 works at the cellular level, we generated cell lines that express exclusively either the IFN-inducible, cytoplasmic isoform ADAR1p150, the constitutively expressed nuclear isoform ADAR1p110, or no isoform. By comparing the transcriptome of these cell lines, we identified more than 150 polymerase II transcripts that are extensively edited, and we attributed most editing events to ADAR1p150. Editing is focused on inverted transposable elements, located mainly within introns and untranslated regions, and predicted to form duplex RNA structures. Editing of these elements occurs also in primary human samples, and there is evidence for cross-species evolutionary conservation of editing patterns in primates and, to a lesser extent, in rodents. Whereas ADAR1p150 rarely edits tightly encapsidated standard measles virus (MeV) genomes, it efficiently edits genomes with inverted repeats accidentally generated by a mutant MeV. We also show that immune activation occurs in fully ADAR1-deficient (ADAR1KO) cells, restricting virus growth, and that complementation of these cells with ADAR1p150 rescues virus growth and suppresses innate immunity activation. Finally, by knocking out either protein kinase R (PKR) or mitochondrial antiviral signaling protein (MAVS)—another protein controlling the response to duplex RNA—in ADAR1KO cells, we show that PKR activation elicits a stronger antiviral response. Thus, ADAR1 prevents innate immunity activation by cellular transcripts that include extensive duplex RNA structures. The trade-off is that viruses take advantage of ADAR1 to elude innate immunity control. The innate immune response is a double-edged sword. It must protect the host from pathogens while avoiding accidental recognition of “self” molecular patterns, which can lead to autoimmune reactions. Double-stranded RNA is among the most potent inducers of cellular stress and interferon responses. We characterize here a mechanism that prevents autoimmune activation and show that an RNA virus, measles virus, can exploit it to elude innate immune responses. This mechanism relies on the enzyme adenosine deaminase acting on RNA 1 (ADAR1), which converts adenosine residues within duplex RNA structures to inosine. We identify duplex RNA structures in the 3′ untranslated regions of over 150 cellular transcripts and show that they are heavily edited in ADAR1-expressing cells. We detect the same type of editing in duplex RNA–forming defective genomes accidentally generated by measles virus. Loss of RNA editing causes strong innate immune responses and is detrimental to viral replication. Thus, by keeping the amount of duplex RNA in cells below an immune activation threshold, ADAR1 prevents autoimmunity while also favoring pathogens.
Collapse
Affiliation(s)
- Christian K. Pfaller
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Ryan C. Donohue
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, United States of America
| | - Stepan Nersisyan
- Tauber Bioinformatics Research Center, University of Haifa, Haifa, Israel
- Lomonosov Moscow State University, Moscow, Russia
| | - Leonid Brodsky
- Tauber Bioinformatics Research Center, University of Haifa, Haifa, Israel
| | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
29
|
Pfeffermann K, Dörr M, Zirkel F, von Messling V. Morbillivirus Pathogenesis and Virus-Host Interactions. Adv Virus Res 2018; 100:75-98. [PMID: 29551144 DOI: 10.1016/bs.aivir.2017.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite the availability of safe and effective vaccines against measles and several animal morbilliviruses, they continue to cause regular outbreaks and epidemics in susceptible populations. Morbilliviruses are highly contagious and share a similar pathogenesis in their respective hosts. This review provides an overview of morbillivirus history and the general replication cycle and recapitulates Morbillivirus pathogenesis focusing on common and unique aspects seen in different hosts. It also summarizes the state of knowledge regarding virus-host interactions on the cellular level with an emphasis on viral interference with innate immune response activation, and highlights remaining knowledge gaps.
Collapse
|
30
|
Sanz Bernardo B, Goodbourn S, Baron MD. Control of the induction of type I interferon by Peste des petits ruminants virus. PLoS One 2017; 12:e0177300. [PMID: 28475628 PMCID: PMC5419582 DOI: 10.1371/journal.pone.0177300] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/25/2017] [Indexed: 12/24/2022] Open
Abstract
Peste des petits ruminants virus (PPRV) is a morbillivirus that produces clinical disease in goats and sheep. We have studied the induction of interferon-β (IFN-β) following infection of cultured cells with wild-type and vaccine strains of PPRV, and the effects of such infection with PPRV on the induction of IFN-β through both MDA-5 and RIG-I mediated pathways. Using both reporter assays and direct measurement of IFN-β mRNA, we have found that PPRV infection induces IFN-β only weakly and transiently, and the virus can actively block the induction of IFN-β. We have also generated mutant PPRV that lack expression of either of the viral accessory proteins (V&C) to characterize the role of these proteins in IFN-β induction during virus infection. Both PPRV_ΔV and PPRV_ΔC were defective in growth in cell culture, although in different ways. While the PPRV V protein bound to MDA-5 and, to a lesser extent, RIG-I, and over-expression of the V protein inhibited both IFN-β induction pathways, PPRV lacking V protein expression can still block IFN-β induction. In contrast, PPRV C bound to neither MDA-5 nor RIG-I, but PPRV lacking C protein expression lost the ability to block both MDA-5 and RIG-I mediated activation of IFN-β. These results shed new light on the inhibition of the induction of IFN-β by PPRV.
