1
|
Losay VA, Damania B. Unraveling the Kaposi Sarcoma-Associated Herpesvirus (KSHV) Lifecycle: An Overview of Latency, Lytic Replication, and KSHV-Associated Diseases. Viruses 2025; 17:177. [PMID: 40006930 PMCID: PMC11860327 DOI: 10.3390/v17020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) is an oncogenic gammaherpesvirus and the etiological agent of several diseases. These include the malignancies Kaposi sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman disease (MCD), as well as the inflammatory disorder KSHV inflammatory cytokine syndrome (KICS). The KSHV lifecycle is characterized by two phases: a default latent phase and a lytic replication cycle. During latency, the virus persists as an episome within host cells, expressing a limited subset of viral genes to evade immune surveillance while promoting cellular transformation. The lytic phase, triggered by various stimuli, results in the expression of the full viral genome, production of infectious virions, and modulation of the tumor microenvironment. Both phases of the KSHV lifecycle play crucial roles in driving viral pathogenesis, influencing oncogenesis and immune evasion. This review dives into the intricate world of the KSHV lifecycle, focusing on the molecular mechanisms that drive its latent and lytic phases, their roles in disease progression, and current therapeutic strategies.
Collapse
Affiliation(s)
- Victor A. Losay
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA;
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA;
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Moore PS, Chang Y. Are There More Human Cancer Viruses Left to Be Found? Annu Rev Virol 2024; 11:239-259. [PMID: 39326883 DOI: 10.1146/annurev-virology-111821-103721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Of the thousands of viruses infecting humans, only seven cause cancer in the general population. Tumor sequencing is now a common cancer medicine procedure, and so it seems likely that more human cancer viruses already would have been found if they exist. Here, we review cancer characteristics that can inform a dedicated search for new cancer viruses, focusing on Kaposi sarcoma herpesvirus and Merkel cell polyomavirus as the most recent examples of successful genomic and transcriptomic searches. We emphasize the importance of epidemiology in determining which cancers to examine and describe approaches to virus discovery. Barriers to virus discovery, such as novel genomes and viral suppression of messenger RNA expression, may exist that prevent virus discovery using existing approaches. Optimally virus hunting should be performed in such a way that if no virus is found, the tumor can be reasonably excluded from having an infectious etiology and new information about the biology of the tumor can be found.
Collapse
Affiliation(s)
- Patrick S Moore
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; ,
| | - Yuan Chang
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; ,
| |
Collapse
|
3
|
Motlhale M, Muchengeti M, Bradshaw D, Chen WC, Singini MG, de Villiers CB, Lewis CM, Bender N, Mathew CG, Newton R, Waterboer T, Singh E, Sitas F. Kaposi sarcoma-associated herpesvirus, HIV-1 and Kaposi sarcoma risk in black South Africans diagnosed with cancer during antiretroviral treatment rollout. Int J Cancer 2023; 152:2081-2089. [PMID: 36727526 DOI: 10.1002/ijc.34454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 02/03/2023]
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) causes Kaposi sarcoma (KS). The risk of KS is amplified in HIV-immunosuppressed individuals and antiretroviral therapy (ART) reduces KS incidence. Reliable data on the relationship between these factors are lacking in Africa. We used questionnaires and serum from 7886 black South Africans (18-74 years) with incident cancer, recruited between 1995 and 2016. ART rollout started in 2004. We measured associations between KS, HIV-1 and KSHV before and after ART rollout. We measured seropositivity to HIV-1, KSHV latency-associated nuclear antigen (LANA) and glycoprotein (K8.1) and calculated case-control-adjusted odds ratios (ORadj ) and 95% confidence intervals (CI) in relation to KS and KSHV infection, before (1995-2004), early (2005-2009) and late (2010-2016) ART rollout periods. KSHV seropositivity among 1237 KS cases was 98%. Among 6649 controls, KSHV seropositivity was higher in males (ORadj = 1.4 [95%CI 1.23-1.52]), in persons with HIV, (ORadj = 4.2 [95%CI 3.74-4.73]) and lower in high school leavers (ORadj = 0.7 [95%CI 0.59-0.83]). KSHV seropositivity declined over the three ART rollout periods (37%, 28% and 28%, Ptrend < .001) coinciding with increases in high school leavers over the same periods (46%, 58% and 67%, Ptrend < .001). HIV-1 seroprevalence increased from 10% in the pre-ART period to 22% in the late ART period (Ptrend < .001). Compared to HIV-1 and KSHV seronegatives, KSHV seropositives yielded an OR for KS of 26 (95%CI 11-62) in HIV-1 seronegative participants and an OR of 2501 (95%CI 1083-5776) in HIV-1 seropositive participants. HIV-1 increases the risk of KS in those infected with KSHV by 100-fold. Declines in KSHV seroprevalence coincide with ART rollout and with improvements in educational standards and general hygiene.
Collapse
Affiliation(s)
- Melitah Motlhale
- National Cancer Registry, National Health Laboratory Service, Johannesburg, South Africa
- Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Mazvita Muchengeti
- National Cancer Registry, National Health Laboratory Service, Johannesburg, South Africa
- Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
- South African DSI-NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), Stellenbosch University, Stellenbosch, South Africa
| | - Debbie Bradshaw
- Burden of Disease Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Wenlong Carl Chen
- National Cancer Registry, National Health Laboratory Service, Johannesburg, South Africa
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mwiza Gideon Singini
- National Cancer Registry, National Health Laboratory Service, Johannesburg, South Africa
- Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Chantal Babb de Villiers
- Division of Human Genetics, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Cathryn M Lewis
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Noemi Bender
- Division of Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christopher G Mathew
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Human Genetics, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Robert Newton
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
- University of York, York, UK
| | - Tim Waterboer
- Division of Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elvira Singh
- National Cancer Registry, National Health Laboratory Service, Johannesburg, South Africa
- Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Freddy Sitas
- Burden of Disease Research Unit, South African Medical Research Council, Cape Town, South Africa
- Centre for Primary Health Care and Equity, School of Population Health, University of New South Wales Sydney, Sydney, Australia
- Menzies Centre for Health Policy and Economics, School of Public Health, University of Sydney, Sydney, Australia
| |
Collapse
|
4
|
Kaposi's Sarcoma-Associated Herpesvirus ORF21 Enhances the Phosphorylation of MEK and the Infectivity of Progeny Virus. Int J Mol Sci 2023; 24:ijms24021238. [PMID: 36674756 PMCID: PMC9867424 DOI: 10.3390/ijms24021238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus-8, is the causative agent of Kaposi's sarcoma, Castleman's disease, and primary effusion lymphoma. Although the functions of the viral thymidine kinases (vTK) of herpes simplex virus-1/2 are well understood, that of KSHV ORF21 (an ortholog of vTK) is largely unknown. Here, we investigated the role of ORF21 in lytic replication and infection by generating two ORF21-mutated KSHV BAC clones: ORF21-kinase activity deficient KSHV (21KD) and stop codon-induced ORF21-deleted KSHV (21del). The results showed that both ORF21 mutations did not affect viral genome replication, lytic gene transcription, or the production of viral genome-encapsidated particles. The ORF21 molecule-dependent function, other than the kinase function of ORF21, was involved in the infectivity of the progeny virus. ORF21 was expressed 36 h after the induction of lytic replication, and endogenously expressed ORF21 was localized in the whole cytoplasm. Moreover, ORF21 upregulated the MEK phosphorylation and anchorage-independent cell growth. The inhibition of MEK signaling by U0126 in recipient target cells suppressed the number of progeny virus-infected cells. These suggest that ORF21 transmitted as a tegument protein in the progeny virus enhances the new infection through MEK up-regulation in the recipient cell. Our findings indicate that ORF21 plays key roles in the infection of KSHV through the manipulation of the cellular function.
Collapse
|
5
|
Casper C, Corey L, Cohen JI, Damania B, Gershon AA, Kaslow DC, Krug LT, Martin J, Mbulaiteye SM, Mocarski ES, Moore PS, Ogembo JG, Phipps W, Whitby D, Wood C. KSHV (HHV8) vaccine: promises and potential pitfalls for a new anti-cancer vaccine. NPJ Vaccines 2022; 7:108. [PMID: 36127367 PMCID: PMC9488886 DOI: 10.1038/s41541-022-00535-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/02/2022] [Indexed: 01/25/2023] Open
Abstract
Seven viruses cause at least 15% of the total cancer burden. Viral cancers have been described as the "low-hanging fruit" that can be potentially prevented or treated by new vaccines that would alter the course of global human cancer. Kaposi sarcoma herpesvirus (KSHV or HHV8) is the sole cause of Kaposi sarcoma, which primarily afflicts resource-poor and socially marginalized populations. This review summarizes a recent NIH-sponsored workshop's findings on the epidemiology and biology of KSHV as an overlooked but potentially vaccine-preventable infection. The unique epidemiology of this virus provides opportunities to prevent its cancers if an effective, inexpensive, and well-tolerated vaccine can be developed and delivered.
Collapse
Affiliation(s)
- Corey Casper
- Infectious Disease Research Institute, 1616 Eastlake Ave. East, Suite 400, Seattle, WA, 98102, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institutes of Health, Bldg. 50, Room 6134, 50 South Drive, MSC8007, Bethesda, MD, 20892-8007, USA
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center & Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, US
| | - Anne A Gershon
- Department of Pediatrics, Vagelos College of Physicians & Surgeons, Columbia University, 630 West 168th Street, New York, NY10032, US
| | - David C Kaslow
- PATH Essential Medicines, PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA, USA
| | - Laurie T Krug
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Jeffrey Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Sam M Mbulaiteye
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, HHS, 9609 Medical Center Dr, Rm. 6E118 MSC 3330, Bethesda, MD, 20892, USA
| | | | - Patrick S Moore
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - Javier Gordon Ogembo
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Warren Phipps
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center; Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Denise Whitby
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Charles Wood
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| |
Collapse
|
6
|
Moorad R, Juarez A, Landis JT, Pluta LJ, Perkins M, Cheves A, Dittmer DP. Whole-genome sequencing of Kaposi sarcoma-associated herpesvirus (KSHV/HHV8) reveals evidence for two African lineages. Virology 2022; 568:101-114. [PMID: 35152042 PMCID: PMC8915436 DOI: 10.1016/j.virol.2022.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/07/2022] [Accepted: 01/16/2022] [Indexed: 12/28/2022]
Abstract
Kaposi sarcoma (KS)-associated herpesvirus (KSHV/HHV-8) was first sequenced from the body cavity (BC) lymphoma cell line, BC-1, in 1996. Few other KSHV genomes have been reported. Our knowledge of sequence variation for this virus remains spotty. This study reports additional genomes from historical US patient samples and from African KS biopsies. It describes an assay that spans regions of the virus that cannot be covered by short read sequencing. These include the terminal repeats, the LANA repeats, and the origins of replication. A phylogenetic analysis, based on 107 genomes, identified three distinct clades; one containing isolates from USA/Europe/Japan collected in the 1990s and two of Sub-Saharan Africa isolates collected since 2010. This analysis indicates that the KSHV strains circulating today differ from the isolates collected at the height of the AIDS epidemic. This analysis helps experimental designs and potential vaccine studies.
