1
|
Nitta T, Lee S, Ha D, Arias M, Kozak CA, Fan H. Moloney murine leukemia virus glyco-gag facilitates xenotropic murine leukemia virus-related virus replication through human APOBEC3-independent mechanisms. Retrovirology 2012; 9:58. [PMID: 22828015 PMCID: PMC3423011 DOI: 10.1186/1742-4690-9-58] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 07/24/2012] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND One of the unique features of gammaretroviruses is that they contain an additional extended form of Gag, glyco-gag, which initiates in the leader sequence. MuLV glyco-gag, gPr80Gag, promotes retrovirus replication and disease progression. Although virtually all infectious MuLVs encode glyco-gag, XMRV (xenotropic murine leukemia virus-related virus) lacks the classical gPr80Gag sequence. We examined XMRV to determine if its leader sequence contains glyco-gag activity, whether the presence of conventional gPr80Gag affects replication of XMRV, and we describe the evolution of glyco-gag-deficient MuLVs in Mus. RESULTS We introduced several mutations disrupting two putative but noncanonical glyco-gag proteins in the leader sequence region in XMRV and found that those mutations did not affect virus release nor susceptibility to the antiviral activity of hA3G (human APOBEC3G). A chimeric XMRV encoding the Moloney MuLV (M-MuLV) leader sequence (MXMRV) demonstrated that M-MuLV glyco-gag facilitated MXMRV release and increased infectivity. Infectivity assays with several cell lines showed that glyco-gag increases XMRV infectivity in all cell lines tested, but the level of this increase varies in different cell lines. Because MuLV glyco-gag counteracts mouse APOBEC3, we investigated whether M-MuLV glyco-gag enhances XMRV infection by counteracting human APOBEC3. Comparison of hAPOBEC3 isoforms expressed in different cell lines indicated that hA3B was the most likely candidate for a restrictive hA3. However over-expression of hA3B showed no enhanced restriction of infection by XMRV compared to MXMRV. Endogenous MuLVs in the sequenced mouse genome were screened for canonical glyco-gag, which was identified in two clades of xenotropic MuLVs (X-MuLVs) and ecotropic MuLVs, but not in other X-MuLVs or in any polytropic MuLVs. CONCLUSIONS M-MuLV glyco-gag facilitates XMRV replication, and the leader sequence region in XMRV does not encode proteins equivalent to M-MuLV glyco-gag. The fact that the ability of glyco-gag to enhance XMRV infection varies in different cell lines suggests a glyco-gag sensitive restrictive factor that further reduces XMRV infectivity. The M-MuLV glyco-gag enhancement for XMRV replication is through a hAPOBEC3 independent mechanism. The absence of glyco-gag in MuLVs carried by western European mice suggests that loss of this sequence is a relatively recent event with limited subspecies distribution.
