1
|
Kovalishyn V, Severin O, Kachaeva M, Kobzar O, Keith KA, Harden EA, Hartline CB, James SH, Vovk A, Brovarets V. In Silico Design and Experimental Validation of Novel Oxazole Derivatives Against Varicella zoster virus. Mol Biotechnol 2024; 66:707-717. [PMID: 36709460 DOI: 10.1007/s12033-023-00670-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/14/2023] [Indexed: 01/30/2023]
Abstract
Varicella zoster virus (VZV) infection causes severe disease such as chickenpox, shingles, and postherpetic neuralgia, often leading to disability. Reactivation of latent VZV is associated with a decrease in specific cellular immunity in the elderly and in patients with immunodeficiency. However, due to the limited efficacy of existing therapy and the emergence of antiviral resistance, it has become necessary to develop new and effective antiviral drugs for the treatment of diseases caused by VZV, particularly in the setting of opportunistic infections. The goal of this work is to identify potent oxazole derivatives as anti-VZV agents by machine learning, followed by their synthesis and experimental validation. Predictive QSAR models were developed using the Online Chemical Modeling Environment (OCHEM). Data on compounds exhibiting antiviral activity were collected from the ChEMBL and uploaded in the OCHEM database. The predictive ability of the models was tested by cross-validation, giving coefficient of determination q2 = 0.87-0.9. The validation of the models using an external test set proves that the models can be used to predict the antiviral activity of newly designed and known compounds with reasonable accuracy within the applicability domain (q2 = 0.83-0.84). The models were applied to screen a virtual chemical library with expected activity of compounds against VZV. The 7 most promising oxazole derivatives were identified, synthesized, and tested. Two of them showed activity against the VZV Ellen strain upon primary in vitro antiviral screening. The synthesized compounds may represent an interesting starting point for further development of the oxazole derivatives against VZV. The developed models are available online at OCHEM http://ochem.eu/article/145978 and can be used to virtually screen for potential compounds with anti-VZV activity.
Collapse
Affiliation(s)
- Vasyl Kovalishyn
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Science of Ukraine, Kyiv, 02094, Ukraine.
| | - Oleksandr Severin
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Science of Ukraine, Kyiv, 02094, Ukraine
| | - Maryna Kachaeva
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Science of Ukraine, Kyiv, 02094, Ukraine
| | - Oleksandr Kobzar
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Science of Ukraine, Kyiv, 02094, Ukraine
| | - Kathy A Keith
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, 35233, USA
| | - Emma A Harden
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, 35233, USA
| | - Caroll B Hartline
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, 35233, USA
| | - Scott H James
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, 35233, USA
| | - Andriy Vovk
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Science of Ukraine, Kyiv, 02094, Ukraine
| | - Volodymyr Brovarets
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Science of Ukraine, Kyiv, 02094, Ukraine
| |
Collapse
|
2
|
The Structures and Functions of VZV Glycoproteins. Curr Top Microbiol Immunol 2021; 438:25-58. [PMID: 34731265 DOI: 10.1007/82_2021_243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The virions of all enveloped viruses, including those of the Herpesviridae, must bind to the cell surface then undergo a process of membrane fusion between the cell plasma membrane and the virus particle envelope. As for all herpesviruses, glycoproteins in the virion envelope are the modus operandi of these events.
Collapse
|
3
|
Chander Y, Kumar R, Khandelwal N, Singh N, Shringi BN, Barua S, Kumar N. Role of p38 mitogen-activated protein kinase signalling in virus replication and potential for developing broad spectrum antiviral drugs. Rev Med Virol 2021; 31:1-16. [PMID: 33450133 DOI: 10.1002/rmv.2217] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) play a key role in complex cellular processes such as proliferation, development, differentiation, transformation and apoptosis. Mammals express at least four distinctly regulated groups of MAPKs which include extracellular signal-related kinases (ERK)-1/2, p38 proteins, Jun amino-terminal kinases (JNK1/2/3) and ERK5. p38 MAPK is activated by a wide range of cellular stresses and modulates activity of several downstream kinases and transcription factors which are involved in regulating cytoskeleton remodeling, cell cycle modulation, inflammation, antiviral response and apoptosis. In viral infections, activation of cell signalling pathways is part of the cellular defense mechanism with the basic aim of inducing an antiviral state. However, viruses can exploit enhanced cell signalling activities to support various stages of their replication cycles. Kinase activity can be inhibited by small molecule chemical inhibitors, so one strategy to develop antiviral drugs is to target these cellular signalling pathways. In this review, we provide an overview on the current understanding of various cellular and viral events regulated by the p38 signalling pathway, with a special emphasis on targeting these events for antiviral drug development which might identify candidates with broad spectrum activity.
Collapse
Affiliation(s)
- Yogesh Chander
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India.,Department of Bio and Nano Technology, Guru Jambeshwar University of Science and Technology, Hisar, Haryana, India
| | - Ram Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India.,Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, India
| | - Nitin Khandelwal
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India.,Department of Biotechnology, GLA University, Mathura, India
| | - Namita Singh
- Department of Bio and Nano Technology, Guru Jambeshwar University of Science and Technology, Hisar, Haryana, India
| | - Brij Nandan Shringi
- Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, India
| | - Sanjay Barua
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| | - Naveen Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| |
Collapse
|
4
|
Wang Q, Huang WR, Chih WY, Chuang KP, Chang CD, Wu Y, Huang Y, Liu HJ. Cdc20 and molecular chaperone CCT2 and CCT5 are required for the Muscovy duck reovirus p10.8-induced cell cycle arrest and apoptosis. Vet Microbiol 2019; 235:151-163. [PMID: 31282373 DOI: 10.1016/j.vetmic.2019.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/19/2019] [Accepted: 06/22/2019] [Indexed: 01/22/2023]
Abstract
This study demonstrates that the Muscovy duck reovirus (MDRV) p10.8 protein is one of many viral non-structural proteins that induces both cell cycle arrest and apoptosis. The p10.8 but not σC is a nuclear targeting protein that shuttles between the nucleus and the cytoplasm. Our results reveal that p10.8-induced apoptosis in cultured cells occurs by the nucleoporin Tpr/p53-dependent and Fas/caspase 8-mediated pathways. Furthermore, a compelling finding from this study is that the p10.8 and σC proteins of MDRV facilitate CDK2 and CDK4 degradation via the ubiquitin-proteasome pathway. We found that depletion of Cdc20 reversed the p10.8- and σC- mediated CDK4 degradation and p10.8-induced apoptosis, suggesting that Cdc20 plays a critical role in modulating p10.8-mediated cell cycle and apoptosis. Furthermore, we found that depletion of chaperonin-containing tailless complex polypeptide 1 (CCT) 2 and CCT5 reduced the level of Cdc20 and reversed the p10.8- and σC-mediated CDK4 degradation and p10.8-induced apoptosis, indicating that molecular chaperone CCT2 and CCT5 are required for stabilization of Ccd20 for mediating both cell cycle arrest and apoptosis. This study provides mechanistic insights into how p10.8 induces both cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Quanxi Wang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wei-Ru Huang
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan
| | - Wan-Yi Chih
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan
| | - Kuo-Pin Chuang
- Graduate Institute of Animal Vaccine Technology, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Ching-Dong Chang
- Department of Veterinary medicine, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Yijian Wu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yifan Huang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hung-Jen Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan; Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; Ph. D Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
5
|
Chiu HC, Huang WR, Liao TL, Wu HY, Munir M, Shih WL, Liu HJ. Suppression of Vimentin Phosphorylation by the Avian Reovirus p17 through Inhibition of CDK1 and Plk1 Impacting the G2/M Phase of the Cell Cycle. PLoS One 2016; 11:e0162356. [PMID: 27603133 PMCID: PMC5014334 DOI: 10.1371/journal.pone.0162356] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/22/2016] [Indexed: 01/12/2023] Open
Abstract
The p17 protein of avian reovirus (ARV) causes cell cycle retardation in a variety of cell lines; however, the underlying mechanism(s) by which p17 regulates the cell cycle remains largely unknown. We demonstrate for the first time that p17 interacts with CDK1 and vimentin as revealed by reciprocal co-immunoprecipitation and GST pull-down assays. Both in vitro and in vivo studies indicated that direct interaction of p17 and CDK1/vimentin was mapped within the amino terminus (aa 1-60) of p17 and central region (aa 27-118) of CDK1/vimentin. Furthermore, p17 was found to occupy the Plk1-binding site within the vimentin, thereby blocking Plk1 recruitment to CDK1-induced vimentin phosphorylation at Ser 56. Interaction of p17 to CDK1 or vimentin interferes with CDK1-catalyzed phosphorylation of vimentin at Ser 56 and subsequently vimentin phosphorylation at Ser 82 by Plk1. Furthermore, we have identified upstream signaling pathways and cellular factor(s) targeted by p17 and found that p17 regulates inhibitory phosphorylation of CDK1 and blocks vimentin phosphorylation at Ser 56 and Ser 82. The p17-mediated inactivation of CDK1 is dependent on several mechanisms, which include direct interaction with CDK1, p17-mediated suppression of Plk1 by activating the Tpr/p53 and ATM/Chk1/PP2A pathways, and p17-mediated cdc25C degradation via an ubiquitin- proteasome pathway. Additionally, depletion of p53 with a shRNA as well as inhibition of ATM and vimentin by inhibitors diminished virus yield while Tpr and CDK1 knockdown increased virus yield. Taken together, results demonstrate that p17 suppresses both CDK1 and Plk1functions, disrupts vimentin phosphorylation, causes G2/M cell cycle arrest and thus benefits virus replication.