Collapse
Affiliation(s)
- Razia Moorad
- Lineberger Comprehensive Cancer Center, School of Medicine, Department of Immunology and Microbiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Angelica Juarez
- Lineberger Comprehensive Cancer Center, School of Medicine, Department of Immunology and Microbiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Justin T Landis
- Lineberger Comprehensive Cancer Center, School of Medicine, Department of Immunology and Microbiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Linda J Pluta
- Lineberger Comprehensive Cancer Center, School of Medicine, Department of Immunology and Microbiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Megan Perkins
- Lineberger Comprehensive Cancer Center, School of Medicine, Department of Immunology and Microbiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Avery Cheves
- Lineberger Comprehensive Cancer Center, School of Medicine, Department of Immunology and Microbiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dirk P Dittmer
- Lineberger Comprehensive Cancer Center, School of Medicine, Department of Immunology and Microbiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Lue JK, Downs-Canner S, Chaudhuri J. The role of B cells in the development, progression, and treatment of lymphomas and solid tumors. Adv Immunol 2022; 154:71-117. [PMID: 36038195 DOI: 10.1016/bs.ai.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
B cells are integral components of the mammalian immune response as they have the ability to generate antibodies against an almost infinite array of antigens. Over the past several decades, significant scientific progress has been made in understanding that this enormous B cell diversity contributes to pathogen clearance. However, our understanding of the humoral response to solid tumors and to tumor-specific antigens is unclear. In this review, we first discuss how B cells interact with other cells in the tumor microenvironment and influence the development and progression of various solid tumors. The ability of B lymphocytes to generate antibodies against a diverse repertoire of antigens and subsequently tailor the humoral immune response to specific pathogens relies on their ability to undergo genomic alterations during their development and differentiation. We will discuss key transforming events that lead to the development of B cell lymphomas. Overall, this review provides a foundation for innovative therapeutic interventions for both lymphoma and solid tumor malignancies.
Collapse
Affiliation(s)
- Jennifer K Lue
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| | - Stephanie Downs-Canner
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| |
Collapse
|
8
|
Cellular Receptors Involved in KSHV Infection. Viruses 2021; 13:v13010118. [PMID: 33477296 PMCID: PMC7829929 DOI: 10.3390/v13010118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
The process of Kaposi’s Sarcoma Herpes Virus’ (KSHV) entry into target cells is complex and engages several viral glycoproteins which bind to a large range of host cell surface molecules. Receptors for KSHV include heparan sulphate proteoglycans (HSPGs), several integrins and Eph receptors, cystine/glutamate antiporter (xCT) and Dendritic Cell-Specific Intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN). This diverse range of potential binding and entry sites allows KSHV to have a broad cell tropism, and entry into specific cells is dependent on the available receptor repertoire. Several molecules involved in KSHV entry have been well characterized, particularly those postulated to be associated with KSHV-associated pathologies such as Kaposi’s Sarcoma (KS). In this review, KSHV infection of specific cell types pertinent to its pathogenesis will be comprehensively summarized with a focus on the specific cell surface binding and entry receptors KSHV exploits to gain access to a variety of cell types. Gaps in the current literature regarding understanding interactions between KSHV glycoproteins and cellular receptors in virus infection are identified which will lead to the development of virus infection intervention strategies.
Collapse
|
9
|
An Update of the Virion Proteome of Kaposi Sarcoma-Associated Herpesvirus. Viruses 2020; 12:v12121382. [PMID: 33276600 PMCID: PMC7761624 DOI: 10.3390/v12121382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/19/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
The virion proteins of Kaposi sarcoma-associated herpesvirus (KSHV) were initially characterized in 2005 in two separate studies that combined the detection of 24 viral proteins and a few cellular components via LC-MS/MS or MALDI-TOF. Despite considerable advances in the sensitivity and specificity of mass spectrometry instrumentation in recent years, leading to significantly higher yields in detections, the KSHV virion proteome has not been revisited. In this study, we have re-examined the protein composition of purified KSHV virions via ultra-high resolution Qq time-of-flight mass spectrometry (UHR-QqTOF). Our results confirm the detection of all previously reported virion proteins, in addition to 17 other viral proteins, some of which have been characterized as virion-associated using other methods, and 10 novel proteins identified as virion-associated for the first time in this study. These results add KSHV ORF9, ORF23, ORF35, ORF48, ORF58, ORF72/vCyclin, K3, K9/vIRF1, K10/vIRF4, and K10.5/vIRF3 to the list of KSHV proteins that can be incorporated into virions. The addition of these proteins to the KSHV virion proteome provides novel and important insight into early events in KSHV infection mediated by virion-associated proteins. Data are available via ProteomeXchange with identifier PXD022626.
Collapse
|
10
|
Dollery SJ. Towards Understanding KSHV Fusion and Entry. Viruses 2019; 11:E1073. [PMID: 31752107 PMCID: PMC6893419 DOI: 10.3390/v11111073] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/10/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023] Open
Abstract
How viruses enter cells is of critical importance to pathogenesis in the host and for treatment strategies. Over the last several years, the herpesvirus field has made numerous and thoroughly fascinating discoveries about the entry of alpha-, beta-, and gamma-herpesviruses, giving rise to knowledge of entry at the amino acid level and the realization that, in some cases, researchers had overlooked whole sets of molecules essential for entry into critical cell types. Herpesviruses come equipped with multiple envelope glycoproteins which have several roles in many aspects of infection. For herpesvirus entry, it is usual that a collective of glycoproteins is involved in attachment to the cell surface, specific interactions then take place between viral glycoproteins and host cell receptors, and then molecular interactions and triggers occur, ultimately leading to viral envelope fusion with the host cell membrane. The fact that there are multiple cell and virus molecules involved with the build-up to fusion enhances the diversity and specificity of target cell types, the cellular entry pathways the virus commandeers, and the final triggers of fusion. This review will examine discoveries relating to how Kaposi's sarcoma-associated herpesvirus (KSHV) encounters and binds to critical cell types, how cells internalize the virus, and how the fusion may occur between the viral membrane and the host cell membrane. Particular focus is given to viral glycoproteins and what is known about their mechanisms of action.
Collapse
|
11
|
BeltCappellino A, Majerciak V, Lobanov A, Lack J, Cam M, Zheng ZM. CRISPR/Cas9-Mediated Knockout and In Situ Inversion of the ORF57 Gene from All Copies of the Kaposi's Sarcoma-Associated Herpesvirus Genome in BCBL-1 Cells. J Virol 2019; 93:e00628-19. [PMID: 31413125 PMCID: PMC6803266 DOI: 10.1128/jvi.00628-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV)-transformed primary effusion lymphoma cell lines contain ∼70 to 150 copies of episomal KSHV genomes per cell and have been widely used for studying the mechanisms of KSHV latency and lytic reactivation. Here, we report the first complete knockout (KO) of viral ORF57 gene from all ∼100 copies of KSHV genome per cell in BCBL-1 cells. This was achieved by a modified CRISPR/Cas9 technology to simultaneously express two guide RNAs (gRNAs) and Cas9 from a single expression vector in transfected cells in combination with multiple rounds of cell selection and single-cell cloning. CRISPR/Cas9-mediated genome engineering induces the targeted gene deletion and inversion in situ We found the inverted ORF57 gene in the targeted site in the KSHV genome in one of two characterized single cell clones. Knockout of ORF57 from the KSHV genome led to viral genome instability, thereby reducing viral genome copies and expression of viral lytic genes in BCBL-1-derived single-cell clones. The modified CRISPR/Cas9 technology was very efficient in knocking out the ORF57 gene in iSLK/Bac16 and HEK293/Bac36 cells, where each cell contains only a few copies of the KSHV genome. The ORF57 KO genome was stable in iSLK/Bac16 cells, and, upon lytic induction, was partially rescued by ectopic ORF57 to express viral lytic gene ORF59 and produce infectious virions. Together, the technology developed in this study has paved the way to express two separate gRNAs and the Cas9 enzyme simultaneously in the same cell and could be efficiently applied to any genetic alterations from various genomes, including those in extreme high copy numbers.IMPORTANCE This study provides the first evidence that CRISPR/Cas9 technology can be applied to knock out the ORF57 gene from all ∼100 copies of the KSHV genome in primary effusion lymphoma (PEL) cells by coexpressing two guide RNAs (gRNAs) and Cas9 from a single expression vector in combination with single-cell cloning. The gene knockout efficiency in this system was evaluated rapidly using a direct cell PCR screening. The current CRISPR/Cas9 technology also mediated ORF57 inversion in situ in the targeted site of the KSHV genome. The successful rescue of viral lytic gene expression and infectious virion production from the ORF57 knockout (KO) genome further reiterates the essential role of ORF57 in KSHV infection and multiplication. This modified technology should be useful for knocking out any viral genes from a genome to dissect functions of individual viral genes in the context of the virus genome and to understand their contributions to viral genetics and the virus life cycle.
Collapse
Affiliation(s)
- Andrew BeltCappellino
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Vladimir Majerciak
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Alexei Lobanov
- CCR Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Justin Lack
- CCR Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- NIAID Collaborative Bioinformatics Resource (NCBR), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Maggie Cam
- CCR Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| |
Collapse
|
12
|
Paulson KG, Lahman MC, Chapuis AG, Brownell I. Immunotherapy for skin cancer. Int Immunol 2019; 31:465-475. [PMID: 30753483 PMCID: PMC6626298 DOI: 10.1093/intimm/dxz012] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
Among all tumor types, skin cancers are profoundly sensitive to immunotherapy. Indeed, the recently reported response rates for anti-PD-1 (anti-programmed-death 1) therapy for cutaneous malignant melanomas (MM), Merkel cell carcinomas, basal cell carcinomas, cutaneous squamous cell carcinomas and Kaposi sarcomas are all above 40%. This unique immunogenicity renders skin cancers as a paradigm for tumor-immune interactions and is driven by high mutational burdens, over-expressed tumor antigens and/or viral antigens. However, despite the clear demonstration of immunologic cure of skin cancer in some patients, most tumors develop either early (primary) or late (adaptive) resistance to immunotherapy. Resistance mechanisms are complex, and include contributions of tumor cell-intrinsic, T cell and microenvironment factors that have been recently further elucidated with the advent of single-cell technologies. This review will focus on the exciting progress with immunotherapy for skin cancers to date, and also our current understanding of the mechanisms of resistance to immunotherapy.