Collapse
Affiliation(s)
- Takayuki Nitta
- Department of Molecular Biology and Biochemistry and Cancer Research Institute, University of California, Irvine, CA, 92697-3905, USA
| | - Sangouk Lee
- Department of Molecular Biology and Biochemistry and Cancer Research Institute, University of California, Irvine, CA, 92697-3905, USA
| | - Dat Ha
- Department of Molecular Biology and Biochemistry and Cancer Research Institute, University of California, Irvine, CA, 92697-3905, USA
| | - Maribel Arias
- Department of Molecular Biology and Biochemistry and Cancer Research Institute, University of California, Irvine, CA, 92697-3905, USA
| | - Christine A Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892-0460, USA
| | - Hung Fan
- Department of Molecular Biology and Biochemistry and Cancer Research Institute, University of California, Irvine, CA, 92697-3905, USA
| |
Collapse
|
2
|
The cellular protein La functions in enhancement of virus release through lipid rafts facilitated by murine leukemia virus glycosylated Gag. mBio 2011; 2:e00341-10. [PMID: 21343359 PMCID: PMC3042739 DOI: 10.1128/mbio.00341-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Murine leukemia viruses (MuLVs) encode two forms of Gag polyprotein: the precursor for the viral core proteins (Pr65gag for Moloney MuLV [M-MuLV]) and a longer glycosylated form (glyco-gag, or gPr80gag). gPr80gag is translated from the same unspliced viral RNA as Pr65gag, from an upstream in-frame CUG initiation codon. As a result, gPr80gag contains 88 unique N-terminal amino acids that include a signal peptide that conducts gPr80gag into the rough endoplasmic reticulum, where it is glycosylated, exported to the cell surface, and cleaved into two proteins of 55 and 40 kDa. The amino-terminal 55-kDa protein remains cell associated with the 88 unique amino acids exposed to the cytosol. We previously showed that gPr80gag facilitates efficient M-MuLV release through lipid rafts. In this report, we found that the unique N-terminal domain of gPr80gag is sufficient to facilitate enhanced M-MuLV particle release from transfected 293T cells. A search for cellular proteins involved in gPr80gag function led to cellular La protein. Overexpression of mouse or human La enhanced M-MuLV particle release in the absence of glyco-gag, and the released virus had a reduced buoyant density characteristic of increased cholesterol content. Moreover, small interfering RNA (siRNA) knockdown of human La abolished glyco-gag enhancement of M-MuLV release. These results implicate La as a cellular protein involved in M-MuLV glyco-gag function. We also found that overexpression of mouse or human La could enhance HIV-1 release in the absence of gPr80gag. Therefore, M-MuLV and HIV-1 may share a pathway for release through lipid rafts involving La. Retroviruses cause diseases such as leukemia and AIDS. An important aspect of viral replication is how viruses are released from infected cells. We previously found that a unique protein encoded by murine leukemia viruses (MuLVs), glyco-gag (or gPr80gag), enhances efficient virus release through cholesterol-rich membrane subdomains called lipid rafts. In this study, we found that the N-terminal domain of gPr80gag is sufficient to enhance viral release. A search for cellular proteins that participate in gPr80gag function led to cellular La protein. Overexpression of La phenocopied glyco-gag in enhancing M-MuLV release, and knockdown of La abolished glyco-gag function. M-MuLV glyco-gag also enhanced release of HIV-1, as did overexpression La in the absence of glyco-gag. Thus, M-MuLV and HIV-1 may share a cellular pathway for release through lipid rafts involving La. These results may also be relevant for other viruses that are released through lipid rafts.
Collapse
|
3
|
MLV glycosylated-Gag is an infectivity factor that rescues Nef-deficient HIV-1. Proc Natl Acad Sci U S A 2010; 107:9364-9. [PMID: 20439730 DOI: 10.1073/pnas.1001554107] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Optimal infectivity of HIV-1 virions requires synthesis of the HIV-1 regulatory protein Nef in some producer cells but not others. A survey of 18 lymphoid cell lines found that Nef was dispensable in three, each of which harbored gammaretroviruses. Nef-dependent cell lines were rendered Nef-independent by a cell-free supernatant from the independent lines or by transfection of cloned murine leukemia virus (MLV). Analysis of MLV deletion mutations identified glycosylated gag (glycogag) as the factor that rescues Nef-defective HIV-1 virions. Glycogag was also demonstrated to be required for the infectivity of MLV virions produced in lymphoid cells. Direct comparison of Nef and glycogag revealed identical dependence for activity on Env-pseudotype and producer cell type. The two proteins colocalize within cells, and both increase the yield of viral cDNA in target cells. The functional similarity of Nef and glycogag is a compelling example of convergent evolution in which two structurally unrelated proteins provide a function necessary for virion infectivity in lymphoid cells.
