1
|
Fiske KL, Brigleb PH, Sanchez LM, Hinterleitner R, Taylor GM, Dermody TS. Strain-specific differences in reovirus infection of murine macrophages segregate with polymorphisms in viral outer-capsid protein σ3. J Virol 2024; 98:e0114724. [PMID: 39431846 PMCID: PMC11575339 DOI: 10.1128/jvi.01147-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/22/2024] [Indexed: 10/22/2024] Open
Abstract
Mammalian orthoreovirus (reovirus) strains type 1 Lang (T1L) and type 3 Dearing-RV (T3D-RV) infect the intestine in mice but differ in the induction of inflammatory responses. T1L infection is associated with the blockade of oral immunological tolerance to newly introduced dietary antigens, whereas T3D-RV is not. T1L infection leads to an increase in infiltrating phagocytes, including macrophages, in gut-associated lymphoid tissues that are not observed in T3D-RV infection. However, the function of macrophages in reovirus intestinal infection is unknown. Using cells sorted from infected intestinal tissue and primary cultures of bone-marrow-derived macrophages (BMDMs), we discovered that T1L infects macrophages more efficiently than T3D-RV. Analysis of T1L × T3D-RV reassortant viruses revealed that the viral S4 gene segment, which encodes outer-capsid protein σ3, is responsible for strain-specific differences in infection of BMDMs. Differences in the binding of T1L and T3D-RV to BMDMs also segregated with the σ3-encoding S4 gene. Paired immunoglobulin-like receptor B (PirB), which serves as a receptor for reovirus, is expressed on macrophages and engages σ3. We found that PirB-specific antibody blocks T1L binding to BMDMs and that T1L binding to PirB-/- BMDMs is significantly diminished. Collectively, our data suggest that reovirus T1L infection of macrophages is dependent on engagement of PirB by viral outer-capsid protein σ3. These findings raise the possibility that macrophages function in the innate immune response to reovirus infection that blocks immunological tolerance to new food antigens.IMPORTANCEMammalian orthoreovirus (reovirus) infects humans throughout their lifespan and has been linked to celiac disease (CeD). CeD is caused by a loss of oral immunological tolerance (LOT) to dietary gluten and leads to intestinal inflammation following gluten ingestion, which worsens with prolonged exposure and can cause malnutrition. There are limited treatment options for CeD. While there are genetic risk factors associated with the illness, triggers for disease onset are not completely understood. Enteric viruses, including reovirus, have been linked to CeD induction. We found that a reovirus strain associated with oral immunological tolerance blockade infects macrophages by virtue of its capacity to bind macrophage receptor PirB. These data contribute to an understanding of the innate immune response elicited by reovirus, which may shed light on how viruses trigger LOT and inform the development of CeD vaccines and therapeutic agents.
Collapse
Affiliation(s)
- Kay L. Fiske
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Pamela H. Brigleb
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Luzmariel Medina Sanchez
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Graduate Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Reinhard Hinterleitner
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Gwen M. Taylor
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Terence S. Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Thoner TW, Meloy MM, Long JM, Diller JR, Slaughter JC, Ogden KM. Reovirus Efficiently Reassorts Genome Segments during Coinfection and Superinfection. J Virol 2022; 96:e0091022. [PMID: 36094315 PMCID: PMC9517712 DOI: 10.1128/jvi.00910-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/21/2022] [Indexed: 11/20/2022] Open
Abstract
Reassortment, or genome segment exchange, increases diversity among viruses with segmented genomes. Previous studies on the limitations of reassortment have largely focused on parental incompatibilities that restrict generation of viable progeny. However, less is known about whether factors intrinsic to virus replication influence reassortment. Mammalian orthoreovirus (reovirus) encapsidates a segmented, double-stranded RNA (dsRNA) genome, replicates within cytoplasmic factories, and is susceptible to host antiviral responses. We sought to elucidate the influence of infection multiplicity, timing, and compartmentalized replication on reovirus reassortment in the absence of parental incompatibilities. We used an established post-PCR genotyping method to quantify reassortment frequency between wild-type and genetically barcoded type 3 reoviruses. Consistent with published findings, we found that reassortment increased with infection multiplicity until reaching a peak of efficient genome segment exchange during simultaneous coinfection. However, reassortment frequency exhibited a substantial decease with increasing time to superinfection, which strongly correlated with viral transcript abundance. We hypothesized that physical sequestration of viral transcripts within distinct virus factories or superinfection exclusion also could influence reassortment frequency during superinfection. Imaging revealed that transcripts from both wild-type and barcoded viruses frequently co-occupied factories, with superinfection time delays up to 16 h. Additionally, primary infection progressively dampened superinfecting virus transcript levels with greater time delay to superinfection. Thus, in the absence of parental incompatibilities and with short times to superinfection, reovirus reassortment proceeds efficiently and is largely unaffected by compartmentalization of replication and superinfection exclusion. However, reassortment may be limited by superinfection exclusion with greater time delays to superinfection. IMPORTANCE Reassortment, or genome segment exchange between viruses, can generate novel virus genotypes and pandemic virus strains. For viruses to reassort their genome segments, they must replicate within the same physical space by coinfecting the same host cell. Even after entry into the host cell, many viruses with segmented genomes synthesize new virus transcripts and assemble and package their genomes within cytoplasmic replication compartments. Additionally, some viruses can interfere with subsequent infection of the same host or cell. However, spatial and temporal influences on reassortment are only beginning to be explored. We found that infection multiplicity and transcript abundance are important drivers of reassortment during coinfection and superinfection, respectively, for reovirus, which has a segmented, double-stranded RNA genome. We also provide evidence that compartmentalization of transcription and packaging is unlikely to influence reassortment, but the length of time between primary and subsequent reovirus infection can alter reassortment frequency.
Collapse
Affiliation(s)
- Timothy W. Thoner
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Madeline M. Meloy
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jacob M. Long
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Julia R. Diller
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James C. Slaughter
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kristen M. Ogden
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
3
|
Li Q, Tan F, Wang Y, Liu X, Kong X, Meng J, Yang L, Cen S. The gamble between oncolytic virus therapy and IFN. Front Immunol 2022; 13:971674. [PMID: 36090998 PMCID: PMC9453641 DOI: 10.3389/fimmu.2022.971674] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Various studies are being conducted on oncolytic virotherapy which one of the mechanisms is mediating interferon (IFN) production by it exerts antitumor effects. The antiviral effect of IFN itself has a negative impact on the inhibition of oncolytic virus or tumor eradication. Therefore, it is very critical to understand the mechanism of IFN regulation by oncolytic viruses, and to define its mechanism is of great significance for improving the antitumor effect of oncolytic viruses. This review focuses on the regulatory mechanisms of IFNs by various oncolytic viruses and their combination therapies. In addition, the exerting and the producing pathways of IFNs are briefly summarized, and some current issues are put forward.
