1
|
Lantz AM, Baxter VK. Neuropathogenesis of Old World Alphaviruses: Considerations for the Development of Medical Countermeasures. Viruses 2025; 17:261. [PMID: 40007016 PMCID: PMC11860675 DOI: 10.3390/v17020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Chikungunya virus (CHIKV) and other alphaviruses that primarily induce arthritogenic disease in humans, known as "Old World" alphaviruses, present an emerging public health concern as geographic ranges of mosquito vectors expand due to climate change. While a vaccine against CHIKV has recently been approved by several countries in North America and Europe, access to effective preventative countermeasures against disease induced by Old World alphaviruses remains elusive for the most vulnerable populations. Furthermore, treatment options continue to be limited to supportive care. Atypical neurological disease manifestations caused by Old World alphaviruses, which make up as many as 25% of the cases in some CHIKV outbreaks, present special challenges when considering strategies for developing effective countermeasures. This review focuses on Old World alphaviruses, specifically CHIKV, Ross River virus, O'nyoug-nyoug virus, and Mayaro virus, concentrating on the atypical neurological disease manifestations they may cause. Our current understanding of Old World alphavirus neuropathogenesis, gained from human cases and preclinical animal models, is discussed, including viral and host factors' roles in disease development. The current state of alphavirus preventatives and treatments, both virus-targeting and host-directed therapies, is then summarized and discussed in the context of addressing neurological disease induced by Old World alphaviruses.
Collapse
|
2
|
Alvarez PA, Tang A, Winters DM, Kaushal P, Medina A, Kaczor-Urbanowicz KE, Reyes BR, Kaake RM, Fregoso OI, Pyle AD, Bouhaddou M, Tang H, Li MMH. Old World alphaviruses use distinct mechanisms to infect brain microvascular endothelial cells for neuroinvasion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634395. [PMID: 39896450 PMCID: PMC11785202 DOI: 10.1101/2025.01.22.634395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Several alphaviruses bypass the blood-brain barrier (BBB), causing debilitating or fatal encephalitis. Sindbis virus (SINV) has been extensively studied in vivo to understand alphavirus neuropathogenesis; yet the molecular details of neuroinvasion at the BBB remain poorly understood. We investigated alphavirus-BBB interactions by pairing a physiologically relevant, human pluripotent stem cell derived model of brain microvascular endothelial cells (BMECs) with SINV strains of opposite neuroinvasiveness. Our system demonstrates that SINV neuroinvasion correlates with robust infection of the BBB. Specifically, SINV genetic determinants of neuroinvasion enhance viral entry into BMECs. We also identify solute carrier family 2 member 3 (SLC2A3, also named GLUT3) as a potential BMEC-specific entry factor exploited for neuroinvasion. Strikingly, efficient BBB infection is a conserved phenotype that correlates with the neuroinvasive capacity of several Old World alphaviruses, including chikungunya virus. Here, we reveal BBB infection as a shared pathway for alphavirus neuroinvasion that can be targeted for preventing alphavirus-induced encephalitis.
Collapse
Affiliation(s)
- Pablo A Alvarez
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Ashley Tang
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Declan M Winters
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- Department of Human Genetics, University of California, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095, USA
| | - Prashant Kaushal
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095, USA
| | - Angelica Medina
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Karolina E Kaczor-Urbanowicz
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095, USA
- Center of Oral and Head/Neck Oncology Research, Biosystems and Function, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Bryan Ramirez Reyes
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Robyn M Kaake
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, Gladstone Institute for Data Science and Biotechnology, San Francisco, CA 94158, USA
| | - Oliver I Fregoso
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - April D Pyle
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
| | - Mehdi Bouhaddou
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095, USA
| | - Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Melody M H Li
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Anderson EJ, Knight AC, Heise MT, Baxter VK. Effect of Viral Strain and Host Age on Clinical Disease and Viral Replication in Immunocompetent Mouse Models of Chikungunya Encephalomyelitis. Viruses 2023; 15:1057. [PMID: 37243143 PMCID: PMC10220978 DOI: 10.3390/v15051057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The alphavirus chikungunya virus (CHIKV) represents a reemerging public health threat as mosquito vectors spread and viruses acquire advantageous mutations. Although primarily arthritogenic in nature, CHIKV can produce neurological disease with long-lasting sequelae that are difficult to study in humans. We therefore evaluated immunocompetent mouse strains/stocks for their susceptibility to intracranial infection with three different CHIKV strains, the East/Central/South African (ECSA) lineage strain SL15649 and Asian lineage strains AF15561 and SM2013. In CD-1 mice, neurovirulence was age- and CHIKV strain-specific, with SM2013 inducing less severe disease than SL15649 and AF15561. In 4-6-week-old C57BL/6J mice, SL15649 induced more severe disease and increased viral brain and spinal cord titers compared to Asian lineage strains, further indicating that neurological disease severity is CHIKV-strain-dependent. Proinflammatory cytokine gene expression and CD4+ T cell infiltration in the brain were also increased with SL15649 infection, suggesting that like other encephalitic alphaviruses and with CHIKV-induced arthritis, the immune response contributes to CHIKV-induced neurological disease. Finally, this study helps overcome a current barrier in the alphavirus field by identifying both 4-6-week-old CD-1 and C57BL/6J mice as immunocompetent, neurodevelopmentally appropriate mouse models that can be used to examine CHIKV neuropathogenesis and immunopathogenesis following direct brain infection.
Collapse
Affiliation(s)
- Elizabeth J. Anderson
- Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Audrey C. Knight
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark T. Heise
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Victoria K. Baxter
- Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| |
Collapse
|
4
|
Avraham R, Melamed S, Achdout H, Erez N, Israeli O, Barlev-Gross M, Pasmanik-Chor M, Paran N, Israely T, Vitner EB. Antiviral activity of glucosylceramide synthase inhibitors in alphavirus infection of the central nervous system. Brain Commun 2023; 5:fcad086. [PMID: 37168733 PMCID: PMC10165247 DOI: 10.1093/braincomms/fcad086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 12/23/2022] [Accepted: 03/23/2023] [Indexed: 05/13/2023] Open
Abstract
Virus-induced CNS diseases impose a considerable human health burden worldwide. For many viral CNS infections, neither antiviral drugs nor vaccines are available. In this study, we examined whether the synthesis of glycosphingolipids, major membrane lipid constituents, could be used to establish an antiviral therapeutic target. We found that neuroinvasive Sindbis virus altered the sphingolipid levels early after infection in vitro and increased the levels of gangliosides GA1 and GM1 in the sera of infected mice. The alteration in the sphingolipid levels appears to play a role in neuroinvasive Sindbis virus replication, as treating infected cells with UDP-glucose ceramide glucosyltransferase (UGCG) inhibitors reduced the replication rate. Moreover, the UGCG inhibitor GZ-161 increased the survival rates of Sindbis-infected mice, most likely by reducing the detrimental immune response activated by sphingolipids in the brains of Sindbis virus-infected mice. These findings suggest a role for glycosphingolipids in the host immune response against neuroinvasive Sindbis virus and suggest that UGCG inhibitors should be further examined as antiviral therapeutics for viral infections of the CNS.