Collapse
|
4
|
Murine leukemia virus glycosylated Gag (gPr80gag) facilitates interferon-sensitive virus release through lipid rafts. Proc Natl Acad Sci U S A 2009; 107:1190-5. [PMID: 20080538 DOI: 10.1073/pnas.0908660107] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Murine leukemia viruses encode a unique form of Gag polyprotein, gPr80gag or glyco-gag. Translation of this protein is initiated from full-length viral mRNA at an upstream initiation site in the same reading frame as Pr65(gag), the precursor for internal structural (Gag) proteins. Whereas gPr80gag is evolutionarily conserved among gammaretroviruses, its mechanism of action has been unclear, although it facilitates virus production at a late assembly or release step. Here, it is shown that gPr80gag facilitates release of Moloney murine leukemia virus (M-MuLV) from cells along an IFN-sensitive pathway. In particular, gPr80gag-facilitated release occurs through lipid rafts, because gPr80gag-negative M-MuLV has a lower cholesterol content, is less sensitive to inhibition of release by the cholesterol-depleting agent MbetaCD, and there is less Pr65gag associated with detergent-resistant membranes in mutant-infected cells. gPr80gag can also facilitate the release of HIV-1-based vector particles from human 293T cells.
Collapse
|
5
|
Summers K, Crespi B. Molecular evolution of the prostate cancer susceptibility locus RNASEL: evidence for positive selection. INFECTION GENETICS AND EVOLUTION 2008; 8:297-301. [PMID: 18295551 DOI: 10.1016/j.meegid.2008.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 01/10/2008] [Accepted: 01/11/2008] [Indexed: 11/25/2022]
Abstract
Recent research implicates viral infection as a factor that may contribute to the risk of prostate cancer. Allelic variation at the RNASEL locus is associated with the risk of infection by a newly discovered retrovirus called XMRV, and with hereditary risk of prostate cancer. This evidence suggests that the RNASEL locus has undergone antagonistic coevolution with the retrovirus over evolutionary time. If this is the case, then both the RNASEL locus and the retrovirus should show evidence of positive selection. Here we use molecular-evolutionary methods to investigate the prediction that the RNASEL locus will exhibit evidence of positive selection. We find evidence that positive selection has acted on this locus over evolutionary time. We further find, using a Bayesian estimation procedure, that Asp541Glu, which was found to be associated with prostate cancer risk in Caucasians in a recent meta-analysis, shows an elevated probability of positive selection. Previous studies provide evidence for rapid evolution of the infection-mediating gag gene in the XMRV retrovirus. Taken together, these results suggest that antagonistic coevolution may have occurred between a specific host locus involved in immune defense (RNASEL) and a viral pathogen. In turn, genetic variation associated with this apparent coevolution may influence susceptibility to prostate cancer.
Collapse
Affiliation(s)
- Kyle Summers
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| | | |
Collapse
|
6
|
Low A, Datta S, Kuznetsov Y, Jahid S, Kothari N, McPherson A, Fan H. Mutation in the glycosylated gag protein of murine leukemia virus results in reduced in vivo infectivity and a novel defect in viral budding or release. J Virol 2007; 81:3685-92. [PMID: 17267509 PMCID: PMC1866097 DOI: 10.1128/jvi.01538-06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
All gammaretroviruses, including murine leukemia viruses (MuLVs), feline leukemia viruses, and gibbon-ape leukemia virus, encode an alternate, glycosylated form of Gag polyprotein (glyco-Gag or gPr80gag) in addition to the polyprotein precursor of the viral capsid proteins (Pr65gag). gPr80gag is translated from an upstream in-frame CUG initiation codon, in contrast to the AUG codon used for Pr65gag. The role of glyco-Gag in MuLV replication has been unclear, since gPr80gag-negative Moloney MuLV (M-MuLV) mutants are replication competent in vitro and pathogenic in vivo. However, reversion to the wild type is frequently observed in vivo. In these experiments, in vivo inoculation of a gPr80gag mutant, Ab-X-M-MuLV, showed substantially lower (2 log) initial infectivity in newborn NIH Swiss mice than that of wild-type virus, and revertants to the wild type could be detected by PCR cloning and DNA sequencing as early as 15 days postinfection. Atomic force microscopy of Ab-X-M-MuLV-infected producer cells or of the PA317 amphotropic MuLV-based vector packaging line (also gPr80gag negative) revealed the presence of tube-like viral structures on the cell surface. In contrast, wild-type virus-infected cells showed the typical spherical, 145-nm particles observed previously. Expression of gPr80gag in PA317 cells converted the tube-like structures to typical spherical particles. PA317 cells expressing gPr80gag produced 5- to 10-fold more infectious vector or viral particles as well. Metabolic labeling studies indicated that this reflected enhanced virus particle release rather than increased viral protein synthesis. These results indicate that gPr80gag is important for M-MuLV replication in vivo and in vitro and that the protein may be involved in a late step in viral budding or release.