Collapse
Affiliation(s)
- Qingbo Li
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fengxian Tan
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuanyuan Wang
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaohui Liu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xianbin Kong
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xianbin Kong, ; Jingyan Meng, ; Long Yang, ; Shan Cen,
| | - Jingyan Meng
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xianbin Kong, ; Jingyan Meng, ; Long Yang, ; Shan Cen,
| | - Long Yang
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xianbin Kong, ; Jingyan Meng, ; Long Yang, ; Shan Cen,
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
- *Correspondence: Xianbin Kong, ; Jingyan Meng, ; Long Yang, ; Shan Cen,
| |
Collapse
|
4
|
Lymphatic Type 1 Interferon Responses Are Critical for Control of Systemic Reovirus Dissemination. J Virol 2021; 95:JVI.02167-20. [PMID: 33208448 PMCID: PMC7851543 DOI: 10.1128/jvi.02167-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022] Open
Abstract
Mammalian orthoreovirus (reovirus) spreads from the site of infection to every organ system in the body via the blood. However, mechanisms that underlie reovirus hematogenous spread remain undefined. Nonstructural protein σ1s is a critical determinant of reovirus bloodstream dissemination that is required for efficient viral replication in many types of cultured cells. Here, we used the specificity of the σ1s protein for promoting hematogenous spread as a platform to uncover a role for lymphatic type 1 interferon (IFN-1) responses in limiting reovirus systemic dissemination. We found that replication of a σ1s-deficient reovirus was restored to wild-type levels in cells with defective interferon-α receptor (IFNAR1) signaling. Reovirus spreads systemically following oral inoculation of neonatal mice, whereas the σ1s-null virus remains localized to the intestine. We found that σ1s enables reovirus spread in the presence of a functional IFN-1 response, as the σ1s-deficient reovirus disseminated comparably to wild-type virus in IFNAR1-/- mice. Lymphatics are hypothesized to mediate reovirus spread from the intestine to the bloodstream. IFNAR1 deletion from cells expressing lymphatic vessel endothelium receptor 1 (LYVE-1), a marker for lymphatic endothelial cells, enabled the σ1s-deficient reovirus to disseminate systemically. Together, our findings indicate that IFN-1 responses in lymphatics limit reovirus dissemination. Our data further suggest that the lymphatics are an important conduit for reovirus hematogenous spread.IMPORTANCE Type 1 interferons (IFN-1) are critical host responses to viral infection. However, the contribution of IFN-1 responses to control of viruses in specific cell and tissue types is not fully defined. Here, we identify IFN-1 responses in lymphatics as important for limiting reovirus dissemination. We found that nonstructural protein σ1s enhances reovirus resistance to IFN-1 responses, as a reovirus mutant lacking σ1s was more sensitive to IFN-1 than wild-type virus. In neonatal mice, σ1s is required for reovirus systemic spread. We used tissue-specific IFNAR1 deletion in combination with the IFN-1-sensitive σ1s-null reovirus as a tool to test how IFN-1 responses in lymphatics affect reovirus systemic spread. Deletion of IFNAR1 in lymphatic cells using Cre-lox technology enabled dissemination of the IFN-1-sensitive σ1s-deficient reovirus. Together, our results indicate that IFN-1 responses in lymphatics are critical for controlling reovirus systemic spread.
Collapse
|
5
|
Closely related reovirus lab strains induce opposite expression of RIG-I/IFN-dependent versus -independent host genes, via mechanisms of slow replication versus polymorphisms in dsRNA binding σ3 respectively. PLoS Pathog 2020; 16:e1008803. [PMID: 32956403 PMCID: PMC7529228 DOI: 10.1371/journal.ppat.1008803] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 10/01/2020] [Accepted: 07/13/2020] [Indexed: 12/28/2022] Open
Abstract
The Dearing isolate of Mammalian orthoreovirus (T3D) is a prominent model of virus-host relationships and a candidate oncolytic virotherapy. Closely related laboratory strains of T3D, originating from the same ancestral T3D isolate, were recently found to exhibit significantly different oncolytic properties. Specifically, the T3DPL strain had faster replication kinetics in a panel of cancer cells and improved tumor regression in an in vivo melanoma model, relative to T3DTD. In this study, we discover that T3DPL and T3DTD also differentially activate host signalling pathways and downstream gene transcription. At equivalent infectious dose, T3DTD induces higher IRF3 phosphorylation and expression of type I IFNs and IFN-stimulated genes (ISGs) than T3DPL. Using mono-reassortants with intermediate replication kinetics and pharmacological inhibitors of reovirus replication, IFN responses were found to inversely correlate with kinetics of virus replication. In other words, slow-replicating T3D strains induce more IFN signalling than fast-replicating T3D strains. Paradoxically, during co-infections by T3DPL and T3DTD, there was still high IRF3 phosphorylation indicating a phenodominant effect by the slow-replicating T3DTD. Using silencing and knock-out of RIG-I to impede IFN, we found that IFN induction does not affect the first round of reovirus replication but does prevent cell-cell spread in a paracrine fashion. Accordingly, during co-infections, T3DPL continues to replicate robustly despite activation of IFN by T3DTD. Using gene expression analysis, we discovered that reovirus can also induce a subset of genes in a RIG-I and IFN-independent manner; these genes were induced more by T3DPL than T3DTD. Polymorphisms in reovirus σ3 viral protein were found to control activation of RIG-I/ IFN-independent genes. Altogether, the study reveals that single amino acid polymorphisms in reovirus genomes can have large impact on host gene expression, by both changing replication kinetics and by modifying viral protein activity, such that two closely related T3D strains can induce opposite cytokine landscapes.
