1
|
Boris-Lawrie K, Liebau J, Hayir A, Heng X. Emerging Roles of m7G-Cap Hypermethylation and Nuclear Cap-Binding Proteins in Bypassing Suppression of eIF4E-Dependent Translation. Viruses 2025; 17:372. [PMID: 40143300 PMCID: PMC11946201 DOI: 10.3390/v17030372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025] Open
Abstract
Translation regulation is essential to the survival of hosts. Most translation initiation falls under the control of the mTOR pathway, which regulates protein production from mono-methyl-guanosine (m7G) cap mRNAs. However, mTOR does not regulate all translation; hosts and viruses alike employ alternative pathways, protein factors, and internal ribosome entry sites to bypass mTOR. Trimethylguanosine (TMG)-caps arise from hypermethylation of pre-existing m7G-caps by the enzyme TGS1 and are modifications known for snoRNA, snRNA, and telomerase RNA. New findings originating from HIV-1 research reveal that TMG-caps are present on mRNA and license translation via an mTOR-independent pathway. Research has identified TMG-capping of selenoprotein mRNAs, junD, TGS1, DHX9, and retroviral transcripts. TMG-mediated translation may be a missing piece for understanding protein synthesis in cells with little mTOR activity, including HIV-infected resting T cells and nonproliferating cancer cells. Viruses display a nuanced interface with mTOR and have developed strategies that take advantage of the delicate interplay between these translation pathways. This review covers the current knowledge of the TMG-translation pathway. We discuss the intimate relationship between metabolism and translation and explore how this is exploited by HIV-1 in the context of CD4+ T cells. We postulate that co-opting both translation pathways provides a winning strategy for HIV-1 to dictate the sequential synthesis of its proteins and balance viral production with host cell survival.
Collapse
Affiliation(s)
- Kathleen Boris-Lawrie
- Department of Veterinary and Biomedical Sciences, Institute for Molecular Virology, University of Minnesota, Saint Paul, MN 55108, USA; (J.L.); (A.H.)
| | - Jessica Liebau
- Department of Veterinary and Biomedical Sciences, Institute for Molecular Virology, University of Minnesota, Saint Paul, MN 55108, USA; (J.L.); (A.H.)
| | - Abdullgadir Hayir
- Department of Veterinary and Biomedical Sciences, Institute for Molecular Virology, University of Minnesota, Saint Paul, MN 55108, USA; (J.L.); (A.H.)
| | - Xiao Heng
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
2
|
Miklík D, Slavková M, Kučerová D, Mekadim C, Mrázek J, Hejnar J. Long Terminal Repeats of Gammaretroviruses Retain Stable Expression after Integration Retargeting. Viruses 2024; 16:1518. [PMID: 39459853 PMCID: PMC11512309 DOI: 10.3390/v16101518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Retroviruses integrate into the genomes of infected host cells to form proviruses, a genetic platform for stable viral gene expression. Epigenetic silencing can, however, hamper proviral transcriptional activity. As gammaretroviruses (γRVs) preferentially integrate into active promoter and enhancer sites, the high transcriptional activity of γRVs can be attributed to this integration preference. In addition, long terminal repeats (LTRs) of some γRVs were shown to act as potent promoters by themselves. Here, we investigate the capacity of different γRV LTRs to drive stable expression within a non-preferred epigenomic environment in the context of diverse retroviral vectors. We demonstrate that different γRV LTRs are either rapidly silenced or remain active for long periods of time with a predominantly active proviral population under normal and retargeted integration. As an alternative to the established γRV systems, the feline leukemia virus and koala retrovirus LTRs are able to drive stable, albeit intensity-diverse, transgene expression. Overall, we show that despite the occurrence of rapid silencing events, most γRV LTRs can drive stable expression outside of their preferred chromatin landscape after retrovirus integrations.
Collapse
Affiliation(s)
- Dalibor Miklík
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic; (M.S.)
| | - Martina Slavková
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic; (M.S.)
| | - Dana Kučerová
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic; (M.S.)
| | - Chahrazed Mekadim
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic; (C.M.); (J.M.)
| | - Jakub Mrázek
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic; (C.M.); (J.M.)
| | - Jiří Hejnar
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic; (M.S.)
| |
Collapse
|
3
|
Boris-Lawrie K, Singh G, Osmer PS, Zucko D, Staller S, Heng X. Anomalous HIV-1 RNA, How Cap-Methylation Segregates Viral Transcripts by Form and Function. Viruses 2022; 14:935. [PMID: 35632676 PMCID: PMC9145092 DOI: 10.3390/v14050935] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 12/11/2022] Open
Abstract
The acquisition of m7G-cap-binding proteins is now recognized as a major variable driving the form and function of host RNAs. This manuscript compares the 5'-cap-RNA binding proteins that engage HIV-1 precursor RNAs, host mRNAs, small nuclear (sn)- and small nucleolar (sno) RNAs and sort into disparate RNA-fate pathways. Before completion of the transcription cycle, the transcription start site of nascent class II RNAs is appended to a non-templated guanosine that is methylated (m7G-cap) and bound by hetero-dimeric CBP80-CBP20 cap binding complex (CBC). The CBC is a nexus for the co-transcriptional processing of precursor RNAs to mRNAs and the snRNA and snoRNA of spliceosomal and ribosomal ribonucleoproteins (RNPs). Just as sn/sno-RNAs experience hyper-methylation of m7G-cap to trimethylguanosine (TMG)-cap, so do select HIV RNAs and an emerging cohort of mRNAs. TMG-cap is blocked from Watson:Crick base pairing and disqualified from participating in secondary structure. The HIV TMG-cap has been shown to license select viral transcripts for specialized cap-dependent translation initiation without eIF4E that is dependent upon CBP80/NCBP3. The exceptional activity of HIV precursor RNAs secures their access to maturation pathways of sn/snoRNAs, canonical and non-canonical host mRNAs in proper stoichiometry to execute the retroviral replication cycle.
Collapse
Affiliation(s)
- Kathleen Boris-Lawrie
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA; (G.S.); (D.Z.)
| | - Gatikrushna Singh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA; (G.S.); (D.Z.)