Collapse
Affiliation(s)
- Audrey Low
- Department of Molecular Biology and Biochemistry and Cancer Research Institute, University of California, Irvine, CA 92697-3905, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Clase AC, Dimcheff DE, Favara C, Dorward D, McAtee FJ, Parrie LE, Ron D, Portis JL. Oligodendrocytes are a major target of the toxicity of spongiogenic murine retroviruses. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:1026-38. [PMID: 16936275 PMCID: PMC1698807 DOI: 10.2353/ajpath.2006.051357] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neurovirulent retroviruses FrCasE and Moloney MLV-ts1 cause noninflammatory spongiform neurodegeneration in mice, manifested clinically by progressive spasticity and paralysis. Neurons have been thought to be the primary target of toxicity of these viruses. However the neurons themselves appear not to be infected, and the possible indirect mechanisms driving the neuronal toxicity have remained enigmatic. Here we have re-examined the cells that are damaged by these viruses, using lineage-specific markers. Surprisingly, these cells expressed the basic helix-loop-helix transcription factor Olig2, placing them in the oligodendrocyte lineage. Olig2+ cells were found to be infected, and many of these cells exhibited focal cytoplasmic vacuolation, suggesting that infection by spongiogenic retroviruses is directly toxic to these cells. As cytoplasmic vacuolation progressed, however, signs of viral protein expression appeared to wane, although residual viral RNA was detectable by in situ hybridization. Cells with the most advanced cytoplasmic effacement expressed the C/EBP-homologous protein (CHOP). This protein is up-regulated as a late event in a cellular response termed the integrated stress response. This observation may link the cellular pathology observed in the brain with cellular stress responses known to be induced by these viruses. The relevance of these observations to oligodendropathy in humans is discussed.
Collapse
Affiliation(s)
- Amanda C Clase
- Laboratory of Persistent Viral Diseases, The Microscopy Unit, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S. 4th St., Hamilton, MT 59840, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Urisman A, Molinaro RJ, Fischer N, Plummer SJ, Casey G, Klein EA, Malathi K, Magi-Galluzzi C, Tubbs RR, Ganem D, Silverman RH, DeRisi JL. Identification of a novel Gammaretrovirus in prostate tumors of patients homozygous for R462Q RNASEL variant. PLoS Pathog 2006; 2:e25. [PMID: 16609730 PMCID: PMC1434790 DOI: 10.1371/journal.ppat.0020025] [Citation(s) in RCA: 472] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Accepted: 02/23/2006] [Indexed: 11/26/2022] Open
Abstract
Ribonuclease L (RNase L) is an important effector of the innate antiviral response. Mutations or variants that impair function of RNase L, particularly R462Q, have been proposed as susceptibility factors for prostate cancer. Given the role of this gene in viral defense, we sought to explore the possibility that a viral infection might contribute to prostate cancer in individuals harboring the R462Q variant. A viral detection DNA microarray composed of oligonucleotides corresponding to the most conserved sequences of all known viruses identified the presence of gammaretroviral sequences in cDNA samples from seven of 11 R462Q-homozygous (QQ) cases, and in one of eight heterozygous (RQ) and homozygous wild-type (RR) cases. An expanded survey of 86 tumors by specific RT-PCR detected the virus in eight of 20 QQ cases (40%), compared with only one sample (1.5%) among 66 RQ and RR cases. The full-length viral genome was cloned and sequenced independently from three positive QQ cases. The virus, named XMRV, is closely related to xenotropic murine leukemia viruses (MuLVs), but its sequence is clearly distinct from all known members of this