Collapse
Affiliation(s)
- Kelly G Paulson
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Divisions of Medical Oncology and Molecular Medicine, Departments of Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Miranda C Lahman
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Divisions of Medical Oncology and Molecular Medicine, Departments of Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Aude G Chapuis
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Divisions of Medical Oncology and Molecular Medicine, Departments of Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Isaac Brownell
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
13
|
Rhesus Macaque Rhadinovirus Encodes a Viral Interferon Regulatory Factor To Disrupt Promyelocytic Leukemia Nuclear Bodies and Antagonize Type I Interferon Signaling. J Virol 2019; 93:JVI.02147-18. [PMID: 30626678 DOI: 10.1128/jvi.02147-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 01/03/2019] [Indexed: 12/17/2022] Open
Abstract
Interferon (IFN) production and the subsequent induction of IFN-stimulated genes (ISGs) are highly effective innate strategies utilized by cells to protect against invading pathogens, including viruses. Critical components involved in this innate process are promyelocytic leukemia nuclear bodies (PML-NBs), which are subnuclear structures required for the development of a robust IFN response. As such, PML-NBs serve as an important hurdle for viruses to overcome to successfully establish an infection. Both Kaposi's sarcoma-associated herpesvirus (KSHV) and the closely related rhesus macaque rhadinovirus (RRV) are unique for encoding viral homologs of IFN regulatory factors (termed vIRFs) that can manipulate the host immune response by multiple mechanisms. All four KSHV vIRFs inhibit the induction of IFN, while vIRF1 and vIRF2 can inhibit ISG induction downstream of the IFN receptor. Less is known about the RRV vIRFs. RRV vIRF R6 can inhibit the induction of IFN by IRF3; however, it is not known whether any RRV vIRFs inhibit ISG induction following IFN receptor signaling. In our present study, we demonstrate that the RRV vIRF R12 aids viral replication in the presence of the type I IFN response. This is achieved in part through the disruption of PML-NBs and the inhibition of robust ISG transcription.IMPORTANCE KSHV and RRV encode a unique set of homologs of cellular IFN regulatory factors, termed vIRFs, which are hypothesized to help these viruses evade the innate immune response and establish infections in their respective hosts. Our work elucidates the role of one RRV vIRF, R12, and demonstrates that RRV can dampen the type I IFN response downstream of IFN signaling, which would be important for establishing a successful infection in vivo.
Collapse
|
14
|
Abstract
Kaposi sarcoma (KS) gained public attention as an AIDS-defining malignancy; its appearance on the skin was a highly stigmatizing sign of HIV infection during the height of the AIDS epidemic. The widespread introduction of effective antiretrovirals to control HIV by restoring immunocompetence reduced the prevalence of AIDS-related KS, although KS does occur in individuals with well-controlled HIV infection. KS also presents in individuals without HIV infection in older men (classic KS), in sub-Saharan Africa (endemic KS) and in transplant recipients (iatrogenic KS). The aetiologic agent of KS is KS herpesvirus (KSHV; also known as human herpesvirus-8), and viral proteins can induce KS-associated cellular changes that enable the virus to evade the host immune system and allow the infected cell to survive and proliferate despite viral infection. Currently, most cases of KS occur in sub-Saharan Africa, where KSHV infection is prevalent owing to transmission by saliva in childhood compounded by the ongoing AIDS epidemic. Treatment for early AIDS-related KS in previously untreated patients should start with the control of HIV with antiretrovirals, which frequently results in KS regression. In advanced-stage KS, chemotherapy with pegylated liposomal doxorubicin or paclitaxel is the most common treatment, although it is seldom curative. In sub-Saharan Africa, KS continues to have a poor prognosis. Newer treatments for KS based on the mechanisms of its pathogenesis are being explored.
Collapse
Affiliation(s)
- Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Blossom Damania
- Department of Microbiology and Immunology, Lineberger Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | - Jeffrey Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Mark Bower
- National Centre for HIV Malignancy, Chelsea & Westminster Hospital, London, UK
| | - Denise Whitby
- Leidos Biomedical Research, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
15
|
Zhu H, Liu H, Yu X, Zhang J, Jiang L, Chen G, Feng Z, Li Y, Feng T, Zhang X. Evidence of two genetically different lymphotropic herpesviruses present among red deer, sambar, and milu herds in China. J Vet Sci 2018; 19:716-720. [PMID: 30041287 PMCID: PMC6167348 DOI: 10.4142/jvs.2018.19.5.716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/21/2018] [Accepted: 07/02/2018] [Indexed: 11/20/2022] Open
Abstract
Herpesvirus infections in Cervidae are a serious threat affecting some deer species worldwide. In our attempt to identify malignant catarrhal fever-associated herpesviruses in deer herds, ten gammaherpesviral DNA fragments were identified in five species of deer in herds in China by using a pan-herpesvirus polymerase chain reaction assay targeting viral DNA polymerase. Notably, in sambar (Rusa unicolor), a novel gamma-2 herpesvirus was identified that showed a close relationship with fallow deer lymphotropic herpesvirus (LHV), while the other fragments were phylogenetically grouped together with Elk-LHV. Determination of whether these viruses have any clinical implication in these deer species should be undertaken urgently.
Collapse
Affiliation(s)
- Hongwei Zhu
- School of Life Sciences, Ludong University, Yantai 264025, China
| | - Huitao Liu
- Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Xin Yu
- School of Life Sciences, Ludong University, Yantai 264025, China
| | - Jianlong Zhang
- School of Life Sciences, Ludong University, Yantai 264025, China
| | - Linlin Jiang
- School of Life Sciences, Ludong University, Yantai 264025, China
| | - Guozhong Chen
- School of Life Sciences, Ludong University, Yantai 264025, China
| | - Zhibin Feng
- School of Life Sciences, Ludong University, Yantai 264025, China
| | - Youzhi Li
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Jinan 250022, China
| | - Tao Feng
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Jinan 250022, China
| | - Xingxiao Zhang
- School of Life Sciences, Ludong University, Yantai 264025, China
| |
Collapse
|
16
|
Black W, Troyer RM, Coutu J, Wong K, Wolff P, Gilbert M, Yuan J, Wise AG, Wang S, Xu D, Kiupel M, Maes RK, Bildfell R, Jin L. Identification of gammaherpesvirus infection in free-ranging black bears (Ursus americanus). Virus Res 2018; 259:46-53. [PMID: 30385363 PMCID: PMC7114836 DOI: 10.1016/j.virusres.2018.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/12/2018] [Accepted: 10/19/2018] [Indexed: 10/31/2022]
Abstract
Herpesvirus infection was investigated in black bears (Ursus americanus) with neurological signs and brain lesions of nonsuppurative encephalitis of unknown cause. Visible cytopathic effects (CPE) could only be observed on days 3-5 post-infection in HrT-18G cell line inoculated with bear tissue extracts. The observed CPE in HrT-18G cells included syncytia, intranuclear inclusions, and cell detachments seen in herpesvirus infection in vitro. Herpesvirus-like particles were observed in viral culture supernatant under the electron microscope, however, capsids ranging from 60 nm to 100 nm in size were often observed in viral cultures within the first two passages of propagation. Herpesvirus infection in the bear tissues and tissue cultures were detected by PCR using degenerate primers specific to the DNA polymerase gene (DPOL) and glycoprotein B gene (gB). DNA sequencing of the amplicon revealed that the detected herpesvirus has 94-95% identity to Ursid gammaherpesvirus 1 (UrHV-1) DNA sequences of DPOL. Phylogenetic analysis of DPOL sequences indicates that black bear herpesviruses and UrHV-1 are closely related and have small distances to members of Rhadinovirus. Interestingly, black bear herpesvirus infections were also found in bears without neurological signs. The DPOL DNA sequence of black bear herpesviruses detected in neurological bears were similar to the those detected in the non-neurological bears. However, the gB DNA sequence detected from the neurological bear is different from non-neurological bear and has only 64.5%-70% identity to each other. It is possible that at least two different types of gammaherpesviruses are present in the U. americanus population or several gammaherpesviruses exist in ursine species.
Collapse
Affiliation(s)
- Wendy Black
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, United States
| | - Ryan M Troyer
- Department of Microbiology & Immunology, University of Western Ontario, 1151 Richmond St., London, Ontario N6A5C1, Canada
| | - Jesse Coutu
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, United States
| | - Karsten Wong
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, United States
| | - Peregrine Wolff
- Nevada Department of Fish and Wildlife, Reno, NV 89511, United States
| | - Martin Gilbert
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, 602 Tower Road, Ithaca, NY 14853, NY United States
| | - Junfa Yuan
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, United States
| | - Annabel G Wise
- Veterinary Diagnostic Laboratory, Michigan State University, Lansing, MI 48910, United States
| | - Sunny Wang
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, United States
| | - Dan Xu
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, United States
| | - Matti Kiupel
- Veterinary Diagnostic Laboratory, Michigan State University, Lansing, MI 48910, United States
| | - Roger K Maes
- Veterinary Diagnostic Laboratory, Michigan State University, Lansing, MI 48910, United States
| | - Rob Bildfell
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, United States
| | - Ling Jin
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, United States; Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, United States.
| |
Collapse
|
17
|
Innis-Whitehouse W, Wang X, Restrepo N, Salas C, Moreno K, Restrepo A, Keniry M. Kaposi sarcoma incidence in females is nearly four-fold higher in the Lower Rio Grande Valley compared to the Texas average. Cancer Treat Res Commun 2018; 16:45-52. [PMID: 31299002 DOI: 10.1016/j.ctarc.2018.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 06/09/2018] [Accepted: 06/11/2018] [Indexed: 12/17/2022]
Abstract
The Lower Rio Grande Valley (LRGV) is located on U.S.-Mexican border with a population that is 90% Hispanic [1]. Comprised of Hidalgo, Cameron, Starr and Willacy counties, this region has the highest poverty rate and one of the highest incidences of Type 2 diabetes in the United States [2-4]. Previous studies demonstrated a high prevalence of Human Herpes Virus 8 (HHV8) in the LRGV [5-7]. HHV8 infection has been causally linked to Kaposi Sarcoma (KS) [8]. Here, we retrospectively examine the incidence of KS in the LRGV in a set of HIV-negative Hispanic patients. Strikingly, the incidence of KS was higher in LRGV women compared to the Texas state average (nearly four-fold higher in McAllen-Edinburg-Pharr Metro Statistical Area). This unique profile aligns with the increased HHV8 prevalence in the LRGV, suggesting that HHV8 contributes to a high incidence of HIV-negative KS on the U.S.-Mexican border in Texas.