Collapse
Affiliation(s)
| | - Stephen Goodbourn
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
| | | |
Collapse
|
31
|
Jiang Y, Qin Y, Chen M. Host-Pathogen Interactions in Measles Virus Replication and Anti-Viral Immunity. Viruses 2016; 8:v8110308. [PMID: 27854326 PMCID: PMC5127022 DOI: 10.3390/v8110308] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/06/2016] [Accepted: 11/07/2016] [Indexed: 12/12/2022] Open
Abstract
The measles virus (MeV) is a contagious pathogenic RNA virus of the family Paramyxoviridae, genus Morbillivirus, that can cause serious symptoms and even fetal complications. Here, we summarize current molecular advances in MeV research, and emphasize the connection between host cells and MeV replication. Although measles has reemerged recently, the potential for its eradication is promising with significant progress in our understanding of the molecular mechanisms of its replication and host-pathogen interactions.
Collapse
Affiliation(s)
- Yanliang Jiang
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Yali Qin
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Mingzhou Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
32
|
Yu X, Shahriari S, Li HM, Ghildyal R. Measles Virus Matrix Protein Inhibits Host Cell Transcription. PLoS One 2016; 11:e0161360. [PMID: 27551716 PMCID: PMC4994966 DOI: 10.1371/journal.pone.0161360] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 07/06/2016] [Indexed: 12/22/2022] Open
Abstract
Measles virus (MeV) is a highly contagious virus that still causes annual epidemics in developing countries despite the availability of a safe and effective vaccine. Additionally, importation from endemic countries causes frequent outbreaks in countries where it has been eliminated. The M protein of MeV plays a key role in virus assembly and cytopathogenesis; interestingly, M is localised in nucleus, cytoplasm and membranes of infected cells. We have used transient expression of M in transfected cells and in-cell transcription assays to show that only some MeV M localizes to the nucleus, in addition to cell membranes and the cytoplasm as previously described, and can inhibit cellular transcription via binding to nuclear factors. Additionally, MeV M was able to inhibit in vitro transcription in a dose-dependent manner. Importantly, a proportion of M is also localized to nucleus of MeV infected cells at early times in infection, correlating with inhibition of cellular transcription. Our data show, for the first time, that MeV M may play a role early in infection by inhibiting host cell transcription.
Collapse
Affiliation(s)
- Xuelian Yu
- Section of Epidemiology & Statistics, Department of Public Health, Xinjiang Medical University, 393 XinYi Road, Urumqi, PR China
| | - Shadi Shahriari
- Respiratory Virology Group, Centre for Research in Therapeutic Solutions, Faculty of ESTeM, University of Canberra, Bruce, ACT 2617, Canberra, Australia
| | - Hong-Mei Li
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Parade, Melbourne, VIC 3800, Australia
| | - Reena Ghildyal
- Respiratory Virology Group, Centre for Research in Therapeutic Solutions, Faculty of ESTeM, University of Canberra, Bruce, ACT 2617, Canberra, Australia
- * E-mail:
| |
Collapse
|
33
|
Audsley MD, Jans DA, Moseley GW. Roles of nuclear trafficking in infection by cytoplasmic negative-strand RNA viruses: paramyxoviruses and beyond. J Gen Virol 2016; 97:2463-2481. [PMID: 27498841 DOI: 10.1099/jgv.0.000575] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Genome replication and virion production by most negative-sense RNA viruses (NSVs) occurs exclusively in the cytoplasm, but many NSV-expressed proteins undergo active nucleocytoplasmic trafficking via signals that exploit cellular nuclear transport pathways. Nuclear trafficking has been reported both for NSV accessory proteins (including isoforms of the rabies virus phosphoprotein, and V, W and C proteins of paramyxoviruses) and for structural proteins. Trafficking of the former is thought to enable accessory functions in viral modulation of antiviral responses including the type I IFN system, but the intranuclear roles of structural proteins such as nucleocapsid and matrix proteins, which have critical roles in extranuclear replication and viral assembly, are less clear. Nevertheless, nuclear trafficking of matrix protein has been reported to be critical for efficient production of Nipah virus and Respiratory syncytial virus, and nuclear localization of nucleocapsid protein of several morbilliviruses has been linked to mechanisms of immune evasion. Together, these data point to the nucleus as a significant host interface for viral proteins during infection by NSVs with otherwise cytoplasmic life cycles. Importantly, several lines of evidence now suggest that nuclear trafficking of these proteins may be critical to pathogenesis and thus could provide new targets for vaccine development and antiviral therapies.
Collapse
Affiliation(s)
- Michelle D Audsley
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - David A Jans
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Gregory W Moseley
- Department of Biochemistry and Molecular Biology, BIO21 Molecular Science and Biotechnology Institute, University of Melbourne, VIC 3000, Australia
| |
Collapse
|
34
|
Abstract
Measles is an infectious disease in humans caused by the measles virus (MeV). Before the introduction of an effective measles vaccine, virtually everyone experienced measles during childhood. Symptoms of measles include fever and maculopapular skin rash accompanied by cough, coryza and/or conjunctivitis. MeV causes immunosuppression, and severe sequelae of measles include pneumonia, gastroenteritis, blindness, measles inclusion body encephalitis and subacute sclerosing panencephalitis. Case confirmation depends on clinical presentation and results of laboratory tests, including the detection of anti-MeV IgM antibodies and/or viral RNA. All current measles vaccines contain a live attenuated strain of MeV, and great progress has been made to increase global vaccination coverage to drive down the incidence of measles. However, endemic transmission continues in many parts of the world. Measles remains a considerable cause of childhood mortality worldwide, with estimates that >100,000 fatal cases occur each year. Case fatality ratio estimates vary from <0.01% in industrialized countries to >5% in developing countries. All six WHO regions have set goals to eliminate endemic transmission of MeV by achieving and maintaining high levels of vaccination coverage accompanied by a sensitive surveillance system. Because of the availability of a highly effective and relatively inexpensive vaccine, the monotypic nature of the virus and the lack of an animal reservoir, measles is considered a candidate for eradication.