Collapse
Affiliation(s)
- Hung-Chuan Chiu
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan
| | - Wei-Ru Huang
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan
| | - Tsai-Ling Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 402, Taiwan
| | - Hung-Yi Wu
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | | | - Wing-Ling Shih
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Hung-Jen Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
6
|
Zahoor MA, Naim S, Xue G, Ramirez MA. RETRACTED ARTICLE: Bovine viral diarrhea virus nonstructural protein 5A is phosphorylated by cdc2 cyclin-dependent kinase in vitro. Arch Virol 2011; 157:797. [PMID: 22167250 DOI: 10.1007/s00705-011-1188-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 11/30/2011] [Indexed: 10/14/2022]
|
7
|
Schang LM, Coccaro E, Lacasse JJ. CDK INHIBITORY NUCLEOSIDE ANALOGS PREVENT TRANSCRIPTION FROM VIRAL GENOMES. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2011; 24:829-37. [PMID: 16248044 DOI: 10.1081/ncn-200060314] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Targeting viral proteins has lead to many successful antivirals. Yet, such antivirals rapidly select for resistance, tend to be active against only a few related viruses, and require previous characterization of the target proteins. Alternatively, antivirals may be targeted to cellular proteins. Replication of many viruses requires cellular CDKs and pharmacological CDK inhibitors (PCIs), such as the purine-based roscovitine (Rosco), are proving safe in clinical trials against cancer. Rosco inhibits replication of wild-type or (multi-)drug resistant HIV, HCMV, EBV, VZV, and HSV-1 and 2. However, the antiviral mechanisms of purine PCIs remain unknown. Our objective is to characterize these mechanisms using HSV as a model We have shown that Rosco prevents initiation of transcription from viral, but not cellular, genomes. This inhibition is promoter independent, but genome dependent, and requires no viral proteins. This is a novel antiviral mechanism and a previously unknown activity for purine PCIs.
Collapse
Affiliation(s)
- L M Schang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
8
|
Mutagenesis of varicella-zoster virus glycoprotein I (gI) identifies a cysteine residue critical for gE/gI heterodimer formation, gI structure, and virulence in skin cells. J Virol 2011; 85:4095-110. [PMID: 21345964 DOI: 10.1128/jvi.02596-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Varicella-zoster virus (VZV) is the alphaherpesvirus that causes chicken pox (varicella) and shingles (zoster). The two VZV glycoproteins gE and gI form a heterodimer that mediates efficient cell-to-cell spread. Deletion of gI yields a small-plaque-phenotype virus, ΔgI virus, which is avirulent in human skin using the xenograft model of VZV pathogenesis. In the present study, 10 mutant viruses were generated to determine which residues were required for the typical function of gI. Three phosphorylation sites in the cytoplasmic domain of gI were not required for VZV virulence in vivo. Two deletion mutants mapped a gE binding region in gI to residues 105 to 125. A glycosylation site, N116, in this region did not affect virulence. Substitution of four cysteine residues highly conserved in the Alphaherpesvirinae established that C95 is required for gE/gI heterodimer formation. The C95A and Δ105-125 (with residues 105 to 125 deleted) viruses had small-plaque phenotypes with reduced replication kinetics in vitro similar to those of the ΔgI virus. The Δ105-125 virus was avirulent for human skin in vivo. In contrast, the C95A mutant replicated in vivo but with significantly reduced kinetics compared to those of the wild-type virus. In addition to abolished gE/gI heterodimer formation, gI from the C95A or the Δ105-125 mutant was not recognized by monoclonal antibodies that detect the canonical conformation of gI, demonstrating structural disruption of gI in these viruses. This alteration prevented gI incorporation into virus particles. Thus, residues C95 and 105 to 125 are critical for gI structure required for gE/gI heterodimer formation, virion incorporation, and ultimately, effective viral spread in human skin.
Collapse
|
9
|
Rowe J, Greenblatt RJ, Liu D, Moffat JF. Compounds that target host cell proteins prevent varicella-zoster virus replication in culture, ex vivo, and in SCID-Hu mice. Antiviral Res 2010; 86:276-85. [PMID: 20307580 PMCID: PMC2866756 DOI: 10.1016/j.antiviral.2010.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 02/12/2010] [Accepted: 03/12/2010] [Indexed: 01/09/2023]
Abstract
Varicella-zoster virus (VZV) replicates in quiescent T cells, neurons, and skin cells. In cultured fibroblasts (HFFs), VZV induces host cyclin expression and cyclin-dependent kinase (CDK) activity without causing cell cycle progression. CDK1/cyclin B1 phosphorylates the major viral transactivator, and the CDK inhibitor roscovitine prevents VZV mRNA transcription. We investigated the antiviral effects of additional compounds that target CDKs or other cell cycle enzymes in culture, ex vivo, and in vivo. Cytotoxicity and cell growth arrest doses were determined by Neutral Red assay. Antiviral effects were evaluated in HFFs by plaque assay, genome copy number, and bioluminescence. Positive controls were acyclovir (400 microM) and phosphonoacetic acid (PAA, 1 mM). Test compounds were roscovitine, aloisine A, and purvalanol A (CDK inhibitors), aphidicolin (inhibits human and herpesvirus DNA polymerase), l-mimosine (indirectly inhibits human DNA polymerase), and DRB (inhibits casein kinase 2). All had antiviral effects below the concentrations required for cell growth arrest. Compounds were tested in skin organ culture at EC(99) doses; all prevented VZV replication in skin, except for aloisine A and purvalanol A. In SCID mice with skin xenografts, roscovitine (0.7 mg/kg/day) was as effective as PAA (36 mg/kg/day). The screening systems described here are useful models for evaluating novel antiviral drugs for VZV.
Collapse
Affiliation(s)
- Jenny Rowe
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse NY, USA
| | - Rebecca J. Greenblatt
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse NY, USA
| | - Dongmei Liu
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse NY, USA
| | - Jennifer F. Moffat
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse NY, USA
| |
Collapse
|
10
|
Cyclin-dependent kinase 1/cyclin B1 phosphorylates varicella-zoster virus IE62 and is incorporated into virions. J Virol 2008; 82:12116-25. [PMID: 18799590 DOI: 10.1128/jvi.00153-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Varicella-zoster virus (VZV), an alphaherpesvirus restricted to humans, infects differentiated cells in vivo, including T lymphocytes, keratinocytes, and neurons, and spreads rapidly in confluent cultured dermal fibroblasts (HFFs). In VZV-infected HFFs, atypical expression of cyclins D3 and B1 occurs along with the induction of cyclin-dependent kinase (CDK) activity. A specific CDK1 inhibitor blocked VZV spread, indicating an important function for this cellular kinase in VZV replication. CDK activity assays of infected cells revealed a large viral phosphoprotein that was identified as being the major immediate-early transactivator, IE62. Since IE62 colocalized with CDK1/cyclin B1 by confocal microscopy, we investigated whether this cellular kinase complex interacts with IE62. Using recombinant fragments of IE62 spanning the entire amino acid sequence, we found that purified CDK1/cyclin B1 phosphorylated IE62 at residues T10, S245, and T680 in vitro. Immunoprecipitation of cyclin B1 from VZV-infected HFFs indicated that IE62 was included in the complex within infected cells. The full-length IE62 protein, obtained by immunoprecipitation from infected cells, was also phosphorylated by purified CDK1/cyclin B1. Based on IE62/CDK1/cyclin B1 colocalization near viral assembly regions, we hypothesized that these cellular proteins could be incorporated into VZV virions with IE62. Purified virions were analyzed by immunoblotting for the presence of CDK1 and cyclin B1, and active CDK1 and cyclin B1 were present in the VZV tegument with IE62 and were sensitive to detergent treatment. Thus, IE62 is a substrate for CDK1/cyclin B1, and virions could deliver the active cellular kinase to nondividing cells that normally do not express it.