group. Comparison of gag and pol sequences from different tumor isolates suggested infection with the same virus in all cases, yet sequence variation was consistent with the infections being independently acquired. Analysis of prostate tissues from XMRV-positive cases by in situ hybridization and immunohistochemistry showed that XMRV nucleic acid and protein can be detected in about 1% of stromal cells, predominantly fibroblasts and hematopoietic elements in regions adjacent to the carcinoma. These data provide to our knowledge the first demonstration that xenotropic MuLV-related viruses can produce an authentic human infection, and strongly implicate RNase L activity in the prevention or clearance of infection in vivo. These findings also raise questions about the possible relationship between exogenous infection and cancer development in genetically susceptible individuals. Prostate cancer is the most frequent cancer and the second leading cause of cancer deaths in US men over the age of 50. Several genetic factors have been proposed as potential risk factors for the development of prostate cancer, including a viral defense gene called RNASEL. A common genetic variant in this gene, R462Q, was recently implicated in up to 13% of prostate cancer cases. Given the antiviral role of RNASEL, the authors sought to examine if a virus might be present in prostate cancers associated with the R462Q variant. Using a DNA microarray designed to detect all known viral families, the authors identified a novel virus, named XMRV, in a subset of prostate tumor samples. Polymerase chain reaction testing of 86 prostate tumors for the presence of XMRV revealed a strong association between the presence of the virus and being homozygous for the R462Q variant. Cloning and sequencing of the virus showed that XMRV is a close relative of several known xenotropic murine leukemia viruses. This report presents the first documented cases of human infection with a xenotropic retrovirus. Future work will address the potential connection between XMRV infection and the increased prostate cancer risk in patients with the R462Q RNASEL variant.
Collapse
Affiliation(s)
- Anatoly Urisman
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Ross J Molinaro
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Chemistry, Cleveland State University, Cleveland, Ohio, United States of America
| | - Nicole Fischer
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Sarah J Plummer
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Graham Casey
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Eric A Klein
- Glickman Urological Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Krishnamurthy Malathi
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Cristina Magi-Galluzzi
- Anatomic and Clinical Pathology, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Raymond R Tubbs
- Anatomic and Clinical Pathology, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Don Ganem
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Robert H Silverman
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- * To whom correspondence should be addressed. E-mail: (JLD); (RHS)
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California, United States of America
- * To whom correspondence should be addressed. E-mail: (JLD); (RHS)
| |
Collapse
|
9
|
Abstract
Murine leukemia viruses may produce encephalopathies that have the same characteristics as those induced by infectious proteins or prions: neuronal loss, astrocytosis, and absence of inflammatory response. The pathogenic mechanism is still poorly understood but it seems that it involves the envelope proteins (Env), which may be misprocessed in the cell, giving rise to pathogenic isoforms that trigger oxidative damage. Env may also affect the cytokine pattern in the central nervous system and thus, induce encephalopathy.