Collapse
|
35
|
Zhang R, Fang L, Cai K, Zeng S, Wu W, An K, Chen H, Xiao S. Differential contributions of porcine bocavirus NP1 protein N- and C-terminal regions to its nuclear localization and immune regulation. J Gen Virol 2016; 97:1178-1188. [DOI: 10.1099/jgv.0.000413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Ruoxi Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine,Huazhong Agricultural University, Wuhan 430070, PRChina
- The Cooperative Innovation Center for Sustainable Pig Production,Wuhan 430070, PRChina
| | - Liurong Fang
- The Cooperative Innovation Center for Sustainable Pig Production,Wuhan 430070, PRChina
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine,Huazhong Agricultural University, Wuhan 430070, PRChina
| | - Kaimei Cai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine,Huazhong Agricultural University, Wuhan 430070, PRChina
- The Cooperative Innovation Center for Sustainable Pig Production,Wuhan 430070, PRChina
| | - Songlin Zeng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine,Huazhong Agricultural University, Wuhan 430070, PRChina
- The Cooperative Innovation Center for Sustainable Pig Production,Wuhan 430070, PRChina
| | - Wei Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine,Huazhong Agricultural University, Wuhan 430070, PRChina
- The Cooperative Innovation Center for Sustainable Pig Production,Wuhan 430070, PRChina
| | - Kang An
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine,Huazhong Agricultural University, Wuhan 430070, PRChina
- The Cooperative Innovation Center for Sustainable Pig Production,Wuhan 430070, PRChina
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine,Huazhong Agricultural University, Wuhan 430070, PRChina
- The Cooperative Innovation Center for Sustainable Pig Production,Wuhan 430070, PRChina
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine,Huazhong Agricultural University, Wuhan 430070, PRChina
- The Cooperative Innovation Center for Sustainable Pig Production,Wuhan 430070, PRChina
| |
Collapse
|
36
|
García-León ML, Bonifaz LC, Espinosa-Torres B, Hernández-Pérez B, Cardiel-Marmolejo L, Santos-Preciado JI, Wong-Chew RM. A correlation of measles specific antibodies and the number of plasmacytoid dendritic cells is observed after measles vaccination in 9 month old infants. Hum Vaccin Immunother 2016; 11:1762-9. [PMID: 26075901 DOI: 10.1080/21645515.2015.1032488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Measles virus (MeV) represents one of the main causes of death among young children, particularly in developing countries. Upon infection, MeV controls both interferon induction (IFN) and the interferon signaling pathway which results in a severe host immunosuppression that can persists for up to 6 mo after infection. Despite the global biology of MeV infection is well studied, the role of the plasmacytoid dendritic cells (pDCs) during the host innate immune response after measles vaccination remains largely uncharacterized. Here we investigated the role of pDCs, the major producers of interferon in response to viral infections, in the development of adaptive immune response against MeV vaccine. We report that there is a strong correlation between pDCs population and the humoral immune response to Edmonston Zagreb (EZ) measles vaccination in 9-month-old mexican infants. Five infants were further evaluated after vaccination, showing a clear increase in pDCs at baseline, one week and 3 months after immunization. Three months postvaccination they showed increase in memory T-cells and pDCs populations, high induction of adaptive immunity and also observed a correlation between pDCs number and the humoral immune response. These findings suggest that the development and magnitude of the adaptive immune response following measles immunization is directly dependent on the number of pDCs of the innate immune response.
Collapse
Key Words
- (-) ssRNA, nonsegmented negative single-stranded RNA
- DCs, dendritic cells
- EZ, Edmonston Zagreb
- GMT, Geometric mean titers
- IFN, interferon
- MMR, measles, mumps, rubella vaccine
- MeV, Measles virus
- PBMCs, peripheral blood mononuclear cells
- PRN, plaque reduction neutralization
- cellular and humoral immunity
- mDCs, myeloid dendritic cells
- measles vaccine
- pDCs, plasmacytoid dendritic cells
- plasmacytoid dendritic cells
Collapse
Affiliation(s)
- Miguel L García-León
- a Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México ; México City , México
| | | | | | | | | | | | | |
Collapse
|
37
|
Jinushi M, Yamamoto S, Ogasawara N, Nagano H, Hashimoto S, Tsutsumi H, Himi T, Yokota SI. Measles Virus Genotype D Wild Strains Suppress Interferon-Stimulated Gene Expression More Potently than Laboratory Strains in SiHa Cells. Viral Immunol 2016; 29:296-306. [PMID: 27035543 DOI: 10.1089/vim.2016.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Changes in interferon (IFN)-stimulated gene (ISG) expression in cells infected with measles virus (MeV), four wild strains (belonging to different genotypes), and the laboratory strain Edmonston were examined. ISGs [MxA, 2'-5'-oligoadenylate synthetase, and interferon regulatory factor-1] were upregulated in an MeV-infection-induced manner and in an IFN-induced manner. In MeV-infected SiHa cell lines, the MeV infection-induced expression levels were in the order of A>H1>D8>D5>D3. On the other hand, all infected cell lines abolished type I and III IFN-induced ISG expression. However, partial type II IFN-mediated induction was observed in the MeV-infected cells. The wild strain of genotype D3 was the most potent inhibitor of MeV infection-induced and IFN-induced ISG expression and generated the highest titer of infectious viral particles. Edmonston triggered the highest levels of MeV infection-induced ISG expression in SiHa cells and produced the lowest titer of infectious particles. Expression of the viral C protein was associated with suppression of MeV infection-induced and type II IFN-induced ISG expression.