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Patrick S. Osmer
- Department of Astronomy, The Ohio State University, Columbus, OH 43210, USA;
| | - Dora Zucko
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA; (G.S.); (D.Z.)
| | - Seth Staller
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA;
| | - Xiao Heng
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA;
| |
Collapse
|
4
|
HIV-1 hypermethylated guanosine cap licenses specialized translation unaffected by mTOR. Proc Natl Acad Sci U S A 2022; 119:2105153118. [PMID: 34949712 PMCID: PMC8740576 DOI: 10.1073/pnas.2105153118] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2021] [Indexed: 12/29/2022] Open
Abstract
The proliferation of viral pathogens is restricted by hosts, but resilient pathogens antagonize the restriction by hosts. Findings explain that HIV-1 blocked mono-methylated guanosine cap by hypermethylation and engaged novel cap-binding complex for virion protein translation unaffected by global translation inhibition. The hypermethylated cap activity required RNA-structure-dependent binding of RNA helicase A/DHX9. eIF4E interaction proceeded on completely spliced HIV messenger RNA templates encoding viral regulatory proteins, thus eIF4E inactivation by catalytic site mTOR inhibitor suppressed regulatory protein translation, while structural/accessory protein translation was maintained. Two mutually exclusive translation pathways antagonize hosts and facilitate HIV-1 proliferation in primary CD4+ T cells to the detriment of hosts. eIF4E inactivation imposed an operational rheostat that suppressed regulatory proteins, while maintaining virion production in immune cells. Appended to the 5′ end of nascent RNA polymerase II transcripts is 7-methyl guanosine (m7G-cap) that engages nuclear cap-binding complex (CBC) to facilitate messenger RNA (mRNA) maturation. Mature mRNAs exchange CBC for eIF4E, the rate-limiting translation factor that is controlled through mTOR. Experiments in immune cells have now documented HIV-1 incompletely processed transcripts exhibited hypermethylated m7G-cap and that the down-regulation of the trimethylguanosine synthetase-1–reduced HIV-1 infectivity and virion protein synthesis by several orders of magnitude. HIV-1 cap hypermethylation required nuclear RNA helicase A (RHA)/DHX9 interaction with the shape of the 5′ untranslated region (UTR) primer binding site (PBS) segment. Down-regulation of RHA or the anomalous shape of the PBS segment abrogated hypermethylated caps and derepressed eIF4E binding for virion protein translation during global down-regulation of host translation. mTOR inhibition was detrimental to HIV-1 proliferation and attenuated Tat, Rev, and Nef synthesis. This study identified mutually exclusive translation pathways and the calibration of virion structural/accessory protein synthesis with de novo synthesis of the viral regulatory proteins. The hypermethylation of select, viral mRNA resulted in CBC exchange to heterodimeric CBP80/NCBP3 that expanded the functional capacity of HIV-1 in immune cells.
Collapse
|
5
|
RNA Helicase A Regulates the Replication of RNA Viruses. Viruses 2021; 13:v13030361. [PMID: 33668948 PMCID: PMC7996507 DOI: 10.3390/v13030361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 01/20/2023] Open
Abstract
The RNA helicase A (RHA) is a member of DExH-box helicases and characterized by two double-stranded RNA binding domains at the N-terminus. RHA unwinds double-stranded RNA in vitro and is involved in RNA metabolisms in the cell. RHA is also hijacked by a variety of RNA viruses to facilitate virus replication. Herein, this review will provide an overview of the role of RHA in the replication of RNA viruses.
Collapse
|
6
|
Pan YQ, Xing L. The Current View on the Helicase Activity of RNA Helicase A and Its Role in Gene Expression. Curr Protein Pept Sci 2020; 22:29-40. [PMID: 33143622 DOI: 10.2174/1389203721666201103084122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/18/2020] [Accepted: 09/09/2020] [Indexed: 11/22/2022]
Abstract
RNA helicase A (RHA) is a DExH-box helicase that plays regulatory roles in a variety of cellular processes, including transcription, translation, RNA splicing, editing, transport, and processing, microRNA genesis and maintenance of genomic stability. It is involved in virus replication, oncogenesis, and innate immune response. RHA can unwind nucleic acid duplex by nucleoside triphosphate hydrolysis. The insight into the molecular mechanism of helicase activity is fundamental to understanding the role of RHA in the cell. Herein, we reviewed the current advances on the helicase activity of RHA and its relevance to gene expression, particularly, to the genesis of circular RNA.
Collapse
Affiliation(s)
- Yuan-Qing Pan
- Institute of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi province, China
| | - Li Xing
- Institute of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi province, China
| |
Collapse
|
7
|
Singh G, Rife BD, Seufzer B, Salemi M, Rendahl A, Boris-Lawrie K. Identification of conserved, primary sequence motifs that direct retrovirus RNA fate. Nucleic Acids Res 2018; 46:7366-7378. [PMID: 29846681 PMCID: PMC6101577 DOI: 10.1093/nar/gky369] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 04/20/2018] [Accepted: 05/16/2018] [Indexed: 12/16/2022] Open
Abstract
Precise stoichiometry of genome-length transcripts and alternatively spliced mRNAs is a hallmark of retroviruses. We discovered short, guanosine and adenosine sequence motifs in the 5'untranslated region of several retroviruses and ascertained the reasons for their conservation using a representative lentivirus and genetically simpler retrovirus. We conducted site-directed mutagenesis of the GA-motifs in HIV molecular clones and observed steep replication delays in T-cells. Quantitative RNA analyses demonstrate the GA-motifs are necessary to retain unspliced viral transcripts from alternative splicing. Mutagenesis of the GA-motifs in a C-type retrovirus validate the similar downregulation of unspliced transcripts and virion structural protein. The evidence from cell-based co-precipitation studies shows the GA-motifs in the 5'untranslated region confer binding by SFPQ/PSF, a protein co-regulated with T-cell activation. Diminished SFPQ/PSF or mutation of either GA-motif attenuates the replication of HIV. The interaction of SFPQ/PSF with both GA-motifs is crucial for maintaining the stoichiometry of the viral transcripts and does not affect packaging of HIV RNA. Our results demonstrate the conserved GA-motifs direct the fate of retrovirus RNA. These findings have exposed an RNA-based molecular target to attenuate retrovirus replication.
Collapse
Affiliation(s)
- Gatikrushna Singh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| | - Brittany D Rife
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Bradley Seufzer
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| | - Marco Salemi
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Aaron Rendahl
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| | - Kathleen Boris-Lawrie
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
8
|
Lee T, Pelletier J. The biology of DHX9 and its potential as a therapeutic target. Oncotarget 2018; 7:42716-42739. [PMID: 27034008 PMCID: PMC5173168 DOI: 10.18632/oncotarget.8446] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/16/2016] [Indexed: 12/25/2022] Open
Abstract
DHX9 is member of the DExD/H-box family of helicases with a “DEIH” sequence at its eponymous DExH-box motif. Initially purified from human and bovine cells and identified as a homologue of the Drosophila Maleless (MLE) protein, it is an NTP-dependent helicase consisting of a conserved helicase core domain, two double-stranded RNA-binding domains at the N-terminus, and a nuclear transport domain and a single-stranded DNA-binding RGG-box at the C-terminus. With an ability to unwind DNA and RNA duplexes, as well as more complex nucleic acid structures, DHX9 appears to play a central role in many cellular processes. Its functions include regulation of DNA replication, transcription, translation, microRNA biogenesis, RNA processing and transport, and maintenance of genomic stability. Because of its central role in gene regulation and RNA metabolism, there are growing implications for DHX9 in human diseases and their treatment. This review will provide an overview of the structure, biochemistry, and biology of DHX9, its role in cancer and other human diseases, and the possibility of targeting DHX9 in chemotherapy.