Collapse
Affiliation(s)
- Esperanza Gomez-Lucia
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
10
|
Dimcheff DE, Faasse MA, McAtee FJ, Portis JL. Endoplasmic reticulum (ER) stress induced by a neurovirulent mouse retrovirus is associated with prolonged BiP binding and retention of a viral protein in the ER. J Biol Chem 2004; 279:33782-90. [PMID: 15178688 DOI: 10.1074/jbc.m403304200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Some murine retroviruses cause a spongiform neurodegenerative disease exhibiting pathology resembling that observed in transmissible spongiform encephalopathies. The neurovirulence of these "spongiogenic retroviruses" is determined by the sequence of their respective envelope proteins, although the mechanisms of neurotoxicity are not understood. We have studied a highly neurovirulent virus called FrCasE that causes a rapidly progressive form of this disease. Recently, transcriptional markers of endoplasmic reticulum (ER) stress were detected during the early preclinical period in the brains of FrCasE-infected mice. In contrast, ER stress was not observed in mice infected with an avirulent virus, F43, which carries a different envelope gene, suggesting a role for ER stress in disease pathogenesis. Here we have examined in NIH 3T3 cells the cause of this cellular stress response. The envelope protein of F43 bound BiP, a major ER chaperone, transiently and was processed normally through the secretory pathway. In contrast, the envelope protein of FrCasE bound to BiP for a prolonged period, was retained in the ER, and was degraded by the proteasome. Furthermore, engagement of the FrCasE envelope protein by ER quality control pathways resulted in decreased steady-state levels of this protein, relative to that of F43, both in NIH 3T3 cells and in the brains of infected mice. Thus, the ER stress induced by FrCasE appears to be initiated by inefficient folding of its viral envelope protein, suggesting that the neurodegenerative disease caused by this virus represents a protein misfolding disorder.
Collapse
Affiliation(s)
- Derek E Dimcheff
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, National Institutes of Health, Hamilton, Montana 59840, USA
| | | | | | | |
Collapse
|
11
|
Münk C, Prassolov V, Rodenburg M, Kalinin V, Löhler J, Stocking C. 10A1-MuLV but not the related amphotropic 4070A MuLV is highly neurovirulent: importance of sequences upstream of the structural Gag coding region. Virology 2003; 313:44-55. [PMID: 12951020 DOI: 10.1016/s0042-6822(03)00210-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recombinants of Moloney murine leukemia virus (MoMuLV) with either an amphotropic (MoAmphoV) or 10A1-tropic host range (Mo10A1V) induce a spongiform neurodegenerative disease in susceptible mice. To test whether MoMuLV -derived sequences are required for induction of neuropathology, mice were inoculated with either the original 10A1 or the amphotropic (4070A) MuLV isolate. Strikingly, wild-type 10A1 was more neurovirulent than Mo10A1V, inducing severe neurological clinical symptoms with a median latency of 99 days in 100% of infected mice. In contrast, no motor disturbances were detected in any of the 4070A-infected mice, although limited central nervous system lesions were observed. A viral determinant conferring high neurovirulence to 10A1 was mapped to a region encompassing the first 676 bases of the viral genome, including the U5 LTR and encoding the amino-terminus of glycosylated Gag (glycoGag). In contrast to studies with the highly neurovirulent CasFr(KP) virus, an inverse correlation between surface expression levels of glycoGag and neurovirulence was not observed; however, this does not rule out a common underlying mechanism regulating virus pathogenicity.
Collapse
Affiliation(s)
- Carsten Münk
- Department of Cell and Virus Genetics, Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie, D-20251 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- J L Portis
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, Hamilton, Montana 59840, USA
| |
Collapse
|
13
|
Traister RS, Lynch WP. Reexamination of amphotropic murine leukemia virus neurovirulence: neural stem cell-mediated microglial infection fails to induce acute neurodegeneration. Virology 2002; 293:262-72. [PMID: 11886246 DOI: 10.1006/viro.2001.1299] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 4070A amphotropic murine leukemia virus (A-MuLV) has been variably reported to harbor neurovirulence determinants within its env gene. In this report we reexamined this issue by applying two approaches previously demonstrated to amplify murine leukemia virus neurovirulence. The first approach involved introducing the 4070A env gene into the background of Friend virus clone FB29 to enhance peripheral virus replication kinetics and central nervous system entry. The resulting chimeric virus, FrAmE, exhibited widespread vascular infection throughout the central nervous system (CNS); however, parenchymal infection was quite limited. Neither clinical neurological signs nor spongiform neurological changes accompanied FrAmE CNS infection. To overcome this CNS entry limitation, 4070A and FrAmE were delivered directly into the CNS via transplantation of infected C17.2 neural stem cells (NSCs). Significantly, NSC dissemination of either 4070A or FrAmE resulted in widespread, high-level amphotropic virus expression within the CNS parenchyma, including the infection of microglia, the critical target required for inducing neurodegeneration. Despite the extensive CNS infection, no associated clinical neurological signs or acute neuropathological changes were observed. Interestingly, we observed the frequent appearance of circulating polytropic (MCF) virus in the serum of amphotropic virus-infected animals. However, neither peripheral inoculation of an amphotropic/MCF virus mixture nor transplantation of NSCs expressing both amphotropic and MCF viruses induced acute clinical neurological signs or spongiform neuropathology. Thus, the results generated in this study suggest that the 4070A env gene is not inherently neurovirulent. However, the frequent appearance of endogenous MCF viruses suggests the possibility that the interactions of amphotropic viruses with endogenous retroviral elements could contribute to the development of retrovirus-induced neurodegenerative disease.