Collapse
|
6
|
Guo L, Smith JA, Abelson M, Vlasova-St. Louis I, Schiff LA, Bohjanen PR. Reovirus infection induces stabilization and up-regulation of cellular transcripts that encode regulators of TGF-β signaling. PLoS One 2018; 13:e0204622. [PMID: 30261045 PMCID: PMC6160134 DOI: 10.1371/journal.pone.0204622] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/11/2018] [Indexed: 12/24/2022] Open
Abstract
Reovirus infection induces dramatic changes in host mRNA expression. We utilized oligonucleotide microarrays to measure cellular mRNA decay rates in mock- or reovirus-infected murine L929 cells to determine if changes in host mRNA expression are a consequence of reovirus-induced alterations in cellular mRNA stability. Our analysis detected a subset of cellular transcripts that were coordinately induced and stabilized following infection with the reovirus isolates c87 and c8, strains that led to an inhibition of cellular translation, but not following infection with Dearing, a reovirus isolate that did not negatively impact cellular translation. The induced and stabilized transcripts encode multiple regulators of TGF- β signaling, including components of the Smad signaling network and apoptosis/survival pathways. The coordinate induction, through mRNA stabilization, of multiple genes that encode components of TGF-β signaling pathways represents a novel mechanism by which the host cell responds to reovirus infection.
Collapse
Affiliation(s)
- Liang Guo
- Program in Infection and Immunity, Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Molecular Virology Training Program, Graduate Program in Comparative and Molecular Bioscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jennifer A. Smith
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Michelle Abelson
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Irina Vlasova-St. Louis
- Program in Infection and Immunity, Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Leslie A. Schiff
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Paul R. Bohjanen
- Program in Infection and Immunity, Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Molecular Virology Training Program, Graduate Program in Comparative and Molecular Bioscience, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
7
|
Differential Delivery of Genomic Double-Stranded RNA Causes Reovirus Strain-Specific Differences in Interferon Regulatory Factor 3 Activation. J Virol 2018; 92:JVI.01947-17. [PMID: 29437975 DOI: 10.1128/jvi.01947-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/02/2018] [Indexed: 12/17/2022] Open
Abstract
Serotype 3 (T3) reoviruses induce substantially more type 1 interferon (IFN-I) secretion than serotype 1 (T1) strains. However, the mechanisms underlying differences in IFN-I production between T1 and T3 reoviruses remain undefined. Here, we found that differences in IFN-I production between T1 and T3 reoviruses correlate with activation of interferon regulatory factor 3 (IRF3), a key transcription factor for the production of IFN-I. T3 strain rsT3D activated IRF3 more rapidly and to a greater extent than the T1 strain rsT1L, in simian virus 40 (SV40) immortalized endothelial cells (SVECs). Differences in IRF3 activation between rsT1L and rsT3D were observed in the first hours of infection and were independent of de novo viral RNA and protein synthesis. NF-κB activation mirrored IRF3 activation, with rsT3D inducing more NF-κB activity than rsT1L. We also found that IRF3 and NF-κB are activated in a mitochondrial antiviral-signaling protein (MAVS)-dependent manner. rsT1L does not suppress IRF3 activation, as IRF3 phosphorylation could be induced in rsT1L-infected cells. Transfected rsT1L and rsT3D RNA induced IRF3 phosphorylation, indicating that genomic RNA from both strains has the capacity to activate IRF3. Finally, bypassing the normal route of reovirus entry by transfecting in vitro-generated viral cores revealed that rsT1L and rsT3D core particles induced equivalent IRF3 activation. Taken together, our findings indicate that entry-related events that occur after outer capsid disassembly, but prior to deposition of viral cores into the cytoplasm, influence the efficiency of IFN-I responses to reovirus. This work provides further insight into mechanisms by which nonenveloped viruses activate innate immune responses.IMPORTANCE Detection of viral nucleic acids by the host cell triggers type 1 interferon (IFN-I) responses, which are critical for containing and clearing viral infections. Viral RNA is sensed in the cytoplasm by cellular receptors that initiate signaling pathways, leading to the activation of interferon regulatory factor 3 (IRF3) and NF-κB, key transcription factors required for IFN-I induction. Serotype 3 (T3) reoviruses induce significantly more IFN-I than serotype 1 (T1) strains. In this work, we found that differences in IFN-I production by T1 and T3 reoviruses correlate with differential IRF3 activation. Differences in IRF3 activation are not caused by a blockade of the IRF3 activation by a T1 strain. Rather, differences in events during the late stages of viral entry determine the capacity of reovirus to activate host IFN-I responses. Together, our work provides insight into mechanisms of IFN-I induction by nonenveloped viruses.
Collapse
|
8
|
Anafu AA, Bowen CH, Chin CR, Brass AL, Holm GH. Interferon-inducible transmembrane protein 3 (IFITM3) restricts reovirus cell entry. J Biol Chem 2013; 288:17261-71. [PMID: 23649619 DOI: 10.1074/jbc.m112.438515] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Reoviruses are double-stranded RNA viruses that infect the mammalian respiratory and gastrointestinal tract. Reovirus infection elicits production of type I interferons (IFNs), which trigger antiviral pathways through the induction of interferon-stimulated genes (ISGs). Although hundreds of ISGs have been identified, the functions of many of these genes are unknown. The interferon-inducible transmembrane (IFITM) proteins are one class of ISGs that restrict the cell entry of some enveloped viruses, including influenza A virus. One family member, IFITM3, localizes to late endosomes, where reoviruses undergo proteolytic disassembly; therefore, we sought to determine whether IFITM3 also restricts reovirus entry. IFITM3-expressing cell lines were less susceptible to infection by reovirus, as they exhibited significantly lower percentages of infected cells in comparison to control cells. Reovirus replication was also significantly reduced in IFITM3-expressing cells. Additionally, cells expressing an shRNA targeting IFITM3 exhibited a smaller decrease in infection after IFN treatment than the control cells, indicating that endogenous IFITM3 restricts reovirus infection. However, IFITM3 did not restrict entry of reovirus infectious subvirion particles (ISVPs), which do not require endosomal proteolysis, indicating that restriction occurs in the endocytic pathway. Proteolysis of outer capsid protein μ1 was delayed in IFITM3-expressing cells in comparison to control cells, suggesting that IFITM3 modulates the function of late endosomal compartments either by reducing the activity of endosomal proteases or delaying the proteolytic processing of virions. These data provide the first evidence that IFITM3 restricts infection by a nonenveloped virus and suggest that IFITM3 targets an increasing number of viruses through a shared requirement for endosomes during cell entry.