Collapse
Affiliation(s)
- Roy Avraham
- Department of Infectious Diseases, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Sharon Melamed
- Department of Infectious Diseases, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Hagit Achdout
- Department of Infectious Diseases, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Noam Erez
- Department of Infectious Diseases, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Ofir Israeli
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Moria Barlev-Gross
- Department of Infectious Diseases, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, George S. Wise Faculty of Life Science, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Nir Paran
- Department of Infectious Diseases, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Tomer Israely
- Department of Infectious Diseases, Israel Institute for Biological Research, 7410001 Ness-Ziona, Israel
| | - Einat B Vitner
- Correspondence to: Einat B. Vitner Department of Infectious Diseases Israel Institute for Biological Research P.O.B 19, 7410001 Ness-Ziona, Israel E-mail:
| |
Collapse
|
5
|
Cheng Y, Medina A, Yao Z, Basu M, Natekar JP, Lang J, Sanchez E, Nkembo MB, Xu C, Qian X, Nguyen PTT, Wen Z, Song H, Ming GL, Kumar M, Brinton MA, Li MMH, Tang H. Intrinsic antiviral immunity of barrier cells revealed by an iPSC-derived blood-brain barrier cellular model. Cell Rep 2022; 39:110885. [PMID: 35649379 PMCID: PMC9230077 DOI: 10.1016/j.celrep.2022.110885] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/27/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
Abstract
Physiological blood-tissue barriers play a critical role in separating the circulation from immune-privileged sites and denying access to blood-borne viruses. The mechanism of virus restriction by these barriers is poorly understood. We utilize induced pluripotent stem cell (iPSC)-derived human brain microvascular endothelial cells (iBMECs) to study virus-blood-brain barrier (BBB) interactions. These iPSC-derived cells faithfully recapitulate a striking difference in in vivo neuroinvasion by two alphavirus isolates and are selectively permissive to neurotropic flaviviruses. A model of cocultured iBMECs and astrocytes exhibits high transendothelial electrical resistance and blocks non-neurotropic flaviviruses from getting across the barrier. We find that iBMECs constitutively express an interferon-induced gene, IFITM1, which preferentially restricts the replication of non-neurotropic flaviviruses. Barrier cells from blood-testis and blood-retinal barriers also constitutively express IFITMs that contribute to the viral resistance. Our application of a renewable human iPSC-based model for studying virus-BBB interactions reveals that intrinsic immunity at the barriers contributes to virus exclusion.
Collapse
Affiliation(s)
- Yichen Cheng
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Angelica Medina
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Zhenlan Yao
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mausumi Basu
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | | | - Jianshe Lang
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Egan Sanchez
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Mezindia B Nkembo
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Chongchong Xu
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Xuyu Qian
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Phuong T T Nguyen
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Hongjun Song
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Guo-Li Ming
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mukesh Kumar
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Margo A Brinton
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Melody M H Li
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
6
|
Melamed S, Avraham R, Rothbard DE, Erez N, Israely T, Klausner Z, Futerman AH, Paran N, Vitner EB. Innate immune response in neuronopathic forms of Gaucher disease confers resistance against viral-induced encephalitis. Acta Neuropathol Commun 2020; 8:144. [PMID: 32831144 PMCID: PMC7443817 DOI: 10.1186/s40478-020-01020-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
Both monogenic diseases and viral infections can manifest in a broad spectrum of clinical phenotypes that range from asymptomatic to lethal, suggesting that other factors modulate disease severity. Here, we examine the interplay between the genetic neuronopathic Gaucher’s disease (nGD), and neuroinvasive Sindbis virus (SVNI) infection. Infection of nGD mice with SVNI had no influence on nGD severity. However, nGD mice were more resistant to SVNI infection. Significantly different inflammatory responses were seen in nGD brains when compared with SVNI brains: the inflammatory response in the nGD brains consisted of reactive astrocytes and microglia with no infiltrating macrophages, but the inflammatory response in the brains of SVNI-infected mice was characterized by infiltration of macrophages and altered activation of microglia and astrocytes. We suggest that the innate immune response activated in nGD confers resistance against viral infection of the CNS.
Collapse
|
7
|
Abstract
Alphaviruses, members of the positive-sense, single-stranded RNA virus family Togaviridae, represent a re-emerging public health concern worldwide as mosquito vectors expand into new geographic ranges. Members of the alphavirus genus tend to induce clinical disease characterized by rash, arthralgia, and arthritis (chikungunya virus, Ross River virus, and Semliki Forest virus) or encephalomyelitis (eastern equine encephalitis virus, western equine encephalitis virus, and Venezuelan equine encephalitis virus), though some patients who recover from the initial acute illness may develop long-term sequelae, regardless of the specific infecting virus. Studies examining the natural disease course in humans and experimental infection in cell culture and animal models reveal that host genetics play a major role in influencing susceptibility to infection and severity of clinical disease. Genome-wide genetic screens, including loss of function screens, microarrays, RNA-sequencing, and candidate gene studies, have further elucidated the role host genetics play in the response to virus infection, with the immune response being found in particular to majorly influence the outcome. This review describes the current knowledge of the mechanisms by which host genetic factors influence alphavirus pathogenesis and discusses emerging technologies that are poised to increase our understanding of the complex interplay between viral and host genetics on disease susceptibility and clinical outcome.
Collapse
|
8
|
Eleftheriadou I, Dieringer M, Poh XY, Sanchez-Garrido J, Gao Y, Sgourou A, Simmons LE, Mazarakis ND. Selective transduction of astrocytic and neuronal CNS subpopulations by lentiviral vectors pseudotyped with Chikungunya virus envelope. Biomaterials 2017; 123:1-14. [PMID: 28152379 DOI: 10.1016/j.biomaterials.2017.01.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 12/15/2022]
Abstract
Lentiviral vectors are gene delivery vehicles that integrate into the host genome of dividing and non-dividing mammalian cells facilitating long-term transgene expression. Lentiviral vector versatility is greatly increased by incorporating heterologous viral envelope proteins onto the vector particles instead of the native envelope, conferring on these pseudotyped vectors a modified tropism and host range specificity. We investigated the pseudotyping efficiency of HIV-1 based lentiviral vectors with alphaviral envelope proteins from the Chikungunya Virus (CHIKV-G) and Sindbis Virus (SINV-G). Following vector production optimisation, titres for the CHIKV-G pseudotype were comparable to the VSV-G pseudotype but those for the SINV-G pseudotype were significantly lower. High titre CHIKV-G pseudotyped vector efficiently transduced various human and mouse neural cell lines and normal human astrocytes (NHA) in vitro. Although transduction was broad, tropism for NHAs was observed. In vivo stereotaxic delivery in striatum, thalamus and hippocampus respectively in the adult rat brain revealed localised transduction restricted to striatal astrocytes and hippocampal dentate granule neurons. Transduction of different subtypes of granule neurons from precursor to post-mitotic stages of differentiation was evident in the sub-granular zone and dentate granule cell layer. No significant inflammatory response was observed, but comparable to that of VSV-G pseudotyped lentiviral vectors. Robust long-term expression followed for three months post-transduction along with absence of neuroinflammation, coupled to the selective and unique neuron/glial tropism indicates that these vectors could be useful for modelling and gene therapy studies in the CNS.
Collapse
Affiliation(s)
- Ioanna Eleftheriadou
- Gene Therapy, Centre for Neuroinflammation & Neurodegeneration, Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, United Kingdom
| | - Michael Dieringer
- Gene Therapy, Centre for Neuroinflammation & Neurodegeneration, Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, United Kingdom
| | - Xuan Ying Poh
- Gene Therapy, Centre for Neuroinflammation & Neurodegeneration, Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, United Kingdom
| | - Julia Sanchez-Garrido
- Gene Therapy, Centre for Neuroinflammation & Neurodegeneration, Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, United Kingdom
| | - Yunan Gao
- Gene Therapy, Centre for Neuroinflammation & Neurodegeneration, Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, United Kingdom
| | - Argyro Sgourou
- Laboratory of Biology, Hellenic Open University, Tsamadou 13-15, 26222 Patra, Greece
| | - Laura E Simmons
- Gene Therapy, Centre for Neuroinflammation & Neurodegeneration, Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, United Kingdom
| | - Nicholas D Mazarakis
- Gene Therapy, Centre for Neuroinflammation & Neurodegeneration, Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, United Kingdom.