Collapse
|
11
|
Siakallis G, Spandidos DA, Sourvinos G. Herpesviridae and novel inhibitors. Antivir Ther 2008; 14:1051-64. [DOI: 10.3851/imp1467] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Leisenfelder SA, Moffat JF. Varicella-zoster virus infection of human foreskin fibroblast cells results in atypical cyclin expression and cyclin-dependent kinase activity. J Virol 2007; 80:5577-87. [PMID: 16699039 PMCID: PMC1472175 DOI: 10.1128/jvi.00163-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In its course of human infection, varicella-zoster virus (VZV) infects rarely dividing cells such as dermal fibroblasts, differentiated keratinocytes, mature T cells, and neurons, none of which are actively synthesizing DNA; however, VZV is able to productively infect them and use their machinery to replicate the viral genome. We hypothesized that VZV alters the intracellular environment to favor viral replication by dysregulating cell cycle proteins and kinases. Cyclin-dependent kinases (CDKs) and cyclins displayed a highly unusual profile in VZV-infected confluent fibroblasts: total amounts of CDK1, CDK2, cyclin B1, cyclin D3, and cyclin A protein increased, and kinase activities of CDK2, CDK4, and cyclin B1 were strongly and simultaneously induced. Cyclins B1 and D3 increased as early as 24 h after infection, concurrent with VZV protein synthesis. Confocal microscopy indicated that cyclin D3 overexpression was limited to areas of IE62 production, whereas cyclin B1 expression was irregular across the VZV plaque. Downstream substrates of CDKs, including pRb, p107, and GM130, did not show phosphorylation by immunoblotting, and p21 and p27 protein levels were increased following infection. Finally, although the complement of cyclin expression and high CDK activity indicated a progression through the S and G(2) phases of the cell cycle, DNA staining and flow cytometry indicated a possible G(1)/S blockade in infected cells. These data support earlier studies showing that pharmacological CDK inhibitors can inhibit VZV replication in cultured cells.
Collapse
Affiliation(s)
- Stacey A Leisenfelder
- Department of Microbiology and Immunology, State University of New York-Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | | |
Collapse
|
13
|
Schang LM, St Vincent MR, Lacasse JJ. Five years of progress on cyclin-dependent kinases and other cellular proteins as potential targets for antiviral drugs. Antivir Chem Chemother 2007; 17:293-320. [PMID: 17249245 DOI: 10.1177/095632020601700601] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In 1997-1998, the pharmacological cyclin-dependent kinase (CDK) inhibitors (PCIs) were independently discovered to inhibit replication of human cytomegalovirus, herpes simplex virus type 1 and HIV-1. The results from small clinical trials against cancer were then suggesting that PCIs could be safe enough to be used clinically. It was thus hypothesized that PCIs could have the potential to be developed as novel antivirals targeting cellular proteins. Consequently, Antiviral Chemistry & Chemotherapy published in 2001 the first review on the potential of CDKs, and cellular proteins in general, as potential targets for antivirals. The viral functions inhibited by PCIs, or their cellular targets, were then just starting to be characterized. The antiviral spectrum of PCIs and their effects on viral disease were still mostly untested. Even their actual specificity was not yet completely characterized. In addition, cellular proteins were not accepted as valid targets for antivirals. Significant progress has been made in the last 5 years in understanding the antiviral activities of PCIs and the potential roles of cellular proteins in general as targets for antivirals. The first clinical trials of the antiviral activities of PCIs and other inhibitors of cellular protein kinases have now been scheduled. Herein, we review the progress made since the publication of the first review on PCIs as potential antiviral drugs and on CDKs, and cellular proteins in general, as potential targets for antiviral drugs. We also highlight the major issues that still need to be addressed before PCIs or other drugs targeting cellular proteins can be developed as clinical antivirals.
Collapse
Affiliation(s)
- Luis M Schang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
14
|
Lacasse JJ, Provencher VMI, Urbanowski MD, Schang LM. Purine and nonpurine pharmacological cyclin-dependent kinase inhibitors target initiation of viral transcription. ACTA ACUST UNITED AC 2005. [DOI: 10.2217/14750708.2.1.77] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Taylor SL, Kinchington PR, Brooks A, Moffat JF. Roscovitine, a cyclin-dependent kinase inhibitor, prevents replication of varicella-zoster virus. J Virol 2004; 78:2853-62. [PMID: 14990704 PMCID: PMC353735 DOI: 10.1128/jvi.78.6.2853-2862.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Understanding the interactions between varicella-zoster virus (VZV) and host cells can be addressed by using small molecule inhibitors of cellular enzymes. Roscovitine (Rosco) is a purine derivative that inhibits cyclin-dependent kinase 1 (cdk1), cdk2, cdk5, cdk7, and cdk9, which are key regulators of the cell cycle and transcription. Herpesviruses are known to interact with cell cycle proteins; thus, the antiviral effects of Rosco on VZV growth were evaluated. In a plaque reduction assay, 25 micro M Rosco prevented VZV replication, and the antiviral effect was reversible for at least up to 24 h posttreatment. Rosco also reduced expression of the major transactivator, IE62, over 48 h. Confocal microscopy studies indicated that Rosco caused the immediate-early proteins ORF4 and IE62 to abnormally localize in infected cells and prevented cell-cell spread of VZV over 48 h. Rosco was found to inhibit VZV DNA synthesis as measured by real-time PCR, and this technique was used to estimate the 50% effective concentration (EC(50)) of 14 micro M. This value was close to the EC(50) estimate of 12 micro M determined from plaque reduction assays. At 25 micro M, Rosco was not cytotoxic over 48 h in a neutral red uptake assay, and proliferation was slowed as the cells accumulated in a G(2)-like state. These results demonstrate the importance of cdk's in VZV replication and suggest that cdk inhibitors could serve as useful VZV antivirals.
Collapse
Affiliation(s)
- Shannon L Taylor
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | | | | | | |
Collapse
|
16
|
Moffat JF, McMichael MA, Leisenfelder SA, Taylor SL. Viral and cellular kinases are potential antiviral targets and have a central role in varicella zoster virus pathogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1697:225-31. [PMID: 15023363 DOI: 10.1016/j.bbapap.2003.11.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Accepted: 11/12/2003] [Indexed: 10/26/2022]
Abstract
Herpesviruses utilize viral and cellular kinases for replication, and these mediate essential functions that are important for viral pathogenesis. Elucidating the roles of kinases in herpesvirus infections may highlight virus-host interactions that are possible targets for kinase inhibitors with antiviral activity. Varicella zoster virus (VZV) encodes two kinases that phosphorylate viral proteins involved in regulation, assembly, and virulence. VZV infection also induces the activity of host cell cyclin-dependent kinases (cdk4 and cdk2) in nondividing cells, causing a disregulation of the cell cycle. Roscovitine and Purvalanol, kinase inhibitors that target cdks, prevent VZV replication at concentrations with few cytotoxic effects. Cdk inhibitors therefore have potential as antivirals that may extend to a broad range of viruses and have the added advantage that resistance does not arise easily.