Collapse
Affiliation(s)
- Amanda A Anafu
- Department of Biology, Colgate University, Hamilton, New York 13346, USA
| | | | | | | | | |
Collapse
|
9
|
Sandekian V, Lim D, Prud'homme P, Lemay G. Transient high level mammalian reovirus replication in a bat epithelial cell line occurs without cytopathic effect. Virus Res 2013; 173:327-35. [PMID: 23352882 DOI: 10.1016/j.virusres.2013.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/14/2013] [Accepted: 01/15/2013] [Indexed: 02/07/2023]
Abstract
Mammalian reoviruses exhibit a large host range and infected cells are generally killed; however, most studies examined only a few cell types and host species, and are probably not representative of all possible interactions between virus and host cell. Many questions thus remain concerning the nature of cellular factors that affect viral replication and cell death. In the present work, it was observed that replication of the classical mammalian reovirus serotype 3 Dearing in a bat epithelial cell line, Tb1.Lu, does not result in cell lysis and is rapidly reduced to very low levels. Prior uncoating of virions by chymotrypsin treatment, to generate infectious subviral particles, increased the initial level of infection but without any significant effect on further viral replication or cell survival. Infected cells remain resistant to virus reinfection and secrete an antiviral factor, most likely interferon, that is protective against the unrelated encephalomyocarditis virus. Although, the transformed status of a cell is believed to promote reovirus replication and viral "oncolysis", resistant Tb1.Lu cells exhibit a classical phenotype of transformed cells by forming colonies in semisolid soft agar medium. Further transduction of Tb.Lu cells with a constitutively active Ras oncogene does not seem to affect cell growth or reovirus effect on these cells. Infected Tb1.Lu cells can produce low-level of infectious virus for a long time without any apparent effect, although these cells are resistant to reinfection. The results suggest that Tb1.Lu cells can mount an unusual antiviral response. Specific properties of bat cells may thus be in part responsible for the ability of the animals to act as reservoirs for viruses in general and for novel reoviruses in particular. Their peculiar resistance to cell lysis also makes Tb1.Lu cells an attractive model to study the cellular and viral factors that determine the ability of reovirus to replicate and destroy infected cells.
Collapse
Affiliation(s)
- Véronique Sandekian
- Département de microbiologie et immunologie, Université de Montréal, Montréal, Canada H3C 3J7
| | | | | | | |
Collapse
|
10
|
Sherry B. Rotavirus and reovirus modulation of the interferon response. J Interferon Cytokine Res 2010; 29:559-67. [PMID: 19694545 DOI: 10.1089/jir.2009.0072] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The mammalian reoviruses and rotaviruses have evolved specific mechanisms to evade the Type I interferon (IFN) antiviral response. Rotavirus likely represses the IFN response by at least 4 mechanisms. First, the rotavirus protein NSP1, most likely functioning as an E3 ligase, can induce proteasome-dependent degradation of the transcription factors IRF3, IRF5, and IRF7 to prevent their induction of IFN. Second, NSP1 can induce proteasome-dependent degradation of the ubiquitin ligase complex protein beta-TrCP, resulting in stabilization of I kappaB and concomitant failure of virus to activate NF-kappaB for induction of IFN. Third, rotavirus may sequester NF-kappaB in viroplasms. And fourth, rotavirus can prevent STAT1 and STAT2 nuclear translocation. The predominant mechanism for rotavirus inhibition of the IFN response is likely both rotavirus strain-specific and cell type-specific. The mammalian reoviruses also display strain-specific differences in their modulation of the IFN response. Reovirus activates RIG-I and IPS-1 for phosphorylation of IRF3. Reovirus-induced activation of MDA5 also participates in induction if IFN-beta, perhaps through activation of NF-kappaB. Reovirus likely inhibits the IFN response by at least 3 virus strain-specific mechanisms. First, the reovirus mu2 protein can induce an unusual nuclear accumulation of IRF9 and repress IFN-stimulated gene (ISG) expression, most likely by disrupting IRF9 function as part of the heterotrimeric transcription factor complex, ISGF3. Second, the reovirus sigma 3 protein can bind dsRNA and prevent activation of the latent antiviral effector protein PKR. And third, genetic approaches have identified the reovirus lambda 2 and sigma 2 proteins in virus strain-specific modulation of the IFN response, but the significance remains unclear. In sum, members of the family Reoviridae have evolved a variety of mechanisms to subvert the host's innate protective response.
Collapse
Affiliation(s)
- Barbara Sherry
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 27606, USA.
| |
Collapse
|
11
|
Reovirus mu2 protein inhibits interferon signaling through a novel mechanism involving nuclear accumulation of interferon regulatory factor 9. J Virol 2008; 83:2178-87. [PMID: 19109390 DOI: 10.1128/jvi.01787-08] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The secreted cytokine alpha/beta interferon (IFN-alpha/beta) binds its receptor to activate the Jak-STAT signal transduction pathway, leading to formation of the heterotrimeric IFN-stimulated gene factor 3 (ISGF3) transcription complex for induction of IFN-stimulated genes (ISGs) and establishment of an antiviral state. Many viruses have evolved countermeasures to inhibit the IFN pathway, thereby subverting the innate antiviral response. Here, we demonstrate that the mildly myocarditic reovirus type 1 Lang (T1L), but not the nonmyocarditic reovirus type 3 Dearing, represses IFN induction of a subset of ISGs and that this repressor function segregates with the T1L M1 gene. Concordantly, the T1L M1 gene product, mu2, dramatically inhibits IFN-beta-induced reporter gene expression. Surprisingly, T1L infection does not degrade components of the ISGF3 complex or interfere with STAT1 or STAT2 nuclear translocation as has been observed for other viruses. Instead, infection with T1L or reassortant or recombinant viruses containing the T1L M1 gene results in accumulation of interferon regulatory factor 9 (IRF9) in the nucleus. This effect has not been previously described for any virus and suggests that mu2 modulates IRF9 interactions with STATs for both ISGF3 function and nuclear export. The M1 gene is a determinant of virus strain-specific differences in the IFN response, which are linked to virus strain-specific differences in induction of murine myocarditis. We find that virus-induced myocarditis is associated with repression of IFN function, providing new insights into the pathophysiology of this disease. Together, these data provide the first report of an increase in IRF9 nuclear accumulation associated with viral subversion of the IFN response and couple virus strain-specific differences in IFN antagonism to the pathogenesis of viral myocarditis.