| |
Collapse
|
9
|
Li MMH, Bozzacco L, Hoffmann HH, Breton G, Loschko J, Xiao JW, Monette S, Rice CM, MacDonald MR. Interferon regulatory factor 2 protects mice from lethal viral neuroinvasion. J Exp Med 2016; 213:2931-2947. [PMID: 27899441 PMCID: PMC5154937 DOI: 10.1084/jem.20160303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 09/09/2016] [Accepted: 11/01/2016] [Indexed: 01/08/2023] Open
Abstract
Li et al. describe a novel role for IRF2, previously known as a negative regulator of type I IFN signaling, in protection of mice from lethal viral neuroinvasion by facilitating the proper localization of B cells and antibodies to the central nervous system. The host responds to virus infection by activating type I interferon (IFN) signaling leading to expression of IFN-stimulated genes (ISGs). Dysregulation of the IFN response results in inflammatory diseases and chronic infections. In this study, we demonstrate that IFN regulatory factor 2 (IRF2), an ISG and a negative regulator of IFN signaling, influences alphavirus neuroinvasion and pathogenesis. A Sindbis virus strain that in wild-type (WT) mice only causes disease when injected into the brain leads to lethal encephalitis in Irf2−/− mice after peripheral inoculation. Irf2−/− mice fail to control virus replication and recruit immune infiltrates into the brain. Reduced B cells and virus-specific IgG are observed in the Irf2−/− mouse brains despite the presence of peripheral neutralizing antibodies, suggesting a defect in B cell trafficking to the central nervous system (CNS). B cell–deficient μMT mice are significantly more susceptible to viral infection, yet WT B cells and serum are unable to rescue the Irf2−/− mice. Collectively, our data demonstrate that proper localization of B cells and local production of antibodies in the CNS are required for protection. The work advances our understanding of host mechanisms that affect viral neuroinvasion and their contribution to immunity against CNS infections.
Collapse
Affiliation(s)
- Melody M H Li
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| | - Leonia Bozzacco
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| | - Hans-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| | - Gaëlle Breton
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Jakob Loschko
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Jing W Xiao
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| | - Sébastien Monette
- Tri-Institutional Laboratory of Comparative Pathology, Memorial Sloan-Kettering Cancer Center, The Rockefeller University, Weill Cornell Medical College, New York, NY 10065
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| | - Margaret R MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| |
Collapse
|
10
|
Sindbis Virus Can Exploit a Host Antiviral Protein To Evade Immune Surveillance. J Virol 2016; 90:10247-10258. [PMID: 27581990 DOI: 10.1128/jvi.01487-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 08/29/2016] [Indexed: 01/01/2023] Open
Abstract
Viral infection induces production of type I interferons (IFNs), which stimulate the expression of a variety of antiviral factors to inhibit viral replication. To establish effective infection, viruses need to develop strategies to evade the immune responses. A neurovirulent Sindbis virus strain with neuroinvasive properties (SVNI) causes lethal encephalitis in mice, and its replication in cultured cells is inhibited by the zinc finger antiviral protein (ZAP), a host factor that specifically inhibits the replication of certain viruses by binding to the viral mRNAs, repressing the translation of target mRNA, and promoting the degradation of target mRNA. We report here that murine embryonic fibroblast cells from ZAP knockout mice supported more efficient SVNI replication than wild-type cells. SVNI infection of 10-day-old suckling mice led to reduced survival in the knockout mice. Unexpectedly, however, SVNI infection of 23-day-old weanling mice, whose immune system is more developed than that of the suckling mice, resulted in significantly improved survival in ZAP knockout mice. Further analyses revealed that in the weanling knockout mice, SVNI replicated more efficiently in lymphoid tissues at early times postinfection and induced higher levels of IFN production, which restricted viral spread to the central nervous system. Blocking IFN activity through the use of receptor-neutralizing antibodies rendered knockout mice more sensitive to SVNI infection than wild-type mice. These results uncover a mechanism by which SVNI exploits a host antiviral factor to evade innate immune surveillance. IMPORTANCE Sindbis virus, a prototypic member of the Alphavirus genus, has been used to study the pathogenesis of acute viral encephalitis in mice for many years. How the virus evades immune surveillance to establish effective infection is largely unknown. ZAP is a host antiviral factor that potently inhibits Sindbis virus replication in cell culture. We show here that infection of ZAP knockout suckling mice with an SVNI led to faster disease progression. However, SVNI infection of weanling mice led to slower disease progression in knockout mice. Further analyses revealed that in weanling knockout mice, SVNI replicated more efficiently in lymphoid tissues at early times postinfection and induced higher levels of interferon production, which restricted viral spread to the central nervous system. These results uncover a mechanism by which SVNI exploits a host antiviral factor to evade innate immune surveillance and allow enhanced neuroinvasion.
Collapse
|
11
|
Atkins GJ, Sheahan BJ. Molecular determinants of alphavirus neuropathogenesis in mice. J Gen Virol 2016; 97:1283-1296. [PMID: 27028153 DOI: 10.1099/jgv.0.000467] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Alphaviruses are enveloped viruses with a positive-stranded RNA genome, of the family Togaviridae. In mammals and birds they are mosquito-transmitted and are of veterinary and medical importance. They cause primarily two types of disease: encephalitis and polyarthritis. Here we review attempts to understand the molecular basis of encephalitis and virulence for the central nervous system (CNS) in mouse models. Sindbis virus (SINV) was the first virus to be studied in this way. Other viruses analysed are Semliki Forest virus (SFV), Venezuelan equine encephalitis virus, Eastern equine encephalitis virus and Western equine encephalitis virus. Neurovirulence was found to be associated with damage to neurons in the CNS. It mapped mainly to the E2 region of the genome, and to the nsP3 gene. Also, avirulent natural isolates of both SINV and SFV have been found to have more rapid cleavage of nonstructural proteins due to mutations in the nsP1-nsP2 cleavage site. Immune-mediated demyelination for avirulent SFV has been shown to be associated with infection of oligodendrocytes. For Chikungunya virus, an emerging alphavirus that uncommonly causes encephalitis, analysis of the molecular basis of CNS pathogenicity is beginning. Experiments on SINV and SFV have indicated that virulence may be related to the resistance of virulent virus to interferon action. Although the E2 protein may be involved in tropism for neurons and passage across the blood-brain barrier, the role of the nsP3 protein during infection of neurons is unknown. More information in these areas may help to further explain the neurovirulence of alphaviruses.
Collapse
Affiliation(s)
- Gregory J Atkins
- Department of Microbiology, Moyne Institute, Trinity College, Dublin 2, Ireland
| | - Brian J Sheahan
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
12
|
Abstract
Alphaviruses are enveloped single-stranded positive sense RNA viruses of the family Togaviridae. The genus alphavirus contains nine viruses, which are of medical, theoretical, or economic importance, and which will be considered. Sindbis virus (SINV) and Semliki Forest (SFV), although of some medical importance, have largely been studied as models of viral pathogenicity. In mice, SINV and SFV infect neurons in the central nervous system and virulent strains induce lethal encephalitis, whereas avirulent strains of SFV induce demyelination. SFV infects the developing foetus and can be teratogenic. Venezuelan Equine Encephalitis virus, Eastern Equine Encephalitis virus, and Western Equine Encephalitis virus can induce encephalitis in horses and humans. They are prevalent in the Americas and are mosquito transmitted. Ross River virus, Chikungunya virus (CHIKV), and O’nyong-nyong virus (ONNV) are prevalent in Australasia, Africa and Asia, and Africa, respectively. ONNV virus is transmitted by Anopheles mosquitoes, while the other alphaviruses are transmitted by culicine mosquitoes. CHIKV has undergone adaptation to a new mosquito host which has increased its host range beyond Africa. Salmonid alphavirus is of economic importance in the farmed salmon and trout industry. It is postulated that future advances in research on alphavirus pathogenicity will come in the field of innate immunity.