Collapse
Affiliation(s)
- Masaru Jinushi
- 1 Department of Microbiology, Sapporo Medical University School of Medicine , Sapporo, Japan
| | - Soh Yamamoto
- 1 Department of Microbiology, Sapporo Medical University School of Medicine , Sapporo, Japan
| | - Noriko Ogasawara
- 1 Department of Microbiology, Sapporo Medical University School of Medicine , Sapporo, Japan .,2 Department of Otorhinolaryngology, Sapporo Medical University School of Medicine , Sapporo, Japan
| | - Hideki Nagano
- 3 Hokkaido Institute of Public Health , Sapporo, Japan
| | - Shin Hashimoto
- 4 Department of Pediatrics, Sapporo Medical University School of Medicine , Sapporo, Japan
| | - Hiroyuki Tsutsumi
- 4 Department of Pediatrics, Sapporo Medical University School of Medicine , Sapporo, Japan
| | - Tetsuo Himi
- 2 Department of Otorhinolaryngology, Sapporo Medical University School of Medicine , Sapporo, Japan
| | - Shin-Ichi Yokota
- 1 Department of Microbiology, Sapporo Medical University School of Medicine , Sapporo, Japan
| |
Collapse
|
38
|
Ho TH, Kew C, Lui PY, Chan CP, Satoh T, Akira S, Jin DY, Kok KH. PACT- and RIG-I-Dependent Activation of Type I Interferon Production by a Defective Interfering RNA Derived from Measles Virus Vaccine. J Virol 2016; 90:1557-68. [PMID: 26608320 PMCID: PMC4719617 DOI: 10.1128/jvi.02161-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/17/2015] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED The live attenuated measles virus vaccine is highly immunostimulatory. Identification and characterization of its components that activate the innate immune response might provide new strategies and agents for the rational design and development of chemically defined adjuvants. In this study, we report on the activation of type I interferon (IFN) production by a defective interfering (DI) RNA isolated from the Hu-191 vaccine strain of measles virus. We found that the Hu-191 virus induced IFN-β much more potently than the Edmonston strain. In the search for IFN-inducing species in Hu-191, we identified a DI RNA specifically expressed by this strain. This DI RNA, which was of the copy-back type, was predicted to fold into a hairpin structure with a long double-stranded stem region of 206 bp, and it potently induced the expression of IFN-β. Its IFN-β-inducing activity was further enhanced when both cytoplasmic RNA sensor RIG-I and its partner, PACT, were overexpressed. On the contrary, this activity was abrogated in cells deficient in PACT or RIG-I. The DI RNA was found to be associated with PACT in infected cells. In addition, both the 5'-di/triphosphate end and the double-stranded stem region on the DI RNA were essential for its activation of PACT and RIG-I. Taken together, our findings support a model in which a viral DI RNA is sensed by PACT and RIG-I to initiate an innate antiviral response. Our work might also provide a foundation for identifying physiological PACT ligands and developing novel adjuvants or antivirals. IMPORTANCE The live attenuated measles virus vaccine is one of the most successful human vaccines and has largely contained the devastating impact of a highly contagious virus. Identifying the components in this vaccine that stimulate the host immune response and understanding their mechanism of action might help to design and develop better adjuvants, vaccines, antivirals, and immunotherapeutic agents. We identified and characterized a defective interfering RNA from the Hu-191 vaccine strain of measles virus which has safely been used in millions of people for many years. We further demonstrated that this RNA potently induces an antiviral immune response through cellular sensors of viral RNA known as PACT and RIG-I. Similar types of viral RNA that bind with and activate PACT and RIG-I might retain the immunostimulatory property of measles virus vaccines but would not induce adaptive immunity. They are potentially useful as chemically defined vaccine adjuvants, antivirals, and immunostimulatory agents.
Collapse
Affiliation(s)
- Ting-Hin Ho
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chun Kew
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Pak-Yin Lui
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chi-Ping Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Takashi Satoh
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Shizuo Akira
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kin-Hang Kok
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
39
|
Abstract
Peste des petits ruminants virus (PPRV) causes a severe contagious disease of sheep and goats and has spread extensively through the developing world. Because of its disproportionately large impact on the livelihoods of low-income livestock keepers, and the availability of effective vaccines and good diagnostics, the virus is being targeted for global control and eventual eradication. In this review we examine the origin of the virus and its current distribution, and the factors that have led international organizations to conclude that it is eradicable. We also review recent progress in the molecular and cellular biology of the virus and consider areas where further research is required to support the efforts being made by national, regional, and international bodies to tackle this growing threat.