Collapse
|
12
|
Brown CW, Bell JC. Oncolytic Viruses: A New Weapon to Fight Cancer. J Med Imaging Radiat Sci 2008; 39:115-127. [PMID: 31051886 DOI: 10.1016/j.jmir.2008.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Remission from cancer after viral infection was first noted in the beginning of the 20th century, and with advances in virotherapy and genetic engineering, the advent of an approved viral therapeutic in North America is fast approaching. Mechanisms of tumour selectivity and killing, along with information obtained from clinical trials are reviewed here. Although oncolytic viruses are generally safe and well tolerated, their overall anti-tumour efficacy has varied. This article outlines strategies to improve the efficacy of the oncolytic platform without compromising its impressive safety profile. It will highlight new methods being developed to quantify the activity of oncolytic viruses in real time. Harnessing the factors that control the tumour microenvironment and the immune system are the key to enhancing the oncolytic activity. The purpose of this article is to introduce and provide an overview of the current state of cancer killing of oncolytic viruses. The reader will acquire knowledge of the basic principles of oncolytic viruses and their use in the clinical setting. This review summarizes articles retrieved from Medline using key words such as "virus," "oncolytic virus," "virotherapy," "cancer," and "clinical trials." Review articles published in the English language from 2005 onward were read and corroborating data and conclusions were summarized. When appropriate, cited references were also reviewed and incorporated. The reader is directed to references we found most concise.
Collapse
Affiliation(s)
- Christopher W Brown
- Department of Microbiology & Immunology and the Ottawa Health Research Institute, University of Ottawa, Ottawa Regional Cancer Center, Ottawa, Ontario; Division of Orthopaedic Surgery, University of Ottawa, Ottawa Hospital General Campus, Ottawa, Ontario
| | - John C Bell
- Department of Microbiology & Immunology and the Ottawa Health Research Institute, University of Ottawa, Ottawa Regional Cancer Center, Ottawa, Ontario.
| |
Collapse
|
13
|
Rudd P, Lemay G. Correlation between interferon sensitivity of reovirus isolates and ability to discriminate between normal and Ras-transformed cells. J Gen Virol 2005; 86:1489-1497. [PMID: 15831962 DOI: 10.1099/vir.0.80628-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mammalian reoviruses exhibit a propensity to replicate in transformed cells. It is currently believed that the interferon-inducible RNA-dependent protein kinase (PKR), an intracellular host-cell resistance factor that is inhibited by an activated Ras-dependent pathway in transformed cells, is responsible for this discrimination. In the present study, reovirus isolates differing in their sensitivity to interferon were obtained by chemical mutagenesis, and examined for their replicative properties in parental and Ras-transformed mouse NIH-3T3 cells. It was observed that most isolates can bypass resistance mechanisms of parental cells at high m.o.i., and that there is a correlation between the ability to discriminate between transformed and parental cells, and interferon sensitivity. Most interestingly, an interferon-hypersensitive mutant virus was more dependent on Ras activation than any other viral isolate. Altogether, this suggests that optimal reovirus isolates could be selected to attack tumour cells depending on the nature of the alterations in interferon-inducible pathways found in these cells.
Collapse
Affiliation(s)
- Penny Rudd
- Département de Microbiologie et Immunologie, Université de Montréal, PO Box 6128, Station centre-ville, Montréal, Québec, Canada, H3C 3J7
| | - Guy Lemay
- Département de Microbiologie et Immunologie, Université de Montréal, PO Box 6128, Station centre-ville, Montréal, Québec, Canada, H3C 3J7
| |
Collapse
|
14
|
González-López C, Martínez-Costas J, Esteban M, Benavente J. Evidence that avian reovirus sigmaA protein is an inhibitor of the double-stranded RNA-dependent protein kinase. J Gen Virol 2003; 84:1629-1639. [PMID: 12771434 DOI: 10.1099/vir.0.19004-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The results of a previous study demonstrated that avian reovirus is highly resistant to the antiviral effects of interferon and suggested that the double-stranded RNA (dsRNA)-binding sigmaA protein might play an important role in that resistance. To gather more evidence on the interferon-inhibitory activity of sigmaA protein, its gene was cloned into the prokaryotic maltose-binding protein (MBP) gene fusion vector pMalC and into the recombinant vaccinia virus WRS2. The two recombinant sigmaA proteins displayed a dsRNA-binding affinity similar to that of sigmaA protein synthesized in avian reovirus-infected cells. Interestingly, MBP-sigmaA, but not MBP, was able to relieve the translation-inhibitory activity of dsRNA in reticulocyte lysates by blocking the activation of endogenous dsRNA-dependent enzymes. In addition, transient expression of sigmaA protein in HeLa cells rescued gene expression of a vaccinia virus mutant lacking the E3L gene, and insertion of the sigmaA-encoding gene into vaccinia virus conferred protection for the virus against interferon in chicken cells. Further studies demonstrated that expression of recombinant sigmaA in mammalian cells interfered with dsRNA-dependent protein kinase (PKR) function. From these results we conclude that sigmaA is capable of reversing the interferon-induced antiviral state by down-regulating PKR activity in a manner similar to other virus-encoded dsRNA-binding proteins.
Collapse
Affiliation(s)
- Claudia González-López
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José Martínez-Costas
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Mariano Esteban
- Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Javier Benavente
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
15
|
Abstract
Reovirus-induced murine myocarditis provides an excellent model for the human disease. Cardiac tissue damage varies between reovirus strains, and is caused by a direct viral cytopathogenic effect. One determinant of virus-induced cardiac tissue damage is the cardiac interferon-beta (IFN-beta) response to viral infection. Nonmyocarditic reoviruses induce more IFN-beta and/or are more sensitive to the antiviral effects of IFN-beta in cardiac cells than myocarditis reoviruses. The roles of interferon regulatory factors (IRFs) in the cardiac response to viral infection are reviewed, and results suggest possible cardiac-specific variations in IRF-3 and IRF-1 function. In addition, data are presented indicating that the role of IRF-2 in regulation of IFN-beta expression is cell type-specific and differs between skeletal and cardiac muscle cells. Together, results suggest that the heart may provide a unique environment for IRF function, critical for protection against virus-induced cardiac damage.
