1
|
Inzaule SC, Siedner MJ, Little SJ, Avila-Rios S, Ayitewala A, Bosch RJ, Calvez V, Ceccherini-Silberstein F, Charpentier C, Descamps D, Eshleman SH, Fokam J, Frenkel LM, Gupta RK, Ioannidis JP, Kaleebu P, Kantor R, Kassaye SG, Kosakovsky Pond SL, Kouamou V, Kouyos RD, Kuritzkes DR, Lessells R, Marcelin AG, Mbuagbaw L, Minalga B, Ndembi N, Neher RA, Paredes R, Pillay D, Raizes EG, Rhee SY, Richman DD, Ruxrungtham K, Sabeti PC, Schapiro JM, Sirivichayakul S, Steegen K, Sugiura W, van Zyl GU, Vandamme AM, Wensing AM, Wertheim JO, Gunthard HF, Jordan MR, Shafer RW. Recommendations on data sharing in HIV drug resistance research. PLoS Med 2023; 20:e1004293. [PMID: 37738247 PMCID: PMC10558071 DOI: 10.1371/journal.pmed.1004293] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 10/06/2023] [Indexed: 09/24/2023] Open
Abstract
• Human immunodeficiency virus (HIV) drug resistance has implications for antiretroviral treatment strategies and for containing the HIV pandemic because the development of HIV drug resistance leads to the requirement for antiretroviral drugs that may be less effective, less well-tolerated, and more expensive than those used in first-line regimens. • HIV drug resistance studies are designed to determine which HIV mutations are selected by antiretroviral drugs and, in turn, how these mutations affect antiretroviral drug susceptibility and response to future antiretroviral treatment regimens. • Such studies collectively form a vital knowledge base essential for monitoring global HIV drug resistance trends, interpreting HIV genotypic tests, and updating HIV treatment guidelines. • Although HIV drug resistance data are collected in many studies, such data are often not publicly shared, prompting the need to recommend best practices to encourage and standardize HIV drug resistance data sharing. • In contrast to other viruses, sharing HIV sequences from phylogenetic studies of transmission dynamics requires additional precautions as HIV transmission is criminalized in many countries and regions. • Our recommendations are designed to ensure that the data that contribute to HIV drug resistance knowledge will be available without undue hardship to those publishing HIV drug resistance studies and without risk to people living with HIV.
Collapse
Affiliation(s)
- Seth C. Inzaule
- Amsterdam Institute for Global Health and Development, and Department of Global Health, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Mark J. Siedner
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Susan J. Little
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Santiago Avila-Rios
- Centre for Research in Infectious Diseases, National Institute of Respiratory Diseases, Mexico City, Mexico
| | - Alisen Ayitewala
- National Health Laboratories and Diagnostic Services, Ministries of Health, Kampala, Uganda
| | - Ronald J. Bosch
- Center for Biostatistics in AIDS Research, Harvard TH Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Vincent Calvez
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Service de Virologie, Paris, France
| | | | - Charlotte Charpentier
- Service de Virologie, Université Paris Cité, INSERM, IAME, UMR 1137, AP-HP, Hôpital Bichat-Claude Bernard, F-75018 Paris, France
| | - Diane Descamps
- Service de Virologie, Université Paris Cité, INSERM, IAME, UMR 1137, AP-HP, Hôpital Bichat-Claude Bernard, F-75018 Paris, France
| | - Susan H. Eshleman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Joseph Fokam
- Virology Laboratory, Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon, and Faculty of Health Sciences, University of Buea, Yaoundé, Cameroon
| | - Lisa M. Frenkel
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Ravindra K. Gupta
- Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, United Kingdom
| | - John P.A. Ioannidis
- Department of Medicine, Department of Epidemiology and Population Health, and Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, California, United States of America
| | - Pontiano Kaleebu
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Entebbe, Uganda
| | - Rami Kantor
- Department of Medicine, Brown University, The Miriam Hospital, Providence, Rhode Island, United States of America
| | - Seble G. Kassaye
- Department of Medicine, Division of Infectious Diseases, Georgetown University, Washington DC, United States of America
| | - Sergei L. Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Vinie Kouamou
- Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Roger D. Kouyos
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland and Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Daniel R. Kuritzkes
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Richard Lessells
- Affiliation is KwaZulu-Natal Research Innovation & Sequencing Platform, University of KwaZulu-Natal, Durban, South Africa
| | - Anne-Genevieve Marcelin
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière—Charles Foix, Laboratoire de Virologie, Paris, France
| | - Lawrence Mbuagbaw
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| | - Brian Minalga
- Office of HIV/AIDS Network Coordination, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Nicaise Ndembi
- Institute of Human Virology Nigeria, Herbert Macaulay Way, Abuja, Nigeria
| | | | - Roger Paredes
- Department of Infectious Diseases & irsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, Catalonia, Spain
| | - Deenan Pillay
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Elliot G. Raizes
- United States Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Soo-Yon Rhee
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, United States of America
| | - Douglas D. Richman
- Center for AIDS Research, Department of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Kiat Ruxrungtham
- School of Global Health, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pardis C. Sabeti
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | | | | | - Kim Steegen
- Department of Molecular Medicine and Haematology, National Health Laboratory Service, Johannesburg, South Africa
| | - Wataru Sugiura
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Gert U. van Zyl
- Division of Medical Virology, Stellenbosch University and National Health Laboratory Service, Cape Town, South Africa
| | - Anne-Mieke Vandamme
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Leuven, Belgium
- Center for Global Health And Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Annemarie M.J. Wensing
- University Medical Center Utrecht, the Netherlands and Wits Reproductive Health and HIV Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Joel O. Wertheim
- Department of Medicine, University of California San Diego, San Diego, La Jolla, California, United States of America
| | - Huldrych F. Gunthard
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland and Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Michael R. Jordan
- Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Robert W. Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, United States of America
| |
Collapse
|
2
|
Drug Resistance Mutation Frequency of Single-Genome Amplification-Derived HIV-1 Polymerase Genomes in the Cerebrospinal Fluid and Plasma of HIV-1-Infected Individuals under Nonsuppressive Therapy. J Virol 2020; 94:JVI.01824-19. [PMID: 32759323 DOI: 10.1128/jvi.01824-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 07/13/2020] [Indexed: 01/05/2023] Open
Abstract
HIV-1 evolution in the cerebrospinal fluid (CSF) and plasma may result in discordant drug resistance mutations (DRMs) in the compartments. Single-genome amplification (SGA) was used to generate partial HIV-1 polymerase genomes in paired CSF and plasma samples from 12 HIV-1-positive participants in the CNS HIV Antiretroviral Therapy Effects Research (CHARTER) study who were classified as neurocognitively unimpaired or with various degrees of HIV-associated neurocognitive disorders (HAND). Subjects were viremic on combination antiretroviral therapy (cART). HIV-1 DRMs and phylogenetic characteristics were determined using the Stanford HIVdb program and phylogenetic analyses. Individual DRMs were identified more frequently in plasma than in paired CSF (P = 0.0078). Significant differences in the ratios of DRMs in CSF and plasma were found in 3 individuals with HAND (3/7 = 43%). Two HAND subjects (2/7 = 29%) demonstrated one DRM in CSF not identified in paired plasma. Longitudinal analyses (n = 4) revealed significant temporal differences in the ratios of DRMs in the compartments. Statistically significant differences in the frequency of DRMs in the CSF and plasma are readily found in those on nonsuppressive cART. While compartment-based DRM discordance was largely consistent with increased drug-selective pressures in the plasma, overrepresentation of DRMs in the central nervous system (CNS) can occur. Underlying mechanisms of HAND are complex and multifactorial. The clinical impact of DRM discordance on viral persistence and HAND pathogenesis remains unclear and warrants further investigation in larger, longitudinal cohorts.IMPORTANCE Several antiretroviral agents do not efficiently enter the CNS, and independent evolution of HIV-1 viral variants in the CNS and plasma can occur. We used single-genome amplification (SGA) in cross-sectional and longitudinal analyses to uniquely define both the identity and relative proportions of drug resistance mutations (DRMs) on individual HIV-1 polymerase genomes in the cerebrospinal fluid (CSF) and plasma in individuals with incomplete viral suppression and known neurocognitive status. Statistically significant differences in the ratio of DRMs in the CSF and plasma were readily found in those on nonsuppressive cART, and overrepresentation of DRMs in the CNS can occur. Although questions about the clinical significance of DRM discordance remain, in the quest for viral eradication, it is important to recognize that a significant, dynamic, compartment-based DRM ratio imbalance can exist, as it has the potential to go unnoticed in the setting of standard clinical drug resistance testing.
Collapse
|
3
|
Analysis of unusual and signature APOBEC-mutations in HIV-1 pol next-generation sequences. PLoS One 2020; 15:e0225352. [PMID: 32102090 PMCID: PMC7043932 DOI: 10.1371/journal.pone.0225352] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/30/2020] [Indexed: 12/31/2022] Open
Abstract
Introduction At low mutation-detection thresholds, next generation sequencing (NGS) for HIV-1 genotypic resistance testing is susceptible to artifactual detection of mutations arising from PCR error and APOBEC-mediated G-to-A hypermutation. Methods We analyzed published HIV-1 pol Illumina NGS data to characterize the distribution of mutations at eight NGS mutation detection thresholds: 20%, 10%, 5%, 2%, 1%, 0.5%, 0.2%, and 0.1%. At each threshold, we determined proportions of amino acid mutations that were unusual (defined as having a prevalence <0.01% in HIV-1 group M sequences) or signature APOBEC mutations. Results Eight studies, containing 855 samples, in the NCBI Sequence Read Archive were analyzed. As detection thresholds were lowered, there was a progressive increase in the proportion of positions with usual and unusual mutations and in the proportion of all mutations that were unusual. The median proportion of positions with an unusual mutation increased gradually from 0% at the 20% threshold to 0.3% at the 1% threshold and then exponentially to 1.3% (0.5% threshold), 6.9% (0.2% threshold), and 23.2% (0.1% threshold). In two of three studies with available plasma HIV-1 RNA levels, the proportion of positions with unusual mutations was negatively associated with virus levels. Although the complete set of signature APOBEC mutations was much smaller than that of unusual mutations, the former outnumbered the latter in one-sixth of samples at the 0.5%, 1%, and 2% thresholds. Conclusions The marked increase in the proportion of positions with unusual mutations at thresholds below 1% and in samples with lower virus loads suggests that, at low thresholds, many unusual mutations are artifactual, reflecting PCR error or G-to-A hypermutation. Profiling the numbers of unusual and signature APOBEC pol mutations at different NGS mutation detection thresholds may be useful to avoid selecting a threshold that is too low and poses an unacceptable risk of identifying artifactual mutations.
Collapse
|
4
|
Comparison of an In Vitro Diagnostic Next-Generation Sequencing Assay with Sanger Sequencing for HIV-1 Genotypic Resistance Testing. J Clin Microbiol 2018; 56:JCM.00105-18. [PMID: 29618499 DOI: 10.1128/jcm.00105-18] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/20/2018] [Indexed: 11/20/2022] Open
Abstract
The ability of next-generation sequencing (NGS) technologies to detect low frequency HIV-1 drug resistance mutations (DRMs) not detected by dideoxynucleotide Sanger sequencing has potential advantages for improved patient outcomes. We compared the performance of an in vitro diagnostic (IVD) NGS assay, the Sentosa SQ HIV genotyping assay for HIV-1 genotypic resistance testing, with Sanger sequencing on 138 protease/reverse transcriptase (RT) and 39 integrase sequences. The NGS assay used a 5% threshold for reporting low-frequency variants. The level of complete plus partial nucleotide sequence concordance between Sanger sequencing and NGS was 99.9%. Among the 138 protease/RT sequences, a mean of 6.4 DRMs was identified by both Sanger and NGS, a mean of 0.5 DRM was detected by NGS alone, and a mean of 0.1 DRM was detected by Sanger sequencing alone. Among the 39 integrase sequences, a mean of 1.6 DRMs was detected by both Sanger sequencing and NGS and a mean of 0.15 DRM was detected by NGS alone. Compared with Sanger sequencing, NGS estimated higher levels of resistance to one or more antiretroviral drugs for 18.2% of protease/RT sequences and 5.1% of integrase sequences. There was little evidence for technical artifacts in the NGS sequences, but the G-to-A hypermutation was detected in three samples. In conclusion, the IVD NGS assay evaluated in this study was highly concordant with Sanger sequencing. At the 5% threshold for reporting minority variants, NGS appeared to attain a modestly increased sensitivity for detecting low-frequency DRMs without compromising sequence accuracy.