Collapse
Affiliation(s)
- M D Baron
- The Pirbright Institute, Surrey, United Kingdom.
| | - A Diallo
- CIRAD, UMR Contrôle des maladies animales exotiques et émergentes (CMAEE), Montpellier, France; INRA, UMR CMAEE 1309, Montpellier, France
| | - R Lancelot
- CIRAD, UMR Contrôle des maladies animales exotiques et émergentes (CMAEE), Montpellier, France; INRA, UMR CMAEE 1309, Montpellier, France
| | - G Libeau
- CIRAD, UMR Contrôle des maladies animales exotiques et émergentes (CMAEE), Montpellier, France; INRA, UMR CMAEE 1309, Montpellier, France
| |
Collapse
|
40
|
Lässig C, Matheisl S, Sparrer KMJ, de Oliveira Mann CC, Moldt M, Patel JR, Goldeck M, Hartmann G, García-Sastre A, Hornung V, Conzelmann KK, Beckmann R, Hopfner KP. ATP hydrolysis by the viral RNA sensor RIG-I prevents unintentional recognition of self-RNA. eLife 2015; 4:e10859. [PMID: 26609812 PMCID: PMC4733034 DOI: 10.7554/elife.10859] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/25/2015] [Indexed: 12/24/2022] Open
Abstract
The cytosolic antiviral innate immune sensor RIG-I distinguishes 5' tri- or diphosphate containing viral double-stranded (ds) RNA from self-RNA by an incompletely understood mechanism that involves ATP hydrolysis by RIG-I's RNA translocase domain. Recently discovered mutations in ATPase motifs can lead to the multi-system disorder Singleton-Merten Syndrome (SMS) and increased interferon levels, suggesting misregulated signaling by RIG-I. Here we report that SMS mutations phenocopy a mutation that allows ATP binding but prevents hydrolysis. ATPase deficient RIG-I constitutively signals through endogenous RNA and co-purifies with self-RNA even from virus infected cells. Biochemical studies and cryo-electron microscopy identify a 60S ribosomal expansion segment as a dominant self-RNA that is stably bound by ATPase deficient RIG-I. ATP hydrolysis displaces wild-type RIG-I from this self-RNA but not from 5' triphosphate dsRNA. Our results indicate that ATP-hydrolysis prevents recognition of self-RNA and suggest that SMS mutations lead to unintentional signaling through prolonged RNA binding.
Collapse
Affiliation(s)
- Charlotte Lässig
- Gene Center, Department of Biochemistry, Ludwig Maximilian University of Munich, Munich, Germany
| | - Sarah Matheisl
- Gene Center, Department of Biochemistry, Ludwig Maximilian University of Munich, Munich, Germany
| | - Konstantin MJ Sparrer
- Max von Pettenkofer-Institute, Gene Center, Ludwig Maximilian University of Munich, Munich, Germany
| | | | - Manuela Moldt
- Gene Center, Department of Biochemistry, Ludwig Maximilian University of Munich, Munich, Germany
| | - Jenish R Patel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Marion Goldeck
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Gunther Hartmann
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, United States
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Veit Hornung
- Institute of Molecular Medicine, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Karl-Klaus Conzelmann
- Max von Pettenkofer-Institute, Gene Center, Ludwig Maximilian University of Munich, Munich, Germany
| | - Roland Beckmann
- Gene Center, Department of Biochemistry, Ludwig Maximilian University of Munich, Munich, Germany
- Center for Integrated Protein Science Munich, Munich, Germany
| | - Karl-Peter Hopfner
- Gene Center, Department of Biochemistry, Ludwig Maximilian University of Munich, Munich, Germany
- Center for Integrated Protein Science Munich, Munich, Germany
| |
Collapse
|
41
|
Hoffmann HH, Schneider WM, Rice CM. Interferons and viruses: an evolutionary arms race of molecular interactions. Trends Immunol 2015; 36:124-38. [PMID: 25704559 DOI: 10.1016/j.it.2015.01.004] [Citation(s) in RCA: 308] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/16/2015] [Accepted: 01/16/2015] [Indexed: 12/24/2022]
Abstract
Over half a century has passed since interferons (IFNs) were discovered and shown to inhibit virus infection in cultured cells. Since then, researchers have steadily brought to light the molecular details of IFN signaling, catalogued their pleiotropic effects on cells, and harnessed their therapeutic potential for a variety of maladies. While advances have been plentiful, several fundamental questions have yet to be answered and much complexity remains to be unraveled. We explore the current knowledge surrounding four main questions: are type I IFN subtypes differentially produced in response to distinct pathogens? How are IFN subtypes distinguished by cells? What are the mechanisms and consequences of viral antagonism? Lastly, how can the IFN response be harnessed to improve vaccine efficacy?