Collapse
Affiliation(s)
- Wendy Innis-Whitehouse
- School of Medicine, The University of Texas Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, USA.
| | - Xiaohui Wang
- School of Mathematical and Statistical Sciences, The University of Texas Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, USA.
| | - Nicolas Restrepo
- Department of Biology, The University of Texas Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, USA.
| | - Carlos Salas
- Department of Biology, The University of Texas Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, USA.
| | - Katia Moreno
- Texas Oncology, 1901 S. 2nd St., McAllen, TX 78503, USA.
| | | | - Megan Keniry
- Department of Biology, The University of Texas Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, USA.
| |
Collapse
|
18
|
Superresolution microscopy reveals structural mechanisms driving the nanoarchitecture of a viral chromatin tether. Proc Natl Acad Sci U S A 2018; 115:4992-4997. [PMID: 29610353 DOI: 10.1073/pnas.1721638115] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
By tethering their circular genomes (episomes) to host chromatin, DNA tumor viruses ensure retention and segregation of their genetic material during cell divisions. Despite functional genetic and crystallographic studies, there is little information addressing the 3D structure of these tethers in cells, issues critical for understanding persistent infection by these viruses. Here, we have applied direct stochastic optical reconstruction microscopy (dSTORM) to establish the nanoarchitecture of tethers within cells latently infected with the oncogenic human pathogen, Kaposi's sarcoma-associated herpesvirus (KSHV). Each KSHV tether comprises a series of homodimers of the latency-associated nuclear antigen (LANA) that bind with their C termini to the tandem array of episomal terminal repeats (TRs) and with their N termini to host chromatin. Superresolution imaging revealed that individual KSHV tethers possess similar overall dimensions and, in aggregate, fold to occupy the volume of a prolate ellipsoid. Using plasmids with increasing numbers of TRs, we found that tethers display polymer power law scaling behavior with a scaling exponent characteristic of active chromatin. For plasmids containing a two-TR tether, we determined the size, separation, and relative orientation of two distinct clusters of bound LANA, each corresponding to a single TR. From these data, we have generated a 3D model of the episomal half of the tether that integrates and extends previously established findings from epifluorescent, crystallographic, and epigenetic approaches. Our findings also validate the use of dSTORM in establishing novel structural insights into the physical basis of molecular connections linking host and pathogen genomes.
Collapse
|
19
|
Watanabe T, Sugimoto A, Hosokawa K, Fujimuro M. Signal Transduction Pathways Associated with KSHV-Related Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:321-355. [PMID: 29896674 DOI: 10.1007/978-981-10-7230-7_15] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Signal transduction pathways play a key role in the regulation of cell growth, cell differentiation, cell survival, apoptosis, and immune responses. Bacterial and viral pathogens utilize the cell signal pathways by encoding their own proteins or noncoding RNAs to serve their survival and replication in infected cells. Kaposi's sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8 (HHV-8), is classified as a rhadinovirus in the γ-herpesvirus subfamily and was the eighth human herpesvirus to be discovered from Kaposi's sarcoma specimens. KSHV is closely associated with an endothelial cell malignancy, Kaposi's sarcoma, and B-cell malignancies, primary effusion lymphoma, and multicentric Castleman's disease. Recent studies have revealed that KSHV manipulates the cellular signaling pathways to achieve persistent infection, viral replication, cell proliferation, anti-apoptosis, and evasion of immune surveillance in infected cells. This chapter summarizes recent developments in our understanding of the molecular mechanisms used by KSHV to interact with the cell signaling machinery.
Collapse
Affiliation(s)
- Tadashi Watanabe
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Atsuko Sugimoto
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kohei Hosokawa
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Masahiro Fujimuro
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan.
| |
Collapse
|
20
|
Kaposi's Sarcoma-Associated Herpesvirus Latency-Associated Nuclear Antigen: Replicating and Shielding Viral DNA during Viral Persistence. J Virol 2017; 91:JVI.01083-16. [PMID: 28446671 DOI: 10.1128/jvi.01083-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Kaposi's sarcoma herpesvirus (KSHV) establishes lifelong latency. The viral latency-associated nuclear antigen (LANA) promotes viral persistence by tethering the viral genome to cellular chromosomes and by participating in latent DNA replication. Recently, the structure of the LANA C-terminal DNA binding domain was solved and new cytoplasmic variants of LANA were discovered. We discuss how these findings contribute to our current view of LANA structure and assembly and of its role during viral persistence.
Collapse
|
21
|
Auten M, Kim AS, Bradley KT, Rosado FG. Human herpesvirus 8-related diseases: Histopathologic diagnosis and disease mechanisms. Semin Diagn Pathol 2017; 34:371-376. [PMID: 28502522 DOI: 10.1053/j.semdp.2017.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The emergence of HIV/AIDS more than three decades ago led to an increased incidence of diseases caused by HHV8 co-infection, particularly Kaposi sarcoma, primary effusion lymphoma, and multicentric Castleman disease. Over time, the development of highly effective AIDS therapies has resulted in a decreased incidence of HHV8-associated entities, which are now more commonly found in patients with undiagnosed and/or untreated AIDS. Due to their rarity, some of these diseases may be difficult to recognize without appropriate clinical information. This article provides an overview of HHV8-related disorders, with a focus on their morphologic and phenotypic features, and includes a brief overview of laboratory methods used to detect HHV8. Disease mechanisms by which the HHV8 virion promotes tumorigenesis are also reviewed.
Collapse
Affiliation(s)
- Matthew Auten
- Department of Pathology, West Virginia University, United States.
| | - Annette S Kim
- Department of Pathology, Brigham and Women's Hospital, United States.
| | - Kyle T Bradley
- Department of Pathology & Laboratory Medicine, Emory University Hospital, 1364 Clifton Rd NE, Atlanta, GA 30322, United States.
| | - Flavia G Rosado
- Department of Pathology, West Virginia University, 1 Medical Center Dr, Room 2146F/HSC North, United States.
| |
Collapse
|
22
|
Zhang T, Wang L. Epidemiology of Kaposi's sarcoma‐associated herpesvirus in Asia: Challenges and opportunities. J Med Virol 2016; 89:563-570. [DOI: 10.1002/jmv.24662] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Tiejun Zhang
- Department of EpidemiologySchool of Public HealthFudan UniversityShanghaiChina
| | - Linding Wang
- Department of MicrobiologyAnhui Medical UniversityHefeiAnhuiChina
| |
Collapse
|
23
|
Mochizuki M, Sugita S, Kamoi K, Takase H. A new era of uveitis: impact of polymerase chain reaction in intraocular inflammatory diseases. Jpn J Ophthalmol 2016; 61:1-20. [PMID: 27787641 DOI: 10.1007/s10384-016-0474-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/28/2016] [Indexed: 12/17/2022]
Abstract
Uveitis is a sight-threatening intraocular inflammatory disorder which may occur from both infectious and non-infectious or autoimmune causes. The frequency of infectious uveitis and autoimmune uveitis varies depending on countries and regions. According to a nationwide survey conducted by the Japanese Ocular Inflammation Society, infectious and non-infectious uveitis accounted for 16.4 and 50.1% of new patients, respectively while the remaining 33.5% of new uveitis cases were not classified or were idiopathic uveitis. Infectious uveitis is particularly important because it causes tissue damage to the eye and may result in blindness unless treated. However, it can be treated if the pathogenic microorganisms are identified promptly and accurately. Remarkable advancements in molecular and immunological technologies have been made in the last decade, and the diagnosis of infectious uveitis has been greatly improved by the application of molecular and immunological investigations, particularly polymerase chain reaction (PCR). PCR performed on a small amount of ocular samples provides a prompt, sensitive, and specific molecular diagnosis of pathogenic microorganisms in the eye. This technology has opened a new era in the diagnosis and treatment of uveitis, enabling physicians to establish new clinical entities of uveitis caused by infectious microorganisms, identify pathogens in the eyes of many patients with uveitis, and determine prompt diagnosis and appropriate therapy. Here we review the PCR process, new PCR tests specialized for ocular diseases, microorganisms detected by the PCR tests, diseases in the eye caused by these microorganisms, and the clinical characteristics, diagnosis, and therapy of uveitis.
Collapse
Affiliation(s)
- Manabu Mochizuki
- Department of Ophthalmology and Visual Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan. .,Miyata Eye Hospital, Miyakonojo, Miyazaki, Japan.
| | - Sunao Sugita
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Japan
| | - Koju Kamoi
- Department of Ophthalmology and Visual Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Hiroshi Takase
- Department of Ophthalmology and Visual Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| |
Collapse
|
24
|
Rapid Multiplexed Immunoassay for Detection of Antibodies to Kaposi's Sarcoma-Associated Herpesvirus. PLoS One 2016; 11:e0163616. [PMID: 27669509 PMCID: PMC5036886 DOI: 10.1371/journal.pone.0163616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 09/12/2016] [Indexed: 11/29/2022] Open
Abstract
Diagnosis of KSHV-infected individuals remains a challenge. KSHV prevalence is high in several populations with high prevalence of HIV, leading to increased risk of development of Kaposi’s sarcoma (KS). While current assays are reliable for detecting antibodies to KSHV, none are routinely utilized to identify individuals with KSHV infection and thus at increased risk for KS due to assay complexity, lack of access to testing, and cost, particularly in resource-limited settings. Here we describe the addition of KSHV proteins LANA and K8.1 to a previously evaluated HIV/co-infection multiplexed fluorescence immunoassay system. This study demonstrates assay performance by measuring antibody reactivity for KSHV and HIV-1 in a collection of clinical specimens from patients with biopsy-proven KS and sourced negative controls. The KSHV assay correctly identified 155 of 164 plasma samples from patients with biopsy-proven KS and 85 of 93 KSHV antibody (Ab)-negative samples for a sensitivity of 95.1% and specificity of 91.4%. Assay performance for HIV-1 detection was also assessed with 100% agreement with independently verified HIV-1 Ab-positive and Ab-negative samples. These results demonstrate good sensitivity and specificity for detection of antibody to KSHV antigens, and demonstrate the potential for multiplexed co-infection testing in resource-limited settings to identify those at increased risk for HIV-1-related complications.
Collapse
|
25
|
Pauwels K, Herman P, Van sVaerenbergh B, Dai Do Thi C, Berghmans L, Waeterloos G, Van Bockstaele D, Dorsch-Häsler K, Sneyers M. Animal Cell Cultures: Risk Assessment and Biosafety Recommendations. APPLIED BIOSAFETY 2016. [DOI: 10.1177/153567600701200105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Katia Pauwels
- Scientific Institute of Public Health, Brussels, Belgium
| | | | | | | | | | | | | | | | - Myriam Sneyers
- Scientific Institute of Public Health, Brussels, Belgium
| |
Collapse
|
26
|
Li W, Avey D, Fu B, Wu JJ, Ma S, Liu X, Zhu F. Kaposi's Sarcoma-Associated Herpesvirus Inhibitor of cGAS (KicGAS), Encoded by ORF52, Is an Abundant Tegument Protein and Is Required for Production of Infectious Progeny Viruses. J Virol 2016; 90:5329-5342. [PMID: 27009954 PMCID: PMC4934757 DOI: 10.1128/jvi.02675-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/08/2016] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Although Kaposi's sarcoma-associated herpesvirus (KSHV) ORF52 (also known as KSHV inhibitor of cGAS [KicGAS]) has been detected in purified virions, the roles of this protein during KSHV replication have not been characterized. Using specific monoclonal antibodies, we revealed that ORF52 displays true late gene expression kinetics and confirmed its cytoplasmic localization in both transfected and KSHV-infected cells. We demonstrated that ORF52 comigrates with other known virion proteins following sucrose gradient centrifugation. We also determined that ORF52 resides inside the viral envelope and remains partially associated with capsid when extracellular virions are treated with various detergents and/or salts. There results indicate that ORF52 is a tegument protein abundantly present in extracellular virions. To characterize the roles of ORF52 in the KSHV life cycle, we engineered a recombinant KSHV ORF52-null mutant virus and found that loss of ORF52 results in reduced virion production and a further defect in infectivity. Upon analysis of the virion composition of ORF52-null viral particles, we observed a decrease in the incorporation of ORF45, as well as other tegument proteins, suggesting that ORF52 is important for the packaging of other virion proteins. In summary, our results indicate that, in addition to its immune evasion function, KSHV ORF52 is required for the optimal production of infectious virions, likely due to its roles in virion assembly as a tegument protein. IMPORTANCE The tegument proteins of herpesviruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), play key roles in the viral life cycle. Each of the three subfamilies of herpesviruses (alpha, beta, and gamma) encode unique tegument proteins with specialized functions. We recently found that one such gammaherpesvirus-specific protein, ORF52, has an important role in immune evasion during KSHV primary infection, through inhibition of the host cytosolic DNA sensing pathway. In this report, we further characterize ORF52 as a tegument protein with vital roles during KSHV lytic replication. We found that ORF52 is important for the production of infectious viral particles, likely through its role in virus assembly, a critical process for KSHV replication and pathogenesis. More comprehensive investigation of the functions of tegument proteins and their roles in viral replication may reveal novel targets for therapeutic interventions against KSHV-associated diseases.