Collapse
Affiliation(s)
- Gregory J. Atkins
- Department of Microbiology, Moyne Institute, Trinity College, Dublin 2, Ireland
| |
Collapse
|
13
|
A determinant of Sindbis virus neurovirulence enables efficient disruption of Jak/STAT signaling. J Virol 2010; 84:11429-39. [PMID: 20739538 DOI: 10.1128/jvi.00577-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies with Venezuelan equine encephalitis virus and Sindbis virus (SINV) indicate that alphaviruses are capable of suppressing the cellular response to type I and type II interferons (IFNs) by disrupting Jak/STAT signaling; however, the relevance of this signaling inhibition toward pathogenesis has not been investigated. The relative abilities of neurovirulent and nonneurovirulent SINV strains to downregulate Jak/STAT signaling were compared to determine whether the ability to inhibit IFN signaling correlates with virulence potential. The adult mouse neurovirulent strain AR86 was found to rapidly and robustly inhibit tyrosine phosphorylation of STAT1 and STAT2 in response to IFN-γ and/or IFN-β. In contrast, the closely related SINV strains Girdwood and TR339, which do not cause detectable disease in adult mice, were relatively inefficient inhibitors of STAT1/2 activation. Decreased STAT activation in AR86-infected cells was associated with decreased activation of the IFN receptor-associated tyrosine kinases Tyk2, Jak1, and Jak2. To identify the viral factor(s) involved, we infected cells with several panels of AR86/Girdwood chimeric viruses. Surprisingly, we found that a single amino acid determinant, threonine at nsP1 position 538, which is required for AR86 virulence, was also required for efficient disruption of STAT1 activation, and this determinant fully restored STAT1 inhibition when it was introduced into the avirulent Girdwood background. These data indicate that a key virulence determinant plays a critical role in downregulating the response to type I and type II IFNs, which suggests that the ability of alphaviruses to inhibit Jak/STAT signaling relates to their in vivo virulence potential.
Collapse
|
14
|
Kulasegaran-Shylini R, Thiviyanathan V, Gorenstein DG, Frolov I. The 5'UTR-specific mutation in VEEV TC-83 genome has a strong effect on RNA replication and subgenomic RNA synthesis, but not on translation of the encoded proteins. Virology 2009; 387:211-21. [PMID: 19278709 DOI: 10.1016/j.virol.2009.02.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 01/20/2009] [Accepted: 02/18/2009] [Indexed: 02/06/2023]
Abstract
Venezuelan equine encephalitis virus (VEEV) is one of the most pathogenic members of the Alphavirus genus in the Togaviridae family. Viruses in the VEEV serocomplex continuously circulate in the Central and South America. The only currently available attenuated strain VEEV TC-83 is being used only for vaccination of at-risk laboratory workers and military personnel. Its attenuated phenotype was shown to rely only on two point mutations, one of which, G3A, was found in the 5' untranslated region (5'UTR) of the viral genome. Our data demonstrate that the G3A mutation strongly affects the secondary structure of VEEV 5'UTR, but has only a minor effect on translation. The indicated mutation increases replication of the viral genome, downregulates transcription of the subgenomic RNA, and, thus, affects the ratio of genomic and subgenomic RNA synthesis. These findings and the previously reported G3A-induced, higher sensitivity of VEEV TC-83 to IFN-alpha/beta suggest a plausible explanation for its attenuated phenotype.
Collapse
|
15
|
Wang JJ, Zhang HL, Che YC, Wang LC, Ma SH, Liu LD, Liao Y, Li QH. Isolation and complete genomic sequence analysis of a new Sindbis-like virus. Virol Sin 2008. [DOI: 10.1007/s12250-008-2891-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
16
|
Abstract
The Arenaviridae family contains 22 recognized virus species, each of them strongly associated with a rodent species (except Tacaribe virus which is associated with a species of bat), suggesting an ancient co-evolutionary process. Although the concept of co-evolution between rodents and arenaviruses is now largely accepted, little has been uncovered in terms of dating the phenomenon and the mechanisms of evolution, including speciation and pathogenicity. These questions are targeted in the present chapter. Old World arenaviruses are associated with the Eurasian rodents in the family Muridae. New World arenaviruses are associated with American rodents in the subfamily Sigmodontinae. The correlation between the rodent host phylogeny and the viruses suggests a long association and a co-evolutionary process. Furthermore, three distinct New World arenaviruses share a common ancestor, demonstrating a unique recombination event that probably occurred in that ancestor. This shows that recombination among arenaviruses of different lineages might occur in nature. Recombination and co-evolutionary adaptation appear as the main mechanisms of arenavirus evolution, generating a high degree of diversity. The diversity among rodent host reservoir and virus species and the potential to exchange genomic material provide a basis for the emergence of new viruses and the risk of these becoming pathogenic for humans.
Collapse
Affiliation(s)
- James E. Childs
- Department of Epidemiology and Public Health and Center for Eco-Epidemiolog, Yale University School of Medicine, 60 College St, 208034, 06520-8034 New Haven, CT USA
| | - John S. Mackenzie
- Centre for Emerging Infectious Diseases, Australian Biosecurity Cooperative Research Centre, Curtin University of Technology, U1987, 6845 Perth, WA Australia
| | - Jürgen A. Richt
- Virus and Prion Diseases of Livestock Research Unit, National Animal Disease Center USDA, 2300 Dayton Ave Ames, 50010 IA USA
| |
Collapse
|
17
|
Bear JS, Byrnes AP, Griffin DE. Heparin-binding and patterns of virulence for two recombinant strains of Sindbis virus. Virology 2005; 347:183-90. [PMID: 16380143 DOI: 10.1016/j.virol.2005.11.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 10/26/2005] [Accepted: 11/23/2005] [Indexed: 10/25/2022]
Abstract
E2 is an important determinant of Sindbis virus neurovirulence. Increased heparan sulfate (HS) binding is associated with rapid clearance of viremia and usually with decreased virulence. However, substitution of histidine for arginine at E2-157 (R157H) or glutamate for lysine at E2-159 (K159E) produces viruses with decreases in heparin-Sepharose binding and increases in viremia but different levels of binding to HS-expressing cells and virulence phenotypes in newborn CD-1 mice (Byrnes, A.P., Griffin, D.E., 2000. Large-plaque mutants of Sindbis virus show reduced binding to heparan sulfate, heightened viremia and slower clearance from the circulation. J. Virol. 74, 644-651). To identify mechanisms of virulence, R157H and K159E were studied in newborn CD-1 and BALB/c mice. Subcutaneous inoculation of R157H caused 100% and K159E 60% mortality in 2-day-old CD-1 mice. R157H caused 25% and K159E no mortality in 2-day-old BALB/c mice. R157H and K159E replicated similarly at the site of inoculation with the same level of viremia, but clearance was slower in CD-1 than BALB/c mice. R157H replicated better than K159E in the central nervous system (CNS) after subcutaneous and intracerebral inoculation and in undifferentiated neurons. These studies show a genetic restriction of replication in newborn BALB/c mice, and that amino acid substitutions affecting binding to proteoglycans may differ in importance for CNS infection and viremia.
Collapse
Affiliation(s)
- J Steven Bear
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Rm. E5132, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
18
|
Petrakova O, Volkova E, Gorchakov R, Paessler S, Kinney RM, Frolov I. Noncytopathic replication of Venezuelan equine encephalitis virus and eastern equine encephalitis virus replicons in Mammalian cells. J Virol 2005; 79:7597-608. [PMID: 15919912 PMCID: PMC1143662 DOI: 10.1128/jvi.79.12.7597-7608.2005] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Venezuelan equine encephalitis (VEE) and eastern equine encephalitis (EEE) viruses are important, naturally emerging zoonotic viruses. They are significant human and equine pathogens which still pose a serious public health threat. Both VEE and EEE cause chronic infection in mosquitoes and persistent or chronic infection in mosquito-derived cell lines. In contrast, vertebrate hosts infected with either virus develop an acute infection with high-titer viremia and encephalitis, followed by host death or virus clearance by the immune system. Accordingly, EEE and VEE infection in vertebrate cell lines is highly cytopathic. To further understand the pathogenesis of alphaviruses on molecular and cellular levels, we designed EEE- and VEE-based replicons and investigated their replication and their ability to generate cytopathic effect (CPE) and to interfere with other viral infections. VEE and EEE replicons appeared to be less cytopathic than Sindbis virus-based constructs that we designed in our previous research and readily established persistent replication in BHK-21 cells. VEE replicons required additional mutations in the 5' untranslated region and nsP2 or nsP3 genes to further reduce cytopathicity and to become capable of persisting in cells with no defects in alpha/beta interferon production or signaling. The results indicated that alphaviruses strongly differ in virus-host cell interactions, and the ability to cause CPE in tissue culture does not necessarily correlate with pathogenesis and strongly depends on the sequence of viral nonstructural proteins.