Collapse
Affiliation(s)
- Russell S Traister
- Department of Microbiology/Immunology, Northeastern Ohio Universities College of Medicine, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | | |
Collapse
|
14
|
Prassolov V, Ivanov D, Hein S, Rutter G, Münk C, Löhler J, Stocking C. The Mus cervicolor MuLV isolate M813 is highly fusogenic and induces a T-cell lymphoma associated with large multinucleated cells. Virology 2001; 290:39-49. [PMID: 11883004 DOI: 10.1006/viro.2001.1145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
M813 is a type-C murine leukemia virus (MuLV) isolated from the Asian rodent Mus cervicolor. We have recently demonstrated that M813 defines a distinct MuLV receptor interference group. Here we show that M813 rapidly induces fusion of MuLV-expressing fibroblasts from "without," with syncytia being observed within 1 h after exposure to virus. Infection of fibroblasts with MuLV from all tested receptor-interference groups imparts susceptibility to M813-induced fusion, provided the cells also express the M813 receptor. Syncytium induction is also observed in vivo; mice infected with M813 develop a peripheral T-cell lymphoma, which is associated with large multinucleated cells of macrophage origin. A recombinant Moloney MuLV/M813 chimeric virus demonstrated that syncytium induction is a function of the Env SU protein. We postulate that the highly fusogenic property of M813 is attributable to either its unique receptor usage or sequences in the proline-rich domain of the Env protein.
Collapse
Affiliation(s)
- V Prassolov
- Heinrich-Pette-Institut für Experimentelle Immunologie und Virologie an der Universität Hamburg, Martinistrasse 52, D-20251 Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Sanders VJ, Wiley CA, Hamilton RL. The mechanisms of neuronal damage in retroviral infections of the nervous system. Curr Top Microbiol Immunol 2001; 253:179-201. [PMID: 11417135 DOI: 10.1007/978-3-662-10356-2_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- V J Sanders
- Department of Neuroscience, University of California, San Diego, La Jolla, CA 92302, USA
| | | | | |
Collapse
|
16
|
Tanaka A, Saida K, Andoh M, Maeda K, Kai K. At least four non-env factors that reside in the LTR, in the 5'-non-coding region, in gag and in part of pol affect neuropathogenicity of PVC-441 murine leukemia virus (MuLV). Virus Res 2000; 69:17-30. [PMID: 10989182 DOI: 10.1016/s0168-1702(00)00166-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PVC-441 murine leukemia virus (MuLV) is neuropathogenic in F344 rats. Recently, an infectious DNA clone was isolated and its nucleotide sequence was determined (J. Virol. 72: 3423-3426. 1998). To identify the viral determinants of neuropathogenicity of the molecularly cloned PVC-441 MuLV, chimeras were constructed between PVC-441 MuLV and F-MuLV clones at appropriate restriction enzyme sites that divide the viral genome approximately in LTR-non-coding, gag-, pol-, and env-gene regions. Results indicated that the LTR-non-coding and the gag-gene regions of PVC-441 MuLV affected independently the neuropathogenicity in combination with the env gene region as evidenced clinically and pathologically. Studies on the distribution of vacuolar degeneration suggested that the pons and cervical spinal cord areas were the primary targets and the large brain was the latest target of PVC-441 MuLV. Further studies with chimeric viruses that were formed in the LTR-non-coding and the gag gene regions revealed that at least four factors affected the neuropathogenicity of PVC-441 MuLV. Two factors were found in the U3, and R-U5-5'-non-coding regions, and at least two factors in the gag gene region that contained the N-terminal part of the pol gene. Among these factors, at least two factors seemed to be 'cis-acting' from each other