Collapse
Affiliation(s)
- Wenwei Li
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Denis Avey
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Bishi Fu
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Jian-Jun Wu
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Siming Ma
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Xia Liu
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Fanxiu Zhu
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
27
|
Mirvish ED, Shuda M. Strategies for Human Tumor Virus Discoveries: From Microscopic Observation to Digital Transcriptome Subtraction. Front Microbiol 2016; 7:676. [PMID: 27242703 PMCID: PMC4865503 DOI: 10.3389/fmicb.2016.00676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/26/2016] [Indexed: 01/07/2023] Open
Abstract
Over 20% of human cancers worldwide are associated with infectious agents, including viruses, bacteria, and parasites. Various methods have been used to identify human tumor viruses, including electron microscopic observations of viral particles, immunologic screening, cDNA library screening, nucleic acid hybridization, consensus PCR, viral DNA array chip, and representational difference analysis. With the Human Genome Project, a large amount of genetic information from humans and other organisms has accumulated over the last decade. Utilizing the available genetic databases, Feng et al. (2007) developed digital transcriptome subtraction (DTS), an in silico method to sequentially subtract human sequences from tissue or cellular transcriptome, and discovered Merkel cell polyomavirus (MCV) from Merkel cell carcinoma. Here, we review the background and methods underlying the human tumor virus discoveries and explain how DTS was developed and used for the discovery of MCV.
Collapse
Affiliation(s)
- Ezra D Mirvish
- Department of Dermatology, University of Pittsburgh Medical Center, Pittsburgh PA, USA
| | - Masahiro Shuda
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh PA, USA
| |
Collapse
|
28
|
Polizzotto MN, Uldrick TS, Wyvill KM, Aleman K, Marshall V, Wang V, Whitby D, Pittaluga S, Jaffe ES, Millo C, Tosato G, Little RF, Steinberg SM, Sereti I, Yarchoan R. Clinical Features and Outcomes of Patients With Symptomatic Kaposi Sarcoma Herpesvirus (KSHV)-associated Inflammation: Prospective Characterization of KSHV Inflammatory Cytokine Syndrome (KICS). Clin Infect Dis 2016; 62:730-738. [PMID: 26658701 PMCID: PMC4772848 DOI: 10.1093/cid/civ996] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/06/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Kaposi sarcoma herpesvirus (KSHV) is the cause of Kaposi sarcoma (KS), primary effusion lymphoma (PEL), and a form of Castleman disease (KSHV-MCD). Recently a KSHV-associated inflammatory cytokine syndrome (KICS) distinct from KSHV-MCD was reported. METHODS We prospectively characterized the clinical, laboratory, virologic and immunologic features of KICS by evaluating symptomatic adults with KSHV using a prespecified definition. These features and overall survival were compared with controls from 2 prospectively characterized human immunodeficiency virus (HIV)-infected cohorts, including 1 with KSHV coinfection. RESULTS All 10 KICS subjects were HIV infected males; 5 had HIV viral load (VL) suppressed <50 copies mL (median 72, range <50-74 375); all had KS and 2 also had PEL. All had multiple severe symptoms attributable to KICS: median number of symptoms 8 (6-11), median grade of worst symptom 3 (2-4). These included gastrointestinal disturbance (present in 9); edema (9); respiratory (6); and effusions (5). Laboratory abnormalities included anemia (all); hypoalbuminemia (all) and thrombocytopenia (6). None developed KSHV-MCD; 6 died with median survival from KICS diagnosis 13.6 months. KICS subjects compared with controls had more severe symptoms; lower hemoglobin and albumin; higher C-reactive protein; higher KSHV VL; elevated interleukin (IL)-6 and IL-10; and an increased risk of death (all P < .05). Anemia and hypoalbuminemia at presentation were independently associated with early death. CONCLUSIONS KICS subjects demonstrated diverse severe symptoms, a high rate of KSHV-associated tumors, high mortality, and a distinct IL-6/IL-10 signature. KICS may be an important unrecognized cause of morbidity and mortality, including symptoms previously ascribed to HIV. Exploration of KSHV-directed therapy is warranted.
Collapse
Affiliation(s)
| | | | | | | | - Vickie Marshall
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research
| | | | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research
| | | | | | - Corina Millo
- Positron Emission Tomography Department, Clinical Center, National Institutes of Health
| | | | | | - Seth M Steinberg
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda
| | - Irini Sereti
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | | |
Collapse
|
29
|
Human Mesenchymal Stem Cells of Diverse Origins Support Persistent Infection with Kaposi's Sarcoma-Associated Herpesvirus and Manifest Distinct Angiogenic, Invasive, and Transforming Phenotypes. mBio 2016; 7:e02109-15. [PMID: 26814175 PMCID: PMC4742711 DOI: 10.1128/mbio.02109-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Kaposi's sarcoma (KS), a highly angiogenic and invasive tumor often involving different organ sites, including the oral cavity, is caused by infection with Kaposi's sarcoma-associated herpesvirus (KSHV). Diverse cell markers have been identified on KS tumor cells, but their origin remains an enigma. We previously showed that KSHV could efficiently infect, transform, and reprogram rat primary mesenchymal stem cells (MSCs) into KS-like tumor cells. In this study, we showed that human primary MSCs derived from diverse organs, including bone marrow (MSCbm), adipose tissue (MSCa), dental pulp, gingiva tissue (GMSC), and exfoliated deciduous teeth, were permissive to KSHV infection. We successfully established long-term cultures of KSHV-infected MSCa, MSCbm, and GMSC (LTC-KMSCs). While LTC-KMSCs had lower proliferation rates than the uninfected cells, they expressed mixtures of KS markers and displayed differential angiogenic, invasive, and transforming phenotypes. Genetic analysis identified KSHV-derived microRNAs that mediated KSHV-induced angiogenic activity by activating the AKT pathway. These results indicated that human MSCs could be the KSHV target cells in vivo and established valid models for delineating the mechanism of KSHV infection, replication, and malignant transformation in biologically relevant cell types. IMPORTANCE Kaposi's sarcoma is the most common cancer in AIDS patients. While KSHV infection is required for the development of Kaposi's sarcoma, the origin of KSHV target cells remains unclear. We show that KSHV can efficiently infect human primary mesenchymal stem cells of diverse origins and reprogram them to acquire various degrees of Kaposi's sarcoma-like cell makers and angiogenic, invasive, and transforming phenotypes. These results indicate that human mesenchymal stem cells might be the KSHV target cells and establish models for delineating the mechanism of KSHV-induced malignant transformation.
Collapse
|
30
|
Activated Nrf2 Interacts with Kaposi's Sarcoma-Associated Herpesvirus Latency Protein LANA-1 and Host Protein KAP1 To Mediate Global Lytic Gene Repression. J Virol 2015; 89:7874-92. [PMID: 25995248 DOI: 10.1128/jvi.00895-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/13/2015] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Kaposi's sarcoma-associated herpesvirus (KSHV) is etiologically associated with Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman's disease. We have previously shown that KSHV utilizes the host transcription factor Nrf2 to aid in infection of endothelial cells and oncogenesis. Here, we investigate the role of Nrf2 in PEL and PEL-derived cell lines and show that KSHV latency induces Nrf2 protein levels and transcriptional activity through the COX-2/PGE2/EP4/PKCζ axis. Next-generation sequencing of KSHV transcripts in the PEL-derived BCBL-1 cell line revealed that knockdown of this activated Nrf2 results in global elevation of lytic genes. Nrf2 inhibition by the chemical brusatol also induces lytic gene expression. Both Nrf2 knockdown and brusatol-mediated inhibition induced KSHV lytic reactivation in BCBL-1 cells. In a series of follow-up experiments, we characterized the mechanism of Nrf2-mediated regulation of KSHV lytic repression during latency. Biochemical assays showed that Nrf2 interacted with KSHV latency-associated nuclear antigen 1 (LANA-1) and the host transcriptional repressor KAP1, which together have been shown to repress lytic gene expression. Promoter studies showed that although Nrf2 alone induces the open reading frame 50 (ORF50) promoter, its association with LANA-1 and KAP1 abrogates this effect. Interestingly, LANA-1 is crucial for efficient KAP1/Nrf2 association, while Nrf2 is essential for LANA-1 and KAP1 recruitment to the ORF50 promoter and its repression. Overall, these results suggest that activated Nrf2, LANA-1, and KAP1 assemble on the ORF50 promoter in a temporal fashion. Initially, Nrf2 binds to and activates the ORF50 promoter during early de novo infection, an effect that is exploited during latency by LANA-1-mediated recruitment of the host transcriptional repressor KAP1 on Nrf2. Cell death assays further showed that Nrf2 and KAP1 knockdown induce significant cell death in PEL cell lines. Our studies suggest that Nrf2 modulation through available oral agents is a promising therapeutic approach in the treatment of KSHV-associated malignancies. IMPORTANCE KS and PEL are aggressive KSHV-associated malignancies with moderately effective, highly toxic chemotherapies. Other than ganciclovir and alpha interferon (IFN-α) prophylaxis, no KSHV-associated chemotherapy targets the underlying infection, a major oncogenic force. Hence, drugs that selectively target KSHV infection are necessary to eradicate the malignancy while sparing healthy cells. We recently showed that KSHV infection of endothelial cells activates the transcription factor Nrf2 to promote an environment conducive to infection and oncogenesis. Nrf2 is modulated through several well-tolerated oral agents and may be an important target in KSHV biology. Here, we investigate the role of Nrf2 in PEL and demonstrate that Nrf2 plays an important role in KSHV gene expression, lytic reactivation, and cell survival by interacting with the host transcriptional repressor KAP1 and the viral latency-associated protein LANA-1 to mediate global lytic gene repression and thus cell survival. Hence, targeting Nrf2 with available therapies is a viable approach in the treatment of KSHV malignancies.