Collapse
Affiliation(s)
- Teresa Lee
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada.,Department of Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Boeras I, Seufzer B, Brady S, Rendahl A, Heng X, Boris-Lawrie K. The basal translation rate of authentic HIV-1 RNA is regulated by 5'UTR nt-pairings at junction of R and U5. Sci Rep 2017; 7:6902. [PMID: 28761163 PMCID: PMC5537239 DOI: 10.1038/s41598-017-06883-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/19/2017] [Indexed: 11/25/2022] Open
Abstract
The paradigm protein synthesis rate is regulated by structural complexity of the 5′untranslated region (UTR) derives from bacterial and other riboswitches. In-solution, HIV-1 5′UTR forms two interchangeable long-range nucleotide (nt) -pairings, one sequesters the gag start codon promoting dimerization while the other sequesters the dimer initiation signal preventing dimerization. While the effect of these nt-pairings on dimerization and packaging has been documented their effect on authentic HIV translation in cellulo has remained elusive until now. HIVNL4-3 5′UTR substitutions were designed to individually stabilize the dimer-prone or monomer-prone conformations, validated in-solution, and introduced to molecular clones. The effect of 5′UTR conformation on ribosome loading to HIV unspliced RNA and rate of Gag polypeptide synthesis was quantified in cellulo. Monomer- and dimer-prone 5′UTRs displayed equivalent, basal rate of translation. Gain-of-function substitution U103, in conjunction with previously defined nt-pairings that reorient AUG to flexible nt-pairing, significantly activated the translation rate, indicating the basal translation rate is under positive selection. The observed translation up-mutation focuses attention to nt-pairings at the junction of R and U5, a poorly characterized structure upstream of the characterized HIV riboswitch and demonstrates the basal translation rate of authentic HIV RNA is regulated independently of monomer:dimer equilibrium of the 5′UTR.
Collapse
Affiliation(s)
- I Boeras
- University of Minnesota, Department of Veterinary and Biomedical Sciences, 1971 Commonwealth, Saint Paul, MN, 55108, USA
| | - B Seufzer
- University of Minnesota, Department of Veterinary and Biomedical Sciences, 1971 Commonwealth, Saint Paul, MN, 55108, USA
| | - S Brady
- University of Missouri, Department of Biochemistry, 503 S. College Ave, Columbia, MO, 65211, USA
| | - A Rendahl
- University of Minnesota, Department of Veterinary and Biomedical Sciences, 1971 Commonwealth, Saint Paul, MN, 55108, USA
| | - X Heng
- University of Missouri, Department of Biochemistry, 503 S. College Ave, Columbia, MO, 65211, USA.
| | - K Boris-Lawrie
- University of Minnesota, Department of Veterinary and Biomedical Sciences, 1971 Commonwealth, Saint Paul, MN, 55108, USA.
| |
Collapse
|
10
|
Singh G, Fritz SM, Ranji A, Singh D, Boris-Lawrie K. Isolation of Cognate RNA-protein Complexes from Cells Using Oligonucleotide-directed Elution. J Vis Exp 2017. [PMID: 28117770 DOI: 10.3791/54391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ribonucleoprotein particles direct the biogenesis and post-transcriptional regulation of all mRNAs through distinct combinations of RNA binding proteins. They are composed of position-dependent, cis-acting RNA elements and unique combinations of RNA binding proteins. Defining the composition of a specific RNP is essential to achieving a fundamental understanding of gene regulation. The isolation of a select RNP is akin to finding a needle in a haystack. Here, we demonstrate an approach to isolate RNPs associated at the 5' untranslated region of a select mRNA in asynchronous, transfected cells. This cognate RNP has been demonstrated to be necessary for the translation of select viruses and cellular stress-response genes. The demonstrated RNA-protein co-precipitation protocol is suitable for the downstream analysis of protein components through proteomic analyses, immunoblots, or suitable biochemical identification assays. This experimental protocol demonstrates that DHX9/RNA helicase A is enriched at the 5' terminus of cognate retroviral RNA and provides preliminary information for the identification of its association with cell stress-associated huR and junD cognate mRNAs.
Collapse
Affiliation(s)
- Gatikrushna Singh
- Department of Veterinary & Biomedical Sciences, University of Minnesota
| | - Sarah M Fritz
- Department of Veterinary Biosciences, Ohio State University
| | - Arnaz Ranji
- Department of Veterinary Biosciences, Ohio State University
| | | | - Kathleen Boris-Lawrie
- Department of Veterinary & Biomedical Sciences, University of Minnesota; Department of Veterinary Biosciences, Ohio State University;
| |
Collapse
|
11
|
Zhang Y, Stefanovic B. LARP6 Meets Collagen mRNA: Specific Regulation of Type I Collagen Expression. Int J Mol Sci 2016; 17:419. [PMID: 27011170 PMCID: PMC4813270 DOI: 10.3390/ijms17030419] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 01/15/2023] Open
Abstract
Type I collagen is the most abundant structural protein in all vertebrates, but its constitutive rate of synthesis is low due to long half-life of the protein (60-70 days). However, several hundred fold increased production of type I collagen is often seen in reparative or reactive fibrosis. The mechanism which is responsible for this dramatic upregulation is complex, including multiple levels of regulation. However, posttranscriptional regulation evidently plays a predominant role. Posttranscriptional regulation comprises processing, transport, stabilization and translation of mRNAs and is executed by RNA binding proteins. There are about 800 RNA binding proteins, but only one, La ribonucleoprotein domain family member 6 (LARP6), is specifically involved in type I collagen regulation. In the 5'untranslated region (5'UTR) of mRNAs encoding for type I and type III collagens there is an evolutionally conserved stem-loop (SL) structure; this structure is not found in any other mRNA, including any other collagen mRNA. LARP6 binds to the 5'SL in sequence specific manner to regulate stability of collagen mRNAs and their translatability. Here, we will review current understanding of how is LARP6 involved in posttranscriptional regulation of collagen mRNAs. We will also discuss how other proteins recruited by LARP6, including nonmuscle myosin, vimentin, serine threonine kinase receptor associated protein (STRAP), 25 kD FK506 binding protein (FKBP25) and RNA helicase A (RHA), contribute to this process.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA.