Collapse
Affiliation(s)
- Jennifer F Moffat
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA.
| | | | | | | |
Collapse
|
17
|
Schang LM. Effects of pharmacological cyclin-dependent kinase inhibitors on viral transcription and replication. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1697:197-209. [PMID: 15023361 DOI: 10.1016/j.bbapap.2003.11.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2003] [Accepted: 11/12/2003] [Indexed: 10/26/2022]
Abstract
Cyclin-dependent kinases (CDKs) are required for replication of adeno-, papilloma- and other viruses that replicate only in dividing cells. Surprisingly, CDKs are also required for replication of HIV-1, HSV-1, and other viruses that can replicate in non-dividing cells. Since two low-molecular weight pharmacological CDK inhibitors (PCIs), flavopiridol (Flavo) and roscovitine (Rosco), appear to be non-toxic in human clinical trials against cancer, these drugs have been proposed as potential antiviral drugs. Rosco preferentially inhibits CDKs involved in cell cycle regulation (CDK1, 2, and 7) or neuronal functions (CDK5), whereas Flavo preferentially inhibits CDKs involved in cell cycle (CDK1, 2, 4, 7) or transcription (CDK7, and 9). As potential antivirals, PCIs display several advantages: (i) they are active against many different viruses, including drug-resistant strains of HIV-1 and HSV-1; (ii) PCI-resistant mutants of HIV-1 or HSV-1 have not been identified; and (iii) the antiviral effects of PCIs and conventional antivirals appear to be additive (as expected from drugs that target independent pathways). Moreover, PCIs target both the etiological agents (i.e., the virus) and the pathogenic mechanisms (i.e., unrestricted cell division) of the many diseases that include both a CDK-requiring virus and unrestricted cell division (e.g., Kaposi's sarcoma, cervical carcinoma, HIV-associated nephropathy-HIVAN). This is nicely illustrated in a recent study which demonstrated the efficacy of Flavo in a mouse model of HIVAN. Herein, we will review the involvement of CDKs in viral replication and the antiviral properties of the most extensively characterized PCIs, with special emphasis on the mechanisms of inhibition of viral transcription.
Collapse
Affiliation(s)
- Luis M Schang
- Department of Biochemistry and Department of Medical Microbiology and Immunology, Signal Transduction Research Group, Molecular Mechanisms of Growth Control Research Group, University of Alberta, Canada.
| |
Collapse
|
18
|
Sato H, Pesnicak L, Cohen JI. Varicella-zoster virus ORF47 protein kinase, which is required for replication in human T cells, and ORF66 protein kinase, which is expressed during latency, are dispensable for establishment of latency. J Virol 2003; 77:11180-5. [PMID: 14512565 PMCID: PMC225004 DOI: 10.1128/jvi.77.20.11180-11185.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Varicella-zoster virus (VZV) results in a lifelong latent infection in human sensory and cranial nerve ganglia after primary infection. VZV open reading frame 47 (ORF47) and ORF66 encode protein kinases that phosphorylate several viral proteins, including VZV glycoprotein gE and ORF32, ORF62, and ORF63 proteins. Here we show that the ORF47 protein kinase also phosphorylates gI. While ORF47 is essential for virus replication in human T cells and skin, we found the gene to be dispensable for establishment of latent infection in dorsal root ganglia of rodents. ORF66 protein is expressed during latency. Rodents infected with VZV unable to express ORF66 developed latent infection at a rate similar to that for the parental virus. ORF63 transcripts, a hallmark of VZV latency, were also detected in similar numbers of animals infected with the ORF47 and ORF66 mutants and with the parental virus. VZV mutants unable to express four of the six genes that do not have herpes simplex virus (HSV) homologs (ORFs 1, 13, 32, 57) were also unimpaired for establishment of latency. While a truncated HSV VP16 mutant was previously reported to be unable to establish latency in a mouse model, we found that VZV with a deletion of ORF10, the homolog of HSV VP16, was dispensable for establishment of latency. Thus, seven genes, including one expressed during latency, are dispensable for establishing latent VZV infection.
Collapse
Affiliation(s)
- Hitoshi Sato
- Medical Virology Section, Laboratory of Clinical Investigation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892-1888, USA
| | | | | |
Collapse
|
19
|
Planz O, Pleschka S, Oesterle K, Berberich-Siebelt F, Ehrhardt C, Stitz L, Ludwig S. Borna disease virus nucleoprotein interacts with the CDC2-cyclin B1 complex. J Virol 2003; 77:11186-92. [PMID: 14512566 PMCID: PMC224960 DOI: 10.1128/jvi.77.20.11186-11192.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transition from G(2) to M phase, a cell cycle checkpoint, is regulated by the Cdc2-cyclin B1 complex. Here, we report that persistent infection with Borna disease virus (BDV), a noncytolytic RNA virus infecting the central nervous system, results in decelerated proliferation of infected host cells due to a delayed G(2)-to-M transition. Persistent BDV-infected rat fibroblast cells showed reduced proliferation compared to uninfected cells. In pull-down assays we observed an interaction of the viral nucleoprotein with the Cdc2-cyclin B1 complex. Transfection of the viral nucleoprotein but not of the phosphoprotein also results in decelerated proliferation. This phenomenon was found in BDV-susceptible primary rat fibroblast cells and also in primary mouse cells, which are not susceptible to BDV infection. This is the first evidence that the noncytolytic Borna disease virus can manipulate host cell functions via interaction of the viral nucleoprotein with mitotic entry regulators. BDV preferentially infects and persists in nondividing neurons. The present report could give an explanation for this selective choice of host cell by BDV.
Collapse
Affiliation(s)
- Oliver Planz
- Institut für Immunologie, Bundesforschungsanstalt für Viruskrankheiten der Tiere, Tübingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
20
|
Kawaguchi Y, Kato K. Protein kinases conserved in herpesviruses potentially share a function mimicking the cellular protein kinase cdc2. Rev Med Virol 2003; 13:331-40. [PMID: 12931342 DOI: 10.1002/rmv.402] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Herpesviruses encode protein kinases. A subset of these proteins, represented by HSV-1 UL13, are conserved throughout all members of the Herpesviridae, and here, are designated CHPKs (conserved herpesvirus protein kinases). In addition to conserved gene products like CHPKs, herpesviruses encode genes specific to respective herpesviruses. When acting upon conserved viral gene products or cellular factors, CHPKs may play conserved roles in the life cycles of herpesviruses. CHPKs may also express unique functions within the infectious process of individual herpesviruses when specific viral gene products are targeted. CHPKs demonstrate specific activity in multiple herpesvirus infections, functioning in the regulation of viral gene expression in HSV-1, tissue tropism in VZV, and viral DNA synthesis, encapsidation and egress from the nucleus in HCMV. The HCMV CHPK, however, can partially substitute for the HSV-1 CHPK. Representative CHPKs from all Herpesviridae subfamilies can also facilitate the hyperphosphorylation of the cellular translation factor, EF-1delta. This indicates that CHPKs have conserved functions. Recent data have shown that both CHPKs and a cellular protein kinase, cdc2, phosphorylate the same amino acid residues of target proteins. Thus, CHPKs may mimic cdc2 function in infected cells.
Collapse
Affiliation(s)
- Yasushi Kawaguchi
- Department of Virology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan.
| | | |
Collapse
|
21
|
Kawaguchi Y, Kato K, Tanaka M, Kanamori M, Nishiyama Y, Yamanashi Y. Conserved protein kinases encoded by herpesviruses and cellular protein kinase cdc2 target the same phosphorylation site in eukaryotic elongation factor 1delta. J Virol 2003; 77:2359-68. [PMID: 12551973 PMCID: PMC141098 DOI: 10.1128/jvi.77.4.2359-2368.2003] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Earlier studies have shown that translation elongation factor 1delta (EF-1delta) is hyperphosphorylated in various mammalian cells infected with representative alpha-, beta-, and gammaherpesviruses and that the modification is mediated by conserved viral protein kinases encoded by herpesviruses, including UL13 of herpes simplex virus type 1 (HSV-1), UL97 of human cytomegalovirus, and BGLF4 of Epstein-Barr virus (EBV). In the present study, we attempted to identify the site in EF-1delta associated with the hyperphosphorylation by the herpesvirus protein kinases. Our results are as follows: (i) not only in infected cells but also in uninfected cells, replacement of the serine residue at position 133 (Ser-133) of EF-1delta by alanine precluded the posttranslational processing of EF-1delta, which corresponds to the hyperphosphorylation. (ii) A purified chimeric protein consisting of maltose binding protein (MBP) fused to a domain of EF-1delta containing Ser-133 (MBP-EFWt) is specifically phosphorylated in in vitro kinase assays by purified recombinant UL13 fused to glutathione S-transferase (GST) expressed in the baculovirus system. In contrast, the level of phosphorylation by the recombinant UL13 of MBP-EFWt carrying an alanine replacement of Ser-133 (MBP-EFS133A) was greatly impaired. (iii) MBP-EFWt is also specifically phosphorylated in vitro by purified recombinant BGLF4 fused to GST expressed in the baculovirus system, and the level of phosphorylation of MBP-EFS133A by the recombinant BGLF4 was greatly reduced. (iv) The sequence flanking Ser-133 of EF-1delta completely matches the consensus phosphorylation site for a cellular protein kinase, cdc2, and in vitro kinase assays revealed that purified cdc2 phosphorylates Ser-133 of EF-1delta. (v) As observed with EF-1delta, the casein kinase II beta subunit (CKIIbeta) was specifically phosphorylated by UL13 in vitro, while the level of phosphorylation of CKIIbeta by UL13 was greatly diminished when a serine residue at position 209, which has been reported to be phosphorylated by cdc2, was replaced with alanine. These results indicate that the conserved protein kinases encoded by herpesviruses and a cellular protein kinase, cdc2, have the ability to target the same amino acid residues for phosphorylation. Our results raise the possibility that the viral protein kinases mimic cdc2 in infected cells.