Collapse
|
5
|
HIV-1 Protease, Reverse Transcriptase, and Integrase Variation. J Virol 2016; 90:6058-6070. [PMID: 27099321 PMCID: PMC4907232 DOI: 10.1128/jvi.00495-16] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/16/2016] [Indexed: 11/20/2022] Open
Abstract
HIV-1 protease (PR), reverse transcriptase (RT), and integrase (IN) variability presents a challenge to laboratories performing genotypic resistance testing. This challenge will grow with increased sequencing of samples enriched for proviral DNA such as dried blood spots and increased use of next-generation sequencing (NGS) to detect low-abundance HIV-1 variants. We analyzed PR and RT sequences from >100,000 individuals and IN sequences from >10,000 individuals to characterize variation at each amino acid position, identify mutations indicating APOBEC-mediated G-to-A editing, and identify mutations resulting from selective drug pressure. Forty-seven percent of PR, 37% of RT, and 34% of IN positions had one or more amino acid variants with a prevalence of ≥1%. Seventy percent of PR, 60% of RT, and 60% of IN positions had one or more variants with a prevalence of ≥0.1%. Overall 201 PR, 636 RT, and 346 IN variants had a prevalence of ≥0.1%. The median intersubtype prevalence ratios were 2.9-, 2.1-, and 1.9-fold for these PR, RT, and IN variants, respectively. Only 5.0% of PR, 3.7% of RT, and 2.0% of IN variants had a median intersubtype prevalence ratio of ≥10-fold. Variants at lower prevalences were more likely to differ biochemically and to be part of an electrophoretic mixture compared to high-prevalence variants. There were 209 mutations indicative of APOBEC-mediated G-to-A editing and 326 mutations nonpolymorphic treatment selected. Identification of viruses with a high number of APOBEC-associated mutations will facilitate the quality control of dried blood spot sequencing. Identifying sequences with a high proportion of rare mutations will facilitate the quality control of NGS. IMPORTANCE Most antiretroviral drugs target three HIV-1 proteins: PR, RT, and IN. These proteins are highly variable: many different amino acids can be present at the same position in viruses from different individuals. Some of the amino acid variants cause drug resistance and occur mainly in individuals receiving antiretroviral drugs. Some variants result from a human cellular defense mechanism called APOBEC-mediated hypermutation. Many variants result from naturally occurring mutation. Some variants may represent technical artifacts. We studied PR and RT sequences from >100,000 individuals and IN sequences from >10,000 individuals to quantify variation at each amino acid position in these three HIV-1 proteins. We performed analyses to determine which amino acid variants resulted from antiretroviral drug selection pressure, APOBEC-mediated editing, and naturally occurring variation. Our results provide information essential to clinical, research, and public health laboratories performing genotypic resistance testing by sequencing HIV-1 PR, RT, and IN.
Collapse
|
6
|
Effective Cytotoxic T Lymphocyte Targeting of Persistent HIV-1 during Antiretroviral Therapy Requires Priming of Naive CD8+ T Cells. mBio 2016; 7:mBio.00473-16. [PMID: 27247230 PMCID: PMC4895106 DOI: 10.1128/mbio.00473-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Curing HIV-1 infection will require elimination of persistent cellular reservoirs that harbor latent virus in the face of combination antiretroviral therapy (cART). Proposed immunotherapeutic strategies to cure HIV-1 infection include enhancing lysis of these infected cells by cytotoxic T lymphocytes (CTL). A major challenge in this strategy is overcoming viral immune escape variants that have evaded host immune control. Here we report that naive CD8+ T cells from chronic HIV-1-infected participants on long-term cART can be primed by dendritic cells (DC). These DC must be mature, produce high levels of interleukin 12p70 (IL-12p70), be responsive to CD40 ligand (CD40L), and be loaded with inactivated, autologous HIV-1. These DC-primed CD8+ T cell responders produced high levels of gamma interferon (IFN-γ) in response to a broad range of both conserved and variable regions of Gag and effectively killed CD4+ T cell targets that were either infected with the autologous latent reservoir-associated virus or loaded with autologous Gag peptides. In contrast, HIV-1-specific memory CD8+ T cells stimulated with autologous HIV-1-loaded DC produced IFN-γ in response to a narrow range of conserved and variable Gag peptides compared to the primed T cells and most notably, displayed significantly lower cytolytic function. Our findings highlight the need to selectively induce new HIV-1-specific CTL from naive precursors while avoiding activation of existing, dysfunctional memory T cells in potential curative immunotherapeutic strategies for HIV-1 infection. Current immunotherapeutic approaches aim to enhance antiviral immunity against the HIV-1 reservoir; however, it has yet to be shown whether T cells from persons on cART can recognize and eliminate virus-infected cells. We show that in persons on cART a personalized medicine approach using their dendritic cells to stimulate their naive T cells induces potent effector CTL in vitro that recognize and eradicate HIV-1-infected CD4+ T cells. Additionally, we show that the same stimulation of existing memory T cells results in cytokine secretion but limited effector function. Our study demonstrates that the naive T cell repertoire can recognize persistent HIV-1 during cART and supports immunotherapy strategies for an HIV-1 cure that targets naive T cells, rather than existing, dysfunctional, memory T cells.
Collapse
|
7
|
Evering TH, Kamau E, St Bernard L, Farmer CB, Kong XP, Markowitz M. Single genome analysis reveals genetic characteristics of Neuroadaptation across HIV-1 envelope. Retrovirology 2014; 11:65. [PMID: 25125210 PMCID: PMC4145222 DOI: 10.1186/s12977-014-0065-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 07/24/2014] [Indexed: 01/25/2023] Open
Abstract
Background The widespread use of highly effective, combination antiretroviral therapy (cART) has led to a significant reduction in the incidence of HIV-associated dementia (HAD). Despite these advances, the prevalence of HIV-1 associated neurocognitive disorders (HANDs) has been estimated at approximately 40%-50%. In the cART era, the majority of this disease burden is represented by asymptomatic neurocognitive impairment and mild neurocognitive disorder (ANI and MND respectively). Although less severe than HAD, these diagnoses carry with them substantial morbidity. Results In this cross-sectional study, single genome amplification (SGA) was used to sequence 717 full-length HIV-1 envelope (env) clade B variants from the paired cerebrospinal fluid (CSF) and blood plasma samples of fifteen chronically infected HIV-positive individuals with normal neurocognitive performance (NCN), ANI and MND. Various degrees of compartmentalization were found across disease states and history of cART utilization. In individuals with compartmentalized virus, mean HIV-1 env population diversity was lower in the CSF than plasma-derived variants. Overall, mean V1V2 loop length was shorter in CSF-derived quasispecies when compared to contemporaneous plasma populations, and this was found to correlate with a lower mean number of N-linked glycosylation sites in this region. A number of discrete amino acid positions that correlate strongly with compartmentalization in the CSF were identified in both variable and constant regions of gp120 as well as in gp41. Correlated mutation analyses further identified that a subset of amino acid residues in these compartmentalization “hot spot” positions were strongly correlated with one another, suggesting they may play an important, definable role in the adaptation of viral variants to the CSF. Analysis of these hot spots in the context of a well-supported crystal structure of HIV-1 gp120 suggests mechanisms through which amino acid differences at the identified residues might contribute to viral compartmentalization in the CSF. Conclusions The detailed analyses of SGA-derived full length HIV-1 env from subjects with both normal neurocognitive performance and the most common HAND diagnoses in the cART era allow us to identify novel and confirm previously described HIV-1 env genetic determinants of neuroadaptation and relate potential motifs to HIV-1 env structure and function. Electronic supplementary material The online version of this article (doi:10.1186/s12977-014-0065-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Teresa H Evering
- Aaron Diamond AIDS Research Center, an affiliate of the Rockefeller University, New York, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Ebbert MTW, Mallory MA, Wilson AR, Dooley SK, Hillyard DR. Application of a new informatics tool for contamination screening in the HIV sequencing laboratory. J Clin Virol 2013; 57:249-53. [PMID: 23583427 DOI: 10.1016/j.jcv.2013.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/14/2013] [Accepted: 03/16/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND Current HIV-1 sequencing-based methods for detecting drug resistance-associated mutations are open and susceptible to contamination. Informatic identification of clinical sequences that are nearly identical to one another may indicate specimen-to-specimen contamination or another laboratory-associated issue. OBJECTIVES To design an informatic tool to rapidly identify potential contamination in the clinical laboratory using sequence analysis and to establish reference ranges for sequence variation in the HIV-1 protease and reverse transcriptase regions among a U.S. patient population. STUDY DESIGN We developed an open-source tool named HIV Contamination Detection (HIVCD). HIVCD was utilized to make pairwise comparisons of nearly 8000 partial HIV-1 pol gene sequences from patients across the United States and to calculate percent identities (PIDs) for each pair. ROC analysis and standard deviations of PID data were used to determine reference ranges for between-patient and within-patient comparisons and to guide selection of a threshold for identifying abnormally high PID between two unrelated sequences. RESULTS The PID reference range for between-patient comparisons ranged from 83.8 to 95.7% while within-patient comparisons ranged from 96 to 100%. Interestingly, 48% of between-patient sequence pairs with a PID>96.5 were geographically related. The selected threshold for abnormally high PIDs was 96 (AUC=0.993, sensitivity=0.980, specificity=0.999). During routine use, HIVCD identified a specimen mix-up and the source of contamination of a negative control. CONCLUSIONS In our experience, HIVCD is easily incorporated into laboratory workflow, useful for identifying potential laboratory errors, and contributes to quality testing. This type of analysis should be incorporated into routine laboratory practice.
Collapse
Affiliation(s)
- Mark T W Ebbert
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, 500 Chipeta Way, Salt Lake City, UT 84108, USA.
| | | | | | | | | |
Collapse
|
9
|
DeLong AK, Wu M, Bennett D, Parkin N, Wu Z, Hogan JW, Kantor R. Sequence quality analysis tool for HIV type 1 protease and reverse transcriptase. AIDS Res Hum Retroviruses 2012; 28:894-901. [PMID: 21916749 DOI: 10.1089/aid.2011.0120] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Access to antiretroviral therapy is increasing globally and drug resistance evolution is anticipated. Currently, protease (PR) and reverse transcriptase (RT) sequence generation is increasing, including the use of in-house sequencing assays, and quality assessment prior to sequence analysis is essential. We created a computational HIV PR/RT Sequence Quality Analysis Tool (SQUAT) that runs in the R statistical environment. Sequence quality thresholds are calculated from a large dataset (46,802 PR and 44,432 RT sequences) from the published literature ( http://hivdb.Stanford.edu ). Nucleic acid sequences are read into SQUAT, identified, aligned, and translated. Nucleic acid sequences are flagged if with >five 1-2-base insertions; >one 3-base insertion; >one deletion; >six PR or >18 RT ambiguous bases; >three consecutive PR or >four RT nucleic acid mutations; >zero stop codons; >three PR or >six RT ambiguous amino acids; >three consecutive PR or >four RT amino acid mutations; >zero unique amino acids; or <0.5% or >15% genetic distance from another submitted sequence. Thresholds are user modifiable. SQUAT output includes a summary report with detailed comments for troubleshooting of flagged sequences, histograms of pairwise genetic distances, neighbor joining phylogenetic trees, and aligned nucleic and amino acid sequences. SQUAT is a stand-alone, free, web-independent tool to ensure use of high-quality HIV PR/RT sequences in interpretation and reporting of drug resistance, while increasing awareness and expertise and facilitating troubleshooting of potentially problematic sequences.