| | - Branko Stefanovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
12
|
Pilkington GR, Purzycka KJ, Bear J, Le Grice SFJ, Felber BK. Gammaretrovirus mRNA expression is mediated by a novel, bipartite post-transcriptional regulatory element. Nucleic Acids Res 2014; 42:11092-106. [PMID: 25190459 PMCID: PMC4176177 DOI: 10.1093/nar/gku798] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Post-transcriptional regulatory mechanisms of several complex and simple retroviruses and retroelements have been elucidated, with the exception of the gammaretrovirus family. We found that, similar to the other retroviruses, gag gene expression of MuLV and XMRV depends on post-transcriptional regulation mediated via an RNA sequence overlapping the pro-pol open reading frame, termed the Post-Transcriptional Element (PTE). PTE function can be replaced by heterologous RNA export elements, e.g. CTE of simian type D retroviruses. Alternatively, Gag particle production is achieved using an RNA/codon optimized gag gene. PTE function is transferable and can replace HIV Rev-RRE-regulated expression of HIV gag. Analysis of PTE by SHAPE revealed a highly structured RNA comprising seven stem-loop structures, with the 5′ and 3′ stem-loops forming an essential bipartite signal. MuLV and XMRV PTE share 98% identity and have highly similar RNA structures, with changes mostly located to single-stranded regions. PTE identification strongly suggests that all retroviruses and retroelements share common strategies of post-transcriptional gene regulation to produce Gag. Expression depends on complex RNA structures embedded within retroviral mRNA, in coding regions or the 3′ untranslated region. These specific structures serve as recognition signals for either cellular or viral proteins.
Collapse
Affiliation(s)
- Guy R Pilkington
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Katarzyna J Purzycka
- RT Biochemistry Section, Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Stuart F J Le Grice
- RT Biochemistry Section, Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
13
|
Volkova NA, Fomina EG, Smolnikova VV, Zinovieva NA, Fomin IK. The U3 region of Moloney murine leukemia virus contains position-independent cis-acting sequences involved in the nuclear export of full-length viral transcripts. J Biol Chem 2014; 289:20158-69. [PMID: 24878957 DOI: 10.1074/jbc.m113.545855] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The distinguishing feature of self-inactivating (SIN) retroviral vectors is the deletion of the enhancer/promoter sequences in the U3 region of the 3' long terminal repeat. This design is used to overcome transcriptional interference and prevent downstream transcription from the 3' long terminal repeat. SIN vectors were derived from a number of different retroviruses. Studies of SIN vectors show that extensive U3 deletions in HIV-based vectors do not alter viral titers or the in vitro and in vivo properties of the vectors. However, deletion of the U3 sequences in γ- and α-retroviruses correlates with defects in 3' RNA processing and reduces viral titers by >10-fold. Here, we studied the steps in the retroviral life cycle that are affected by the deletion of sequences in the 3' U3 region of Moloney murine leukemia virus-derived retroviral vectors. The results show that the amounts of both full-length and internal RNA transcripts of U3-minus vectors are reduced in the nuclei of transfected cells, an effect that is probably due to a general defect in 3' RNA processing. Furthermore, full-length RNA transcripts were also defective in terms of nuclear export. This defect was complemented by transferring the U3 region to another position within the retroviral vector, indicating that the U3 region contains position-independent cis-acting sequences that are required for the transport of full-length viral transcripts. The results also suggest that the leader region of Moloney murine leukemia virus contains inhibitory/regulatory sequences, which prevent export and mediate nuclear retention of full-length viral RNA.
Collapse
Affiliation(s)
- Natalia A Volkova
- From the The Laboratory of Cellular Engineering, All-Russian State Research Institute of Animal Breeding, 142132 Moscow region, Russia
| | - Elena G Fomina
- The Laboratory for Biotechnology and Immunodiagnosis, The Republic Research and Practical Center for Epidemiology and Microbiology, 220114 Minsk, Belarus, and
| | - Viktoryia V Smolnikova
- The Republic Center of Hematology and Bone Marrow Transplantation, 220116 Minsk, Belarus
| | - Natalia A Zinovieva
- From the The Laboratory of Cellular Engineering, All-Russian State Research Institute of Animal Breeding, 142132 Moscow region, Russia,
| | - Igor K Fomin
- From the The Laboratory of Cellular Engineering, All-Russian State Research Institute of Animal Breeding, 142132 Moscow region, Russia,
| |
Collapse
|
14
|
Chulakasian S, Chang TJ, Tsai CH, Wong ML, Hsu WL. Translational enhancing activity in 5' UTR of peste des petits ruminants virus fusion gene. FEBS J 2013; 280:1237-48. [PMID: 23289829 DOI: 10.1111/febs.12115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Revised: 12/27/2012] [Accepted: 01/01/2013] [Indexed: 12/27/2022]
Abstract
The fusion gene of peste des petits ruminants virus (PPRV-F), a paramyxovirus, contains an unusual long 5' untranslated region (5' UTR) with a high GC content that is capable of folding into secondary structure proximally to the 5' cap. Sequence analysis further suggested that the proximal end of this UTR contains a nine-nucleotide sequence which could perfectly complement the 18S rRNA and might affect translation through mRNA-rRNA interaction. Based on these features, we examined the functional role of the proximal PPRV-F 5' UTR on translational efficiency compared with two other morbilliviruses. From reporter gene assays, PPRV-F 5' UTR functioned as a strong enhancer of translational efficiency independent of cell and gene specificity. Northern blot analysis of the accumulative RNA levels and mRNA stability suggested that elevated gene expression driven by PPRV-F 5' UTR was accompanied by an increased mRNA level and enhanced mRNA stability. Deletion analysis identified the complementary sequence and distal nucleotides necessary for the enhancing activity, and results suggest RNA structural conformation is important. Taken together, we conclude that the proximal PPRV-F 5' UTR functions as a translational enhancer by promoting translation efficiency and mRNA stability.
Collapse
Affiliation(s)
- Songkhla Chulakasian
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
15
|
Manojlovic Z, Stefanovic B. A novel role of RNA helicase A in regulation of translation of type I collagen mRNAs. RNA (NEW YORK, N.Y.) 2012; 18:321-34. [PMID: 22190748 PMCID: PMC3264918 DOI: 10.1261/rna.030288.111] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 11/04/2011] [Indexed: 05/30/2023]
Abstract
Type I collagen is composed of two α1(I) polypeptides and one α2(I) polypeptide and is the most abundant protein in the human body. Expression of type I collagen is primarily controlled at the level of mRNA stability and translation. Coordinated translation of α(I) and α2(I) mRNAs is necessary for efficient folding of the corresponding peptides into the collagen heterotrimer. In the 5' untranslated region (5' UTR), collagen mRNAs have a unique 5' stem-loop structure (5' SL). La ribonucleoprotein domain family member 6 (LARP6) is the protein that binds 5' SL with high affinity and specificity and coordinates their translation. Here we show that RNA helicase A (RHA) is tethered to the 5' SL of collagen mRNAs by interaction with the C-terminal domain of LARP6. In vivo, collagen mRNAs immunoprecipitate with RHA in an LARP6-dependent manner. Knockdown of RHA prevents formation of polysomes on collagen mRNAs and dramatically reduces synthesis of collagen protein, without affecting the level of the mRNAs. A reporter mRNA with collagen 5' SL is translated three times more efficiently in the presence of RHA than the same reporter without the 5' SL, indicating that the 5' SL is the cis-acting element conferring the regulation. During activation of quiescent cells into collagen-producing cells, expression of RHA is highly up-regulated. We postulate that RHA is recruited to the 5' UTR of collagen mRNAs by LARP6 to facilitate their translation. Thus, RHA has been discovered as a critical factor for synthesis of the most abundant protein in the human body.