Collapse
Affiliation(s)
- Hans-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - William M Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
42
|
Rosadini CV, Kagan JC. Microbial strategies for antagonizing Toll-like-receptor signal transduction. Curr Opin Immunol 2015; 32:61-70. [PMID: 25615700 PMCID: PMC4336813 DOI: 10.1016/j.coi.2014.12.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/24/2014] [Accepted: 12/30/2014] [Indexed: 12/18/2022]
Abstract
Within a few years of the discovery of Toll-like receptors (TLRs) and their role in innate immunity, viral and bacterial proteins were recognized to antagonize TLR signal transduction. Since then, as TLR signaling networks were unraveled, microbial systems have been discovered that target nearly every component within these pathways. However, recent findings as well as some notable exceptions promote the idea that more of these systems have yet to be discovered. For example, we know very little about microbial systems for directly targeting non-cytoplasmic portions of TLR signaling pathways, that is, the ligand interacting portions of the receptor itself. In this review, we compare and contrast strategies by which bacteria and viruses antagonize TLR signaling networks to identify potential areas for future research.
Collapse
Affiliation(s)
- Charles V Rosadini
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jonathan C Kagan
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
43
|
Complete Genome Sequence of a Wild-Type Measles Virus Isolated during the Spring 2013 Epidemic in Germany. GENOME ANNOUNCEMENTS 2014; 2:2/2/e00157-14. [PMID: 24744323 PMCID: PMC3990739 DOI: 10.1128/genomea.00157-14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Measles virus induces an acute disease with rash and fever. Despite ongoing vaccination and elimination campaigns, the measles virus still sustains long-lasting transmission chains in Europe. Here we report the complete genome sequence of a wild-type measles virus isolated from a patient in Munich (MVi/Muenchen.DEU/19.13[D8]) during a German measles outbreak in 2013.
Collapse
|
44
|
Runge S, Sparrer KMJ, Lässig C, Hembach K, Baum A, García-Sastre A, Söding J, Conzelmann KK, Hopfner KP. In vivo ligands of MDA5 and RIG-I in measles virus-infected cells. PLoS Pathog 2014; 10:e1004081. [PMID: 24743923 PMCID: PMC3990713 DOI: 10.1371/journal.ppat.1004081] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 03/06/2014] [Indexed: 12/24/2022] Open
Abstract
RIG-I-like receptors (RLRs: RIG-I, MDA5 and LGP2) play a major role in the innate immune response against viral infections and detect patterns on viral RNA molecules that are typically absent from host RNA. Upon RNA binding, RLRs trigger a complex downstream signaling cascade resulting in the expression of type I interferons and proinflammatory cytokines. In the past decade extensive efforts were made to elucidate the nature of putative RLR ligands. In vitro and transfection studies identified 5'-triphosphate containing blunt-ended double-strand RNAs as potent RIG-I inducers and these findings were confirmed by next-generation sequencing of RIG-I associated RNAs from virus-infected cells. The nature of RNA ligands of MDA5 is less clear. Several studies suggest that double-stranded RNAs are the preferred agonists for the protein. However, the exact nature of physiological MDA5 ligands from virus-infected cells needs to be elucidated. In this work, we combine a crosslinking technique with next-generation sequencing in order to shed light on MDA5-associated RNAs from human cells infected with measles virus. Our findings suggest that RIG-I and MDA5 associate with AU-rich RNA species originating from the mRNA of the measles virus L gene. Corresponding sequences are poorer activators of ATP-hydrolysis by MDA5 in vitro, suggesting that they result in more stable MDA5 filaments. These data provide a possible model of how AU-rich sequences could activate type I interferon signaling.
Collapse
Affiliation(s)
- Simon Runge
- Gene Center and Department of Biochemistry, Ludwig-Maximilians University Munich, Munich, Germany
| | - Konstantin M. J. Sparrer
- Max von Pettenkofer-Institute, Gene Center, Ludwig-Maximilians University Munich, Munich, Germany
| | - Charlotte Lässig
- Gene Center and Department of Biochemistry, Ludwig-Maximilians University Munich, Munich, Germany
| | - Katharina Hembach
- Gene Center and Department of Biochemistry, Ludwig-Maximilians University Munich, Munich, Germany
| | - Alina Baum
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Adolfo García-Sastre
- Department of Microbiology, Department of Medicine, Division of Infectious Diseases and Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Johannes Söding
- Gene Center and Department of Biochemistry, Ludwig-Maximilians University Munich, Munich, Germany
- Center for Integrated Protein Science Munich, Munich, Germany
| | - Karl-Klaus Conzelmann
- Max von Pettenkofer-Institute, Gene Center, Ludwig-Maximilians University Munich, Munich, Germany
| | - Karl-Peter Hopfner
- Gene Center and Department of Biochemistry, Ludwig-Maximilians University Munich, Munich, Germany
- Center for Integrated Protein Science Munich, Munich, Germany
| |
Collapse
|
45
|
John L, Samuel CE. Induction of stress granules by interferon and down-regulation by the cellular RNA adenosine deaminase ADAR1. Virology 2014; 454-455:299-310. [PMID: 24725957 DOI: 10.1016/j.virol.2014.02.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/20/2014] [Accepted: 02/22/2014] [Indexed: 12/13/2022]
Abstract
Measles virus (MV) deficient in C protein (C(ko)) expression efficiently induces both stress granules (SG) and interferon (IFNβ), whereas isogenic wild-type (WT) and V mutant (V(ko)) viruses do not. We therefore examined the effect of IFNβ pretreatment on SG formation, and the roles played by the IFN-inducible double-stranded (ds) RNA-dependent protein kinase (PKR) and dsRNA adenosine deaminase (ADAR1). SG formation in ADAR1-sufficient cells infected with WT or V(ko) mutant virus was enhanced by IFN treatment and was PKR-dependent. SG formation in C(ko) virus-infected cells was already high without IFN treatment and was not further enhanced by IFN. IFN treatment alone, in the absence of infection, induced SG formation in ADAR1-deficient but not ADAR1-sufficient cells. Type I IFN-induced enhancement in SG formation occurred by a canonical IFN signaling response dependent upon STAT1 and STAT2. These results further establish ADAR1 as a suppressor of the interferon and SG innate immune responses.