Collapse
Affiliation(s)
- Allison K. DeLong
- Center for Statistical Sciences, Brown University, Providence, Rhode Island
| | - Mingham Wu
- Department of Research and Development, CardioDx Inc., Palo Alto, California
| | - Diane Bennett
- U.S. Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Zhijin Wu
- Department of Biostatistics and Center for Statistical Sciences, Brown University, Providence, Rhode Island
| | - Joseph W. Hogan
- Department of Biostatistics and Center for Statistical Sciences, Brown University, Providence, Rhode Island
| | - Rami Kantor
- Division of Infectious Diseases, Brown University Alpert Medical School, Providence, Rhode Island
| |
Collapse
|
10
|
Absence of HIV-1 evolution in the gut-associated lymphoid tissue from patients on combination antiviral therapy initiated during primary infection. PLoS Pathog 2012; 8:e1002506. [PMID: 22319447 PMCID: PMC3271083 DOI: 10.1371/journal.ppat.1002506] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 12/13/2011] [Indexed: 12/15/2022] Open
Abstract
Mucosal mononuclear (MMC) CCR5+CD4+ T cells of the gastrointestinal (GI) tract are selectively infected and depleted during acute HIV-1 infection. Despite early initiation of combination antiretroviral therapy (cART), gut-associated lymphoid tissue (GALT) CD4+ T cell depletion and activation persist in the majority of HIV-1 positive individuals studied. This may result from ongoing HIV-1 replication and T-cell activation despite effective cART. We hypothesized that ongoing viral replication in the GI tract during cART would result in measurable viral evolution, with divergent populations emerging over time. Subjects treated during early HIV-1 infection underwent phlebotomy and flexible sigmoidoscopy with biopsies prior to and 15–24 months post initiation of cART. At the 2nd biopsy, three GALT phenotypes were noted, characterized by high, intermediate and low levels of immune activation. A representative case from each phenotype was analyzed. Each subject had plasma HIV-1 RNA levels <50 copies/ml at 2nd GI biopsy and CD4+ T cell reconstitution in the peripheral blood. Single genome amplification of full-length HIV-1 envelope was performed for each subject pre- and post-initiation of cART in GALT and PBMC. A total of 280 confirmed single genome sequences (SGS) were analyzed for experimental cases. For each subject, maximum likelihood phylogenetic trees derived from molecular sequence data showed no evidence of evolved forms in the GALT over the study period. During treatment, HIV-1 envelope diversity in GALT-derived SGS did not increase and post-treatment GALT-derived SGS showed no substantial genetic divergence from pre-treatment sequences within transmitted groups. Similar results were obtained from PBMC-derived SGS. Our results reveal that initiation of cART during acute/early HIV-1 infection can result in the interruption of measurable viral evolution in the GALT, suggesting the absence of de-novo rounds of HIV-1 replication in this compartment during suppressive cART. This study was undertaken to determine if the gastrointestinal tract is a site of ongoing viral replication during suppressive combination antiretroviral therapy (cART) (defined by plasma HIV-1 RNA levels below 50 copies/ml). We found no evidence of substantial viral evolution in HIV-1 envelope sequences derived from peripheral blood mononuclear cells or cells of the gastrointestinal tract lymphoid tissue in participants initiating cART during early HIV-1 infection. To our knowledge, this is the first application of the single genome amplification technique to the comparative analysis of HIV-1 quasi-species derived from the gastrointestinal tract, demonstrating that in these individuals, cART has the ability to halt measurable evolution of HIV-1 envelope in this compartment. These findings suggest the absence of de-novo rounds of HIV-1 replication during suppressive cART and by extension, that experimentally observed, persistently elevated levels of immune activation in the gastrointestinal lymphoid tissue seen after the early initiation and uninterrupted use of cART (despite relative immune reconstitution in the blood) is likely due to factors other than ongoing viral replication. This implies that in this virally suppressed population, cART intensification is unlikely to significantly impact persistent CD4+ T cell depletion or increased levels of immune activation in the gastrointestinal tract.
Collapse
|
11
|
Whitney JB, Hraber PT, Luedemann C, Giorgi EE, Daniels MG, Bhattacharya T, Rao SS, Mascola JR, Nabel GJ, Korber BT, Letvin NL. Genital tract sequestration of SIV following acute infection. PLoS Pathog 2011; 7:e1001293. [PMID: 21379569 PMCID: PMC3040679 DOI: 10.1371/journal.ppat.1001293] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 01/13/2011] [Indexed: 11/18/2022] Open
Abstract
We characterized the evolution of simian immunodeficiency virus (SIV) in the male genital tract by examining blood- and semen-associated virus from experimentally and sham vaccinated rhesus monkeys during primary infection. At the time of peak virus replication, SIV sequences were intermixed between the blood and semen supporting a scenario of high-level virus “spillover” into the male genital tract. However, at the time of virus set point, compartmentalization was apparent in 4 of 7 evaluated monkeys, likely as a consequence of restricted virus gene flow between anatomic compartments after the resolution of primary viremia. These findings suggest that SIV replication in the male genital tract evolves to compartmentalization after peak viremia resolves. Methods to reduce the transmission of HIV-1 are hindered by a lack of information regarding early viral dynamics and evolution in the male genital tract. In the present study, we show that SIV in the blood and genital tract are homogeneous during early infection, indicating facile virus gene flow between these compartments. Importantly, the coincidence of the resolution of primary viremia with the decreased virus levels in genital secretions suggest that the dramatic fall in virus replication during early infection underlies the development of viral compartmentalization. Our demonstration of early virus compartmentalization in the male genital tract has important implications for the understanding of early events leading to infection of the male genital tract and the nature of the transmitted virus during primary retrovirus infection.
Collapse
Affiliation(s)
- James B Whitney
- Division of Viral Pathogenesis, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Heath L, Frenkel LM, Foley BT, Mullins JI. Comment on "The origins of sexually transmitted HIV among men who have sex with men". Sci Transl Med 2011; 2:50le1; author reply 50lr1. [PMID: 20861507 DOI: 10.1126/scitranslmed.3001416] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Whether HIV from seminal cells or free HIV in semen is the origin of transmitted virus has important implications for the design of transmission prevention strategies. We found that a recent claim that HIV originates from seminal plasma and not from seminal cells was erroneous, because it was based on biological specimens that had been mislabeled, mixed-up, or contaminated. The origin of transmitted virus from semen therefore remains an open question.
Collapse
|
13
|
Shapshak P, Kangueane P, Fujimura RK, Commins D, Chiappelli F, Singer E, Levine AJ, Minagar A, Novembre FJ, Somboonwit C, Nath A, Sinnott JT. Editorial neuroAIDS review. AIDS 2011; 25:123-41. [PMID: 21076277 PMCID: PMC4464840 DOI: 10.1097/qad.0b013e328340fd42] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Paul Shapshak
- Division of Infectious Disease, Department of Internal Medicine, Tampa General Hospital, Tampa, Florida, USA
- Department of Psychiatry and Behavioral Medicine, University of South Florida, College of Medicine, Tampa, Florida, USA
| | - Pandjassarame Kangueane
- Biomedical Informatics, 17A lrulan Sundai Annex, Pondicherry, India
- AIMST University, Kedha, Malaysia
| | - Robert K. Fujimura
- Geriatric Research Education and Clinical Centers, Veterans Administration, Puget Sound Healthcare System, Seattle, Washington
| | - Deborah Commins
- Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles
| | | | - Elyse Singer
- Department of Neurology and National Neurological AIDS Bank, UCLA School of Medicine, Westwood, California
| | - Andrew J. Levine
- Department of Neurology and National Neurological AIDS Bank, UCLA School of Medicine, Westwood, California
| | - Alireza Minagar
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | | | - Charurut Somboonwit
- Division of Infectious Disease, Department of Internal Medicine, Tampa General Hospital, Tampa, Florida, USA
- Clinical Research Unit, Hillsborough Health Department, Tampa, Florida
| | - Avindra Nath
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - John T. Sinnott
- Division of Infectious Disease, Department of Internal Medicine, Tampa General Hospital, Tampa, Florida, USA
- Clinical Research Unit, Hillsborough Health Department, Tampa, Florida
| |
Collapse
|
14
|
Xiang X, Lu J, Dong Z, Zhou H, Tao W, Guo Q, Zhou X, Bao S, Xie Q, Zhong J. Viral sequence evolution in Chinese genotype 1b chronic hepatitis C patients experiencing unsuccessful interferon treatment. INFECTION GENETICS AND EVOLUTION 2010; 11:382-90. [PMID: 21147266 DOI: 10.1016/j.meegid.2010.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 11/12/2010] [Accepted: 11/24/2010] [Indexed: 02/08/2023]
Abstract
The efficiencies of IFN-α based therapy in chronic genotype 1b HCV patients are still unsatisfied to date. The mechanisms underlining treatment failure remain unclear and controversial. To investigate HCV sequence evolution in unsuccessfully treated genotype 1b patients before, during and after the therapy, full-length open-reading-frame of HCV genomes at week 0, week 48 and year 5 in one breakthrough and one nonresponse patients were amplified by reverse transcription (RT)-nested-PCR and sequenced. Mutations were scored and analyzed according to their locations in the HCV genome. HCV sequences in the breakthrough patient displayed significantly more mutations during the one-year therapy than that in the nonresponse patient, with p7 and NS2 encoding regions having the highest mutation rates. Most of the mutations selected during the therapy phase in the breakthrough patient were maintained and few new mutations arose in the four-year post-therapy phase, suggesting these mutations might not compromise viral fitness. Altogether our data suggest that mutations occurred during the therapy phase in the breakthrough patient are likely driven by the action of interferon and ribavirin, and these mutations may have important effects on the responses to interferon based therapy in genotype 1b HCV patients.
Collapse
Affiliation(s)
- Xiaogang Xiang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai 20005, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kolber MA, Buendia P, Degruttola V, Moore RD. HIV-1 diversity after a class switch failure. AIDS Res Hum Retroviruses 2010; 26:1175-80. [PMID: 20854203 PMCID: PMC3000642 DOI: 10.1089/aid.2010.0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study is to evaluate whether the choice of a PI- or an efavirenz (EFV)-based HAART initial regimen impacts on the viral diversity after failure from a second, class-switch salvage regimen. Sequential HAART failures after a class switch were identified for which the genotypes showed evidence of signature mutations at each failure. Each second failure was required to be from a viral burden <400 RNA c/ml. Thirteen cases of sequential failure from an initial EFV-containing to a PI-containing regimen (EP), and 19 sequential failures from an initial PI-containing to an EFV-containing regimen (PE) were identified. The persistence of signature mutations from the first failure were evaluated at second failure and compared between the EP and PE groups. Phylogenetic trees were constructed for a subgroup of cases from existing genetic sequence information and branch length analysis was used to determine evidence of viral diversity between groups. For EP sequential therapy, 10 of 12 cases carried forward a key non-nucleoside reverse transcriptase inhibitor (NNRTI) mutation in the second failure compared to 5 of 13 cases for PE sequential therapy (p = 0.041). Phylogenetic analysis demonstrated that there was more viral diversity in the PE group as compared to the EP group, consistent with the interpretation that mutations at the second failure added to an ancestral virus closer to baseline rather than to the dominant virus at first failure. The development of HIV viral diversity after multiple HAART failures is determined by the sequence in which the regimens are ordered.