Collapse
Affiliation(s)
- Olga Petrakova
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1019, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Suthar MS, Shabman R, Madric K, Lambeth C, Heise MT. Identification of adult mouse neurovirulence determinants of the Sindbis virus strain AR86. J Virol 2005; 79:4219-28. [PMID: 15767423 PMCID: PMC1061553 DOI: 10.1128/jvi.79.7.4219-4228.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Sindbis virus infection of mice has provided valuable insight into viral and host factors that contribute to virus-induced neurologic disease. In an effort to further define the viral genetic elements that contribute to adult mouse neurovirulence, the neurovirulent Sindbis virus strain AR86 was compared to the closely related (22 single amino acid coding changes and the presence or absence of an 18-amino-acid sequence in nsP3 [positions 386 to 403]) but avirulent Girdwood strain. Initial studies using chimeric viruses demonstrated that genetic elements within the nonstructural and structural coding regions contributed to AR86 neurovirulence. Detailed mapping studies identified three major determinants in the nonstructural region, at nsP1 538 (Ile to Thr; avirulent to virulent), an 18-amino-acid deletion in nsP3 (positions 386 to 403), and nsP3 537 (opal to Cys; avirulent to virulent), as well as a single determinant in the structural genes at E2 243 (Leu to Ser; avirulent to virulent), which were essential for AR86 adult mouse neurovirulence. Replacing these codons in AR86 with those found in Girdwood resulted in the attenuation of AR86, while the four corresponding AR86 changes in the Girdwood genetic background increased virulence to the level of wild-type AR86. The attenuating mutations did not adversely affect viral replication in vitro, and the attenuated viruses established infection in the brain and spinal cord as efficiently as the virulent viruses. However, the virus containing the four virulence determinants grew to higher levels in the spinal cord at late times postinfection, suggesting that the virus containing the four attenuating determinants either failed to spread or was cleared more efficiently than the wild-type virus.
Collapse
Affiliation(s)
- Mehul S Suthar
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
20
|
Weissenböck H, Bakonyi T, Chvala S, Nowotny N. Experimental Usutu virus infection of suckling mice causes neuronal and glial cell apoptosis and demyelination. Acta Neuropathol 2004; 108:453-60. [PMID: 15372281 DOI: 10.1007/s00401-004-0916-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2004] [Revised: 07/22/2004] [Accepted: 07/26/2004] [Indexed: 10/26/2022]
Abstract
Usutu virus (USUV), a mosquito-borne flavivirus of the Japanese encephalitis virus group has been responsible for avian mortality in Austria since 2001. In the present study, the neuropathogenicity and neuroinvasiveness of USUV for 1-week-old suckling mice was investigated. After intraperitoneal inoculation, clinical signs like depression, disorientation, paraplegia, paralysis and coma were observed between 6 and 11 days post infection. Histologically, there was widespread neuronal apoptosis especially in the brain stem. Inflammatory infiltrates were scarce. Apoptosis was also present in white matter of cerebellum, medulla and spinal cord, and was frequently accompanied by primary demyelination. While apoptosis of neurons was clearly associated with presence of viral signals, the cause of apoptosis of white matter cells was more ambiguous. However, focal immunostaining was found in the white matter, especially in the spinal cord. As with all flaviviruses, USUV proved to be neuropathogenic for mice. In contrast to other flaviviruses, neuroinvasion occurred only in animals that were not older than 1 week at the time of inoculation. While neuronal apoptosis is a general aspect of flavivirus pathogenicity, demyelination seems to be a unique feature of USUV infection.
Collapse
Affiliation(s)
- Herbert Weissenböck
- Institute of Pathology and Forensic Veterinary Medicine, Department of Pathobiology, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria.
| | | | | | | |
Collapse
|
21
|
Griffin DE, Byrnes AP, Cook SH. Emergence and virulence of encephalitogenic arboviruses. ARCHIVES OF VIROLOGY. SUPPLEMENTUM 2004:21-33. [PMID: 15119760 DOI: 10.1007/978-3-7091-0572-6_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Each arbovirus that causes encephalitis is geographically restricted by the availability of appropriate vectors and reservoir hosts. These viruses evolve regionally by recombination, reassortment and point mutation and can "emerge" as causes of human encephalitis through extension to new geographic regions or by selection of more virulent or more efficiently transmitted virus variants. The properties of arboviruses that result in encephalitis involve efficient replication in peripheral tissues after initiation of infection, production of a viremia, entry into the central nervous system and efficient replication in neurons with spread to additional populations of neurons. Many of these steps are determined by properties of the envelope glycoproteins responsible for cellular attachment, but changes in noncoding regions of the genome, as well as in other structural and nonstructural proteins, also contribute to neurovirulence.
Collapse
Affiliation(s)
- D E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|
22
|
Myles KM, Pierro DJ, Olson KE. Deletions in the putative cell receptor-binding domain of Sindbis virus strain MRE16 E2 glycoprotein reduce midgut infectivity in Aedes aegypti. J Virol 2003; 77:8872-81. [PMID: 12885905 PMCID: PMC167217 DOI: 10.1128/jvi.77.16.8872-8881.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The Sindbis virus (Alphavirus; Togaviridae) strain MRE16 efficiently infects Aedes aegypti mosquitoes that ingest a blood meal containing 8 to 9 log(10) PFU of virus/ml. However, a small-plaque variant of this virus, MRE16sp, poorly infects mosquitoes after oral infection with an equivalent titer. To determine the genetic differences between MRE16 and MRE16sp viruses, we have sequenced the MRE16sp structural genes and found a 90-nucleotide deletion in the E2 glycoprotein that spans the 3' end of the coding region for the putative cell-receptor binding domain (CRBD). We examined the role of this deletion in oral infection of mosquitoes by constructing infectious clones pMRE16icDeltaE200-Y229 and pMRE16ic, representing MRE16 virus genomes with and without the deletion, respectively. A third infectious clone, pMRE16icDeltaE200-C220, was also constructed that contained a smaller deletion extending only to the 3' terminus of the CRBD coding region. Virus derived from pMRE16ic replicated with the same efficiency as parental virus in vertebrate (BHK-21) and mosquito (C6/36) cells and orally infected A. aegypti. Viruses derived from pMRE16icDeltaE200-Y229 and pMRE16icDeltaE200-C220 replicated 10- to 100-fold less efficiently in C6/36 and BHK-21 cells than did MRE16ic virus. Each deletion mutant poorly infected A. aegypti and dramatically reduced midgut infectivity and dissemination. However, all viruses generated nearly equal titers (approximately 6.0 log(10) PFU/ml) in mosquitoes 4 days after infection by intrathoracic inoculation. These results suggest that the deleted portion of the E2 CRBD represents an important determinant of MRE16 virus midgut infectivity in A. aegypti.