Collapse
|
31
|
A Rhesus Rhadinovirus Viral Interferon (IFN) Regulatory Factor Is Virion Associated and Inhibits the Early IFN Antiviral Response. J Virol 2015; 89:7707-21. [PMID: 25972548 DOI: 10.1128/jvi.01175-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 05/08/2015] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED The interferon (IFN) response is the earliest host immune response dedicated to combating viral infection. As such, viruses have evolved strategies to subvert this potent antiviral response. Two closely related gammaherpesviruses, Kaposi's sarcoma-associated herpesvirus (KSHV) and rhesus macaque rhadinovirus (RRV), are unique in that they express viral homologues to cellular interferon regulatory factors (IRFs), termed viral IRFs (vIRFs). Cellular IRFs are a family of transcription factors that are particularly important for the transcription of type I IFNs. Here, we demonstrate a strategy employed by RRV to ensure rapid inhibition of virus-induced type I IFN induction. We found that RRV vIRF R6, when expressed ectopically, interacts with a transcriptional coactivator, CREB-binding protein (CBP), in the nucleus. As a result, phosphorylated IRF3, an important transcriptional regulator in beta interferon (IFN-β) transcription, fails to effectively bind to the IFN-β promoter, thus inhibiting the activation of IFN-β genes. In addition, we found R6 within RRV virion particles via immunoelectron microscopy and, furthermore, that virion-associated R6 is capable of inhibiting the type I IFN response by preventing efficient binding of IRF3/CBP complexes to the IFN-β promoter in the context of infection. The work shown here is the first example of a vIRF being associated with either the KSHV or RRV virion. The presence of this immunomodulatory protein in the RRV virion provides the virus with an immediate mechanism to evade the host IFN response, thus enabling the virus to effectively establish an infection within the host. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) and the closely related rhesus macaque rhadinovirus (RRV) are the only viruses known to encode viral homologues to cellular interferon regulatory factors (IRFs), known as vIRFs. In KSHV, these proteins have been shown to play major roles in a variety of cellular processes and are particularly important in the evasion of the host type I interferon (IFN) response. In this study, we delineate the immunomodulatory mechanism of an RRV vIRF and its ability to assist the virus in rapid immune evasion by being prepackaged within the virion, thus providing evidence, for the first time, of a virion-associated vIRF. This work further contributes to our understanding of the mechanisms behind immunomodulation by the RRV vIRFs during infection.
Collapse
|
32
|
Gill MB, Turner R, Stevenson PG, Way M. KSHV-TK is a tyrosine kinase that disrupts focal adhesions and induces Rho-mediated cell contraction. EMBO J 2014; 34:448-65. [PMID: 25471072 DOI: 10.15252/embj.201490358] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Paradoxically, the thymidine kinase (TK) encoded by Kaposi sarcoma-associated herpesvirus (KSHV) is an extremely inefficient nucleoside kinase, when compared to TKs from related herpesviruses. We now show that KSHV-TK, in contrast to HSV1-TK, associates with the actin cytoskeleton and induces extensive cell contraction followed by membrane blebbing. These dramatic changes in cell morphology depend on the auto-phosphorylation of tyrosines 65, 85 and 120 in the N-terminus of KSHV-TK. Phosphorylation of tyrosines 65/85 and 120 results in an interaction with Crk family proteins and the p85 regulatory subunit of PI3-Kinase, respectively. The interaction of Crk with KSHV-TK leads to tyrosine phoshorylation of this cellular adaptor. Auto-phosphorylation of KSHV-TK also induces a loss of FAK and paxillin from focal adhesions, resulting in activation of RhoA-ROCK signalling to myosin II and cell contraction. In the absence of FAK or paxillin, KSHV-TK has no effect on focal adhesion integrity or cell morphology. Our observations demonstrate that by acting as a tyrosine kinase, KSHV-TK modulates signalling and cell morphology.
Collapse
Affiliation(s)
- Michael B Gill
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Rachel Turner
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Philip G Stevenson
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Michael Way
- Cell Motility Laboratory, London Research Institute Cancer Research UK, London, UK
| |
Collapse
|
33
|
Abstract
The first steps in tissue culture are dating back to the beginning of the nineteenth century when biosafety measures did not yet exist. Later on, animal cell culture became essential for scientific research, diagnosis and biotechnological activities. Along with this development, biosafety concerns have emerged pointing to the risks for human health and in a lesser extent for the environment associated to the handling of animal cell cultures. The management of these risks requires a thorough risk assessment of both the cell cultures and the type of manipulation prior the start of any activity. It involves a case-by-case evaluation of both the intrinsic properties of the cell culture genetically modified or not and the probability that it may inadvertently or intentionally become infected with pathogenic micro-organisms. The latter hazard is predominant when adventitious contaminants are pathogenic or have a better capacity to persist in unfavourable conditions. Consequently, most of the containment measures primarily aim at protecting cells from adventitious contamination. Cell cultures known to harbour an infectious etiologic agent should be manipulated in compliance with containment measures recommended for the etiologic agent itself. The manipulation of cell cultures from human or primate origin necessitates the use of a type II biosafety cabinet. The scope of this chapter is to highlight aspects relevant for the risk assessment and to summarize the main biosafety recommendations and the recent technological advances allowing a mitigation of the risk for the handling of animal cell cultures.
Collapse
|
34
|
Human DNA tumor viruses generate alternative reading frame proteins through repeat sequence recoding. Proc Natl Acad Sci U S A 2014; 111:E4342-9. [PMID: 25271323 DOI: 10.1073/pnas.1416122111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) are human DNA tumor viruses that express nuclear antigens [latency-associated nuclear antigen 1 (LANA1) and Epstein-Barr nuclear antigen 1 (EBNA1)] necessary to maintain and replicate the viral genome. We report here that both LANA1 and EBNA1 undergo highly efficient +1/-2 programmed ribosomal frameshifting to generate previously undescribed alternative reading frame (ARF) proteins in their repeat regions. EBNA1(ARF) encodes a KSHV LANA-like glutamine- and glutamic acid-rich protein, whereas KSHV LANA1(ARF) encodes a serine/arginine-like protein. Repeat sequence recoding has not been described previously for human DNA viruses. Programmed frameshifting (recoding) to generate multiple proteins from one RNA sequence can increase the coding capacity of a virus, without incurring a selective penalty against increased capsid size. The presence of similar repeat sequences in cellular genes, such as huntingtin, suggests that a comparison of repeat recoding in virus and human systems may provide functional and mechanistic insights for both systems.
Collapse
|
35
|
Sakakibara S, Tosato G. Contribution of viral mimics of cellular genes to KSHV infection and disease. Viruses 2014; 6:3472-86. [PMID: 25243371 PMCID: PMC4189034 DOI: 10.3390/v6093472] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/05/2014] [Accepted: 09/11/2014] [Indexed: 12/29/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV, also named Human herpesvirus 8 HHV-8) is the cause of Kaposi sarcoma (KS), the most common malignancy in HIV-infected individuals worldwide, primary effusion lymphoma (PEL) and multicentric Castleman disease (MCD). KSHV is a double-stranded DNA virus that encodes several homologues of cellular proteins. The structural similarity between viral and host proteins explains why some viral homologues function as their host counterparts, but sometimes at unusual anatomical sites and inappropriate times. In other cases, structural modification in the viral proteins can suppress or override the function of the host homologue, contributing to KSHV-related diseases. For example, viral IL-6 (vIL-6) is sufficiently different from human IL-6 to activate gp130 signaling independent of the α subunit. As a consequence, vIL-6 can activate many cell types that are unresponsive to cellular IL-6, contributing to MCD disease manifestations. Here, we discuss the molecular biology of KSHV homologues of cellular products as conduits of virus/host interaction with a focus on identifying new strategies for therapy of KS and other KSHV-related diseases.
Collapse
Affiliation(s)
- Shuhei Sakakibara
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Giovanna Tosato
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20982, USA.
| |
Collapse
|
36
|
Chang KC, Chang Y, Wang LHC, Tsai HW, Huang W, Su IJ. Pathogenesis of virus-associated human cancers: Epstein–Barr virus and hepatitis B virus as two examples. J Formos Med Assoc 2014; 113:581-90. [PMID: 24095032 DOI: 10.1016/j.jfma.2013.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 08/02/2013] [Accepted: 09/02/2013] [Indexed: 12/12/2022] Open
|
37
|
Dai H, Cherian R, Mathur S. Primary body cavity-based large B-cell lymphoma in an HIV and HHV-8 negative, HCV positive patient: a case report and literature review. Lab Med 2014; 45:136-40. [PMID: 24868994 DOI: 10.1309/lmicz683orlrjrjo] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
38
|
Moore PS, Chang Y. The conundrum of causality in tumor virology: the cases of KSHV and MCV. Semin Cancer Biol 2014; 26:4-12. [PMID: 24304907 PMCID: PMC4040341 DOI: 10.1016/j.semcancer.2013.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/13/2013] [Indexed: 01/18/2023]
Abstract
Controversy has plagued tumor virology since the first tumor viruses were described over 100 years ago. Methods to establish cancer causation, such as Koch's postulates, work poorly or not at all for these viruses. Kaposi's sarcoma herpesvirus (KSHV/HHV8) and Merkel cell polyomavirus (MCV) were both found using nucleic acid identification methods but they represent opposite poles in the patterns for tumor virus epidemiology. KSHV is uncommon and has specific risk factors that contribute to infection and subsequent cancers. MCV and Merkel cell carcinoma (MCC), in contrast, is an example in which mutations to our normal viral flora contribute to cancer. Given the near-ubiquity of human MCV infection, establishing cancer causality relies on molecular evidence that does not fit comfortably within traditional infectious disease epidemiological models. These two viruses reveal some of the challenges and opportunities for inferring viral cancer causation in the age of molecular biology.
Collapse
Affiliation(s)
- Patrick S Moore
- Cancer Virology Program, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Pittsburgh, PA 15213, United States.
| | - Yuan Chang
- Cancer Virology Program, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Pittsburgh, PA 15213, United States.
| |
Collapse
|
39
|
Identification of properties of the Kaposi's sarcoma-associated herpesvirus latent origin of replication that are essential for the efficient establishment and maintenance of intact plasmids. J Virol 2014; 88:8490-503. [PMID: 24829342 DOI: 10.1128/jvi.00742-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED The maintenance of latent Kaposi's sarcoma-associated herpesvirus (KSHV) genomes is mediated in cis by their terminal repeats (TR). A KSHV genome can have 16 to 50 copies of the 801-bp TR, each of which harbors a 71-bp-long minimal replicator element (MRE). A single MRE can support replication in transient assays, and the presence of as few as two TRs appears to support establishment of KSHV-derived plasmids. Why then does KSHV have such redundancy and heterogeneity in the number of TRs? By determining the abilities of KSHV-derived plasmids containing various numbers of the TRs and MREs to be established and maintained in the long term, we have found that plasmids with fewer than 16 TRs or those with tandem repeats of the MREs are maintained inefficiently, as shown by both their decreased abilities to support formation of colonies and their instability, resulting in frequent rearrangements yielding larger plasmids during and after establishment. These defects often can be overcome by adding the Epstein-Barr virus (EBV) partitioning element, FR (i.e., family of repeats), in cis to these plasmids. In addition we have found that the spacing between MREs is important for their functions, too. Thus, two properties of KSHV's origin of latent replication essential for the efficient establishment and maintenance of viral plasmids stably are (i) the presence of approximately 16 copies of the TR, which are needed for efficient partitioning, and (ii) the presence of at least 2 MRE units separated by 801 bp of center-to-center spacing, which are required for efficient synthesis. IMPORTANCE KSHV is a human tumor virus that maintains its genome as a plasmid in lymphoid tumor cells. Each plasmid DNA molecule encodes many origins of synthesis. Here we show that these many origins provide an essential advantage to KSHV, allowing the DNAs to be maintained without rearrangement. We find also that the correct spacing between KSHV's origins of DNA synthesis is required for them to support synthesis efficiently. The identification of these properties illuminates plasmid replication in mammalian cells and should lead to the development of rational means to inhibit these tumorigenic replicons.