Collapse
Affiliation(s)
- Michael A Kolber
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida 33136, USA.
| | | | | | | |
Collapse
|
16
|
Reuman EC, Rhee SY, Holmes SP, Shafer RW. Constrained patterns of covariation and clustering of HIV-1 non-nucleoside reverse transcriptase inhibitor resistance mutations. J Antimicrob Chemother 2010; 65:1477-85. [PMID: 20462946 PMCID: PMC2882873 DOI: 10.1093/jac/dkq140] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 03/30/2010] [Accepted: 04/01/2010] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES We characterized pairwise and higher order patterns of non-nucleoside reverse transcriptase inhibitor (NNRTI)-selected mutations because multiple mutations are usually required for clinically significant resistance to second-generation NNRTIs. PATIENTS AND METHODS We analysed viruses from 13 039 individuals with sequences containing at least one of 52 published NNRTI-selected mutations, including 1133 viruses from individuals who received efavirenz but no other NNRTI and 1510 viruses from individuals who received nevirapine but no other NNRTI. Of the 17 reported etravirine resistance-associated mutations (RAMs), Y181C/I/V, L100I, K101P and M230L were considered major based on published in vitro susceptibility data. RESULTS Efavirenz preferentially selected for 16 mutations, including L100I (14% versus 0.1%, P < 0.001), K101P (3.3% versus 0.4%, P < 0.001) and M230L (2.8% versus 1.3%, P = 0.004), whereas nevirapine preferentially selected for 12 mutations, including Y181C/I/V (48% versus 6.9%, P < 0.001). Twenty-nine pairs of NNRTI-selected mutations covaried significantly, including Y181C with seven other mutations (A98G, K101E/H, V108I, G190A/S and H221Y), L100I with K103N, and K101P with K103S. Two pairs (Y181C + V179F and Y181C + G190S) were predicted to confer >10-fold decreased etravirine susceptibility. Seventeen percent of sequences had three or more NNRTI-selected mutations, mostly in clusters of covarying mutations. Many clusters had Y181C plus a non-major etravirine RAM; few had more than one major etravirine RAM. CONCLUSIONS Although major etravirine RAMs rarely occur in combination, 2 of 29 pairs of covarying mutations were associated with >10-fold decreased etravirine susceptibility. Viruses with three or more NNRTI-selected mutations often contained Y181C in combination with one or more minor etravirine RAMs; however, phenotypic and clinical correlates for most of these higher order combinations have not been published.
Collapse
Affiliation(s)
- Elizabeth C Reuman
- Division of Infectious Diseases, Department of Medicine, Stanford University, 300 Pasteur Drive, Grant S-146, Stanford, CA 94305, USA.
| | | | | | | |
Collapse
|
17
|
Varghese V, Wang E, Babrzadeh F, Bachmann MH, Shahriar R, Liu T, Mappala SJM, Gharizadeh B, Fessel WJ, Katzenstein D, Kassaye S, Shafer RW. Nucleic acid template and the risk of a PCR-Induced HIV-1 drug resistance mutation. PLoS One 2010; 5:e10992. [PMID: 20539818 PMCID: PMC2881873 DOI: 10.1371/journal.pone.0010992] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Accepted: 05/12/2010] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The HIV-1 nucleoside RT inhibitor (NRTI)-resistance mutation, K65R confers intermediate to high-level resistance to the NRTIs abacavir, didanosine, emtricitabine, lamivudine, and tenofovir; and low-level resistance to stavudine. Several lines of evidence suggest that K65R is more common in HIV-1 subtype C than subtype B viruses. METHODS AND FINDINGS We performed ultra-deep pyrosequencing (UDPS) and clonal dideoxynucleotide sequencing of plasma virus samples to assess the prevalence of minority K65R variants in subtype B and C viruses from untreated individuals. Although UDPS of plasma samples from 18 subtype C and 27 subtype B viruses showed that a higher proportion of subtype C viruses contain K65R (1.04% vs. 0.25%; p<0.001), limiting dilution clonal sequencing failed to corroborate its presence in two of the samples in which K65R was present in >1.5% of UDPS reads. We therefore performed UDPS on clones and site-directed mutants containing subtype B- and C-specific patterns of silent mutations in the conserved KKK motif encompassing RT codons 64 to 66 and found that subtype-specific nucleotide differences were responsible for increased PCR-induced K65R mutation in subtype C viruses. CONCLUSIONS This study shows that the RT KKK nucleotide template in subtype C viruses can lead to the spurious detection of K65R by highly sensitive PCR-dependent sequencing techniques. However, the study is also consistent with the subtype C nucleotide template being inherently responsible for increased polymerization-induced K65R mutations in vivo.
Collapse
Affiliation(s)
- Vici Varghese
- Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Restriction of HIV-1 genotypes in breast milk does not account for the population transmission genetic bottleneck that occurs following transmission. PLoS One 2010; 5:e10213. [PMID: 20422033 PMCID: PMC2857876 DOI: 10.1371/journal.pone.0010213] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 03/17/2010] [Indexed: 12/27/2022] Open
Abstract
Background Breast milk transmission of HIV-1 remains a major route of pediatric infection. Defining the characteristics of viral variants to which breastfeeding infants are exposed is important for understanding the genetic bottleneck that occurs in the majority of mother-to-child transmissions. The blood-milk epithelial barrier markedly restricts the quantity of HIV-1 in breast milk, even in the absence of antiretroviral drugs. The basis of this restriction and the genetic relationship between breast milk and blood variants are not well established. Methodology/Principal Findings We compared 356 HIV-1 subtype C gp160 envelope (env) gene sequences from the plasma and breast milk of 13 breastfeeding women. A trend towards lower viral population diversity and divergence in breast milk was observed, potentially indicative of clonal expansion within the breast. No differences in potential N-linked glycosylation site numbers or in gp160 variable loop amino acid lengths were identified. Genetic compartmentalization was evident in only one out of six subjects in whom contemporaneously obtained samples were studied. However, in samples that were collected 10 or more days apart, six of seven subjects were classified as having compartmentalized viral populations, highlighting the necessity of contemporaneous sampling for genetic compartmentalization studies. We found evidence of CXCR4 co-receptor using viruses in breast milk and blood in nine out of the thirteen subjects, but no evidence of preferential localization of these variants in either tissue. Conclusions/Significance Despite marked restriction of HIV-1 quantities in milk, our data indicate intermixing of virus between blood and breast milk. Thus, we found no evidence that a restriction in viral genotype diversity in breast milk accounts for the genetic bottleneck observed following transmission. In addition, our results highlight the rapidity of HIV-1 env evolution and the importance of sample timing in analyses of gene flow.
Collapse
|
19
|
Genetic linkage of hepatitis B virus in peripheral blood leukocytes provides evidence for contamination. J Virol 2010; 84:2184-6. [PMID: 20097886 DOI: 10.1128/jvi.02263-09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
20
|
HIV-1 superinfection in the antiretroviral therapy era: are seroconcordant sexual partners at risk? PLoS One 2009; 4:e5690. [PMID: 19479055 PMCID: PMC2684644 DOI: 10.1371/journal.pone.0005690] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 04/09/2009] [Indexed: 11/19/2022] Open
Abstract
Background Acquisition of more than one strain of human immunodeficiency virus type 1 (HIV-1) has been reported to occur both during and after primary infection, but the risks and repercussions of dual and superinfection are incompletely understood. In this study, we evaluated a longitudinal cohort of chronically HIV-infected men who were sexual partners to determine if individuals acquired their partners' viral strains. Methodology Our cohort of HIV-positive men consisted of 8 couples that identified themselves as long-term sexual partners. Viral sequences were isolated from each subject and analyzed using phylogenetic methods. In addition, strain-specific PCR allowed us to search for partners' viruses present at low levels. Finally, we used computational algorithms to evaluate for recombination between partners' viral strains. Principal Findings/Conclusions All couples had at least one factor associated with increased risk for acquisition of new HIV strains during the study, including detectable plasma viral load, sexually transmitted infections, and unprotected sex. One subject was dually HIV-1 infected, but neither strain corresponded to that of his partner. Three couples' sequences formed monophyletic clusters at the entry visit, with phylogenetic analysis suggesting that one member of the couple had acquired an HIV strain from his identified partner or that both had acquired it from the same source outside their partnership. The 5 remaining couples initially displayed no evidence of dual infection, using phylogenetic analysis and strain-specific PCR. However, in 1 of these couples, further analysis revealed recombinant viral strains with segments of viral genomes in one subject that may have derived from the enrolled partner. Thus, chronically HIV-1 infected individuals may become superinfected with additional HIV strains from their seroconcordant sexual partners. In some cases, HIV-1 superinfection may become apparent when recombinant viral strains are detected.
Collapse
|
21
|
Early changes of hepatitis B virus quasispecies during lamivudine treatment and the correlation with antiviral efficacy. J Hepatol 2009; 50:895-905. [PMID: 19304333 DOI: 10.1016/j.jhep.2008.12.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 12/13/2008] [Accepted: 12/15/2008] [Indexed: 12/14/2022]
Abstract
BACKGROUND/AIMS To investigate dynamic changes of hepatitis B virus (HBV) quasispecies within the reverse transcriptase (RT) region during the early stage of lamivudine treatment and the correlation with antiviral efficacy. METHODS Twenty-five chronic hepatitis B patients received lamivudine treatment for 48 weeks. Fourteen patients responded to lamivudine, while eleven patients were non-responders. HBV DNA was extracted from serum samples at baseline and week 4. The RT region of HBV was amplified, then cloned and sequenced. Quasispecies complexity and diversity within the RT region were analyzed at baseline and week 4, and viral nucleotide substitution rates during the first 4 weeks were calculated. RESULTS The quasispecies complexity and diversity were not different between responders and non-responders at baseline (p>0.05). However, the quasispecies complexity and diversity of responders were significantly lower than those of non-responders at week 4 (p<0.01). Furthermore, the viral nucleotide substitution rate of responders was significantly higher than that of non-responders (p<0.05). CONCLUSIONS The dynamic changes of HBV quasispecies within the RT region showed distinct patterns between responders and non-responders during early stage of lamivudine treatment. The dynamic changes of quasispecies complexity and diversity during the first 4 weeks were correlated with lamivudine antiviral efficacy and antiviral resistance.
Collapse
|
22
|
Kowalski J, Gange SJ, Schneider MF, Tsai HL, Templeton A, Shao Q, Zhang GW, Yeh MF, Young M, Markham RB. Relationship of injection drug use, antiretroviral therapy resistance, and genetic diversity in the HIV-1 pol gene. J Acquir Immune Defic Syndr 2009; 50:381-9. [PMID: 19214121 PMCID: PMC2937199 DOI: 10.1097/qai.0b013e318198a619] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To determine if a history of injection drug use influences genotypic protease inhibitor (PI) resistance to antiretroviral agents. METHODS We assessed the presence of resistance mutations in PI-naive injection drug users (IDUs) and non-IDUs participating in the Women's Interagency HIV Study. Eighteen HIV-infected participants who reported injection drug use before study enrollment and 32 HIV-infected non-IDUs contributed a total of 34 and 65 person-visits, respectively, to analyses. RESULTS Based on data from multiple clones obtained from different time points from each individual, we determined that primary PI resistance mutations were more frequent among person visits contributed by IDUs (24%) than non-IDUs (8%, P = 0.05). Although neither reached statistical significance, diversity was higher within the protease region among study visits carrying PI-resistant clones at both the nucleotide level (2.66 vs. 2.35; P = 0.08) and at the amino acid level (1.60 vs. 1.32; P = 0.23). Most of the primary resistance mutations could not be detected using the standard population sequencing employed in the clinical setting. Five of 6 individuals in whom clones encoding PI resistance mutations were identified failed PI-containing highly active antiretroviral therapy within 12 months of therapy initiation. CONCLUSIONS Our findings indicate that more aggressive sampling for resistance mutations among viral clones before highly active antiretroviral therapy initiation might permit selection of more effective treatment, particularly in IDUs.