Collapse
Affiliation(s)
- Barbara Sherry
- Department of Microbiology, Pathology and Parasitology, College of Veterinary Medicine, North Carolina State University, Raleigh 27606, USA.
| |
Collapse
|
16
|
Abstract
As obligate intracellular parasites, viruses rely exclusively on the translational machinery of the host cell for the synthesis of viral proteins. This relationship has imposed numerous challenges on both the infecting virus and the host cell. Importantly, viruses must compete with the endogenous transcripts of the host cell for the translation of viral mRNA. Eukaryotic viruses have thus evolved diverse mechanisms to ensure translational efficiency of viral mRNA above and beyond that of cellular mRNA. Mechanisms that facilitate the efficient and selective translation of viral mRNA may be inherent in the structure of the viral nucleic acid itself and can involve the recruitment and/or modification of specific host factors. These processes serve to redirect the translation apparatus to favor viral transcripts, and they often come at the expense of the host cell. Accordingly, eukaryotic cells have developed antiviral countermeasures to target the translational machinery and disrupt protein synthesis during the course of virus infection. Not to be outdone, many viruses have answered these countermeasures with their own mechanisms to disrupt cellular antiviral pathways, thereby ensuring the uncompromised translation of virion proteins. Here we review the varied and complex translational programs employed by eukaryotic viruses. We discuss how these translational strategies have been incorporated into the virus life cycle and examine how such programming contributes to the pathogenesis of the host cell.
Collapse
Affiliation(s)
- M Gale
- University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | | | | |
Collapse
|
17
|
Bergeron J, Mabrouk T, Garzon S, Lemay G. Characterization of the thermosensitive ts453 reovirus mutant: increased dsRNA binding of sigma 3 protein correlates with interferon resistance. Virology 1998; 246:199-210. [PMID: 9657939 DOI: 10.1006/viro.1998.9188] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mutation harbored by the reovirus ts453 thermosensitive mutant has been assigned to the S4 gene encoding the major outer capsid protein sigma 3. Previous gene sequencing has identified a nonconservative amino acid substitution located near the zinc finger of sigma 3 protein in the mutant. Coexpression in COS cells of the sigma 3 protein presenting this amino acid substitution (N16K), together with the other major capsid protein mu 1, has also revealed an altered interaction between the two proteins; this altered interaction prevents the sigma 3-dependent cleavage of mu 1 to mu 1C. This could explain the lack of outer capsid assembly observed during ts453 virus infection at nonpermissive temperature. In the present study, we pursued the characterization of this mutant sigma 3 protein. Although the N16K mutation is located close to the zinc finger region, it did not affect the ability of the protein to bind zinc. In contrast, this mutation, as well as mutations within the zinc finger motif itself, can increase the binding of the protein to double-stranded RNA (dsRNA). It also appears that the N16K mutant protein is more efficiently transported to the nucleus than the wild-type protein, an observation consistent with the postulated role of dsRNA binding in sigma 3 nuclear presence. The lack of association with mu 1, and/or the increased dsRNA-binding activity of sigma 3, could be responsible for a partial resistance of the ts453 virus to interferon treatment and this could have important consequences in the context of protein synthesis regulation during natural reovirus infection.
Collapse
Affiliation(s)
- J Bergeron
- Département de Microbiologie et Immunologie, Université de Montréal, Québec, Canada
| | | | | | | |
Collapse
|
18
|
Tyler KL, Sokol RJ, Oberhaus SM, Le M, Karrer FM, Narkewicz MR, Tyson RW, Murphy JR, Low R, Brown WR. Detection of reovirus RNA in hepatobiliary tissues from patients with extrahepatic biliary atresia and choledochal cysts. Hepatology 1998; 27:1475-82. [PMID: 9620316 DOI: 10.1002/hep.510270603] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Extrahepatic biliary atresia (EHBA) and choledochal cysts (CDC) are important causes of obstructive jaundice in pediatric patients. Viruses in general, and reoviruses in particular, have long been considered as possible etiologic agents responsible for inciting the inflammatory process that leads to these infantile obstructive cholangiopathies. In an effort to determine whether reovirus infection is associated with these disorders, we used a sensitive and specific reverse-transcriptase polymerase chain reaction (RT-PCR) technique designed to amplify a portion of the reovirus L1 gene segment from extracts of liver and/or biliary tissues. These tissues were obtained at the time of liver biopsy or surgical procedures from 23 patients with EHBA, 9 patients with CDC, and 33 patients with other hepatobiliary diseases. Hepatic and biliary tissues obtained at autopsy from 17 patients who died without known liver or biliary disease were also analyzed. Reovirus RNA was detected in hepatic and/or biliary tissues from 55% of patients with EHBA and 78% of patients with CDC. Reovirus RNA was found also in extracts of hepatic and/or biliary tissue from 21% of patients with other hepatobiliary diseases and in 12% of autopsy cases. The prevalence of reovirus RNA in tissues from patients with EHBA and CDC was significantly greater than that in patients with other hepatobiliary diseases (chi2 P = .012 EHBA vs. OTHER, P = .001 CDC vs. OTHER), or AUTOPSY cases (chi2 P = .006 EHBA vs. AUTOPSY, P < .001 CDC vs. AUTOPSY).
Collapse
Affiliation(s)
- K L Tyler
- Department of Neurology, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Oberhaus SM, Dermody TS, Tyler KL. Apoptosis and the cytopathic effects of reovirus. Curr Top Microbiol Immunol 1998; 233:23-49. [PMID: 9599930 DOI: 10.1007/978-3-642-72095-6_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- S M Oberhaus
- Department of Neurology, University of Colorado Health Sciences Center, Denver 80262, USA.
| | | | | |
Collapse
|
20
|
Jacobs BL, Langland JO. Reovirus sigma 3 protein: dsRNA binding and inhibition of RNA-activated protein kinase. Curr Top Microbiol Immunol 1998; 233:185-96. [PMID: 9599927 DOI: 10.1007/978-3-642-72092-5_9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- B L Jacobs
- Department of Microbiology, Arizona State University, Tempe 85287-2701, USA
| | | |
Collapse
|
21
|
Abstract
Reovirus induces IFN, and reovirus is sensitive to the antiviral actions of IFN. The characteristics of the IFN-inducing capacity of reovirus, and the antiviral actions of IFN exerted against reovirus, are dependent upon the specific combination of reovirus strain, host cell line, and IFN type. Responses, both IFN induction and IFN action, differ quantitatively if not qualitatively and are dependent upon the virus, cell, and IFN combination. Stable natural dsRNA, identified as the form of nucleic acid that constitutes the reovirus genome, is centrally involved in the function of at least three IFN-induced enzymes. Protein phosphorylation by PKR, RNA editing by the ADAR adenosine deaminase, and RNA degradation by the 2',5'-oligoA pathway all involve dsRNA either as an effector or as a substrate. Considerable evidence implicates PKR as a particularly important contributor to the IFN-induced antiviral state displayed at the level of the single virus-infected cell, where the translation of viral mRNA is often observed to be inhibited following treatment with IFN-alpha/beta. In the whole animal infected with reovirus, elevated cellular immune responses mediated by enhanced expression of MHC class I and class II antigens induced by IFN-alpha/beta or IFN-gamma may contribute significantly to the overall antiviral response.