Collapse
|
40
|
Activation and repression of Epstein-Barr Virus and Kaposi's sarcoma-associated herpesvirus lytic cycles by short- and medium-chain fatty acids. J Virol 2014; 88:8028-44. [PMID: 24807711 DOI: 10.1128/jvi.00722-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The lytic cycles of Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are induced in cell culture by sodium butyrate (NaB), a short-chain fatty acid (SCFA) histone deacetylase (HDAC) inhibitor. Valproic acid (VPA), another SCFA and an HDAC inhibitor, induces the lytic cycle of KSHV but blocks EBV lytic reactivation. To explore the hypothesis that structural differences between NaB and VPA account for their functional effects on the two related viruses, we investigated the capacity of 16 structurally related short- and medium-chain fatty acids to promote or prevent lytic cycle reactivation. SCFAs differentially affected EBV and KSHV reactivation. KSHV was reactivated by all SCFAs that are HDAC inhibitors, including phenylbutyrate. However, several fatty acid HDAC inhibitors, such as isobutyrate and phenylbutyrate, did not reactivate EBV. Reactivation of KSHV lytic transcripts could not be blocked completely by any fatty acid tested. In contrast, several medium-chain fatty acids inhibited lytic activation of EBV. Fatty acids that blocked EBV reactivation were more lipophilic than those that activated EBV. VPA blocked activation of the BZLF1 promoter by NaB but did not block the transcriptional function of ZEBRA. VPA also blocked activation of the DNA damage response that accompanies EBV lytic cycle activation. Properties of SCFAs in addition to their effects on chromatin are likely to explain activation or repression of EBV. We concluded that fatty acids stimulate the two related human gammaherpesviruses to enter the lytic cycle through different pathways. Importance: Lytic reactivation of EBV and KSHV is needed for persistence of these viruses and plays a role in carcinogenesis. Our direct comparison highlights the mechanistic differences in lytic reactivation between related human oncogenic gammaherpesviruses. Our findings have therapeutic implications, as fatty acids are found in the diet and produced by the human microbiota. Small-molecule inducers of the lytic cycle are desired for oncolytic therapy. Inhibition of viral reactivation, alternatively, may prove useful in cancer treatment. Overall, our findings contribute to the understanding of pathways that control the latent-to-lytic switch and identify naturally occurring molecules that may regulate this process.
Collapse
|
41
|
Downregulation of IRF4 induces lytic reactivation of KSHV in primary effusion lymphoma cells. Virology 2014; 458-459:4-10. [PMID: 24928034 DOI: 10.1016/j.virol.2014.04.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 01/07/2014] [Accepted: 04/13/2014] [Indexed: 01/24/2023]
Abstract
Primary effusion lymphoma (PEL), associated with the latent infection by KSHV, constitutively expresses interferon-regulatory factor 4 (IRF4). We recently showed that IRF4 differentially regulates expression of cellular interferon-stimulated genes (ISGs) and viral genes (Forero et al., 2013). Here, using inducible IRF4 knockdown, we demonstrate that IRF4 silencing results in enhanced transcription of KSHV replication transactivator RTA. As a result viral transcription is increased leading to virus reactivation. Taken together, our results show that IRF4 helps maintain the balance between latency and KSHV reactivation in PEL cells.
Collapse
|
42
|
Klamroth R, Gröner A, Simon TL. Pathogen inactivation and removal methods for plasma-derived clotting factor concentrates. Transfusion 2014; 54:1406-17. [PMID: 24117799 PMCID: PMC7169823 DOI: 10.1111/trf.12423] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/26/2013] [Accepted: 08/01/2013] [Indexed: 11/28/2022]
Abstract
Pathogen safety is crucial for plasma-derived clotting factor concentrates used in the treatment of bleeding disorders. Plasma, the starting material for these products, is collected by plasmapheresis (source plasma) or derived from whole blood donations (recovered plasma). The primary measures regarding pathogen safety are selection of healthy donors donating in centers with appropriate epidemiologic data for the main blood-transmissible viruses, screening donations for the absence of relevant infectious blood-borne viruses, and release of plasma pools for further processing only if they are nonreactive for serologic markers and nucleic acids for these viruses. Despite this testing, pathogen inactivation and/or removal during the manufacturing process of plasma-derived clotting factor concentrates is required to ensure prevention of transmission of infectious agents. Historically, hepatitis viruses and human immunodeficiency virus have posed the greatest threat to patients receiving plasma-derived therapy for treatment of hemophilia or von Willebrand disease. Over the past 30 years, dedicated virus inactivation and removal steps have been integrated into factor concentrate production processes, essentially eliminating transmission of these viruses. Manufacturing steps used in the purification of factor concentrates have also proved to be successful in reducing potential prion infectivity. In this review, current techniques for inactivation and removal of pathogens from factor concentrates are discussed. Ideally, production processes should involve a combination of complementary steps for pathogen inactivation and/or removal to ensure product safety. Finally, potential batch-to-batch contamination is avoided by stringent cleaning and sanitization methods as part of the manufacturing process.
Collapse
Affiliation(s)
- Robert Klamroth
- Center for Vascular MedicineVivantes Klinikum im FriedrichshainBerlinGermany
| | - Albrecht Gröner
- Preclinical Research and Development, Pathogen SafetyCSL BehringMarburgGermany
| | - Toby L. Simon
- Plasma Research and Development/CSL PlasmaCSL BehringKing of PrussiaPennsylvania
| |
Collapse
|
43
|
BUSI M, ALTIERI E, CIORBA A, AIMONI C. Auricular involvement of a multifocal non-AIDS Kaposi's sarcoma: a case report. ACTA OTORHINOLARYNGOLOGICA ITALICA : ORGANO UFFICIALE DELLA SOCIETA ITALIANA DI OTORINOLARINGOLOGIA E CHIRURGIA CERVICO-FACCIALE 2014; 34:146-9. [PMID: 24843227 PMCID: PMC4025183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 07/02/2011] [Indexed: 11/18/2022]
Abstract
Kaposi's sarcoma (KS) is a multicentric, malignant neoplastic vascular disease, mainly involving skin and mucosae, characterised by the proliferation of endothelial cells. The aetiology of KS still is unknown. Nonetheless, it has been reported that several epidemiological and environmental factors may play a role in its pathogenesis. Viral factors (i.e. human herpes virus 8, HHV-8) have also been claimed to play a role in the onset of KS. Four main clinical presentations of KS have been described: classic (sporadic), African (endemic), iatrogenic (immunosuppression-associated) and AIDS-associated (epidemic). The authors present a case of KS involving the external ear of a HIVnegative patient with a history of non-Hodgkin lymphoma and tuberculosis.
Collapse
Affiliation(s)
- M. BUSI
- Audiology Department, University Hospital of Ferrara, Italy
| | - E. ALTIERI
- Dermatology Department, University Hospital of Ferrara, Italy
| | - A. CIORBA
- Audiology Department, University Hospital of Ferrara, Italy
| | - C. AIMONI
- Audiology Department, University Hospital of Ferrara, Italy;,Address for correspondence: Claudia Aimoni, Audiology Department, University Hospital of Ferrara, c.so Giovecca 203, 44100 Ferrara, Italy. Tel. +39 0532 237188. Fax +39 0532 236887. E-mail:
| |
Collapse
|
44
|
Kaposi's Sarcoma-Associated Herpesvirus Subversion of the Anti-Inflammatory Response in Human Skin Cells Reveals Correlates of Latency and Disease Pathogenesis. J Skin Cancer 2014; 2014:246076. [PMID: 24701351 PMCID: PMC3951102 DOI: 10.1155/2014/246076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/14/2013] [Accepted: 12/15/2013] [Indexed: 11/17/2022] Open
Abstract
KSHV is the etiologic agent for Kaposi's sarcoma (KS), a neoplasm that manifests most aggressively as multifocal lesions on parts of human skin with a propensity for inflammatory reactivity. However, mechanisms that control evolution of KS from a benign hyperplasia to the histologically complex cutaneous lesion remain unknown. In this study, we found that KSHV induces proteomic and morphological changes in melanocytes and melanoma-derived cell lines, accompanied by deregulation of the endogenous anti-inflammatory responses anchored by the MC1-R/α-MSH signaling axis. We also identified two skin-derived cell lines that displayed differences in ability to support long-term KSHV infection and mapped this dichotomy to differences in (a) NF-κB activation status, (b) processing and expression of KSHV latency-associated nuclear antigen isoforms putatively associated with the viral lytic cycle, and (c) susceptibility to virus-induced changes in expression of key anti-inflammatory response genes that antagonize NF-κB, including MC1-R, POMC, TRP-1, and xCT. Viral subversion of molecules that control the balance between latency and lytic replication represents a novel correlate of KSHV pathogenesis and tropism in skin and underscores the potential benefit of harnessing the endogenous anti-inflammatory processes as a therapeutic option for attenuating cutaneous KS and other proinflammatory outcomes of KSHV infection in high-risk individuals.
Collapse
|
45
|
Aligo J, Walker M, Bugelski P, Weinstock D. Is murine gammaherpesvirus-68 (MHV-68) a suitable immunotoxicological model for examining immunomodulatory drug-associated viral recrudescence? J Immunotoxicol 2014; 12:1-15. [PMID: 24512328 DOI: 10.3109/1547691x.2014.882996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Immunosuppressive agents are used for treatment of a variety of autoimmune diseases including rheumatoid arthritis (RA), systemic lupus erythematosis (SLE), and psoriasis, as well as for prevention of tissue rejection after organ transplantation. Recrudescence of herpesvirus infections, and increased risk of carcinogenesis from herpesvirus-associated tumors are related with immunosuppressive therapy in humans. Post-transplant lymphoproliferative disorder (PTLD), a condition characterized by development of Epstein Barr Virus (EBV)-associated B-lymphocyte lymphoma, and Kaposi's Sarcoma (KS), a dermal tumor associated with Kaposi Sarcoma-associated virus (KSHV), may develop in solid organ transplant patients. KS also occurs in immunosuppressed Acquired Immunodeficiency (AIDS) patients. Kaposi Sarcoma-associated virus (KSHV) is a herpes virus genetically related to EBV. Murine gammaherpes-virus-68 (MHV-68) is proposed as a mouse model of gammaherpesvirus infection and recrudescence and may potentially have relevance for herpesvirus-associated neoplasia. The pathogenesis of MHV-68 infection in mice mimics EBV/KSHV infection in humans with acute lytic viral replication followed by dissemination and establishment of persistent latency. MHV-68-infected mice may develop lymphoproliferative disease that is accelerated by disruption of the immune system. This manuscript first presents an overview of gammaherpesvirus pathogenesis and immunology as well as factors involved in viral recrudescence. A description of different types of immunodeficiency then follows, with particular focus on viral association with lymphomagenesis after immunosuppression. Finally, this review discusses different gammaherpesvirus animal models and describes a proposed MHV-68 model to further examine the interplay of immunomodulatory agents and gammaherpesvirus-associated neoplasia.