Collapse
Affiliation(s)
- Zarko Manojlovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, USA
| | - Branko Stefanovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, USA
| |
Collapse
|
16
|
Boeras I, Sakalian M, West JT. Translation of MMTV Gag requires nuclear events involving splicing motifs in addition to the viral Rem protein and RmRE. Retrovirology 2012; 9:8. [PMID: 22277305 PMCID: PMC3292498 DOI: 10.1186/1742-4690-9-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 01/25/2012] [Indexed: 12/12/2022] Open
Abstract
Background Retroviral Gag proteins are encoded in introns and, because of this localization, they are subject to the default pathways of pre-mRNA splicing. Retroviruses regulate splicing and translation through a variety of intertwined mechanisms, including 5'- post-transcriptional control elements, 3'- constitutive transport elements, and viral protein RNA interactions that couple unspliced and singly spliced mRNAs to transport machinery. Sequences within the gag gene termed inhibitory or instability sequences also appear to affect viral mRNA stability and translation, and the action of these sequences can be countered by silent mutation or the presence of RNA interaction proteins like HIV-1 Rev. Here, we explored the requirements for mouse mammary tumor virus (MMTV) Gag expression using a combination of in vivo and in vitro expression systems. Results We show that MMTV gag alleles are inhibited for translation despite possessing a functional open reading frame (ORF). The block to expression was post-transcriptional and targeted the mRNA but was not a function of mRNA transport or stability. Using bicistronic reporters, we show that inhibition of gag expression imparted a block to both cap-dependent and cap-independent translation onto the mRNA. Direct introduction of in vitro synthesized gag mRNA resulted in translation, implying a nuclear role in inhibition of expression. The inhibition of expression was overcome by intact proviral expression or by flanking gag with splice sites combined with a functional Rem-Rem response element (RmRE) interaction. Conclusions Expression of MMTV Gag requires nuclear interactions involving the viral Rem protein, its cognate binding target the RmRE, and surprisingly, both a splice donor and acceptor sequence to achieve appropriate signals for translation of the mRNA in the cytoplasm.
Collapse
Affiliation(s)
- Ioana Boeras
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | | |
Collapse
|
17
|
Hohenadl C, Gunzburg WH, Salmons B, Indik S. The 5' leader sequence of mouse mammary tumor virus enhances expression of the envelope and reporter genes. J Gen Virol 2011; 93:308-318. [PMID: 22113011 DOI: 10.1099/vir.0.035196-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mouse mammary tumor virus (MMTV) is a complex betaretrovirus, which utilizes a Rev-like auxiliary protein Rem to export the unspliced viral RNA from the nucleus. MMTV env mRNA appears to be exported via a distinct, Rem-independent, mechanism. Here, we analysed the effect of an extensively folded region coinciding with the 5' leader sequence on env gene expression. We found that the presence of the 5' leader stimulates expression of the envelope protein. Enhanced Env production was accompanied by increased cytoplasmic levels of env mRNA. The 5' leader promotes nucleocytoplasmic translocation and increases stability of env mRNA. The region responsible for this effect was mapped to the distal part of the 5' leader. Furthermore, the 5' leader inserted in the sense orientation into a heterologous luciferase expression construct increased luciferase activity.
Collapse
Affiliation(s)
- Christine Hohenadl
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Walter H Gunzburg
- Christian Doppler Laboratory for Gene Therapeutic Vector Development, Vienna, Austria.,Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Stanislav Indik
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
18
|
Qu J, Yang Z, Zhang Q, Liu W, Li Y, Ding Q, Liu F, Liu Y, Pan Z, He B, Zhu Y, Wu J. Human immunodeficiency virus-1 Rev protein activates hepatitis C virus gene expression by directly targeting the HCV 5′-untranslated region. FEBS Lett 2011; 585:4002-9. [DOI: 10.1016/j.febslet.2011.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/02/2011] [Accepted: 11/05/2011] [Indexed: 11/16/2022]
|
19
|
Ranji A, Shkriabai N, Kvaratskhelia M, Musier-Forsyth K, Boris-Lawrie K. Features of double-stranded RNA-binding domains of RNA helicase A are necessary for selective recognition and translation of complex mRNAs. J Biol Chem 2010; 286:5328-37. [PMID: 21123178 DOI: 10.1074/jbc.m110.176339] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The DExH protein RNA helicase A (RHA) plays numerous roles in cell physiology, and post-transcriptional activation of gene expression is a major role among them. RHA selectively activates translation of complex cellular and retroviral mRNAs. Although RHA requires interaction with structural features of the 5'-UTR of these target mRNAs, the molecular basis of their translation activation by RHA is poorly understood. RHA contains a conserved ATPase-dependent helicase core that is flanked by two α-β-β-β-α double-stranded RNA-binding domains at the N terminus and repeated arginine-glycine residues at the C terminus. The individual recombinant N-terminal, central helicase, and C-terminal domains were evaluated for their ability to specifically interact with cognate RNAs by in vitro biochemical measurements and mRNA translation assays in cells. The results demonstrate that N-terminal residues confer selective interaction with retroviral and junD target RNAs. Conserved lysine residues in the distal α-helix of the double-stranded RNA-binding domains are necessary to engage structural features of retroviral and junD 5'-UTRs. Exogenous expression of the N terminus coprecipitates junD mRNA and inhibits the translation activity of endogenous RHA. The results indicate that the molecular basis for the activation of translation by RHA is recognition of target mRNA by the N-terminal domain that tethers the ATP-dependent helicase for rearrangement of the complex 5'-UTR.
Collapse
Affiliation(s)
- Arnaz Ranji
- Center for Retrovirus Research, Department of Veterinary Biosciences, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
20
|
Ranji A, Boris-Lawrie K. RNA helicases: emerging roles in viral replication and the host innate response. RNA Biol 2010; 7:775-87. [PMID: 21173576 DOI: 10.4161/rna.7.6.14249] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
RNA helicases serve multiple roles at the virus-host interface. In some situations, RNA helicases are essential host factors to promote viral replication; however, in other cases they serve as a cellular sensor to trigger the antiviral state in response to viral infection. All family members share the conserved ATP-dependent catalytic core linked to different substrate recognition and protein-protein interaction domains. These flanking domains can be shuffled between different helicases to achieve functional diversity. This review summarizes recent studies, which have revealed two types of activity by RNA helicases. First, RNA helicases are catalysts of progressive RNA-protein rearrangements that begin at gene transcription and culminate in mRNA translation. Second, RNA helicases can act as a scaffold for alternative protein-protein interactions that can defeat the antiviral state. The mounting fundamental understanding of RNA helicases is being used to develop selective and efficacious drugs against human and animal pathogens. The analysis of RNA helicases in virus model systems continues to provide insights into virology, cell biology and immunology, and has provided fresh perspective to continue unraveling the complexity of virus-host interactions.