Collapse
Affiliation(s)
- Jeanne Kowalski
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Eyer-Silva WA, Couto-Fernandez JC, Silva-de-Jesus C, Morgado MG. Prevalence of HIV type 1 drug resistance mutations in treatment-naïve and experienced patients from resource-limited settings with universal access to antiretroviral therapy: a survey in two small Brazilian cities. Mem Inst Oswaldo Cruz 2008; 103:143-9. [DOI: 10.1590/s0074-02762008000200004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 03/20/2008] [Indexed: 11/22/2022] Open
Affiliation(s)
- Walter A Eyer-Silva
- Fiocruz, Brasil; Universidade Federal do Estado do Rio de Janeiro, Brasil; Programa Municipal de HIV-1/Aids de Saquarema, Brasil; Programa Municipal de HIV-1/Aids de Santo Antonio de Pádua, Brasil
| | | | | | | |
Collapse
|
24
|
Lubec G, Afjehi-Sadat L. Limitations and pitfalls in protein identification by mass spectrometry. Chem Rev 2007; 107:3568-84. [PMID: 17645314 DOI: 10.1021/cr068213f] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Gert Lubec
- Medical University of Vienna, Department of Pediatrics, Waehringer Guertel 18, A-1090 Vienna, Austria.
| | | |
Collapse
|
25
|
Deng W, Nickle DC, Learn GH, Maust B, Mullins JI. ViroBLAST: a stand-alone BLAST web server for flexible queries of multiple databases and user's datasets. Bioinformatics 2007; 23:2334-6. [PMID: 17586542 DOI: 10.1093/bioinformatics/btm331] [Citation(s) in RCA: 189] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
UNLABELLED ViroBLAST is a stand-alone BLAST web interface for nucleotide and amino acid sequence similarity searches. It extends the utility of BLAST to query against multiple sequence databases and user sequence datasets, and provides a friendly output to easily parse and navigate BLAST results. ViroBLAST is readily useful for all research areas that require BLAST functions and is available online and as a downloadable archive for independent installation. AVAILABILITY http://indra.mullins.microbiol.washington.edu/blast/viroblast.php.
Collapse
Affiliation(s)
- Wenjie Deng
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
26
|
Iversen AKN, Stewart-Jones G, Learn GH, Christie N, Sylvester-Hviid C, Armitage AE, Kaul R, Beattie T, Lee JK, Li Y, Chotiyarnwong P, Dong T, Xu X, Luscher MA, MacDonald K, Ullum H, Klarlund-Pedersen B, Skinhøj P, Fugger L, Buus S, Mullins JI, Jones EY, van der Merwe PA, McMichael AJ. Conflicting selective forces affect T cell receptor contacts in an immunodominant human immunodeficiency virus epitope. Nat Immunol 2006; 7:179-89. [PMID: 16388312 DOI: 10.1038/ni1298] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 12/05/2005] [Indexed: 11/08/2022]
Abstract
Cytotoxic T lymphocytes (CTLs) are critical for the control of human immunodeficiency virus, but containment of virus replication can be undermined by mutations in CTL epitopes that lead to virus escape. We analyzed the evolution in vivo of an immunodominant, HLA-A2-restricted CTL epitope and found two principal, diametrically opposed evolutionary pathways that exclusively affect T cell-receptor contact residues. One pathway was characterized by acquisition of CTL escape mutations and the other by selection for wild-type amino acids. The pattern of CTL responses to epitope variants shaped which variant(s) prevailed in the virus population. The pathways notably influenced the amount of plasma virus, as patients with efficient CTL selection had lower plasma viral loads than did patients without efficient selection. Thus, viral escape from CTL responses does not necessarily correlate with disease progression.
Collapse
MESH Headings
- Adult
- Amino Acid Sequence
- Crystallography, X-Ray
- Evolution, Molecular
- Female
- Gene Products, gag/chemistry
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Genetic Variation
- HIV Antigens/genetics
- HIV Antigens/metabolism
- HIV Infections/immunology
- HIV Infections/virology
- HIV-1/genetics
- HIV-1/immunology
- HLA-A2 Antigen/chemistry
- HLA-A2 Antigen/metabolism
- Humans
- Immunodominant Epitopes/genetics
- Immunodominant Epitopes/metabolism
- Models, Molecular
- Molecular Sequence Data
- Multiprotein Complexes
- Mutation
- Peptide Fragments/chemistry
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Phylogeny
- Receptors, Antigen, T-Cell/metabolism
- Selection, Genetic
- T-Lymphocytes, Cytotoxic/immunology
- Viremia/immunology
- Viremia/virology
- env Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Astrid K N Iversen
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9AD, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Doria-Rose NA, Learn GH, Rodrigo AG, Nickle DC, Li F, Mahalanabis M, Hensel MT, McLaughlin S, Edmonson PF, Montefiori D, Barnett SW, Haigwood NL, Mullins JI. Human immunodeficiency virus type 1 subtype B ancestral envelope protein is functional and elicits neutralizing antibodies in rabbits similar to those elicited by a circulating subtype B envelope. J Virol 2005; 79:11214-24. [PMID: 16103173 PMCID: PMC1193599 DOI: 10.1128/jvi.79.17.11214-11224.2005] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Accepted: 06/07/2005] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) is a difficult target for vaccine development, in part because of its ever-expanding genetic diversity and attendant capacity to escape immunologic recognition. Vaccine efficacy might be improved by maximizing immunogen antigenic similarity to viruses likely to be encountered by vaccinees. To this end, we designed a prototype HIV-1 envelope vaccine using a deduced ancestral state for the env gene. The ancestral state reconstruction method was shown to be >95% accurate by computer simulation and 99.8% accurate when estimating the known inoculum used in an experimental infection study in rhesus macaques. Furthermore, the deduced ancestor gene differed from the set of sequences used to derive the ancestor by an average of 12.3%, while these latter sequences were an average of 17.3% different from each other. A full-length ancestral subtype B HIV-1 env gene was constructed and shown to produce a glycoprotein of 160 kDa that bound and fused with cells expressing the HIV-1 coreceptor CCR5. This Env was also functional in a virus pseudotype assay. When either gp160- or gp140-expressing plasmids and recombinant gp120 were used to immunize rabbits in a DNA prime-protein boost regimen, the artificial gene induced immunoglobulin G antibodies capable of weakly neutralizing heterologous primary HIV-1 strains. The results were similar for rabbits immunized in parallel with a natural isolate, HIV-1 SF162. Further design efforts to better present conserved neutralization determinants are warranted.
Collapse
|
28
|
Abstract
HIV-1 and other retroviruses exhibit mutation rates that are 1,000,000-fold greater than their host organisms. Error-prone viral replication may place retroviruses and other RNA viruses near the threshold of "error catastrophe" or extinction due to an intolerable load of deleterious mutations. Strategies designed to drive viruses to error catastrophe have been applied to HIV-1 and a number of RNA viruses. Here, we review the concept of extinguishing HIV infection by "lethal mutagenesis" and consider the utility of this new approach in combination with conventional antiretroviral strategies.
Collapse
Affiliation(s)
- Robert A Smith
- Department of Pathology, University of Washington, Seattle, WA 18195, USA.
| | | | | |
Collapse
|
29
|
De Groot AS, Bishop EA, Khan B, Lally M, Marcon L, Franco J, Mayer KH, Carpenter CCJ, Martin W. Engineering immunogenic consensus T helper epitopes for a cross-clade HIV vaccine. Methods 2005; 34:476-87. [PMID: 15542374 DOI: 10.1016/j.ymeth.2004.06.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2004] [Indexed: 10/26/2022] Open
Abstract
Developing a vaccine that will stimulate broad HIV-specific T cell responses is difficult because of the variability in HIV T cell epitope sequences, which is in turn due to the high mutation rate and consequent strain diversity of HIV-1. We used a new Class II version of the EpiMatrix T cell epitope-mapping tool and Conservatrix to select highly conserved and promiscuous Class II HLA-restricted T cell epitopes from a database of 18,313 HIV-1 env sequences. Criteria for selection were: (1) number of HIV-1 strains represented as measured by Conservatrix; (2) EpiMatrix score; and (3) promiscuity (number of unique MHC motifs contained in the peptide). Using another vaccine design tool called the EpiAssembler, a new set of overlapping, conserved and immunogenic HIV-1 peptides were engineered creating extended "immunogenic consensus" sequences. Each overlapping 9-mer of the 20-23 amino acid long immunogenic consensus peptides was conserved in a large number (range 893-2254) of individual HIV-1 strains, although the novel peptides were not representative of any single strain of HIV. We synthesized nine representative peptides. T helper cell responses to the peptides were evaluated by ELISpot (gamma-interferon) assay, using peripheral blood monocytes (PBMC) obtained from 34 healthy long term non-progressor (LT) or moderate-progressor (MP) donors (median years infected = 8.88, median CD4 T cells = 595, median VL = 1044). Nine peptides were tested, of which eight were confirmed in ELISpot assays using PBMC from the LT/MP subjects. These epitopes were ranked by Conservation and EpiMatrix score 1, 2, 3, 5, 7, 11, and 14 out of the set of 9 original peptides. Five of these peptides were selected for inclusion in an epitope-driven cross-clade HIV-1 vaccine (the GAIA vaccine). These data confirm the utility of bioinformatics tools to select and construct novel "immunogenic consensus sequence" T cell epitopes for a globally relevant vaccine against HIV.
Collapse
Affiliation(s)
- Anne S De Groot
- TB/HIV Research Lab, Brown University, Providence RI 02912, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Casazza JP, Betts MR, Hill BJ, Brenchley JM, Price DA, Douek DC, Koup RA. Immunologic pressure within class I-restricted cognate human immunodeficiency virus epitopes during highly active antiretroviral therapy. J Virol 2005; 79:3653-63. [PMID: 15731259 PMCID: PMC1075692 DOI: 10.1128/jvi.79.6.3653-3663.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Accepted: 10/22/2004] [Indexed: 12/17/2022] Open
Abstract
Cytotoxic T lymphocytes (CTL) and highly active antiretroviral therapy (HAART) are known to exert strong evolutionary pressures on the virus population during human immunodeficiency virus (HIV) infection. However, it is not known whether CTL responses continue to substantially affect viral evolution during treatment. To study the effect of immunologic pressure on viral sequences during HAART, we identified 10 targeted HIV-specific CD8+-T-cell epitopes in five treatment-naive patients, sequenced each epitope in plasma-derived viruses, and then identified evidence of immunologic pressure at these epitopes by comparing the frequency of viral variants in plasma to the frequency of the CD8+-T-cell response for each variant identified. For one of the five patients, evidence of viral evolution was found during therapy. The sequence of the CTL-targeted epitope changed from an apparent escape variant prior to the initiation of therapy, to the sequence that is best recognized by the CTL response after the initiation of therapy, and then finally to a new escape variant during continued therapy. These data show that CTL-mediated pressure can continue to affect viral evolution after the initiation of HAART, even when treatment drives the viral load below detectable levels, and suggest that antiretroviral therapy may preferentially inhibit those virus variants that escape the CTL response.
Collapse
Affiliation(s)
- Joseph P Casazza
- Immunology Laboratory, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Philpott S, Burger H, Tsoukas C, Foley B, Anastos K, Kitchen C, Weiser B. Human immunodeficiency virus type 1 genomic RNA sequences in the female genital tract and blood: compartmentalization and intrapatient recombination. J Virol 2005; 79:353-63. [PMID: 15596829 PMCID: PMC538688 DOI: 10.1128/jvi.79.1.353-363.2005] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Investigation of human immunodeficiency virus type 1 (HIV-1) in the genital tract of women is crucial to the development of vaccines and therapies. Previous analyses of HIV-1 in various anatomic sites have documented compartmentalization, with viral sequences from each location that were distinct yet phylogenetically related. Full-length RNA genomes derived from different compartments in the same individual, however, have not yet been studied. Furthermore, although there is evidence that intrapatient recombination may occur frequently, recombinants comprising viruses from different sites within one individual have rarely been documented. We compared full-length HIV-1 RNA sequences in the plasma and female genital tract, focusing on a woman with high HIV-1 RNA loads in each compartment who had been infected heterosexually and then transmitted HIV-1 by the same route. We cloned and sequenced 10 full-length HIV-1 RNA genomes from her genital tract and 10 from her plasma. We also compared viral genomes from the genital tract and plasma of four additional heterosexually infected women, sequencing 164 env and gag clones obtained from the two sites. Four of five women, including the one whose complete viral sequences were determined, displayed compartmentalized HIV-1 genomes. Analyses of full-length, compartmentalized sequences made it possible to document complex intrapatient HIV-1 recombinants that were composed of alternating viral sequences characteristic of each site. These findings demonstrate that the genital tract and blood harbor genetically distinct populations of replicating HIV-1 and provide evidence that recombination between strains from the two compartments contributes to rapid evolution of viral sequence variation in infected individuals.