Collapse
Affiliation(s)
- C E Samuel
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara 93106-9610, USA.
| |
Collapse
|
22
|
Gale M, Katze MG. Molecular mechanisms of interferon resistance mediated by viral-directed inhibition of PKR, the interferon-induced protein kinase. Pharmacol Ther 1998; 78:29-46. [PMID: 9593328 DOI: 10.1016/s0163-7258(97)00165-4] [Citation(s) in RCA: 308] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The interferon (IFN)-induced cellular antiviral response is the first line of defense against viral infection within an animal host. In order to establish a productive infection, eukaryotic viruses must first overcome the IFN-induced blocks imposed on viral replication. The double-stranded RNA-activated protein kinase (PKR) is a key component mediating the antiviral actions of IFN. This IFN-induced protein kinase can restrict viral replication through its ability to phosphorylate the protein synthesis initiation factor eukaryotic initiation factor-2 alpha-subunit and reduce levels of viral protein synthesis. Viruses, therefore, must block the function of PKR in order to avoid these deleterious antiviral effects associated with PKR activity. Indeed, many viruses have developed effective measures to repress PKR activity during infection. This review will focus primarily on an overview of the different molecular mechanisms employed by these viruses to meet a common goal: the inhibition of PKR function, uncompromised viral protein synthesis, and unrestricted virus replication. The past few years have seen exciting new advances in this area. Rather unexpectedly, this area of research has benefited from the use of the yeast system to study PKR. Other recent advances include studies on PKR regulation by the herpes simplex viruses and data from our laboratory on the medically important hepatitis C viruses. We speculate that IFN is ineffective as a therapeutic agent against hepatitis C virus because the virus can effectively repress PKR function. Finally, we will discuss briefly the future directions of this PKR field.
Collapse
Affiliation(s)
- M Gale
- Department of Microbiology, School of Medicine, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
23
|
Sherry B, Torres J, Blum MA. Reovirus induction of and sensitivity to beta interferon in cardiac myocyte cultures correlate with induction of myocarditis and are determined by viral core proteins. J Virol 1998; 72:1314-23. [PMID: 9445032 PMCID: PMC124610 DOI: 10.1128/jvi.72.2.1314-1323.1998] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Reovirus-induced acute myocarditis in mice serves as a model to investigate non-immune-mediated mechanisms of viral myocarditis. We have used primary cardiac myocyte cultures infected with a large panel of myocarditic and nonmyocarditic reassortant reoviruses to identify determinants of viral myocarditic potential. Here, we report that while both myocarditic and nonmyocarditic reoviruses kill cardiac myocytes, viral myocarditic potential correlates with viral spread through cardiac myocyte cultures and with cumulative cell death. To address the role of secreted interferon (IFN), we added anti-IFN-alpha/beta antibody to infected cardiac myocyte cultures. Antibody benefited nonmyocarditic more than myocarditic virus spread (P < 0.001), and this benefit was associated with the reovirus M1 and L2 genes. There was no benefit for a differentiated skeletal muscle cell line culture (C2C12 cells), suggesting cell type specificity. IFN-beta induction in reovirus-infected cardiac myocyte cultures correlated with viral myocarditic potential (P = 0.006) and was associated with the reovirus M1, S2, and L2 genes. Sensitivity to the antiviral effects of IFN-alpha/beta added to cardiac myocyte cultures also correlated with viral myocarditic potential (P = 0.004) and was associated with the same reovirus genes. Several reoviruses induced IFN-beta levels discordant with their myocarditic phenotypes, and for those tested, sensitivity to IFN-alpha/beta compensated for the anomalous induction levels. Thus, the combination of induction of and sensitivity to IFN-alpha/beta is a determinant of reovirus myocarditic potential. Finally, a nonmyocarditic reovirus induced cardiac lesions in mice depleted of IFN-alpha/beta, demonstrating that IFN-alpha/beta is a determinant of reovirus-induced myocarditis. This provides the first identification of reovirus genes associated with IFN induction and sensitivity and provides the first evidence that IFN-beta can be a determinant of viral myocarditis and reovirus disease.
Collapse
Affiliation(s)
- B Sherry
- Department of Microbiology, Pathology, and Parasitology, College of Veterinary Medicine, North Carolina State University, Raleigh 27606, USA.
| | | | | |
Collapse
|
24
|
Danis C, Mabrouk T, Faure M, Lemay G. Interferon has no protective effect during acute or persistent reovirus infection of mouse SC1 fibroblasts. Virus Res 1997; 51:139-49. [PMID: 9498612 DOI: 10.1016/s0168-1702(97)00088-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mouse SC1 fibroblasts can support reovirus multiplication although they exhibit a partial resistance to viral-induced cytopathology; a significant percentage of infected SC1 cells can remain viable while becoming persistently infected by the virus. In the present study, the possible role of interferon on the fate of reovirus-infected cells was investigated. Treatment of mouse L fibroblasts with beta-interferon resulted in a reduced viral efficiency of plating while essentially no effect was observed on SC1 cells; the results were similar with the unrelated encephalomyocarditis virus. This suggests that the interferon-regulated pathways are somehow deficient in SC1 cells even though these cells do respond to interferon treatment, as evidenced by an increase in the level of active interferon-inducible protein kinase double-stranded RNA-dependent (PKR) enzyme. Persistently infected SC1 cells constitutively release interferon even though treatment with anti-interferon antiserum suggests that interferon presence is unrelated to maintenance of the persistent state. The possible significance of the correlation between the lack of interferon-induced antiviral effect and relative resistance of SC1 cells to viral-induced cytopathology is briefly discussed.