Collapse
Affiliation(s)
- Arnaz Ranji
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
21
|
Abstract
Although the viral Rev protein is necessary for HIV replication, its main function in the viral replication cycle has been controversial. Reinvestigating the effect of Rev on the HIV-1 RNA distribution in various cell lines and primary cells revealed that Rev enhanced cytoplasmic levels of the unspliced HIV-1 RNA, mostly 3- to 12-fold, while encapsidation of the RNA and viral infectivity could be stimulated >1,000-fold. Although this clearly questions the general notion that the nuclear export of viral RNAs is the major function of Rev, mechanistically encapsidation seems to be linked to nuclear export, since the tethering of the nuclear export factor TAP to the HIV-1 RNA also enhanced encapsidation. Interference with the formation of an inhibitory ribonucleoprotein complex in the nucleus could lead to enhanced accessibility of the cytoplasmic HIV-1 RNA for translation and encapsidation. This might explain why Rev and tethered TAP exert the same pattern of pleiotropic effects.
Collapse
|
22
|
Bolinger C, Sharma A, Singh D, Yu L, Boris-Lawrie K. RNA helicase A modulates translation of HIV-1 and infectivity of progeny virions. Nucleic Acids Res 2009; 38:1686-96. [PMID: 20007598 PMCID: PMC2836548 DOI: 10.1093/nar/gkp1075] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Retroviruses rely on host RNA-binding proteins to modulate various steps in their replication. Previously several animal retroviruses were determined to mediate Dhx9/RNA helicase A (RHA) interaction with a 5′ terminal post-transcriptional control element (PCE) for efficient translation. Herein PCE reporter assays determined HTLV-1 and HIV-1 RU5 confer orientation-dependent PCE activity. The effect of Dhx9/RHA down-regulation and rescue with siRNA-resistant RHA on expression of HIV-1NL4–3 provirus determined that RHA is necessary for efficient HIV-1 RNA translation and requires ATPase-dependent helicase function. Quantitative analysis determined HIV-1 RNA steady-state and cytoplasmic accumulation were not reduced; rather the translational activity of viral RNA was reduced. Western blotting determined that RHA-deficient virions assemble with Lys-tRNA synthetase, exhibit processed reverse transcriptase and contain similar level of viral RNA, but they are poorly infectious on primary lymphocytes and HeLa cells. The results demonstrate RHA is an important host factor within the virus-producer cell and within the viral particle. The identification of RHA-dependent PCE activity in cellular junD RNA and in six of seven genera of Retroviridae suggests conservation of this translational control mechanism among vertebrates, and convergent evolution of Retroviridae to utilize this host mechanism.
Collapse
Affiliation(s)
- Cheryl Bolinger
- Department of Veterinary Biosciences, Center for Retrovirus Research and Center for RNA Biology, The Ohio State University, Columbus, OH 43210-1093, USA
| | | | | | | | | |
Collapse
|
23
|
Jaagsiekte sheep retrovirus encodes a regulatory factor, Rej, required for synthesis of Gag protein. J Virol 2009; 83:12483-98. [PMID: 19776124 DOI: 10.1128/jvi.01747-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retroviruses express Gag and Pol proteins by translation of unspliced genome-length viral RNA. For some retroviruses, transport of unspliced viral RNA to the cytoplasm is mediated by small regulatory proteins such as human immunodeficiency virus Rev, while other retroviruses contain constitutive transport elements in their RNAs that allow transport without splicing. In this study, we found that the betaretrovirus Jaagsiekte sheep retrovirus (JSRV) encodes within the env gene a trans-acting factor (Rej) necessary for the synthesis of Gag protein from unspliced viral RNA. Deletion of env sequences from a JSRV proviral expression plasmid (pTN3) abolished its ability to produce Gag polyprotein in transfected 293T cells, and Gag synthesis could be restored by cotransfection of an env expression plasmid (DeltaGP). Deletion analysis localized the complementing activity (Rej) to the putative Env signal peptide, and a signal peptide expression construct showed Rej activity. Two other betaretroviruses, mouse mammary tumor virus (MMTV) and human endogenous retrovirus type K, encode analogous factors (Rem and Rec, respectively) that are encoded from doubly spliced env mRNAs. Reverse transcriptase-PCR cloning and sequencing identified alternate internal splicing events in the 5' end of JSRV env that could signify analogous doubly spliced Rej mRNAs, and cDNA clones expressing two of them also showed Rej activity. The predicted Rej proteins contain motifs similar to those found in MMTV Rem and other analogous retroviral regulatory proteins. Interestingly, in most cell lines, JSRV expression plasmids with Rej deleted showed normal transport of unspliced JSRV RNA to the cytoplasm; however, in 293T cells Rej modestly enhanced export of unspliced viral RNA (2.8-fold). Metabolic labeling experiments with [(35)S]methionine indicated that JSRV Rej is required for the synthesis of viral Gag polyprotein. Thus, in most cell lines, the predominant function of Rej is to facilitate translation of unspliced viral mRNA.
Collapse
|
24
|
Abstract
Rev remains a hot topic. In this review, we revisit the insights that have been gained into the control of gene expression by the retroviral protein Rev and speculate on where current research is leading. We outline what is known about the role of Rev in translation and encapsidation and how these are linked to its more traditional role of nuclear export, underlining the multifaceted nature of this small viral protein. We discuss what more is to be learned in these fields and why continuing research on these 116 amino acids and understanding their function is still important in devising methods to combat AIDS.
Collapse
Affiliation(s)
- H C T Groom
- Department of Medicine, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| | - E C Anderson
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - A M L Lever
- Department of Medicine, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| |
Collapse
|
25
|
Mechanisms employed by retroviruses to exploit host factors for translational control of a complicated proteome. Retrovirology 2009; 6:8. [PMID: 19166625 PMCID: PMC2657110 DOI: 10.1186/1742-4690-6-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 01/24/2009] [Indexed: 12/14/2022] Open
Abstract
Retroviruses have evolved multiple strategies to direct the synthesis of a complex proteome from a single primary transcript. Their mechanisms are modulated by a breadth of virus-host interactions, which are of significant fundamental interest because they ultimately affect the efficiency of virus replication and disease pathogenesis. Motifs located within the untranslated region (UTR) of the retroviral RNA have established roles in transcriptional trans-activation, RNA packaging, and genome reverse transcription; and a growing literature has revealed a necessary role of the UTR in modulating the efficiency of viral protein synthesis. Examples include a 5' UTR post-transcriptional control element (PCE), present in at least eight retroviruses, that interacts with cellular RNA helicase A to facilitate cap-dependent polyribosome association; and 3' UTR constitutive transport element (CTE) of Mason-Pfizer monkey virus that interacts with Tap/NXF1 and SR protein 9G8 to facilitate RNA export and translational utilization. By contrast, nuclear protein hnRNP E1 negatively modulates HIV-1 Gag, Env, and Rev protein synthesis. Alternative initiation strategies by ribosomal frameshifting and leaky scanning enable polycistronic translation of the cap-dependent viral transcript. Other studies posit cap-independent translation initiation by internal ribosome entry at structural features of the 5' UTR of selected retroviruses. The retroviral armamentarium also commands mechanisms to counter cellular post-transcriptional innate defenses, including protein kinase R, 2',5'-oligoadenylate synthetase and the small RNA pathway. This review will discuss recent and historically-recognized insights into retrovirus translational control. The expanding knowledge of retroviral post-transcriptional control is vital to understanding the biology of the retroviral proteome. In a broad perspective, each new insight offers a prospective target for antiviral therapy and strategic improvement of gene transfer vectors.