Collapse
Affiliation(s)
- Kevin M Myles
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80526, USA
| | | | | |
Collapse
|
23
|
Heise MT, White LJ, Simpson DA, Leonard C, Bernard KA, Meeker RB, Johnston RE. An attenuating mutation in nsP1 of the Sindbis-group virus S.A.AR86 accelerates nonstructural protein processing and up-regulates viral 26S RNA synthesis. J Virol 2003; 77:1149-56. [PMID: 12502831 PMCID: PMC140780 DOI: 10.1128/jvi.77.2.1149-1156.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Sindbis-group alphavirus S.A.AR86 encodes a threonine at nonstructural protein 1 (nsP1) 538 that is associated with neurovirulence in adult mice. Mutation of the nsP1 538 Thr to the consensus Ile found in nonneurovirulent Sindbis-group alphaviruses attenuates S.A.AR86 for adult mouse neurovirulence, while introduction of Thr at position 538 in a nonneurovirulent Sindbis virus background confers increased neurovirulence (M. T. Heise et al., J. Virol. 74:4207-4213, 2000). Since changes in the viral nonstructural region are likely to affect viral replication, studies were performed to evaluate the effect of Thr or Ile at nsP1 538 on viral growth, nonstructural protein processing, and RNA synthesis. Multistep growth curves in Neuro2A and BHK-21 cells revealed that the attenuated s51 (nsP1 538 Ile) virus had a slight, but reproducible growth advantage over the wild-type s55 (nsP1 538 Thr) virus. nsP1 538 lies within the cleavage recognition domain between nsP1 and nsP2, and the presence of the attenuating Ile at nsP1 538 accelerated the processing of S.A.AR86 nonstructural proteins both in vitro and in infected cells. Since nonstructural protein processing is known to regulate alphavirus RNA synthesis, experiments were performed to evaluate the effect of Ile or Thr at nsP1 538 on viral RNA synthesis. A combination of S.A.AR86-derived reporter assays and RNase protection assays determined that the presence of Ile at nsP1 538 led to earlier expression from the viral 26S promoter without affecting viral minus- or plus-strand synthesis. These results suggest that slower nonstructural protein processing and delayed 26S RNA synthesis in wild-type S.A.AR86 infections may contribute to the adult mouse neurovirulence phenotype of S.A.AR86.
Collapse
Affiliation(s)
- Mark T Heise
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, 27599, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Huang SH, Jong AY. Cellular mechanisms of microbial proteins contributing to invasion of the blood-brain barrier. Cell Microbiol 2001; 3:277-87. [PMID: 11298651 DOI: 10.1046/j.1462-5822.2001.00116.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
One of the least understood issues in the pathogenesis and pathophysiology of microbial infection of the central nervous system (CNS) is how microorganisms cross the blood-brain barrier (BBB), which separates brain interstitial space from blood and is formed by the tight junctions of brain microvascular endothelial cells (BMEC). BMEC monolayer and bilayer culture systems have been developed as in vitro models to dissect the mechanisms of adhesion and invasion involved in pathogenesis of CNS infection caused by microbes. Viral, bacterial, fungal and parasitic pathogens may breach the BBB and enter the CNS through paracellular, transcellular and/or Trojan horse mechanisms. Conceivable evidence suggests that microbial proteins are the major genetic determinants mediating penetration across the BBB. Several bacterial proteins including IbeA, IbeB, AslA,YijP, OmpA, PilC and InlB contribute to transcellular invasion of BMEC. Viral proteins such as gp120 of HIV have been shown to play a role in penetration of the BBB. Fungal and parasitic pathothogens may follow similar mechanisms. SAG1 of Toxoplasma gondii has been suggested as a ligand to mediate host-cell invasion. Understanding the fundamental mechanisms of microbial penetration of the BBB may help develop novel approaches to prevent the mortality and morbidity associated with central nervous system (CNS) infectious diseases.
Collapse
Affiliation(s)
- S H Huang
- Childrens Hospital Los Angeles and the University of Southern California, Los Angeles, CA 90027, USA.
| | | |
Collapse
|
25
|
White LJ, Wang JG, Davis NL, Johnston RE. Role of alpha/beta interferon in Venezuelan equine encephalitis virus pathogenesis: effect of an attenuating mutation in the 5' untranslated region. J Virol 2001; 75:3706-18. [PMID: 11264360 PMCID: PMC114862 DOI: 10.1128/jvi.75.8.3706-3718.2001] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Venezuelan equine encephalitis virus (VEE) is an important equine and human pathogen of the Americas. In the adult mouse model, cDNA-derived, virulent V3000 inoculated subcutaneously (s.c.) causes high-titer peripheral replication followed by neuroinvasion and lethal encephalitis. A single change (G to A) at nucleotide 3 (nt 3) of the 5' untranslated region (UTR) of the V3000 genome resulted in a virus (V3043) that was avirulent in mice. The mechanism of attenuation by the V3043 mutation was studied in vivo and in vitro. Kinetic studies of virus spread in adult mice following s.c. inoculation showed that V3043 replication was reduced in peripheral organs compared to that of V3000, titers in serum also were lower, and V3043 was cleared more rapidly from the periphery than V3000. Because clearance of V3043 from serum began 1 to 2 days prior to clearance of V3000, we examined the involvement of alpha/beta interferon (IFN-alpha/beta) activity in VEE pathogenesis. In IFN-alpha/betaR(-/-) mice, the course of the wild-type disease was extremely rapid, with all animals dying within 48 h (average survival time of 30 h compared to 7.7 days in the wild-type mice). The mutant V3043 was as virulent as the wild type (100% mortality, average survival time of 30 h). Virus titers in serum, peripheral organs, and the brain were similar in V3000- and V3043-infected IFN-alpha/betaR(-/-) mice at all time points up until the death of the animals. Consistent with the in vivo data, the mutant virus exhibited reduced growth in vitro in several cell types except in cells that lacked a functional IFN-alpha/beta pathway. In cells derived from IFN-alpha/betaR(-/-) mice, the mutant virus showed no growth disadvantage compared to the wild-type virus, suggesting that IFN-alpha/beta plays a major role in the attenuation of V3043 compared to V3000. There were no differences in the induction of IFN-alpha/beta between V3000 and V3043, but the mutant virus was more sensitive than V3000 to the antiviral actions of IFN-alpha/beta in two separate in vitro assays, suggesting that the increased sensitivity to IFN-alpha/beta plays a major role in the in vivo attenuation of V3043.
Collapse
Affiliation(s)
- L J White
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7290, USA.
| | | | | | | |
Collapse
|
26
|
Abstract
Poly(ADP-ribose) polymerase (PARP-1), a nuclear enzyme that facilitates DNA repair, may be instrumental in acute neuronal cell death in a variety of insults including, cerebral ischemia, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism, and CNS trauma. Excitotoxicity is thought to underlie these and other toxic models of neuronal death. Different glutamate agonists may trigger different downstream pathways toward neurotoxicity. We examine the role of PARP-1 in NMDA- and non-NMDA-mediated excitotoxicity. NMDA and non-NMDA agonists were stereotactically delivered into the striatum of mice lacking PARP-1 and control mice in acute (48 hr) and chronic (3 week) toxicity paradigms. Mice lacking PARP-1 are highly resistant to the excitoxicity induced by NMDA but are as equally susceptible to AMPA excitotoxicity as wild-type mice. Restoring PARP-1 protein in mice lacking PARP-1 by viral transfection restored susceptibility to NMDA, supporting the requirement of PARP-1 in NMDA neurotoxicity. Furthermore, Western blot analyses demonstrate that PARP-1 is activated after NMDA delivery but not after AMPA administration. Consistent with the theory that nitric oxide (NO) and peroxynitrite are prominent in NMDA-induced neurotoxicity, PARP-1 was not activated in mice lacking the gene for neuronal NO synthase after NMDA administration. These results suggest a selective role of PARP-1 in glutamate excitoxicity, and strategies of inhibiting PARP-1 in NMDA-mediated neurotoxicity may offer substantial acute and chronic neuroprotection.