Collapse
Affiliation(s)
- Lijo John
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, United States
| | - Charles E Samuel
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, United States; Biomolecular Sciences and Engineering Program, University of California, Santa Barbara, CA 93106, United States.
| |
Collapse
|
46
|
Lo MK, Søgaard TM, Karlin DG. Evolution and structural organization of the C proteins of paramyxovirinae. PLoS One 2014; 9:e90003. [PMID: 24587180 PMCID: PMC3934983 DOI: 10.1371/journal.pone.0090003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/24/2014] [Indexed: 12/21/2022] Open
Abstract
The phosphoprotein (P) gene of most Paramyxovirinae encodes several proteins in overlapping frames: P and V, which share a common N-terminus (PNT), and C, which overlaps PNT. Overlapping genes are of particular interest because they encode proteins originated de novo, some of which have unknown structural folds, challenging the notion that nature utilizes only a limited, well-mapped area of fold space. The C proteins cluster in three groups, comprising measles, Nipah, and Sendai virus. We predicted that all C proteins have a similar organization: a variable, disordered N-terminus and a conserved, α-helical C-terminus. We confirmed this predicted organization by biophysically characterizing recombinant C proteins from Tupaia paramyxovirus (measles group) and human parainfluenza virus 1 (Sendai group). We also found that the C of the measles and Nipah groups have statistically significant sequence similarity, indicating a common origin. Although the C of the Sendai group lack sequence similarity with them, we speculate that they also have a common origin, given their similar genomic location and structural organization. Since C is dispensable for viral replication, unlike PNT, we hypothesize that C may have originated de novo by overprinting PNT in the ancestor of Paramyxovirinae. Intriguingly, in measles virus and Nipah virus, PNT encodes STAT1-binding sites that overlap different regions of the C-terminus of C, indicating they have probably originated independently. This arrangement, in which the same genetic region encodes simultaneously a crucial functional motif (a STAT1-binding site) and a highly constrained region (the C-terminus of C), seems paradoxical, since it should severely reduce the ability of the virus to adapt. The fact that it originated twice suggests that it must be balanced by an evolutionary advantage, perhaps from reducing the size of the genetic region vulnerable to mutations.
Collapse
Affiliation(s)
- Michael K. Lo
- Centers for Disease Control and Prevention, Viral Special Pathogens Branch, Atlanta, Georgia, United States of America
| | - Teit Max Søgaard
- Division of Structural Biology, Oxford University, Oxford, United Kingdom
| | - David G. Karlin
- Division of Structural Biology, Oxford University, Oxford, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
47
|
Measles virus C protein impairs production of defective copyback double-stranded viral RNA and activation of protein kinase R. J Virol 2013; 88:456-68. [PMID: 24155404 DOI: 10.1128/jvi.02572-13] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Measles virus (MV) lacking expression of C protein (C(KO)) is a potent activator of the double-stranded RNA (dsRNA)-dependent protein kinase (PKR), whereas the isogenic parental virus expressing C protein is not. Here, we demonstrate that significant amounts of dsRNA accumulate during C(KO) mutant infection but not following parental virus infection. dsRNA accumulated during late stages of infection and localized with virus replication sites containing N and P proteins. PKR autophosphorylation and stress granule formation correlated with the timing of dsRNA appearance. Phospho-PKR localized to dsRNA-containing structures as revealed by immunofluorescence. Production of dsRNA was sensitive to cycloheximide but resistant to actinomycin D, suggesting that dsRNA is a viral product. Quantitative PCR (qPCR) analyses revealed reduced viral RNA synthesis and a steepened transcription gradient in C(KO) virus-infected cells compared to those in parental virus-infected cells. The observed alterations were further reflected in lower viral protein expression levels and reduced C(KO) virus infectious yield. RNA deep sequencing confirmed the viral RNA expression profile differences seen by qPCR between C(KO) mutant and parental viruses. After one subsequent passage of the C(KO) virus, defective interfering RNA (DI-RNA) with a duplex structure was obtained that was not seen with the parental virus. We conclude that in the absence of C protein, the amount of PKR activator RNA, including DI-RNA, is increased, thereby triggering innate immune responses leading to impaired MV growth.