Collapse
Affiliation(s)
- C Danis
- Département de Microbiologie et Immunologie, Université de Montréal, Quebec, Canada
| | | | | | | |
Collapse
|
25
|
Joklik WK, Roner MR. Molecular recognition in the assembly of the segmented reovirus genome. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 53:249-81. [PMID: 8650305 DOI: 10.1016/s0079-6603(08)60147-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- W K Joklik
- Department of Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
26
|
Abstract
Previously, we showed that the M1 gene (encoding a viral core protein, mu 2, whose function is unknown) was associated with the efficiently myocarditic phenotype of a reovirus variant, 8B. Here, we have extended our genetic analysis of 8B and conducted genetic analyses of two other reovirus strains (T1L [serotype 1 strain Lang] and Abney). Our results demonstrate that multiple viral core proteins are determinants of reovirus-induced myocarditis. In contrast to our previous association of mu 2 with induction of myocarditis, this provides strong evidence that a core function achieved through the interaction of multiple core proteins is responsible for induction of the disease.
Collapse
Affiliation(s)
- B Sherry
- Department of Microbiology, Pathology, College of Veterinary Medicine, North Carolina State University, Raleigh 27606
| | | |
Collapse
|
27
|
Lloyd RM, Shatkin AJ. Translational stimulation by reovirus polypeptide sigma 3: substitution for VAI RNA and inhibition of phosphorylation of the alpha subunit of eukaryotic initiation factor 2. J Virol 1992; 66:6878-84. [PMID: 1433498 PMCID: PMC240298 DOI: 10.1128/jvi.66.12.6878-6884.1992] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
COS cells transfected with plasmids that activate DAI depend on expression of virus-associated I (VAI) RNA to prevent the inhibitory effects of the alpha subunit of eukaryotic initiation factor 2 (eIF-2 alpha) kinase (DAI) and restore the translation of vector-derived dihydrofolate reductase mRNA. This VAI RNA requirement could be completely replaced by reovirus polypeptide sigma 3, consistent with its double-stranded RNA (dsRNA)-binding activity. S4 gene transfection of 293 cells also partially restored adenovirus protein synthesis after infection with the VAI-negative dl331 mutant. In dl331-infected 293 cells, eIF-2 alpha was present mainly in the acidic, phosphorylated form, and trans complementation with polypeptide sigma 3 or VAI RNA decreased the proportion of eIF-2 alpha (P) from approximately 85 to approximately 30%. Activation of DAI by addition of dsRNA to extracts of S4 DNA-transfected COS cells required 10-fold-higher levels of dsRNA than extracts made from cells that were not producing polypeptide sigma 3. In extracts of reovirus-infected mouse L cells, the concentration of dsRNA needed to activate DAI was dependent on the viral serotype used for the infection. Although the proportion of eIF-2 alpha (P) was greater than that in uninfected cells, most of the factor remained in the unphosphorylated form, even at 16 h after infection, consistent with the partial inhibition of host protein synthesis observed with all three viral serotypes. The results indicate that reovirus polypeptide sigma 3 participates in the regulation of protein synthesis by modulating DAI and eIF-2 alpha phosphorylation.
Collapse
Affiliation(s)
- R M Lloyd
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey 08854-5638
| | | |
Collapse
|
28
|
Chang HW, Watson JC, Jacobs BL. The E3L gene of vaccinia virus encodes an inhibitor of the interferon-induced, double-stranded RNA-dependent protein kinase. Proc Natl Acad Sci U S A 1992; 89:4825-9. [PMID: 1350676 PMCID: PMC49180 DOI: 10.1073/pnas.89.11.4825] [Citation(s) in RCA: 377] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A vaccinia virus-encoded double-stranded RNA-binding protein, p25, has been previously implicated in inhibition of the interferon-induced, double-stranded RNA-activated protein kinase. In this study, we have identified the vaccinia viral gene (WR strain) that encodes p25. Amino acid sequence analysis of a chymotryptic fragment of p25 revealed a close match to the vaccinia virus (Copenhagen strain) E3L gene. The WR strain E3L gene was cloned and expressed either in COS-1 cells or in rabbit reticulocyte lysates in vitro. A M(r) 25,000 polypeptide that could bind to poly(rI).poly(rC)-agarose and that reacted with p25-specific antiserum was produced in each case. In addition, COS cells expressing E3L gene products inhibited activation of the double-stranded RNA-activated protein kinase in extracts from interferon-treated cells. Removal of E3L-encoded products by adsorption with anti-p25 antiserum resulted in loss of kinase inhibitory activity. These results demonstrate that the vaccinia virus E3L gene encodes p25 and that the products of the E3L gene have kinase inhibitory activity. Comparison of the deduced amino acid sequence of the E3L gene products with the protein sequence data base revealed a region closely related to the human interferon-induced, double-stranded RNA-activated protein kinase.
Collapse
Affiliation(s)
- H W Chang
- Department of Microbiology, Arizona State University, Tempe 85287-2701
| | | | | |
Collapse
|
29
|
Seliger LS, Giantini M, Shatkin AJ. Translational effects and sequence comparisons of the three serotypes of the reovirus S4 gene. Virology 1992; 187:202-10. [PMID: 1736524 DOI: 10.1016/0042-6822(92)90308-c] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Reovirus S4 RNA codes for the dsRNA-binding polypeptide sigma 3, a major virion outer capsid component that also has translational effects in both infected and transfected mammalian cells. To compare the composition and properties of the three different serotypes of sigma 3, a DNA copy of the type 2 gene was cloned and sequenced. The total lengths (1196) and the sequences of leader (33 nucleotides) and trailer (66 nucleotides) regions are highly conserved among the three S4 serotypes. The type 1 and 3 S4 genes are highly related (77 mismatches). However, the type 2 gene contains many mismatches relative to the type 1 and 3 genes (260 and 270 positions, respectively). Most of the mismatches are third position changes, resulting in sigma 3 polypeptides that are 90% or more identical. Transient expression vectors, constructed by replacing the chloramphenicol acetyltransferase (CAT) gene in pRSVCAT with S4 DNA, were used to test the effects of polypeptide sigma 3 on CAT expression in cotransfected COS cells. Transfection with the correctly oriented DNAs resulted in synthesis of the corresponding sigma 3 polypeptides which enhanced CAT expression. The type 2 and type 3 S4 genes were considerably more stimulatory than type 1 when compared to CAT DNA alone. However, with all three serotypes the CAT activity was significantly higher in cells cotransfected with S4 DNA in the correct orientation as compared to the reverse arrangement.
Collapse
Affiliation(s)
- L S Seliger
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey 08854-5638
| | | | | |
Collapse
|