Collapse
Affiliation(s)
- Yasushi Kawaguchi
- Department of Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan.
| | | | | | | | | | | |
Collapse
|
22
|
Ito H, Sommer MH, Zerboni L, He H, Boucaud D, Hay J, Ruyechan W, Arvin AM. Promoter sequences of varicella-zoster virus glycoprotein I targeted by cellular transactivating factors Sp1 and USF determine virulence in skin and T cells in SCIDhu mice in vivo. J Virol 2003; 77:489-98. [PMID: 12477854 PMCID: PMC140613 DOI: 10.1128/jvi.77.1.489-498.2003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Varicella-zoster virus (VZV) glycoprotein I is dispensable in cell culture but necessary for infection of human skin and T cells in SCIDhu mice in vivo. The gI promoter contains an activating upstream sequence that binds the cellular transactivators specificity factor 1 (Sp1) and upstream stimulatory factor (USF) and an open reading frame 29 (ORF29)-responsive element (29RE), which mediates enhancement by ORF29 DNA binding protein of immediate-early 62 (IE62)-induced transcription. Recombinants, rOKAgI-Sp1 and rOKAgI-USF, with two base pair substitutions in Sp1 or USF sites, replicated like rOKA in vitro, but infectivity of rOKAgI-Sp1 was significantly impaired in skin and T cells in vivo. A double mutant, rOKAgI-Sp1/USF, did not replicate in skin but yielded low titers of infectious virus in T cells. The repaired protein, rOKAgI:rep-Sp1/USF, was as infectious as rOKA. Thus, disrupting gI promoter sites for cellular transactivators altered VZV virulence in vivo, with variable consequences related to the cellular factor and the host cell type. Mutations in the 29RE of the gI promoter were made by substituting each of four 10-bp blocks in this region with a 10-bp sequence, GATAACTACA, that was predicted to interfere with enhancer effects of the ORF29 protein. One of these mutants, which was designated rOKAgI-29RE-3, had diminished replication in skin and T cells, indicating that ORF29 protein-mediated enhancement of gI expression contributes to VZV virulence. Mutations within promoters of viral genes that are nonessential in vitro should allow construction of recombinant herpesviruses that have altered virulence in specific host cells in vivo and may be useful for designing herpesviral gene therapy vectors and attenuated viral vaccines.
Collapse
Affiliation(s)
- Hideki Ito
- Departments of Pediatrics, Microbiology and Immunology, Stanford University, Stanford, California, Department of Microbiology, State University of New York at Buffalo, Buffalo, New York
| | - Marvin H. Sommer
- Departments of Pediatrics, Microbiology and Immunology, Stanford University, Stanford, California, Department of Microbiology, State University of New York at Buffalo, Buffalo, New York
| | - Leigh Zerboni
- Departments of Pediatrics, Microbiology and Immunology, Stanford University, Stanford, California, Department of Microbiology, State University of New York at Buffalo, Buffalo, New York
| | - Hongying He
- Departments of Pediatrics, Microbiology and Immunology, Stanford University, Stanford, California, Department of Microbiology, State University of New York at Buffalo, Buffalo, New York
| | - Dwayne Boucaud
- Departments of Pediatrics, Microbiology and Immunology, Stanford University, Stanford, California, Department of Microbiology, State University of New York at Buffalo, Buffalo, New York
| | - John Hay
- Departments of Pediatrics, Microbiology and Immunology, Stanford University, Stanford, California, Department of Microbiology, State University of New York at Buffalo, Buffalo, New York
| | - William Ruyechan
- Departments of Pediatrics, Microbiology and Immunology, Stanford University, Stanford, California, Department of Microbiology, State University of New York at Buffalo, Buffalo, New York
| | - Ann M. Arvin
- Departments of Pediatrics, Microbiology and Immunology, Stanford University, Stanford, California, Department of Microbiology, State University of New York at Buffalo, Buffalo, New York
- Corresponding author. Mailing address: 300 Pasteur Dr., Rm. G312, Stanford University School of Medicine, Stanford, CA 94305-5208. Phone: (650) 725-6574. Fax: (650) 725-8040. E-mail:
| |
Collapse
|
23
|
Kenyon TK, Cohen JI, Grose C. Phosphorylation by the varicella-zoster virus ORF47 protein serine kinase determines whether endocytosed viral gE traffics to the trans-Golgi network or recycles to the cell membrane. J Virol 2002; 76:10980-93. [PMID: 12368341 PMCID: PMC136633 DOI: 10.1128/jvi.76.21.10980-10993.2002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Like all alphaherpesviruses, varicella-zoster virus (VZV) infection proceeds by both cell-cell spread and virion production. Virions are enveloped within vacuoles located near the trans-Golgi network (TGN), while in cell-cell spread, surface glycoproteins fuse cells into syncytia. In this report, we delineate a potential role for serine/threonine phosphorylation of the cytoplasmic tail of the predominant VZV glycoprotein, gE, in these processes. The fact that VZV gE (formerly called gpI) is phosphorylated has been documented (E. A. Montalvo and C. Grose, Proc. Natl. Acad. Sci. USA 83:8967-8971, 1986), although respective roles of viral and cellular protein kinases have never been delineated. VZV ORF47 is a viral serine protein kinase that recognized a consensus sequence similar to that of casein kinase II (CKII). During open reading frame 47 (ORF47)-specific in vitro kinase assays, ORF47 phosphorylated four residues in the cytoplasmic tail of VZV gE (S593, S595, T596, and T598), thus modifying the known phosphofurin acidic cluster sorting protein 1 domain. CKII phosphorylated gE predominantly on the two threonine residues. In wild-type-virus-infected cells, where ORF47-mediated phosphorylation predominated, gE endocytosed and relocalized to the TGN. In cells infected with a VZV ORF47-null mutant, internalized VZV gE recycled to the plasma membrane and did not localize to the TGN. The mutant virus also formed larger syncytia than the wild-type virus, linking CKII-mediated gE phosphorylation with increased cell-cell spread. Thus, ORF47 and CKII behaved as "team players" in the phosphorylation of VZV gE. Taken together, the results showed that phosphorylation of VZV gE by ORF47 or CKII determined whether VZV infection proceeded toward a pathway likely involved with either virion production or cell-cell spread.
Collapse
Affiliation(s)
- T K Kenyon
- Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
24
|
Poggioli GJ, DeBiasi RL, Bickel R, Jotte R, Spalding A, Johnson GL, Tyler KL. Reovirus-induced alterations in gene expression related to cell cycle regulation. J Virol 2002; 76:2585-94. [PMID: 11861824 PMCID: PMC135961 DOI: 10.1128/jvi.76.6.2585-2594.2002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Mammalian reovirus infection results in perturbation of host cell cycle progression. Since reovirus infection is known to activate cellular transcription factors, we investigated alterations in cell cycle-related gene expression following HEK293 cell infection by using the Affymetrix U95A microarray. Serotype 3 reovirus infection results in differential expression of 10 genes classified as encoding proteins that function at the G(1)-to-S transition, 11 genes classified as encoding proteins that function at G(2)-to-M transition, and 4 genes classified as encoding proteins that function at the mitotic spindle checkpoint. Serotype 1 reovirus infection results in differential expression of four genes classified as encoding proteins that function at the G(1)-to-S transition and three genes classified as encoding proteins that function at G(2)-to-M transition but does not alter any genes classified as encoding proteins that function at the mitotic spindle checkpoint. We have previously shown that serotype 3, but not serotype 1, reovirus infection induces a G(2)-to-M transition arrest resulting from an inhibition of cdc2 kinase activity. Of the differentially expressed genes encoding proteins regulating the G(2)-to-M transition, chk1, wee1, and GADD45 are known to inhibit cdc2 kinase activity. A hypothetical model describing serotype 3 reovirus-induced inhibition of cdc2 kinase is presented, and reovirus-induced perturbations of the G(1)-to-S, G(2)-to-M, and mitotic spindle checkpoints are discussed.