Collapse
|
26
|
Rizvi TA, Ali J, Phillip PS, Ghazawi A, Jayanth P, Mustafa F. Role of a heterologous retroviral transport element in the development of genetic complementation assay for mouse mammary tumor virus (MMTV) replication. Virology 2009; 385:464-72. [PMID: 19157480 DOI: 10.1016/j.virol.2008.12.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 11/07/2008] [Accepted: 12/12/2008] [Indexed: 11/27/2022]
Abstract
The mouse mammary tumor virus (MMTV) is a type B retrovirus that is unique from other retroviruses in having multiple "tissue specific" and "hormone inducible" promoters. This unique feature has lead to the increasing interest in studying the biology of MMTV replication with the ultimate goal of developing MMTV based vectors for potentially targeted human gene therapy. In this report, we describe, for the first time, the establishment of an in vivo genetic complementation assay to study various aspects of MMTV replication. In the assay described here, the function of MMTV Rem/RmRE regulatory pathway has been successfully substituted by a heterologous retroviral constitutive transport element (CTE) from Mason Pfizer Monkey Virus (MPMV) for mature MMTV particle production. Our results revealed that in the absence of MPMV CTE or Rem/RmRE, RNA transcribed from MMTV Gag-Pol expression plasmids were efficiently transported to the cytoplasm. However, the presence of CTE was indispensable for Gag-Pol protein expression. In addition, we report the development of MMTV based vectors in which the packageable RNA was transcribed either from MMTV LTR or from a chimeric LTR, which could successfully be packaged and propagated by particles produced from MMTV Gag-Pol expression plasmids containing a heterologous transport element. The role of MPMV CTE in the transport of MMTV transfer vector RNA was not found to be significant. Development of such an assay should not only shed light on how MMTV regulates its gene expression, but also should provide additional molecular tools for delineating the packaging determinants for MMTV, which is imperative for the development of novel vectors for targeted and inducible gene therapy.
Collapse
Affiliation(s)
- Tahir A Rizvi
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences (FMHS), United Arab Emirates University (UAEU), P.O. Box 17666, Al Ain, UAE.
| | | | | | | | | | | |
Collapse
|
27
|
Hernandez JM, Floyd DH, Weilbaecher KN, Green PL, Boris-Lawrie K. Multiple facets of junD gene expression are atypical among AP-1 family members. Oncogene 2008; 27:4757-67. [PMID: 18427548 PMCID: PMC2726657 DOI: 10.1038/onc.2008.120] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 02/25/2008] [Accepted: 03/18/2008] [Indexed: 12/12/2022]
Abstract
JunD is a versatile AP-1 transcription factor that can activate or repress a diverse collection of target genes. Precise control of junD expression and JunD protein-protein interactions modulate tumor angiogenesis, cellular differentiation, proliferation and apoptosis. Molecular and clinical knowledge of two decades has revealed that precise JunD activity is elaborated by interrelated layers of constitutive transcriptional control, complex post-transcriptional regulation and a collection of post-translational modifications and protein-protein interactions. The stakes are high, as inappropriate JunD activity contributes to neoplastic, metabolic and viral diseases. This article deconvolutes multiple layers of control that safeguard junD gene expression and functional activity. The activity of JunD in transcriptional activation and repression is integrated into a regulatory network by which JunD exerts a pivotal role in cellular growth control. Our discussion of the JunD regulatory network integrates important open issues and posits new therapeutic targets for the neoplastic, metabolic and viral diseases associated with JunD/AP-1 expression.
Collapse
Affiliation(s)
- JM Hernandez
- Department of Veterinary Biosciences and Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA
| | - DH Floyd
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - KN Weilbaecher
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - PL Green
- Department of Veterinary Biosciences and Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA
- Department of Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - K Boris-Lawrie
- Department of Veterinary Biosciences and Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA
- Department of Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
28
|
Bolinger C, Yilmaz A, Hartman TR, Kovacic MB, Fernandez S, Ye J, Forget M, Green PL, Boris-Lawrie K. RNA helicase A interacts with divergent lymphotropic retroviruses and promotes translation of human T-cell leukemia virus type 1. Nucleic Acids Res 2007; 35:2629-42. [PMID: 17426138 PMCID: PMC1885656 DOI: 10.1093/nar/gkm124] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The 5′ untranslated region (UTR) of retroviruses contain structured replication motifs that impose barriers to efficient ribosome scanning. Two RNA structural motifs that facilitate efficient translation initiation despite a complex 5′ UTR are internal ribosome entry site (IRES) and 5′ proximal post-transcriptional control element (PCE). Here, stringent RNA and protein analyses determined the 5′ UTR of spleen necrosis virus (SNV), reticuloendotheliosis virus A (REV-A) and human T-cell leukemia virus type 1 (HTLV-1) exhibit PCE activity, but not IRES activity. Assessment of SNV translation initiation in the natural context of the provirus determined that SNV is reliant on a cap-dependent initiation mechanism. Experiments with siRNAs identified that REV-A and HTLV-1 PCE modulate post-transcriptional gene expression through interaction with host RNA helicase A (RHA). Analysis of hybrid SNV/HTLV-1 proviruses determined SNV PCE facilitates Rex/Rex responsive element-independent Gag production and interaction with RHA is necessary. Ribosomal profile analyses determined that RHA is necessary for polysome association of HTLV-1 gag and provide direct evidence that RHA is necessary for efficient HTLV-1 replication. We conclude that PCE/RHA is an important translation regulatory axis of multiple lymphotropic retroviruses. We speculate divergent retroviruses have evolved a convergent RNA–protein interaction to modulate translation of their highly structured mRNA.