Collapse
|
27
|
Mandir AS, Poitras MF, Berliner AR, Herring WJ, Guastella DB, Feldman A, Poirier GG, Wang ZQ, Dawson TM, Dawson VL. NMDA but not non-NMDA excitotoxicity is mediated by Poly(ADP-ribose) polymerase. J Neurosci 2000; 20:8005-11. [PMID: 11050121 PMCID: PMC6772735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Poly(ADP-ribose) polymerase (PARP-1), a nuclear enzyme that facilitates DNA repair, may be instrumental in acute neuronal cell death in a variety of insults including, cerebral ischemia, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism, and CNS trauma. Excitotoxicity is thought to underlie these and other toxic models of neuronal death. Different glutamate agonists may trigger different downstream pathways toward neurotoxicity. We examine the role of PARP-1 in NMDA- and non-NMDA-mediated excitotoxicity. NMDA and non-NMDA agonists were stereotactically delivered into the striatum of mice lacking PARP-1 and control mice in acute (48 hr) and chronic (3 week) toxicity paradigms. Mice lacking PARP-1 are highly resistant to the excitoxicity induced by NMDA but are as equally susceptible to AMPA excitotoxicity as wild-type mice. Restoring PARP-1 protein in mice lacking PARP-1 by viral transfection restored susceptibility to NMDA, supporting the requirement of PARP-1 in NMDA neurotoxicity. Furthermore, Western blot analyses demonstrate that PARP-1 is activated after NMDA delivery but not after AMPA administration. Consistent with the theory that nitric oxide (NO) and peroxynitrite are prominent in NMDA-induced neurotoxicity, PARP-1 was not activated in mice lacking the gene for neuronal NO synthase after NMDA administration. These results suggest a selective role of PARP-1 in glutamate excitoxicity, and strategies of inhibiting PARP-1 in NMDA-mediated neurotoxicity may offer substantial acute and chronic neuroprotection.
Collapse
Affiliation(s)
- A S Mandir
- Departments of Neurology, Neuroscience, and Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Appel E, Katzoff A, Ben-Moshe T, Kazimirsky G, Kobiler D, Lustig S, Brodie C. Differential regulation of Bcl-2 and Bax expression in cells infected with virulent and nonvirulent strains of sindbis virus. Virology 2000; 276:238-42. [PMID: 11040115 DOI: 10.1006/viro.2000.0458] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sindbis virus is an alphavirus that infects cells in either lytic or persistent infection. In this study we examined the effects of Sindbis virus on cell apoptosis and on the expression of Bcl-2 and Bax. Of the two strains studied, SVA and SVNI, only the neurovirulent strain, SVNI, induced apoptosis of astrocytes and PC-12 cells. SVA, which infects cells in a persistent manner, induced up-regulation of bcl-2 mRNA and Bcl-2 protein, whereas SVNI induced an increase in Bax levels. Our results indicate a differential regulation of Bcl2 and Bax expression by SVA and SVNI, which may be associated with the apoptotic potential of the viruses.
Collapse
Affiliation(s)
- E Appel
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | | | | | | | | | | | | |
Collapse
|
29
|
García JB, Morzunov SP, Levis S, Rowe J, Calderón G, Enría D, Sabattini M, Buchmeier MJ, Bowen MD, St Jeor SC. Genetic diversity of the Junin virus in Argentina: geographic and temporal patterns. Virology 2000; 272:127-36. [PMID: 10873755 DOI: 10.1006/viro.2000.0345] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RNA was purified from 39 strains of cell-cultured Junin virus (JUN) from central Argentina, which included both human- and rodent-derived isolates (a total of 26 and 13, respectively), as well as from 2 laboratory JUN strains, XJ Cl3 and XJ #44. JUN-specific primers were used to amplify a 511-nucleotide (nt) fragment of the nucleocapsid protein gene and a 495-nt fragment of the glycoprotein 1 (GP1) gene. Genetic diversity among JUN strains studied was up to 13% at the nt level and up to 9% at the amino acid (aa) level for the GP1 gene and up to 9% (nt) and 4% (aa) for the NP gene. Phylogenetic analyses of both genes revealed three distinct clades. The first clade was composed of the JUN strains from the center of the endemic area and included the majority of JUN strains analyzed in the current study. The second clade contained 4 JUN strains isolated between 1963 and 1971 from Cordoba Province, the western-most edge of the known endemic area. The third clade contained 4 JUN strains that originated from Calomys musculinus trapped in Zarate, the northeastern edge of the known endemic area. Certain JUN sequences, which were obtained from GenBank and identified as XJ, XJ #44, and Candid #1 strains, appeared to form a separate clade. Over 400 nt of the GP1 and GP2 genes were additionally sequenced for 7 JUN strains derived from patients with different clinical presentations and outcomes of Argentine hemorrhagic fever. Analysis of the corresponding aa sequences did not allow us to attribute any particular genetic marker to the changing severity or clinical form of the human disease.
Collapse
Affiliation(s)
- J B García
- Instituto Nacional de Enfermedades Virales Humanas, Pergamino, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Heise MT, Simpson DA, Johnston RE. A single amino acid change in nsP1 attenuates neurovirulence of the Sindbis-group alphavirus S.A.AR86. J Virol 2000; 74:4207-13. [PMID: 10756033 PMCID: PMC111935 DOI: 10.1128/jvi.74.9.4207-4213.2000] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
S.A.AR86, a member of the Sindbis group of alphaviruses, is neurovirulent in adult mice and has a unique threonine at position 538 of nsP1; nonneurovirulent members of this group of alphaviruses encode isoleucine. Isoleucine was introduced at position 538 in the wild-type S.A.AR86 infectious clone, ps55, and virus derived from this mutant clone, ps51, was significantly attenuated for neurovirulence compared to that derived from ps55. Intracranial (i.c. ) s55 infection resulted in severe disease, including hind limb paresis, conjunctivitis, weight loss, and death in 89% of animals. In contrast, s51 caused fewer clinical signs and no mortality. Nevertheless, comparison of the virus derived from the mutant (ps51) and wild-type (ps55) S.A.AR86 molecular clones demonstrated that s51 grew as well as or better than the wild-type s55 virus in tissue culture and that viral titers in the brain following i.c. infection with s51 were equivalent to those of wild-type s55 virus. Analysis of viral replication within the brain by in situ hybridization revealed that both viruses established infection in similar regions of the brain at early times postinfection (12 to 72 h). However, at late times postinfection, the wild-type s55 virus had spread throughout large areas of the brain, while the s51 mutant exhibited a restricted pattern of replication. This suggests that s51 is either defective in spreading throughout the brain at late times postinfection or is cleared more rapidly than s55. Further evidence for the contribution of nsP1 Thr 538 to S.A.AR86 neurovirulence was provided by experiments in which a threonine residue was introduced at nsP1 position 538 of Sindbis virus strain TR339, which is nonneurovirulent in weanling mice. The resulting virus, 39ns1, demonstrated significantly increased neurovirulence and morbidity, including weight loss and hind limb paresis. These results demonstrate a role for alphavirus nonstructural protein genes in adult mouse neurovirulence.
Collapse
Affiliation(s)
- M T Heise
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | | | |
Collapse
|
31
|
Liang GD, Li L, Zhou GL, Fu SH, Li QP, Li FS, He HH, Jin Q, He Y, Chen BQ, Hou YD. Isolation and complete nucleotide sequence of a Chinese Sindbis-like virus. J Gen Virol 2000; 81:1347-51. [PMID: 10769078 DOI: 10.1099/0022-1317-81-5-1347] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Infection with alphaviruses is common in the Chinese population. Here we report the isolation of a Sindbis-like virus from a pool of Anopheles mosquitoes collected in Xinjiang, China during an arbovirus survey. This virus, designated XJ-160, rapidly produced cytopathic effects on mosquito and hamster cells. In addition, it was lethal to neonatal mice if inoculated intracerebrally. Serologically, XJ-160 reacted with and was neutralized by an anti-Sindbis antibody. Anti-XJ-160 antibodies were found in several cohorts of Chinese subjects. The complete 11626-base nucleotide sequence of XJ-160 was determined. XJ-160 has diverged significantly from the prototype Sindbis virus, with an 18% difference in nucleotide sequence and an 8.6% difference in amino acids; there are 11 deletions and 2 insertions, involving 99 nucleotides in total. XJ-160 is most closely linked to Kyzylagach virus isolated in Azerbaijan. Both belong to the African/European genetic lineage of Sindbis virus, albeit more distantly related to other members.