Collapse
Affiliation(s)
- George J Poggioli
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, Colorado 80220, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Davido DJ, Leib DA, Schaffer PA. The cyclin-dependent kinase inhibitor roscovitine inhibits the transactivating activity and alters the posttranslational modification of herpes simplex virus type 1 ICP0. J Virol 2002; 76:1077-88. [PMID: 11773384 PMCID: PMC135868 DOI: 10.1128/jvi.76.3.1077-1088.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2001] [Accepted: 10/15/2001] [Indexed: 11/20/2022] Open
Abstract
The cyclin-dependent kinase (cdk) inhibitor Roscovitine (Rosco) reduces transcription of herpes simplex virus early genes significantly, even in the presence of wild-type levels of immediate-early (IE) viral proteins, suggesting that the transactivating functions of IE proteins may require the activities of one or more Rosco-sensitive cdk (L. M. Schang, A. Rosenberg, and P. A. Schaffer, J. Virol. 73:2161-2172, 1999). Based on this observation, we sought to determine whether Rosco alters the transactivating activity and posttranslational modification state of the IE protein, infected cell protein 0 (ICP0), in KOS6beta-infected Vero cells. KOS6beta is a KOS-derived recombinant virus containing an ICP0-inducible ICP6 promoter::lacZ cassette. To monitor ICP0's transactivating activity, KOS6beta-infected cells were released from a cycloheximide (CHX)-mediated protein synthesis block into medium with or without Rosco, and beta-galactosidase activity was measured. Rosco inhibited the ability of ICP0 to transactivate the ICP6 promoter by 50-fold. This inhibition was shown not to be a consequence of inhibition of ICP6 basal promoter activity or aberrant nuclear localization of ICP0. Rosco also altered the electrophoretic mobility of a portion of ICP0 molecules derived from KOS-infected cells following reversal of a CHX block. Notably, however, Rosco had only a minimal effect on the phosphorylation state of ICP0. We conclude that ICP0's transactivating activity requires Rosco-sensitive cdks and hypothesize that these cdks regulate the functions of cellular enzymes which modify ICP0, and are, consequently, required for its transactivating activity. Thus, we propose that Rosco regulates ICP0's posttranslational state by mechanisms other than, or in addition to, phosphorylation.
Collapse
Affiliation(s)
- David J Davido
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6076, USA
| | | | | |
Collapse
|
26
|
Advani SJ, Weichselbaum RR, Roizman B. cdc2 cyclin-dependent kinase binds and phosphorylates herpes simplex virus 1 U(L)42 DNA synthesis processivity factor. J Virol 2001; 75:10326-33. [PMID: 11581401 PMCID: PMC114607 DOI: 10.1128/jvi.75.21.10326-10333.2001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Earlier studies have shown that cdc2 kinase is activated during herpes simplex virus 1 infection and that its activity is enhanced late in infection even though the levels of cyclin A and B are decreased below levels of detection. Furthermore, activation of cdc2 requires the presence of infected cell protein no. 22 and the U(L)13 protein kinase, the same gene products required for optimal expression of a subset of late genes exemplified by U(S)11, U(L)38, and U(L)41. The possibility that the activation of cdc2 and expression of this subset may be connected emerged from the observation that dominant negative cdc2 specifically blocked the expression of U(S)11 protein in cells infected and expressing dominant negative cdc2. Here we report that in the course of searching for a putative cognate partner for cdc2 that may have replaced cyclins A and B, we noted that the DNA polymerase processivity factor encoded by the U(L)42 gene contains a degenerate cyclin box and has been reported to be structurally related to proliferating cell nuclear antigen, which also binds cdk2. Consistent with this finding, we report that (i) U(L)42 is able to physically interact with cdc2 at both the amino-terminal and carboxyl-terminal domains, (ii) the carboxyl-terminal domain of U(L)42 can be phosphorylated by cdc2, (iii) immunoprecipitates obtained with anti U(L)42 antibody contained a roscovitine-sensitive kinase activity, (iv) kinase activity associated with U(L)42 could be immunodepleted by antibody to cdc2, and (v) U(L)42 transfected into cells associates with a nocodazole-enhanced kinase. We conclude that U(L)42 can associate with cdc2 and that the kinase activity has the characteristic traits of cdc2 kinase.
Collapse
Affiliation(s)
- S J Advani
- The Marjorie B. Kovler Viral Oncology Laboratories, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
27
|
Kenyon TK, Lynch J, Hay J, Ruyechan W, Grose C. Varicella-zoster virus ORF47 protein serine kinase: characterization of a cloned, biologically active phosphotransferase and two viral substrates, ORF62 and ORF63. J Virol 2001; 75:8854-8. [PMID: 11507231 PMCID: PMC115131 DOI: 10.1128/jvi.75.18.8854-8858.2001] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Varicella-zoster virus (VZV) codes for a protein serine kinase called ORF47; the herpes simplex virus (HSV) homolog is UL13. No recombinant alphaherpesvirus serine kinase has been biologically active in vitro. We discovered that preservation of the intrinsic kinase activity of recombinant VZV ORF47 required unusually stringent in vitro conditions, including physiological concentrations of polyamines. In this assay, ORF47 phosphorylated two VZV regulatory proteins: the ORF62 protein (homolog of HSV ICP4) and the ORF63 protein (homolog of HSV ICP22). Of interest, ORF47 kinase also coprecipitated ORF63 protein from the kinase assay supernatant.
Collapse
Affiliation(s)
- T K Kenyon
- Department of Microbiology, University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | |
Collapse
|
28
|
Poggioli GJ, Dermody TS, Tyler KL. Reovirus-induced sigma1s-dependent G(2)/M phase cell cycle arrest is associated with inhibition of p34(cdc2). J Virol 2001; 75:7429-34. [PMID: 11462015 PMCID: PMC114978 DOI: 10.1128/jvi.75.16.7429-7434.2001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Serotype 3 reoviruses inhibit cellular proliferation by inducing a G(2)/M phase cell cycle arrest. Reovirus-induced G(2)/M phase arrest requires the viral S1 gene-encoded sigma1s nonstructural protein. The G(2)-to-M transition represents a cell cycle checkpoint that is regulated by the kinase p34(cdc2). We now report that infection with serotype 3 reovirus strain Abney, but not serotype 1 reovirus strain Lang, is associated with inhibition and hyperphosphorylation of p34(cdc2). The sigma1s protein is necessary and sufficient for inhibitory phosphorylation of p34(cdc2), since a viral mutant lacking sigma1s fails to hyperphosphorylate p34(cdc2) and inducible expression of sigma1s is sufficient for p34(cdc2) hyperphosphorylation. These studies establish a mechanism by which reovirus can perturb cell cycle regulation.
Collapse
Affiliation(s)
- G J Poggioli
- Department of Microbiology, and Neurology Service, Denver Veterans Affairs Medical Center, Denver, Colorado 80220, USA
| | | | | |
Collapse
|
29
|
He H, Boucaud D, Hay J, Ruyechan WT. Cis and trans elements regulating expression of the varicella zoster virus gI gene. ARCHIVES OF VIROLOGY. SUPPLEMENTUM 2001:57-70. [PMID: 11339551 DOI: 10.1007/978-3-7091-6259-0_7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
We have identified cis- and trans-acting elements involved in the VZV IE62 protein-activated expression of the varicella zoster virus (VZV) gene which encodes the viral gI glycoprotein. The cis-acting elements include a non-canonical TATA box and a novel 19 base pair sequence located just upstream of the TATA element designated the "activating upstream sequence" or AUS. The AUS is a movable element and its presence results in IE62 activation of a chimeric promoter consisting of the VZV gC TATA box and the gI AUS. We have also determined that the VZV ORF 29 protein modulates the regulatory activity of the IE62 protein at the gI promoter. In combination with the IE62 transactivator, it yields a 10 to 15-fold increase in expression over the levels seen with the IE62 protein alone in T lymphocytes. The upmodulatory activity requires the presence of a 40 base pair sequence, designated the 29RE, which maps between positions -220 and -180 in the gI promoter. In this paper we review these and earlier findings from our laboratories concerning the regulation of the gI promoter.