Collapse
Affiliation(s)
- Sean Philpott
- Wadsworth Center, New York State Department of Health, Albany, New York 12208, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Castiglione F, Poccia F, D'Offizi G, Bernaschi M. Mutation, fitness, viral diversity, and predictive markers of disease progression in a computational model of HIV type 1 infection. AIDS Res Hum Retroviruses 2004; 20:1314-23. [PMID: 15650424 DOI: 10.1089/aid.2004.20.1314] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to develop a computational model of HIV infection able to simulate the natural history of the disease and to test predictive parameters of disease progression. We describe the results of a numerical simulation of the cellular and humoral immune response to HIV-1 infection as an adaptive pathway in a "bit-string" space. A total of 650 simulations of the HIV-1 dynamics were performed with a modified version of the Celada-Seiden immune system model. Statistics are in agreement with epidemiological studies showing a log normal distribution for the time span between infection and the development of AIDS. As predictive parameters of disease progression we found that HIV-1 accumulates "bit" mutations mainly in the peptide sequences recognized by cytotoxic CD8 T cells, indicating that cell-mediated immunity plays a major role in viral control. The viral load set point was closely correlated with the time from infection to development of AIDS. Viral divergence from the viral quasispecies that was present at the beginning of infection in long-term nonprogressors (LTNP) was found to be similar to that found in rapid progressors at the time CD4 T cells drop below the critical value of 200 cells/microl. In contrast, the diversity indicated by the number of HIV strains present at the same time was higher for rapid and normal progressors compared to LTNP, suggesting that the early immune response can make the difference. This computational model may help to define the predictive parameters of HIV dynamics and disease progression, with potential applications in therapeutic and vaccine simulations.
Collapse
Affiliation(s)
- Filippo Castiglione
- Istituto Applicazioni del Calcolo (IAC) M. Picone, National Research Council (CNR), Rome, Italy.
| | | | | | | |
Collapse
|
33
|
Feliu A, Gay E, García-Retortillo M, Saiz JC, Forns X. Evolution of hepatitis C virus quasispecies immediately following liver transplantation. Liver Transpl 2004; 10:1131-9. [PMID: 15350003 DOI: 10.1002/lt.20206] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Liver cirrhosis caused by chronic hepatitis C virus (HCV) infection is the main indication for liver transplantation (LT). There is little information on HCV genetic evolution following transplantation. The aim of this study was to carefully assess early evolution of HCV quasispecies in a cohort of 18 liver transplant recipients followed prospectively. Quasispecies analysis was performed by sequence analysis of the hypervariable region 1 (HVR1) before transplantation and at day 4 and week 4 following LT. A predominant variant was present in 12 (67%) of the 18 patients before transplantation and the same variant was propagated and remained predominant after LT in 6 (50%) of these patients. In the remaining individuals, there were major changes in the quasispecies composition, mostly occurring during the first days after LT. There was a progressive decrease in the nonsynonymous (dN)/synonymous (dS) ratios from baseline (1.2) to day 4 (.6) (P = .08) and to week 4 after LT (.3) (P = .015). Similarly, genetic distance (GD) declined from baseline (.1) to day 4 (.03) (P = .07) and to week 4 (.04) (P = .04). We did not find any differences in HCV genetic evolution between patients with mild (n = 10) or severe (n = 8) disease recurrence. In conclusion, during the first days following transplantation, HCV quasispecies becomes more homogenous, even after major changes in its composition. Importantly, these changes persist and even increase during the 1st month after transplantation. The "bottleneck" effect caused by the implantation of a new graft and the lack of selective pressure due to the strong immunosuppression most likely explain this particular pattern of genetic evolution.
Collapse
Affiliation(s)
- Anna Feliu
- Liver Unit, Institut de Malalties Digestives, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | | | | | | | | |
Collapse
|
34
|
Delaugerre C, Morand-Joubert L, Chaix ML, Picard O, Marcelin AG, Schneider V, Krivine A, Compagnucci A, Katlama C, Girard PM, Calvez V. Persistence of Multidrug-Resistant HIV-1 without Antiretroviral Treatment 2 Years after Sexual Transmission. Antivir Ther 2004. [DOI: 10.1177/135965350400900301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objectives To understand the virological mechanisms of 2-year persistence of multidrug-resistant virus without selective antiretroviral pressure in HIV-1-infected patients. Patients and Methods Two patients were contaminated recently by their HIV-1-infected partners, who had received, before the transmission, all available antiretroviral drugs and who exhibited a severe therapeutic failure. The resistance mutations analysis was performed by clonal sequencing of 1.2 kb of pol gene in plasma of index and sources patients. Sequencing of HIV-1 DNA was performed in PBMCs of index patients. Results Genotypic testing performed in index patients at time of seroconversion showed resistance mutations to three classes of drugs. All mutations were linked on the same viral genome and all quasispecies carried all mutations. No wild-type virus was detected. The same results were found in source patients and showed that all mutations were transmitted. In the index patients, all mutations persisted over 2 years without antiretroviral treatment. Moreover, the resistance mutations were all archived in the cellular reservoir. Viral load and CD4 count of index patients remained unchanged during 2 years of follow-up. Discussion Only multidrug-resistant viruses were detected in the source patients and could be transmitted in index patients. In the latter, an expansion of predominant multidrug-resistant quasispecies and the ‘archival’ of all mutations were observed. These results explain the persistence of mutations and suggest that it is highly difficult to return to a wild-type viral population, sensitive to an antiretroviral treatment. The treatment of index patients is limited and the major risk is the transmission of these multidrug-resistant viruses. This work was presented in part in the XII International HIV Drug Resistance Workshop, Los Cabos, Mexico, June 2003; and in the 2nd IAS Conference on HIV Pathogenesis & Treatment, Paris, France, July 2003.
Collapse
Affiliation(s)
- Constance Delaugerre
- Department of Virology-EA2387 and Infectious Diseases, Pitié-Salpêtrière Hospital, Paris, France
| | - Laurence Morand-Joubert
- Department of Virology, Internal Medicine and Infectious Diseases, Saint-Antoine Hospital, Paris, France
| | | | - Odile Picard
- Department of Virology, Internal Medicine and Infectious Diseases, Saint-Antoine Hospital, Paris, France
| | - Anne-Genevieve Marcelin
- Department of Virology-EA2387 and Infectious Diseases, Pitié-Salpêtrière Hospital, Paris, France
| | | | - Anne Krivine
- Department of Virology, Saint-Vincent-de-Paul Hospital, Paris, France
| | | | - Christine Katlama
- Department of Virology-EA2387 and Infectious Diseases, Pitié-Salpêtrière Hospital, Paris, France
| | - Pierre-Marie Girard
- Department of Virology, Internal Medicine and Infectious Diseases, Saint-Antoine Hospital, Paris, France
| | - Vincent Calvez
- Department of Virology-EA2387 and Infectious Diseases, Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|
35
|
Persaud D, Siberry GK, Ahonkhai A, Kajdas J, Monie D, Hutton N, Watson DC, Quinn TC, Ray SC, Siliciano RF. Continued production of drug-sensitive human immunodeficiency virus type 1 in children on combination antiretroviral therapy who have undetectable viral loads. J Virol 2004; 78:968-79. [PMID: 14694128 PMCID: PMC368798 DOI: 10.1128/jvi.78.2.968-979.2004] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Highly active antiretroviral therapy (HAART) can suppress plasma human immunodeficiency virus type 1 (HIV-1) levels to below the detection limit of ultrasensitive clinical assays. However, HIV-1 persists in cellular reservoirs, and in adults, persistent low-level viremia is detected with more sensitive assays. The nature of this viremia is poorly understood, and it is unclear whether viremia persists in children on HAART, particularly those who start therapy shortly after birth. We therefore developed a reverse transcriptase PCR (RT-PCR) assay that allows genotyping of HIV-1 protease even when viremia is present at levels as low as 5 copies of HIV-1 RNA/ml. We demonstrated that viremia persists in children with plasma virus levels below the limit of detection of clinical assays. Viremia was detected even in children who began HAART in early infancy and maintained such strong suppression of viremia that HIV-1-specific antibody responses were absent or minimal. The low-level plasma virus lacked protease inhibitor resistance mutations despite the frequent use of nelfinavir, which has a low mutational barrier to resistance. Protease sequences resembled those of viruses in the latent reservoir in resting CD4(+) T cells. Thus, in most children on HAART with clinically undetectable viremia, there is continued virus production without evolution of resistance in the protease gene.
Collapse
Affiliation(s)
- Deborah Persaud
- Department of Pediatrics, Johns Hopkins University School of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tsui R, Herring BL, Barbour JD, Grant RM, Bacchetti P, Kral A, Edlin BR, Delwart EL. Human immunodeficiency virus type 1 superinfection was not detected following 215 years of injection drug user exposure. J Virol 2004; 78:94-103. [PMID: 14671091 PMCID: PMC303392 DOI: 10.1128/jvi.78.1.94-103.2004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Evidence for human immunodeficiency virus type 1 (HIV-1) superinfection was sought among 37 HIV-1-positive street-recruited active injection drug users (IDUs) from the San Francisco Bay area. HIV-1 sequences from pairs of samples collected 1 to 12 years apart, spanning a total of 215 years of exposure, were generated at p17 gag, the V3-V5 region of env, and/or the first exon of tat and phylogenetically analyzed. No evidence of HIV-1 superinfection was detected in which a highly divergent HIV-1 variant emerged at a frequency >20% of the serum viral quasispecies. Based on the reported risk behavior of the IDUs and the HIV-1 incidence in uninfected subjects in the same cohort, a total of 3.4 new infections would have been expected if existing infection conferred no protection from superinfection. Adjusted for risk behaviors, the estimated relative risk of superinfection compared with initial infection was therefore 0.0 (95% confidence interval, 0.00, 0.79; P = 0.02), indicating that existing infection conferred a statistically significant level of protection against superinfection with an HIV-1 strain of the same subtype, which was between 21 and 100%.
Collapse
Affiliation(s)
- Rose Tsui
- Blood Systems Research Institute, University of California, San Francisco, San Francisco, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Herring BL, Ge YC, Wang B, Ratnamohan M, Zheng F, Cunningham AL, Saksena NK, Dwyer DE. Segregation of human immunodeficiency virus type 1 subtypes by risk factor in Australia. J Clin Microbiol 2004; 41:4600-4. [PMID: 14532189 PMCID: PMC254314 DOI: 10.1128/jcm.41.10.4600-4604.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to determine which human immunodeficiency virus type 1 (HIV-1) subtypes were circulating in Australia and to correlate the subtypes with risk factors associated with the acquisition of HIV-1 infection. DNA was extracted from peripheral blood mononuclear cells, and HIV-1 env genes were amplified and subtyped using heteroduplex mobility analysis, with selected samples sequenced and phylogenetic analysis performed. The HIV-1 env subtypes were determined for 141 samples, of which 40 were from female patients and 101 were from male patients; 13 samples were from children. Forty-seven patients were infected by homosexual or bisexual contact, 46 were infected through heterosexual contact, 21 were infected from injecting drug use (IDU), 13 were infected by vertical transmission, 8 were infected from nosocomial exposure, and 6 were infected by other modes of transmission, including exposure to blood products, ritualistic practices, and two cases of intrafamilial transmission. Five subtypes were detected; B (n = 104), A (n = 5), C (n = 17), E (CRF01_AE; n = 13), and G (n = 2). Subtype B predominated in HIV-1 acquired homosexually (94% of cases) and by IDU (100%), whereas non-subtype B infections were mostly seen in heterosexually (57%) or vertically (22%) acquired HIV-1 infections and were usually imported from Africa and Asia. Subtype B strains of group M viruses predominate in Australia in HIV-1 transmitted by homosexual or bisexual contact and IDU. However, non-B subtypes have been introduced, mostly acquired via heterosexual contact.