Collapse
MESH Headings
- 5' Untranslated Regions
- Amino Acid Sequence
- Animals
- Base Sequence
- Chimera/genetics
- DNA, Viral/genetics
- Female
- Friend murine leukemia virus/genetics
- Friend murine leukemia virus/pathogenicity
- Genes, Viral
- Genes, env
- Genes, gag
- Genes, pol
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/pathogenicity
- Leukemia, Experimental/etiology
- Male
- Mice
- Molecular Sequence Data
- Nervous System Diseases/etiology
- Rats
- Rats, Inbred F344
- Retroviridae Infections/etiology
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Terminal Repeat Sequences
- Tumor Virus Infections/etiology
- Virulence/genetics
Collapse
Affiliation(s)
- A Tanaka
- Department of Veterinary Microbiology, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| | | | | | | | | |
Collapse
|
17
|
Asković S, McAtee FJ, Favara C, Portis JL. Brain infection by neuroinvasive but avirulent murine oncornaviruses. J Virol 2000; 74:465-73. [PMID: 10590136 PMCID: PMC111558 DOI: 10.1128/jvi.74.1.465-473.2000] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chimeric murine oncornavirus FrCas(E) causes a rapidly progressive noninflammatory spongiform encephalomyelopathy after neonatal inoculation. The virus was constructed by the introduction of pol-env sequences from the wild mouse virus CasBrE into the genome of a neuroinvasive but nonneurovirulent strain of Friend murine leukemia virus (FMuLV), FB29. Although the brain infection by FrCas(E) as well as that by other neurovirulent murine retroviruses has been described in detail, little attention has been paid to the neuroinvasive but nonneurovirulent viruses. The purpose of the present study was to compare brain infection by FrCas(E) with that by FB29 and another nonneurovirulent virus, F43, which contains pol-env sequences from FMuLV 57. Both FB29 and F43 infected the same spectrum of cell types in the brain as that infected by FrCas(E), including endothelial cells, microglia, and populations of neurons which divide postnatally. Viral burdens achieved by the two nonneurovirulent viruses in the brain were actually higher than that of FrCas(E). The widespread infection of microglia by the two nonneurovirulent viruses is notable because it is infection of these cells by FrCas(E) which is thought to be a critical determinant of its neuropathogenicity. These results indicate that although the sequence of the envelope gene determines neurovirulence, this effect appears to operate through a mechanism which does not influence either viral tropism or viral burden in the brain. Although all three viruses exhibited similar tropism for granule neurons in the cerebellar cortex, there was a striking difference in the distribution of envelope proteins in those cells in vivo. The FrCas(E) envelope protein accumulated in terminal axons, whereas those of FB29 and F43 remained predominantly in the cell bodies. These observations suggest that differences in the intracellular sorting of these proteins may exist and that these differences appear to correlate with neurovirulence.
Collapse
Affiliation(s)
- S Asković
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840, USA.
| | | | | | | |
Collapse
|
18
|
Portis JL, Lynch WP. Dissecting the determinants of neuropathogenesis of the murine oncornaviruses. Virology 1998; 247:127-36. [PMID: 9705905 DOI: 10.1006/viro.1998.9240] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- J L Portis
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840, USA.
| | | |
Collapse
|