Collapse
Affiliation(s)
- H He
- Department of Microbiology and Markey Center for Microbial Pathogenesis State University of New York at Buffalo, 14214, USA
| | | | | | | |
Collapse
|
30
|
Wang ZH, Gershon MD, Lungu O, Zhu Z, Mallory S, Arvin AM, Gershon AA. Essential role played by the C-terminal domain of glycoprotein I in envelopment of varicella-zoster virus in the trans-Golgi network: interactions of glycoproteins with tegument. J Virol 2001; 75:323-40. [PMID: 11119602 PMCID: PMC113926 DOI: 10.1128/jvi.75.1.323-340.2001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2000] [Accepted: 09/28/2000] [Indexed: 11/20/2022] Open
Abstract
Varicella-zoster virus (VZV) is enveloped in the trans-Golgi network (TGN). Here we report that glycoprotein I (gI) is required within the TGN for VZV envelopment. Enveloping membranous TGN cisternae were microscopically identified in cells infected with intact VZV. These sacs curved around, and ultimately enclosed, nucleocapsids. Tegument coated the concave face of these sacs, which formed the viral envelope, but the convex surface was tegument-free. TGN cisternae of cells infected with VZV mutants lacking gI (gI(Delta)) or its C (gI(DeltaC))- or N-terminal (gI(DeltaN))-terminal domains were uniformly tegument coated and adhered to one another, forming bizarre membranous stacks. Viral envelopment was compromised, and no virions were delivered to post-Golgi structures. The TGN was not gI-immunoreactive in cells infected with the gI(Delta) or gI(DeltaN) mutants, but it was in cells infected with gI(DeltaC) (because the ectodomains of gI and gE interact). The presence in the TGN of gI lacking a C-terminal domain, therefore, was not sufficient to maintain enveloping cisternae. In cells infected with intact VZV or with gI(Delta), gI(DeltaN), or gI(DeltaC) mutants, ORF10p immunoreactivity was concentrated on the cytosolic face of TGN membranes, suggesting that it interacts with the cytosolic domains of glycoproteins. Because of the gE-gI interaction, cotransfected cells that expressed gE or gI were able to target truncated forms of the other to the TGN. Our data suggest that the C-terminal domain of gI is required to segregate viral and cellular proteins in enveloping TGN cisternae.
Collapse
Affiliation(s)
- Z H Wang
- Institute of Human Nutrition, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Santos RA, Hatfield CC, Cole NL, Padilla JA, Moffat JF, Arvin AM, Ruyechan WT, Hay J, Grose C. Varicella-zoster virus gE escape mutant VZV-MSP exhibits an accelerated cell-to-cell spread phenotype in both infected cell cultures and SCID-hu mice. Virology 2000; 275:306-17. [PMID: 10998331 DOI: 10.1006/viro.2000.0507] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Varicella-zoster virus is considered to have one of the most stable genomes of all human herpesviruses. In 1998, we reported the unanticipated discovery of a wild-type virus that had lost an immunodominant B-cell epitope on the gE ectodomain (VZV-MSP); the gE escape mutant virus exhibited an unusual pattern of egress. Further studies have now documented a markedly enhanced cell-to-cell spread by the mutant virus in cell culture. This property was investigated by laser scanning confocal microscopy combined with a software program that allows the measurement of pixel intensity of the fluorescent signal. For this new application of imaging technology, the VZV immediate early protein 62 (IE 62) was selected as the fluoresceinated marker. By 48 h postinfection, the number of IE 62-positive pixels in the VZV-MSP-infected culture was nearly fourfold greater than the number of pixels in a culture infected with a low-passage laboratory strain. Titrations by infectious center assays supported the above image analysis data. Confirmatory studies in the SCID-hu mouse documented that VZV-MSP spread more rapidly than other VZV strains in human fetal skin implants. Generally, the cytopathology and vesicle formation produced by other strains at 21 days postinfection were demonstrable with VZV-MSP at 14 days. To assess whether additional genes were contributing to the unusual VZV-MSP phenotype, approximately 20 kb of the VZV-MSP genome was sequenced, including ORFs 31 (gB), 37 (gH), 47, 60 (gL), 61, 62 (IE 62), 66, 67 (gI), and 68 (gE). Except for a few polymorphisms, as well as the previously discovered mutation within gE, the nucleotide sequences within most open reading frames were identical to the prototype VZV-Dumas strain. In short, VZV-MSP represents a novel variant virus with a distinguishable phenotype demonstrable in both infected cell cultures and SCID-hu mice.
Collapse
Affiliation(s)
- R A Santos
- Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Advani SJ, Weichselbaum RR, Roizman B. The role of cdc2 in the expression of herpes simplex virus genes. Proc Natl Acad Sci U S A 2000; 97:10996-1001. [PMID: 10995483 PMCID: PMC27137 DOI: 10.1073/pnas.200375297] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Earlier reports have shown that cdc2 kinase is activated in cells infected with herpes simplex virus 1 and that the activation is mediated principally by two viral proteins, the infected cell protein 22 (ICP22) and the protein kinase encoded by U(L)13. The same proteins are required for optimal expression of a subset of late (gamma(2)) genes exemplified by U(S)11. In this study, we used a dominant-negative cdc2 protein to determine the role of cdc2 in viral gene expression. We report the following. (i) The cdc2 dominant-negative protein had no effect in the synthesis and accumulation of at least two alpha-regulatory proteins (ICP4 and ICP0), two beta-proteins (ribonucleotide reductase major subunit and single-stranded DNA-binding protein), and two gamma(1)-proteins (glycoprotein D and viral protease). U(S)11, a gamma(2)-protein, accumulated only in cells in which cdc2 dominant-negative protein could not be detected or was made in very small amounts. (ii) The sequence of amino acids predicted to be phosphorylated by cdc2 is present in at least 27 viral proteins inclusive of the regulatory proteins ICP4, ICP0, and ICP22. In in vitro assays, we demonstrated that cdc2 specifically phosphorylated a polypeptide consisting of the second exon of ICP0 but not a polypeptide containing the sequence of the third exon as would be predicted from the sequence analysis. We conclude that cdc2 is required for optimal expression of a subset of gamma(2)-proteins whose expression is also regulated by the viral proteins (ICP22 and U(L)13) that mediate the activation of cdc2 kinase.
Collapse
Affiliation(s)
- S J Advani
- The Marjorie B. Kovler Viral Oncology Laboratories, and Department of Radiation and Cellular Oncology, University of Chicago, 910 East 58th Street, Chicago, IL 60637, USA
| | | | | |
Collapse
|
33
|
Wang ZH, Gershon MD, Lungu O, Zhu Z, Gershon AA. Trafficking of varicella-zoster virus glycoprotein gI: T(338)-dependent retention in the trans-Golgi network, secretion, and mannose 6-phosphate-inhibitable uptake of the ectodomain. J Virol 2000; 74:6600-13. [PMID: 10864674 PMCID: PMC112170 DOI: 10.1128/jvi.74.14.6600-6613.2000] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The trans-Golgi network (TGN) is putatively the site where varicella-zoster virus is enveloped. gE is targeted to the TGN by selective retrieval from the plasmalemma in response to signaling sequences in its endodomain. gI lacks these sequences but forms a complex with gE. We now find that gI is targeted to the TGN and plasma membrane when expressed in Cos-7 cells; nevertheless, surface labeling revealed that gI is not retrieved from the plasma membrane. TGN targeting of gI depended on the T(338) of its endodomain and was lost when T(338) was deleted or mutated to A, S, or D. The endodomain of gI was sufficient, if it contained T(338), to target a fusion protein containing the ectodomain of the human interleukin-2 receptor to the TGN. A truncated protein consisting only of the gI ectodomain was secreted and taken up by nontransfected cells. This uptake of the secreted gI ectodomain was blocked by mannose 6-phosphate. Following cotransfection, both gI and gE were retrieved to the TGN from the plasma membrane in 26.7% of cells, neither gI nor gE was internalized in 18.3%, and gE was retrieved to the TGN while gI remained at the plasma membrane in 55%. We suggest that the T(338) of its endodomain is necessary to retain gI in the TGN; moreover, because gI and gE interact, the signaling sequences of each glycoprotein reinforce one another in ensuring that both glycoproteins are concentrated in the TGN yet remain on the cell surface.