Collapse
|
48
|
Paramyxovirus activation and inhibition of innate immune responses. J Mol Biol 2013; 425:4872-92. [PMID: 24056173 DOI: 10.1016/j.jmb.2013.09.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/12/2013] [Accepted: 09/12/2013] [Indexed: 12/18/2022]
Abstract
Paramyxoviruses represent a remarkably diverse family of enveloped nonsegmented negative-strand RNA viruses, some of which are the most ubiquitous disease-causing viruses of humans and animals. This review focuses on paramyxovirus activation of innate immune pathways, the mechanisms by which these RNA viruses counteract these pathways, and the innate response to paramyxovirus infection of dendritic cells (DC). Paramyxoviruses are potent activators of extracellular complement pathways, a first line of defense that viruses must face during natural infections. We discuss mechanisms by which these viruses activate and combat complement to delay neutralization. Once cells are infected, virus replication drives type I interferon (IFN) synthesis that has the potential to induce a large number of antiviral genes. Here we describe four approaches by which paramyxoviruses limit IFN induction: by limiting synthesis of IFN-inducing aberrant viral RNAs, through targeted inhibition of RNA sensors, by providing viral decoy substrates for cellular kinase complexes, and through direct blocking of the IFN promoter. In addition, paramyxoviruses have evolved diverse mechanisms to disrupt IFN signaling pathways. We describe three general mechanisms, including targeted proteolysis of signaling factors, sequestering cellular factors, and upregulation of cellular inhibitors. DC are exceptional cells with the capacity to generate adaptive immunity through the coupling of innate immune signals and T cell activation. We discuss the importance of innate responses in DC following paramyxovirus infection and their consequences for the ability to mount and maintain antiviral T cells.
Collapse
|
49
|
Ferguson BJ, Benfield CTO, Ren H, Lee VH, Frazer GL, Strnadova P, Sumner RP, Smith GL. Vaccinia virus protein N2 is a nuclear IRF3 inhibitor that promotes virulence. J Gen Virol 2013; 94:2070-2081. [PMID: 23761407 PMCID: PMC3749055 DOI: 10.1099/vir.0.054114-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/06/2013] [Indexed: 12/13/2022] Open
Abstract
Vaccinia virus (VACV) expresses many proteins that are non-essential for virus replication but promote virulence by inhibiting components of the host immune response to infection. These immunomodulators include a family of proteins that have, or are predicted to have, a structure related to the B-cell lymphoma (Bcl)-2 protein. Five members of the VACV Bcl-2 family (N1, B14, A52, F1 and K7) have had their crystal structure solved, others have been characterized and a function assigned (C6, A46), and others are predicted to be Bcl-2 proteins but are uncharacterized hitherto (N2, B22, C1). Data presented here show that N2 is a nuclear protein that is expressed early during infection and inhibits the activation of interferon regulatory factor (IRF)3. Consistent with its nuclear localization, N2 inhibits IRF3 downstream of the TANK-binding kinase (TBK)-1 and after IRF3 translocation into the nucleus. A mutant VACV strain Western Reserve lacking the N2L gene (vΔN2) showed normal replication and spread in cultured cells compared to wild-type parental (vN2) and revertant (vN2-rev) viruses, but was attenuated in two murine models of infection. After intranasal infection, the vΔN2 mutant induced lower weight loss and signs of illness, and virus was cleared more rapidly from the infected tissue. In the intradermal model of infection, vΔN2 induced smaller lesions that were resolved more rapidly. In summary, the N2 protein is an intracellular virulence factor that inhibits IRF3 activity in the nucleus.
Collapse
Affiliation(s)
- Brian J. Ferguson
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
- Department of Virology, Faculty of Medicine, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Camilla T. O. Benfield
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
- Department of Virology, Faculty of Medicine, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Hongwei Ren
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
- Department of Virology, Faculty of Medicine, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Vivian H. Lee
- Department of Virology, Faculty of Medicine, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Gordon L. Frazer
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Pavla Strnadova
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
- Department of Virology, Faculty of Medicine, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Rebecca P. Sumner
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
- Department of Virology, Faculty of Medicine, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Geoffrey L. Smith
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
- Department of Virology, Faculty of Medicine, Imperial College London, Norfolk Place, London W2 1PG, UK
| |
Collapse
|
50
|
Measles virus nonstructural C protein modulates viral RNA polymerase activity by interacting with host protein SHCBP1. J Virol 2013; 87:9633-42. [PMID: 23804634 DOI: 10.1128/jvi.00714-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Most viruses possess strategies to circumvent host immune responses. The measles virus (MV) nonstructural C protein suppresses the interferon response, thereby allowing efficient viral growth, but its detailed mechanism has been unknown. We identified Shc Src homology 2 domain-binding protein 1 (SHCBP1) as one of the host proteins interacting with the C protein. Knockdown of SHCBP1 using a short-hairpin RNA greatly reduced MV growth. SHCBP1 was found to be required for viral RNA synthesis in the minigenome assay and to bind to the MV phosphoprotein, a subunit of the viral RNA polymerase. A stretch of 12 amino acid residues in the C protein were sufficient for SHCBP1 binding, and the peptide containing these 12 residues could suppress MV RNA synthesis, like the full-length C protein. The central region of SHCBP1 was found to bind to the C protein, as well as the phosphoprotein, but the two viral proteins did not compete for SHCBP1 binding. Our results indicate that the C protein modulates MV RNA polymerase activity by binding to the host protein SHCBP1. SHCBP1 may be exploited as a target of antiviral compounds.
Collapse
|