Collapse
Affiliation(s)
- Belinda L Herring
- Center for Virus Research, Westmead Millennium Institute, Westmead Hospital, Westmead, NSW 2145, Australia
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kunstman KJ, Puffer B, Korber BT, Kuiken C, Smith UR, Kunstman J, Stanton J, Agy M, Shibata R, Yoder AD, Pillai S, Doms RW, Marx P, Wolinsky SM. Structure and function of CC-chemokine receptor 5 homologues derived from representative primate species and subspecies of the taxonomic suborders Prosimii and Anthropoidea. J Virol 2003; 77:12310-8. [PMID: 14581567 PMCID: PMC254294 DOI: 10.1128/jvi.77.22.12310-12318.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A chemokine receptor from the seven-transmembrane-domain G-protein-coupled receptor superfamily is an essential coreceptor for the cellular entry of human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) strains. To investigate nonhuman primate CC-chemokine receptor 5 (CCR5) homologue structure and function, we amplified CCR5 DNA sequences from peripheral blood cells obtained from 24 representative species and subspecies of the primate suborders Prosimii (family Lemuridae) and Anthropoidea (families Cebidae, Callitrichidae, Cercopithecidae, Hylobatidae, and Pongidae) by PCR with primers flanking the coding region of the gene. Full-length CCR5 was inserted into pCDNA3.1, and multiple clones were sequenced to permit discrimination of both alleles. Compared to the human CCR5 sequence, the CCR5 sequences of the Lemuridae, Cebidae, and Cercopithecidae shared 87, 91 to 92, and 96 to 99% amino acid sequence homology, respectively. Amino acid substitutions tended to cluster in the amino and carboxy termini, the first transmembrane domain, and the second extracellular loop, with a pattern of species-specific changes that characterized CCR5 homologues from primates within a given family. At variance with humans, all primate species examined from the suborder Anthropoidea had amino acid substitutions at positions 13 (N to D) and 129 (V to I); the former change is critical for CD4-independent binding of SIV to CCR5. Within the Cebidae, Cercopithecidae, and Pongidae (including humans), CCR5 nucleotide similarities were 95.2 to 97.4, 98.0 to 99.5, and 98.3 to 99.3%, respectively. Despite this low genetic diversity, the phylogeny of the selected primate CCR5 homologue sequences agrees with present primate systematics, apart from some intermingling of species of the Cebidae and Cercopithecidae. Constructed HOS.CD4 cell lines expressing the entire CCR5 homologue protein from each of the Anthropoidea species and subspecies were tested for their ability to support HIV-1 and SIV entry and membrane fusion. Other than that of Cercopithecus pygerythrus, all CCR5 homologues tested were able to support both SIV and HIV-1 entry. Our results suggest that the shared structure and function of primate CCR5 homologue proteins would not impede the movement of primate immunodeficiency viruses between species.
Collapse
Affiliation(s)
- Kevin J Kunstman
- Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Gonzales MJ, Delwart E, Rhee SY, Tsui R, Zolopa AR, Taylor J, Shafer RW. Lack of detectable human immunodeficiency virus type 1 superinfection during 1072 person-years of observation. J Infect Dis 2003; 188:397-405. [PMID: 12870121 PMCID: PMC2547470 DOI: 10.1086/376534] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2002] [Accepted: 03/10/2003] [Indexed: 11/03/2022] Open
Abstract
We examined consecutive protease (PR) and reverse transcriptase (RT) sequences from human immunodeficiency virus (HIV) type 1-infected individuals, to distinguish changes resulting from sequence evolution due to possible superinfection. Between July 1997 and December 2001, >/=2 PR and RT samples from 718 persons were sequenced at Stanford University Hospital. Thirty-seven persons had highly divergent sequence pairs characterized by a nucleotide distance of >4.5% in PR or >3.0% in RT. In 16 of 37 sequence pairs, divergence resulted from the loss of mutations during a treatment interruption or from the gain of mutations with reinstitution of treatment. tat and/or gag sequencing of HIV-1 from cryopreserved plasma samples could be performed on 15 of the 21 divergent isolate pairs from persons without a treatment interruption. The sequences of these genes, unaffected by selective drug pressure, were monophyletic. Although HIV-1 PR and RT genes from treated persons may become highly divergent, these changes usually are the result of sequence evolution, rather than superinfection.
Collapse
Affiliation(s)
- Matthew J. Gonzales
- Departments of Medicine/Division of Infectious Diseases, Stanford University, Stanford
| | - Eric Delwart
- Departments of Medicine, University of California, San Francisco
| | - Soo-Yon Rhee
- Departments of Medicine/Division of Infectious Diseases, Stanford University, Stanford
| | - Rose Tsui
- Departments of Medicine, University of California, San Francisco
| | - Andrew R. Zolopa
- Departments of Medicine/Division of Infectious Diseases, Stanford University, Stanford
| | | | - Robert W. Shafer
- Departments of Medicine/Division of Infectious Diseases, Stanford University, Stanford
| |
Collapse
|
40
|
Gottlieb GS, Sow PS, Hawes SE, Ndoye I, Coll-Seck AM, Curlin ME, Critchlow CW, Kiviat NB, Mullins JI. Molecular epidemiology of dual HIV-1/HIV-2 seropositive adults from Senegal, West Africa. AIDS Res Hum Retroviruses 2003; 19:575-84. [PMID: 12908935 DOI: 10.1089/088922203322230941] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dual infection with HIV-1 and HIV-2 can occur in locales where these viruses co-circulate, most commonly in West Africa. Although dual seropositivity is common in this region, the true rate of dual infection remains unclear. In addition, whether unique HIV-1 subtypes are circulating in dually infected individuals is unknown. A cohort of 47 HIV-1 and HIV-2 dually seropositive individuals from Senegal, West Africa was screened for the presence of HIV-1 and HIV-2 gag and env PBMC viral DNA sequences using PCR. Of the 47 dual HIV-1/HIV-2 seropositive individuals tested, 19 (40.4%) had infection with both HIV-1 and HIV-2 confirmed by genetic sequence analysis, whereas only HIV-1 or HIV-2 was confirmed in 17 (36.2%) or 9 (19.1%), respectively. The majority of HIV-1 subtypes found were CRF-02 and A, although subtypes D, C, G, J and B were also found, reflecting the subtypes known to be circulating in Senegal. There was no significant difference in HIV-1 subtype distribution between individuals with confirmed dual infection and patients in this study with dual seropositivity but lacking HIV-2, or with HIV-1 infected patients within the general population in Senegal, although the study was underpowered to detect anything but large differences. The prevalence of HIV-1/HIV-2 dual infection appears to be significantly less than that of dually seropositive individuals and this likely reflects cross-reactive serology. The common HIV-1 subtypes prevalent in West Africa (CRF-02 and subtype A) have a similar distribution to those found in our cohort of dually infected and dually seropositive subjects.
Collapse
Affiliation(s)
- Geoffrey S Gottlieb
- Division of Allergy & Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Altfeld M, Addo MM, Shankarappa R, Lee PK, Allen TM, Yu XG, Rathod A, Harlow J, O'Sullivan K, Johnston MN, Goulder PJR, Mullins JI, Rosenberg ES, Brander C, Korber B, Walker BD. Enhanced detection of human immunodeficiency virus type 1-specific T-cell responses to highly variable regions by using peptides based on autologous virus sequences. J Virol 2003; 77:7330-40. [PMID: 12805431 PMCID: PMC164796 DOI: 10.1128/jvi.77.13.7330-7340.2003] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The antigenic diversity of human immunodeficiency virus type 1 (HIV-1) represents a significant challenge for vaccine design as well as the comprehensive assessment of HIV-1-specific immune responses in infected persons. In this study we assessed the impact of antigen variability on the characterization of HIV-1-specific T-cell responses by using an HIV-1 database to determine the sequence variability at each position in all expressed HIV-1 proteins and a comprehensive data set of CD8 T-cell responses to a reference strain of HIV-1 in infected persons. Gamma interferon Elispot analysis of HIV-1 clade B-specific T-cell responses to 504 overlapping peptides spanning the entire expressed HIV-1 genome derived from 57 infected subjects demonstrated that the average amino acid variability within a peptide (entropy) was inversely correlated to the measured frequency at which the peptide was recognized (P = 6 x 10(-7)). Subsequent studies in six persons to assess T-cell responses against p24 Gag, Tat, and Vpr peptides based on autologous virus sequences demonstrated that 29% (12 of 42) of targeted peptides were only detected with peptides representing the autologous virus strain compared to the HIV-1 clade B consensus sequence. The use of autologous peptides also allowed the detection of significantly stronger HIV-1-specific T-cell responses in the more variable regulatory and accessory HIV-1 proteins Tat and Vpr (P = 0.007). Taken together, these data indicate that accurate assessment of T-cell responses directed against the more variable regulatory and accessory HIV-1 proteins requires reagents based on autologous virus sequences. They also demonstrate that CD8 T-cell responses to the variable HIV-1 proteins are more common than previously reported.
Collapse
Affiliation(s)
- Marcus Altfeld
- Partners AIDS Research Center and Infectious Disease Unit, Massachusetts General Hospital, and Division of AIDS, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zhu T, Corey L, Hwangbo Y, Lee JM, Learn GH, Mullins JI, McElrath MJ. Persistence of extraordinarily low levels of genetically homogeneous human immunodeficiency virus type 1 in exposed seronegative individuals. J Virol 2003; 77:6108-16. [PMID: 12743268 PMCID: PMC154986 DOI: 10.1128/jvi.77.11.6108-6116.2003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Some individuals remain inexplicably seronegative and lack evidence for human immunodeficiency virus type 1 (HIV-1) infection by conventional serologic or virologic testing despite repeated high-risk virus exposures. Here, we examined 10 exposed seronegative (ES) individuals exhibiting HIV-1-specific cytotoxicity for the presence of HIV-1. We discovered HIV-1 DNA in resting CD4(+) T cells (mean, 0.05 +/- 0.01 copies per million cells) at multiple visits spanning 69 to 130 weeks in two ES individuals at levels that were on average 10(4)- to 10(6)-fold lower than those of other HIV-1-infected populations reported. Sequences of HIV-1 envelope and gag genes remained markedly homogeneous, indicating little to undetectable virus replication. These results provide the evidence for HIV-1 infection in ES individuals below the detection limit of standard assays, suggesting that extraordinary control of infection can occur. The two HIV-infected ES individuals remained healthy and were not superinfected with other HIV-1 strains despite continued high-risk sexual exposures to multiple HIV-infected partners. Understanding the mechanisms that confer diminished replicative capacity of HIV-1 in these hosts is paramount to developing strategies for protection against and control of HIV-1 infection.
Collapse
Affiliation(s)
- Tuofu Zhu
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle 98195, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Grant RM, Kuritzkes DR, Johnson VA, Mellors JW, Sullivan JL, Swanstrom R, D'Aquila RT, Van Gorder M, Holodniy M, Lloyd RM, Reid C, Morgan GF, Winslow DL. Accuracy of the TRUGENE HIV-1 genotyping kit. J Clin Microbiol 2003; 41:1586-93. [PMID: 12682149 PMCID: PMC153856 DOI: 10.1128/jcm.41.4.1586-1593.2003] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Drug resistance and poor virological responses are associated with well-characterized mutations in the viral reading frames that encode the proteins that are targeted by currently available antiretroviral drugs. An integrated system was developed that includes target gene amplification, DNA sequencing chemistry (TRUGENE HIV-1 Genotyping Kit), and hardware and interpretative software (the OpenGene DNA Sequencing System) for detection of mutations in the human immunodeficiency virus type 1 (HIV-1) protease and reverse transcriptase sequences. The integrated system incorporates reverse transcription-PCR from extracted HIV-1 RNA, a coupled amplification and sequencing step (CLIP), polyacrylamide gel electrophoresis, semiautomated analysis of data, and generation of an interpretative report. To assess the accuracy and robustness of the assay system, 270 coded plasma specimens derived from nine patients were sent to six laboratories for blinded analysis. All specimens contained HIV-1 subtype B viruses. Results of 270 independent assays were compared to "gold standard" consensus sequences of the virus populations determined by sequence analysis of 16 to 20 clones of viral DNA amplicons derived from two independent PCRs using primers not used in the kit. The accuracy of the integrated system for nucleotide base identification was 98.7%, and the accuracy for codon identification at 54 sites associated with drug resistance was 97.6%. In a separate analysis of plasma spiked with infectious molecular clones, the assay reproducibly detected all 72 different drug resistance mutations that were evaluated. There were no significant differences in accuracy between laboratories, between technologists, between kit lots, or between days. This integrated assay system for the detection of HIV-1 drug resistance mutations has a high degree of accuracy and reproducibility in several laboratories.