Collapse
Affiliation(s)
- Jason Aligo
- Biologics Toxicology, Janssen Research and Development, LLC , Spring House, PA , USA
| | | | | | | |
Collapse
|
46
|
Robey RC, Mletzko S, Colley C, Balachandran K, Bower M. The use of monoclonal antibodies to treat Castleman’s disease. Immunotherapy 2014; 6:211-9. [PMID: 24491093 DOI: 10.2217/imt.13.167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Multicentric Castleman’s disease (MCD) is a rare lymphoproliferative disorder presenting with heterogeneous clinical features and with a complex etiology. MCD incidence is increased in people living with HIV/AIDS when it is causally associated with Kaposi’s sarcoma-associated herpes virus (KSHV). HIV-seronegative individuals present with either idiopathic or KSHV-associated MCD. Central to MCD pathology is altered expression and signaling of IL-6, which promotes B-cell proliferation and causes systemic manifestations. KSHV encodes a viral homolog of human IL-6, accounting for its role in MCD, while recent evidence shows an association between IL-6 receptor polymorphisms and idiopathic MCD. The increased understanding of mechanisms underlying the pathogenesis of MCD has guided the use of new monoclonal antibody therapies for treating this complex disorder.
Collapse
Affiliation(s)
- Rebecca C Robey
- National Centre for HIV Malignancy, Chelsea & Westminster Hospital, 369 Fulham Road, London, SW10 9NH, UK
| | - Salvinia Mletzko
- National Centre for HIV Malignancy, Chelsea & Westminster Hospital, 369 Fulham Road, London, SW10 9NH, UK
| | - Charlotte Colley
- National Centre for HIV Malignancy, Chelsea & Westminster Hospital, 369 Fulham Road, London, SW10 9NH, UK
| | - Kirsty Balachandran
- National Centre for HIV Malignancy, Chelsea & Westminster Hospital, 369 Fulham Road, London, SW10 9NH, UK
| | - Mark Bower
- National Centre for HIV Malignancy, Chelsea & Westminster Hospital, 369 Fulham Road, London, SW10 9NH, UK
| |
Collapse
|
47
|
Optimization of virus detection in cells using massively parallel sequencing. Biologicals 2013; 42:34-41. [PMID: 24309095 DOI: 10.1016/j.biologicals.2013.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 10/28/2013] [Accepted: 11/08/2013] [Indexed: 11/22/2022] Open
Abstract
Massively parallel sequencing (MPS)-based virus detection has potential regulatory applications. We studied the ability of one of these approaches, based on degenerate oligonucleotide primer (DOP)-polymerase chain reaction (PCR), to detect viral sequences in cell lines known to express viral genes or particles. DOP-PCR was highly sensitive for the detection of small quantities of isolated viral sequences. Detected viral sequences included nodavirus, bracovirus, and endogenous retroviruses in High Five cells, porcine circovirus type 1 and porcine endogenous retrovirus in PK15 cells, human T-cell leukemia virus 1 in MJ cells, human papillomavirus 18 in HeLa cells, human herpesvirus 8 in BCBL-1 cells, and Epstein-Barr Virus in Raji cells. Illumina sequencing (for which primers were most efficiently added using PCR) provided greater sensitivity for virus detection than Roche 454 sequencing. Analyzing nucleic acids extracted both directly from samples and from capsid-enriched preparations provided useful information. Although there are limitations of these methods, these results indicate significant promise for the combination of nonspecific PCR and MPS in identifying contaminants in clinical and biological samples, including cell lines and reagents used to produce vaccines and therapeutic products.
Collapse
|
48
|
Crabtree KL, Wojcicki JM, Minhas V, Smith DR, Kankasa C, Mitchell CD, Wood C. Risk factors for early childhood infection of human herpesvirus-8 in Zambian children: the role of early childhood feeding practices. Cancer Epidemiol Biomarkers Prev 2013; 23:300-8. [PMID: 24296855 DOI: 10.1158/1055-9965.epi-13-0730] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Human herpesvirus-8 (HHV-8) infection in early childhood is common throughout sub-Saharan Africa with prevalence increasing throughout childhood. Specific routes of transmission have not been clearly delineated, though HHV-8 is present in high concentrations in saliva. METHODS To understand the horizontal transmission of HHV-8 within households to children, we enrolled for cross-sectional analysis, 251 households including 254 children, age two and under, in Lusaka, Zambia. For all children, plasma was screened for HHV-8 and HIV type I (HIV-1) and health and behavioral questionnaires were completed. Multilevel logistic regression analysis was conducted to assess independent factors for HHV-8 infection in children. RESULTS Risk factors for HHV-8 infection included increasing number of HHV-8-positive household members [OR = 2.5; 95% confidence interval (CI), 1.9-3.3; P < 0.01] and having a primary caregiver who tested the temperature of food with their tongue before feeding the child (OR = 2.4; 95% CI, 1.93-3.30; P = 0.01). Breastfeeding was protective against infection with HHV-8 for children (OR = 0.3; 95% CI, 0.16-0.72; P < 0.01). CONCLUSIONS These results indicate that exposure to HHV-8 in the household increases risk for early childhood infection, with specific feeding behaviors likely playing a role in transmission. IMPACT Interventions to protect children from infection should emphasize the possibility of infection through sharing of foods.
Collapse
Affiliation(s)
- Kay L Crabtree
- Authors' Affiliations: Nebraska Center for Virology and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska; Department of Pediatrics, University of California, San Francisco, California; Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, Mississippi; University of Zambia, School of Medicine and University Teaching Hospital, Zambia; and University of Miami Miller School of Medicine, Miami, Florida
| | | | | | | | | | | | | |
Collapse
|
49
|
p53 tumor suppressor protein stability and transcriptional activity are targeted by Kaposi's sarcoma-associated herpesvirus-encoded viral interferon regulatory factor 3. Mol Cell Biol 2013; 34:386-99. [PMID: 24248600 DOI: 10.1128/mcb.01011-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Viruses have developed numerous strategies to counteract the host cell defense. Kaposi's sarcoma-associated herpesvirus (KSHV) is a DNA tumor virus linked to the development of Kaposi's sarcoma, Castleman's disease, and primary effusion lymphoma (PEL). The virus-encoded viral interferon regulatory factor 3 (vIRF-3) gene is a latent gene which is involved in the regulation of apoptosis, cell cycle, antiviral immunity, and tumorigenesis. vIRF-3 was shown to interact with p53 and inhibit p53-mediated apoptosis. However, the molecular mechanism underlying this phenomenon has not been established. Here, we show that vIRF-3 associates with the DNA-binding domain of p53, inhibits p53 phosphorylation on serine residues S15 and S20, and antagonizes p53 oligomerization and the DNA-binding affinity. Furthermore, vIRF-3 destabilizes p53 protein by increasing the levels of p53 polyubiquitination and targeting p53 for proteasome-mediated degradation. Consequently, vIRF-3 attenuates p53-mediated transcription of the growth-regulatory p21 gene. These effects of vIRF-3 are of biological relevance since the knockdown of vIRF-3 expression in KSHV-positive BC-3 cells, derived from PEL, leads to an increase in p53 phosphorylation, enhancement of p53 stability, and activation of p21 gene transcription. Collectively, these data suggest that KSHV evolved an efficient mechanism to downregulate p53 function and thus facilitate uncontrolled cell proliferation and tumor growth.
Collapse
|
50
|
El Hajj H, Ali J, Ghantous A, Hodroj D, Daher A, Zibara K, Journo C, Otrock Z, Zaatari G, Mahieux R, El Sabban M, Bazarbachi A, Abou Merhi R. Combination of arsenic and interferon-α inhibits expression of KSHV latent transcripts and synergistically improves survival of mice with primary effusion lymphomas. PLoS One 2013; 8:e79474. [PMID: 24250827 PMCID: PMC3826709 DOI: 10.1371/journal.pone.0079474] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 09/23/2013] [Indexed: 01/08/2023] Open
Abstract
Background Kaposi sarcoma-associated herpesvirus (KSHV) is the etiologic agent of primary effusion lymphomas (PEL). PEL cell lines infected with KSHV, but negative for Epstein-Barr virus have a tumorigenic potential in non-obese diabetic/severe combined immunodeficient mice and result in efficient engraftment and formation of malignant ascites with notable abdominal distension, consistent with the clinical manifestations of PEL in humans. Methodology/Principal Findings Using this preclinical mouse model, we demonstrate that the combination of arsenic trioxide and interferon-alpha (IFN) inhibits proliferation, induces apoptosis and downregulates the latent viral transcripts LANA-1, v-FLIP and v-Cyc in PEL cells derived from malignant ascites. Furthermore, this combination decreases the peritoneal volume and synergistically increases survival of PEL mice. Conclusion/Significance These results provide a promising rationale for the therapeutic use of arsenic/IFN in PEL patients.
Collapse
Affiliation(s)
- Hiba El Hajj
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Jihane Ali
- Lebanese University, Rafik Hariri Campus, Faculty of Sciences, Biology Department, Hadath, Lebanon
| | - Akram Ghantous
- International Agency for Research on Cancer, Lyon, France
| | - Dana Hodroj
- Lebanese University, Rafik Hariri Campus, Faculty of Sciences, Biology Department, Hadath, Lebanon
| | - Ahmad Daher
- Lebanese University, Rafik Hariri Campus, Faculty of Sciences, Biology Department, Hadath, Lebanon
| | - Kazem Zibara
- Lebanese University, Faculty of Sciences, Biology Department, fifth section, Nabatieh, Lebanon
| | - Chloé Journo
- Equipe Oncogenèse Rétrovirale, Equipe labelisée “Ligue Nationale Contre le Cancer” INSERM U1111 - CNRS UMR5308, CIRI - International Center for Infectiology Research, Biology Department, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Zaher Otrock
- Leukemia Program, Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio, United States of America
| | - Ghazi Zaatari
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Renaud Mahieux
- Equipe Oncogenèse Rétrovirale, Equipe labelisée “Ligue Nationale Contre le Cancer” INSERM U1111 - CNRS UMR5308, CIRI - International Center for Infectiology Research, Biology Department, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Marwan El Sabban
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali Bazarbachi
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- * E-mail: (AB); (RAM)
| | - Raghida Abou Merhi
- Lebanese University, Rafik Hariri Campus, Faculty of Sciences, Biology Department, Hadath, Lebanon
- * E-mail: (AB); (RAM)
| |
Collapse
|