Collapse
Affiliation(s)
- Z H Wang
- Institute of Human Nutrition, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
34
|
Maresová L, Kutinová L, Ludvíková V, Zák R, Mares M, Nemecková S. Characterization of interaction of gH and gL glycoproteins of varicella-zoster virus: their processing and trafficking. J Gen Virol 2000; 81:1545-52. [PMID: 10811938 DOI: 10.1099/0022-1317-81-6-1545] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Varicella-zoster virus (VZV) glycoproteins gH and gL were examined in a recombinant vaccinia virus system. Single expression of glycoprotein gL produced two molecular forms: an 18 kDa form and a 19 kDa form differing in size by one endoglycosidase H-sensitive N-linked oligosaccharide. Coexpression of gL and gH resulted in binding of the 18 kDa gL form with the mature form of gH, while the 19 kDa gL form remained uncomplexed. The glycosylation processing of gL was not dependent on gH; however, gL was required for the conversion of precursor gH (97 kDa) to mature gH (118 kDa). Subsequent analyses indicated that gL (18 kDa) was a more completely processed gL (19 kDa). Screening of the culture media revealed that gH and gL were secreted, but only if coexpressed and complexed together. The secreted form of gL was 18 kDa while that of gH was 114 kDa. The fact that secreted gH was smaller than intracytoplasmic gH suggested a proteolytic processing event prior to secretion. The 19 kDa form of gL was never secreted. These findings support a VZV gL recycling pathway between the endoplasmic reticulum and the cis-Golgi apparatus.
Collapse
Affiliation(s)
- L Maresová
- Institute of Haematology and Blood Transfusion, Dept of Experimental Virology, Prague 128 20, Czech Republic.
| | | | | | | | | | | |
Collapse
|
35
|
Knockaert M, Gray N, Damiens E, Chang YT, Grellier P, Grant K, Fergusson D, Mottram J, Soete M, Dubremetz JF, Le Roch K, Doerig C, Schultz P, Meijer L. Intracellular targets of cyclin-dependent kinase inhibitors: identification by affinity chromatography using immobilised inhibitors. CHEMISTRY & BIOLOGY 2000; 7:411-22. [PMID: 10873834 DOI: 10.1016/s1074-5521(00)00124-1] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Chemical inhibitors of cyclin-dependent kinases (CDKs) have great therapeutic potential against various proliferative and neurodegenerative disorders. Olomoucine, a 2,6,9-trisubstituted purine, has been optimized for activity against CDK1/cyclin B by combinatorial and medicinal chemistry efforts to yield the purvalanol inhibitors. Although many studies support the action of purvalanols against CDKs, the actual intracellular targets of 2,6, 9-trisubstituted purines remain unverified. RESULTS To address this issue, purvalanol B (95. ) and an N6-methylated, CDK-inactive derivative (95M. ) were immobilized on an agarose matrix. Extracts from a diverse collection of cell types and organisms were screened for proteins binding purvalanol B. In addition to validating CDKs as intracellular targets, a variety of unexpected protein kinases were recovered from the 95. matrix. Casein kinase 1 (CK1) was identified as a principal 95. matrix binding protein in Plasmodium falciparum, Leishmania mexicana, Toxoplasma gondii and Trypanosoma cruzi. Purvalanol compounds also inhibit the proliferation of these parasites, suggesting that CK1 is a valuable target for further screening with 2,6,9-trisubstituted purine libraries. CONCLUSIONS That a simple batchwise affinity chromatography approach using two purine derivatives facilitated isolation of a small set of highly purified kinases suggests that this could be a general method for identifying intracellular targets relevant to a particular class of ligands. This method allows a close correlation to be established between the pattern of proteins bound to a small family of related compounds and the pattern of cellular responses to these compounds.
Collapse
Affiliation(s)
- M Knockaert
- Station Biologique de Roscoff, CNRS, Roscoff cedex, 29682, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Meijer L. Cyclin-dependent kinases inhibitors as potential anticancer, antineurodegenerative, antiviral and antiparasitic agents. Drug Resist Updat 2000; 3:83-88. [PMID: 11498372 DOI: 10.1054/drup.2000.0129] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cyclin-dependent kinases (CDKs) play a key role in the cell division cycle, in neuronal functions, in transcription and in apoptosis. Intensive screening with these kinases as targets has lead to the identification of highly selective and potent small - molecule inhibitors. Co-crystallization with CDK2 shows that these flat heterocyclic hydrophobic compounds bind through two or three hydrogen bonds with the side chains of two amino acids located in the ATP-binding pocket of the kinase. These inhibitors are anti-proliferative; they arrest cells in G1 and in G2/M phase. Furthermore they facilitate or even trigger apoptosis in proliferating cells while they protect neuronal cells and thymocytes from apoptosis. The potential use of these inhibitors is being extensively evaluated for cancer chemotherapy and also in other therapeutic areas: neurology (Alzheimer's disease), cardiovascular (restenosis, angiogenesis), nephrology (glomerulonephritis), parasitology (Plasmodium, Trypanosoma, Toxoplasma, etc.) and virology (cytomegalovirus, HIV, herpes virus). Copyright 2000 Harcourt Publishers Ltd.
Collapse
Affiliation(s)
- Laurent Meijer
- Station Biologique de Roscoff, CNRS UPR, Roscoff cedex, Bretagne, France
| |
Collapse
|
37
|
Schang LM, Rosenberg A, Schaffer PA. Roscovitine, a specific inhibitor of cellular cyclin-dependent kinases, inhibits herpes simplex virus DNA synthesis in the presence of viral early proteins. J Virol 2000; 74:2107-20. [PMID: 10666240 PMCID: PMC111691 DOI: 10.1128/jvi.74.5.2107-2120.2000] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/1999] [Accepted: 12/03/1999] [Indexed: 01/22/2023] Open
Abstract
We have previously shown that two inhibitors specific for cellular cyclin-dependent kinases (cdks), Roscovitine (Rosco) and Olomoucine (Olo), block the replication of herpes simplex virus (HSV). Based on these results, we demonstrated that HSV replication requires cellular cdks that are sensitive to these drugs (L. M. Schang, J. Phillips, and P. A. Schaffer. J. Virol. 72:5626-5637, 1998). We further established that at least two distinct steps in the viral replication cycle require cdks: transcription of immediate-early (IE) genes and transcription of early (E) genes (L. M. Schang, A. Rosenberg, and P. A. Schaffer, J. Virol. 73:2161-2172, 1999). Since Rosco inhibits HSV replication efficiently even when added to infected cells at 6 h postinfection, we postulated that cdks may also be required for viral functions that occur after E gene expression. In the study presented herein, we tested this hypothesis directly by measuring the efficiency of viral replication, viral DNA synthesis, and expression of several viral genes during infections in which Rosco was added after E proteins had already been synthesized. Rosco inhibited HSV replication, and specifically viral DNA synthesis, when the drug was added at the time of release from a 12-h phosphonoacetic acid (PAA)-induced block in viral DNA synthesis. Inhibition of DNA synthesis was not a consequence of inhibition of expression of IE or E genes in that Rosco had no effect on steady-state levels of two E transcripts under the same conditions in which it inhibited viral DNA synthesis. Moreover, viral DNA synthesis was inhibited by Rosco even in the absence of protein synthesis. In a second series of experiments, the replication of four HSV mutants harboring temperature-sensitive mutations in genes essential for viral DNA replication was inhibited when Rosco was added at the time of shift-down from the nonpermissive to the permissive temperature. Viral DNA synthesis was inhibited by Rosco under these conditions, whereas expression of viral E genes was not affected. We conclude that cellular Rosco-sensitive cdks are required for replication of viral DNA in the presence of viral E proteins. This requirement may indicate that HSV DNA synthesis is functionally linked to transcription, which requires cdks, or that both viral transcription and DNA replication, independently, require viral or cellular factors activated by Rosco-sensitive cdks.
Collapse
Affiliation(s)
- L M Schang
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6076, USA
| | | | | |
Collapse
|