Collapse
Affiliation(s)
- Robert M Grant
- Gladstone Institute of Virology and Immunology, San Francisco, CA 94141, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Huang DD, Giesler TA, Bremer JW. Sequence characterization of the protease and partial reverse transcriptase proteins of the NED panel, an international HIV type 1 subtype reference and standards panel. AIDS Res Hum Retroviruses 2003; 19:321-8. [PMID: 12816082 DOI: 10.1089/088922203764969528] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The NED panel (NIH-ENVA-DOD) was assembled by the Virology Quality Assurance Laboratory for use as an international HIV-1 subtype reference and standards panel. The panel contains 44 minimally cultured strains from diverse geographic areas donated by the Walter Reed Army Institute of Research and F. Brun-Vezinet (Hôpital Bichat-Claude Bernard, Paris, France). The contributors assigned the strains to group M subtypes A (5), B (10), C (6), D (3), E (10), F (5), G (2), H (1), and O (2) before donation. Phylogenetic and recombination analyses of the protease gene and a partial sequence of the reverse transcriptase gene of each seed pool indicated potentially three more recombinants in the panel in addition to the two previously recognized recombinants. Alignments of the amino acids to corresponding regions of pNL4-3 showed protease amino acid sequence identity ranged from 68.5 % (group O) to 95.2 % (subtype B). Reverse transcriptase amino acid identity ranged from 84.5% (group O) to 96.8% (clade B). Codons associated with antiretroviral resistance were primarily wild type and highly conserved among all the clades.
Collapse
Affiliation(s)
- Diana D Huang
- Department of Immunology/Microbiology, Rush Medical College, Chicago, Illinois 60612, USA.
| | | | | |
Collapse
|
45
|
Learn GH, Muthui D, Brodie SJ, Zhu T, Diem K, Mullins JI, Corey L. Virus population homogenization following acute human immunodeficiency virus type 1 infection. J Virol 2002; 76:11953-9. [PMID: 12414937 PMCID: PMC136917 DOI: 10.1128/jvi.76.23.11953-11959.2002] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Understanding the properties of human immunodeficiency virus type 1 (HIV-1) variants capable of establishing infection is critical to the development of a vaccine against AIDS. Previous studies of men have shown that the HIV-1 env gene is homogeneous early in infection, leading to the suggestion that infection is established by a single transmitted variant. However, we report here that all of eight homosexual men evaluated beginning 3.7 to 9 weeks following onset of symptoms of acute infection harbored diverse virus populations in their blood, with median genetic distances averaging 1.08% in the env C2V5 region and 0.81% in the gag p17 gene. Within another 4.7 to 11 weeks, the variant lineage in env became more homogeneous, while gag sequences continued to diversify. Thus, the homogenization that has been reported to characterize acute infection is actually preceded by the replication of multiple virus variants. This early selective process focuses on viral properties within Env but not Gag p17. Hence, the viral homogeneity observed early in HIV-1 infection results from a selective process that occurs during the establishment of infection.
Collapse
Affiliation(s)
- Gerald H Learn
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Paranjpe S, Craigo J, Patterson B, Ding M, Barroso P, Harrison L, Montelaro R, Gupta P. Subcompartmentalization of HIV-1 quasispecies between seminal cells and seminal plasma indicates their origin in distinct genital tissues. AIDS Res Hum Retroviruses 2002; 18:1271-80. [PMID: 12487815 DOI: 10.1089/088922202320886316] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mononuclear cells and plasma components of semen from HIV-infected subjects have been shown to contain HIV-1. However, there is very little information as to whether distinct HIV-1 population are present in these two seminal compartments or as to their tissue of origin. Phylogenetic analysis of nucleotide sequences of the C2-V5 region of the HIV-1 gp120 from HIV-1 RNA isolated from seminal cells and seminal plasma of five subjects indicates that the HIV-1 population derived from seminal plasma was distinct from that present in seminal cells. Such subcompartmentalization of HIV-1 between seminal cells and seminal plasma was detected as early as 3 months after seroconversion and persisted up to 38 months following seroconversion. Furthermore, comparison of HIV-1 sequences between testis and prostate tissues showed distinct HIV-1 populations in these tissue compartments. In situ real-time (Taqman) PCR analysis of prostate and testis tissues indicated that T lymphocytes were the predominant cells infected with HIV-1 in both of these tissues. Since seminal plasma is derived from prostate and most of the seminal cells originate from the rete testis and epididymis, these results are consistent with the idea that HIV-1 in seminal plasma is derived from the prostate, while HIV-1-infected cells in semen originate mostly from the rete testis and epididymis. These findings provide for the first time evidence of subcompartmentalization of HIV-1 in male genital organs and suggest that intervention strategies such as vasectomy may not prevent sexual transmission.
Collapse
Affiliation(s)
- Shirish Paranjpe
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Ruff CT, Ray SC, Kwon P, Zinn R, Pendleton A, Hutton N, Ashworth R, Gange S, Quinn TC, Siliciano RF, Persaud D. Persistence of wild-type virus and lack of temporal structure in the latent reservoir for human immunodeficiency virus type 1 in pediatric patients with extensive antiretroviral exposure. J Virol 2002; 76:9481-92. [PMID: 12186930 PMCID: PMC136462 DOI: 10.1128/jvi.76.18.9481-9492.2002] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although highly active antiretroviral therapy (HAART) for human immunodeficiency virus type 1 (HIV-1) infection can reduce levels of HIV-1 RNA in plasma to below the limit of detection, replication-competent forms of the virus persist in all infected individuals. One form of persistence involves a stable reservoir of latent but potentially infectious virus that resides in resting memory CD4(+) T cells. The mechanisms involved in maintaining this latent reservoir are incompletely understood. In the present study, we examined the dynamic characteristics of this reservoir in a cohort of children who developed drug-resistant HIV-1 as a result of extensive exposure to inadequately suppressive one- or two-drug regimens prior to the advent of HAART. We have previously shown that drug-resistant viruses selected by nonsuppressive pre-HAART regimens can enter and persist in this reservoir. We have extended these findings here by demonstrating that archival wild-type HIV-1 persists in this reservoir despite the fact that in these patients drug-resistant mutants have been favored by the selective conditions for many years. Phylogenetic analysis of replication-competent viruses persisting in resting CD4(+) T cells revealed a striking lack of temporal structure in the sense that isolates obtained at later time points did not show greater sequence divergence than isolates from earlier time points. The persistence of drug-sensitive virus and the lack of temporal structure in the latent reservoir provide genetic evidence for the idea that HIV-1 can persist in a latent form free of selective pressure from antiretroviral drugs in long-lived resting memory CD4(+) T cells. Although there may be other mechanisms for viral persistence, this stable pool of latently infected cells is of significant concern because of its potential to serve as a lasting source of replication-competent viruses, including the infecting wild-type form and all drug-resistant variants that have arisen subsequently.
Collapse
Affiliation(s)
- Christian T Ruff
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Peleg O, Brunak S, Trifonov EN, Nevo E, Bolshoy A. RNA secondary structure and squence conservation in C1 region of human immunodeficiency virus type 1 env gene. AIDS Res Hum Retroviruses 2002; 18:867-78. [PMID: 12201910 DOI: 10.1089/08892220260190353] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
We have analyzed amino acid, nucleotide sequence, and RNA secondary structure variability in the env gene of human immunodeficiency virus type (HIV-1). In applying algorithms for computing optimal RNA-folding patterns to a nonredundant data set of 178 env nucleotide sequences, we found a conserved RNA stem-loop structure in the first conserved (C1) region of the env gene. This detailed examination also revealed the known secondary structure conservation of the Rev-responsive element (RRE). This finding is also supported by a higher third position conservation of the translatable reading frame along these subregions. The typical folding of the C1 region consists of two isolated stem-loop structures. These highly conserved structures are likely to have a biological function. This assumption is supported by the conservation of the third position along the coding region of these structures. The third position retains a conservation level above what would be statistically expected.
Collapse
Affiliation(s)
- Ofer Peleg
- Genome Diversity Center, Institute of Evolution, Haifa University, Mt. Carmel, Haifa 31905, Israel
| | | | | | | | | |
Collapse
|
49
|
Abstract
There are 16 approved human immunodeficiency virus type 1 (HIV-1) drugs belonging to three mechanistic classes: protease inhibitors, nucleoside and nucleotide reverse transcriptase (RT) inhibitors, and nonnucleoside RT inhibitors. HIV-1 resistance to these drugs is caused by mutations in the protease and RT enzymes, the molecular targets of these drugs. Drug resistance mutations arise most often in treated individuals, resulting from selective drug pressure in the presence of incompletely suppressed virus replication. HIV-1 isolates with drug resistance mutations, however, may also be transmitted to newly infected individuals. Three expert panels have recommended that HIV-1 protease and RT susceptibility testing should be used to help select HIV drug therapy. Although genotypic testing is more complex than typical antimicrobial susceptibility tests, there is a rich literature supporting the prognostic value of HIV-1 protease and RT mutations. This review describes the genetic mechanisms of HIV-1 drug resistance and summarizes published data linking individual RT and protease mutations to in vitro and in vivo resistance to the currently available HIV drugs.
Collapse
Affiliation(s)
- Robert W Shafer
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California 94305, USA.
| |
Collapse
|
50
|
Farci P, Strazzera R, Alter HJ, Farci S, Degioannis D, Coiana A, Peddis G, Usai F, Serra G, Chessa L, Diaz G, Balestrieri A, Purcell RH. Early changes in hepatitis C viral quasispecies during interferon therapy predict the therapeutic outcome. Proc Natl Acad Sci U S A 2002; 99:3081-6. [PMID: 11880647 PMCID: PMC122476 DOI: 10.1073/pnas.052712599] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Despite recent treatment advances, the majority of patients with chronic hepatitis C fail to respond to antiviral therapy. Although the genetic basis for this resistance is unknown, accumulated evidence suggests that changes in the heterogeneous viral population (quasispecies) may be an important determinant of viral persistence and response to therapy. Sequences within hepatitis C virus (HCV) envelope 1 and envelope 2 genes, inclusive of the hypervariable region 1, were analyzed in parallel with the level of viral replication in serial serum samples obtained from 23 patients who exhibited different patterns of response to therapy and from untreated controls. Our study provides evidence that although the viral diversity before treatment does not predict the response to treatment, the early emergence and dominance of a single viral variant distinguishes patients who will have a sustained therapeutic response from those who subsequently will experience a breakthrough or relapse. A dramatic reduction in genetic diversity leading to an increasingly homogeneous viral population was a consistent feature associated with viral clearance in sustained responders and was independent of HCV genotype. The persistence of variants present before treatment in patients who fail to respond or who experience a breakthrough during therapy strongly suggests the preexistence of viral strains with inherent resistance to IFN. Thus, the study of the evolution of the HCV quasispecies provides prognostic information as early as the first 2 weeks after starting therapy and opens perspectives for elucidating the mechanisms of treatment failure in chronic hepatitis C.
Collapse
Affiliation(s)
- Patrizia Farci
- Department of Medical Sciences, University of Cagliari, 09124 Cagliari, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|