Collapse
Affiliation(s)
- G D Liang
- State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Virology, Chinese Academy of Preventive Medicine, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lund KD, Chantler JK. Mapping of genetic determinants of rubella virus associated with growth in joint tissue. J Virol 2000; 74:796-804. [PMID: 10623741 PMCID: PMC111599 DOI: 10.1128/jvi.74.2.796-804.2000] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rubella virus (RV) strains vary in their abilities to replicate and persist in cell cultures derived from human joint tissue (synovial cells [SC]), and this arthrotropism appears to be linked to their association with joint symptoms in vivo. In order to map the genetic determinants of arthrotropism, an infectious clone of the Cendehill vaccine strain of RV was constructed, as well as two chimeric clones containing cDNAs from both Cendehill and Therien (wild-type) strains. Replacement of the entire structural gene region of Therien in the infectious clone pROBO302 with the corresponding region of Cendehill did not affect growth in SC. A further observation that Cendehill bound equally well to SC and the permissive Vero cell line indicated that restriction was not at the level of receptor binding, a function of the envelope proteins. Mutations that affected growth in joint cells were mapped to two locations in the nonstructural gene region. The first of these (nucleotides 2803 and 6416) resulted in a 10-fold decrease in yield of progeny virus from SC. This region contained five mutations, at nucleotides 2829, 3060, 3164, and 3528 (near the carboxy terminus of P150 where the protease domain is located) and at nucleotide 4350 in p90. Further substitution of the sequence representing nucleotides 1 to 2803 to give a complete Cendehill infectious clone restricted growth in SC by a further 100-fold to less than 10 PFU/ml. This region contains three mutations, at nucleotides 34, 37, and 55, within the 5' stem-loop structure. In conclusion, the Cendehill-specific mutations believed to be determinants of joint cell growth are located in two regions, the 5' nontranslated region and in a sequence that encodes the carboxy-terminal region of p150 extending into the helicase domain of p90.
Collapse
Affiliation(s)
- K D Lund
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
33
|
Kobiler D, Rice CM, Brodie C, Shahar A, Dubuisson J, Halevy M, Lustig S. A single nucleotide change in the 5' noncoding region of Sindbis virus confers neurovirulence in rats. J Virol 1999; 73:10440-6. [PMID: 10559362 PMCID: PMC113099 DOI: 10.1128/jvi.73.12.10440-10446.1999] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two pairs of Sindbis virus (SV) variants that differ in their neuroinvasive and neurovirulent traits in mice have been isolated. Recently, we mapped the genetic determinants responsible for neuroinvasiveness in weanling mice. Here, we extend this study to newborn and adult rats and to rat neuronal cultures. Remarkably, certain aspects of the pathogenesis of these strains in rats were found to be quite distinct from the mouse model. Suckling rats were susceptible to all four isolates, and replication in the brain was observed after both intraperitoneal and intracranial (i.c.) inoculation. None of the isolates was neuroinvasive in adult rats, although all replicated after i.c. inoculation. For the isolate pair that was highly neurovirulent in mice, SVN and SVNI, only SVNI caused death after i.c. inoculation of adult rats. Similarly, only SVNI was cytotoxic for primary cultures of mature neurons. The genetic determinants responsible for the pathogenic properties of SVNI were mapped to the E2 glycoprotein and the 5' noncoding region (5'NCR). Substitution of two amino acids in SVN E2 with the corresponding residues of SVNI (Met-190 and Lys-260) led to paralysis in 3- and 5-week-old rats. More dramatically, a single substitution in the 5'NCR of SVN (G at position 8) transformed the virus into a lethal pathogen for 3-week-old rats like SVNI. In 5-week-old rats, however, this recombinant was attenuated relative to SVNI by 2 orders of magnitude. Combination of the E2 and 5'NCR determinants resulted in a recombinant with virulence properties indistinguishable from those of SVNI. These data indicate that the 5'NCR and E2 play an instrumental role in determining the age-dependent pathogenic properties of SV in rats.
Collapse
Affiliation(s)
- D Kobiler
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona 74100, Israel.
| | | | | | | | | | | | | |
Collapse
|
34
|
Meissner JD, Huang CY, Pfeffer M, Kinney RM. Sequencing of prototype viruses in the Venezuelan equine encephalitis antigenic complex. Virus Res 1999; 64:43-59. [PMID: 10500282 PMCID: PMC7126981 DOI: 10.1016/s0168-1702(99)00078-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/1999] [Revised: 06/04/1999] [Accepted: 06/04/1999] [Indexed: 11/19/2022]
Abstract
The 5' nontranslated region (5'NTR) and nonstructural region nucleotide sequences of nine enzootic Venezuelan equine encephalitis (VEE) virus strains were determined, thus completing the genomic RNA sequences of all prototype strains. The full-length genomes, representing VEE virus antigenic subtypes I-VI, range in size from 11.3 to 11.5 kilobases, with 48-53% overall G+C contents. Size disparities result from subtype-related differences in the number and length of direct repeats in the C-terminal nonstructural protein 3 (nsP3) domain coding sequence and the 3'NTR, while G+C content disparities are attributable to strain-specific variations in base composition at the wobble position of the polyprotein codons. Highly-conserved protein components and one nonconserved protein domain constitute the VEE virus replicase polyproteins. Approximately 80% of deduced nsP1 and nsP4 amino acid residues are invariant, compared to less than 20% of C-terminal nsP3 domain residues. In two enzootic strains, C-terminal nsP3 domain sequences degenerate into little more than repetitive serine-rich blocks. Nonstructural region sequence information drawn from a cross-section of VEE virus subtypes clarifies features of alphavirus conserved sequence elements and proteinase recognition signals. As well, whole-genome comparative analysis supports the reclassification of VEE subtype-variety IF and subtype II viruses.
Collapse
Affiliation(s)
- J D Meissner
- Arbovirus Diseases Branch, Division of Vector-Borne Infectious Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Fort Collins, CO 80522, USA.
| | | | | | | |
Collapse
|
35
|
Vialat P, Muller R, Vu TH, Prehaud C, Bouloy M. Mapping of the mutations present in the genome of the Rift Valley fever virus attenuated MP12 strain and their putative role in attenuation. Virus Res 1997; 52:43-50. [PMID: 9453143 DOI: 10.1016/s0168-1702(97)00097-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The MP12 attenuated strain of Rift Valley fever virus was obtained by 12 serial passages of a virulent isolate ZH548 in the presence of 5-fluorouracil (Caplen et al., 1985. Mutagen-directed attenuation of Rift Valley fever virus as a method for vaccine development. J. Gen. Virol., 66, 2271-2277). The comparison of the M segment of the two strains has already been reported by Takehara et al. (Takehara et al., 1989. Identification of mutations in the M RNA of a candidate vaccine strain of Rift Valley fever virus. Virology 169, 452-457). We have completed the comparison and found that altogether a total of nine, 12 and four nucleotides were changed in the L, M and S segments of the two strains, respectively. Three mutations induced amino acid changes in the L protein but none of them was located in the recognized motifs conserved among RNA dependent polymerases. In the S segment, a single change modified an amino acid in the NSs protein and in the M segment, seven of the mutations resulted in amino acid changes in each of the four encoded G1, G2, 14 kDa and 78 kDa proteins. Characterization of the MP12 virus indicated that determinants for attenuation were present in each segment and that they were introduced progressively during the 12 passages in the presence of the mutagen (Saluzzo and Smith, 1990. Use of reassortant viruses to map attenuating and temperature-sensitive mutations of the Rift Valley fever virus MP-12 vaccine. Vaccine 8, 369-375). Passages 4 and 7-9 were found to be essential for introduction of temperature-sensitive lesions and attenuation. In an attempt to correlate some of the mutations with the attenuated or temperature-sensitive phenotypes, we determined by sequencing the passage level at which the different mutations appeared. This work should help to address the question of the role of the viral gene products in Rift Valley fever pathogenesis.
Collapse
Affiliation(s)
- P Vialat
- Institut Pasteur, Laboratoire des Bunyaviridés, Paris, France
| | | | | | | | | |
Collapse
|