Collapse
Affiliation(s)
- Cheryl Bolinger
- Center for Retrovirus Research, Department of Veterinary Biosciences and Department of Molecular Virology, Immunology & Medical Genetics, Molecular, Cellular & Developmental Biology Graduate Program, Center for Biostatistics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210-1093, USA
| | - Alper Yilmaz
- Center for Retrovirus Research, Department of Veterinary Biosciences and Department of Molecular Virology, Immunology & Medical Genetics, Molecular, Cellular & Developmental Biology Graduate Program, Center for Biostatistics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210-1093, USA
| | - Tiffiney Roberts Hartman
- Center for Retrovirus Research, Department of Veterinary Biosciences and Department of Molecular Virology, Immunology & Medical Genetics, Molecular, Cellular & Developmental Biology Graduate Program, Center for Biostatistics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210-1093, USA
| | - Melinda Butsch Kovacic
- Center for Retrovirus Research, Department of Veterinary Biosciences and Department of Molecular Virology, Immunology & Medical Genetics, Molecular, Cellular & Developmental Biology Graduate Program, Center for Biostatistics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210-1093, USA
| | - Soledad Fernandez
- Center for Retrovirus Research, Department of Veterinary Biosciences and Department of Molecular Virology, Immunology & Medical Genetics, Molecular, Cellular & Developmental Biology Graduate Program, Center for Biostatistics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210-1093, USA
| | - Jianxin Ye
- Center for Retrovirus Research, Department of Veterinary Biosciences and Department of Molecular Virology, Immunology & Medical Genetics, Molecular, Cellular & Developmental Biology Graduate Program, Center for Biostatistics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210-1093, USA
| | - Mary Forget
- Center for Retrovirus Research, Department of Veterinary Biosciences and Department of Molecular Virology, Immunology & Medical Genetics, Molecular, Cellular & Developmental Biology Graduate Program, Center for Biostatistics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210-1093, USA
| | - Patrick L. Green
- Center for Retrovirus Research, Department of Veterinary Biosciences and Department of Molecular Virology, Immunology & Medical Genetics, Molecular, Cellular & Developmental Biology Graduate Program, Center for Biostatistics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210-1093, USA
| | - Kathleen Boris-Lawrie
- Center for Retrovirus Research, Department of Veterinary Biosciences and Department of Molecular Virology, Immunology & Medical Genetics, Molecular, Cellular & Developmental Biology Graduate Program, Center for Biostatistics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210-1093, USA
- *To whom correspondence should be addressed +1-614-292-1392+1-614-292-6473
| |
Collapse
|
29
|
Abstract
All replication-competent retroviruses contain three main reading frames, gag, pol and env, which are used for the synthesis of structural proteins, enzymes and envelope proteins respectively. Complex retroviruses, such as lentiviruses, also code for regulatory and accessory proteins that have essential roles in viral replication. The concerted expression of these genes ensures the efficient polypeptide production required for the assembly and release of new infectious progeny virions. Retroviral protein synthesis takes place in the cytoplasm and depends exclusively on the translational machinery of the host infected cell. Therefore, not surprisingly, retroviruses have developed RNA structures and strategies to promote robust and efficient expression of viral proteins in a competitive cellular environment.
Collapse
Affiliation(s)
- Laurent Balvay
- Ecole Normale Supérieure de Lyon, Unité de Virologie Humaine, IFR 128, Lyon, F-69364 France
- Inserm, U758, Lyon, F-69364 France
| | - Marcelo Lopez Lastra
- Laboratorio de Virología Molecular, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Bruno Sargueil
- Centre de Génétique, Moléculaire, CNRS UPR 2167, Avenue de la terrasse, Gif sur Yvette, 91190 France
| | - Jean-Luc Darlix
- Ecole Normale Supérieure de Lyon, Unité de Virologie Humaine, IFR 128, Lyon, F-69364 France
- Inserm, U758, Lyon, F-69364 France
| | - Théophile Ohlmann
- Ecole Normale Supérieure de Lyon, Unité de Virologie Humaine, IFR 128, Lyon, F-69364 France
- Inserm, U758, Lyon, F-69364 France
| |
Collapse
|
30
|
Freed EO, Mouland AJ. The cell biology of HIV-1 and other retroviruses. Retrovirology 2006; 3:77. [PMID: 17083721 PMCID: PMC1635732 DOI: 10.1186/1742-4690-3-77] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Accepted: 11/03/2006] [Indexed: 12/23/2022] Open
Abstract
In recognition of the growing influence of cell biology in retrovirus research, we recently organized a Summer conference sponsored by the American Society for Cell Biology (ASCB) on the Cell Biology of HIV-1 and other Retroviruses (July 20–23, 2006, Emory University, Atlanta, Georgia). The meeting brought together a number of leading investigators interested in the interplay between cell biology and retrovirology with an emphasis on presentation of new and unpublished data. The conference was arranged from early to late events in the virus replication cycle, with sessions on viral fusion, entry, and transmission; post-entry restrictions to retroviral infection; nuclear import and integration; gene expression/regulation of retroviral Gag and genomic RNA; and assembly/release. In this review, we will attempt to touch briefly on some of the highlights of the conference, and will emphasize themes and trends that emerged at the meeting.
Collapse
Affiliation(s)
- Eric O Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD. 21702-1201, USA
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute for Medical Research-Sir Mortimer B. Davis Jewish General Hospital, Departments of Medicine, Microbiology and Immunology, McGill University, Montréal, Québec, H3T 1E2, Canada
| |
Collapse
|
31
|
Tettweiler G, Lasko P. A new model for translational regulation of specific mRNAs. Trends Biochem Sci 2006; 31:607-10. [PMID: 17015016 DOI: 10.1016/j.tibs.2006.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 08/14/2006] [Accepted: 09/22/2006] [Indexed: 11/22/2022]
Abstract
Recently, RNA helicase A (RHA) has been shown to facilitate translation of specific mRNAs by recognizing and binding to a complex structure at their 5' end known as the post-transcriptional control element. This implicates RHA, a member of the DEXD/H-box protein superfamily, in linking transcription and translation of a specific class of retroviral and cellular mRNAs. This exciting finding suggests a new mechanism for the regulation of the translation of specific transcripts.
Collapse
Affiliation(s)
- Gritta Tettweiler
- Department of Biology and DBRI, McGill University, 1205 Avenue Dr. Penfield, Montréal, Québec H3A 1B1, Canada
| | | |
Collapse
|
32
|
Caporale M, Cousens C, Centorame P, Pinoni C, De las Heras M, Palmarini M. Expression of the jaagsiekte sheep retrovirus envelope glycoprotein is sufficient to induce lung tumors in sheep. J Virol 2006; 80:8030-7. [PMID: 16873259 PMCID: PMC1563803 DOI: 10.1128/jvi.00474-06] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Jaagsiekte sheep retrovirus (JSRV) is the causative agent of ovine pulmonary adenocarcinoma (OPA). The expression of the JSRV envelope (Env) alone is sufficient to transform a variety of cell lines in vitro and induce lung cancer in immunodeficient mice. In order to determine the role of the JSRV Env in OPA tumorigenesis in sheep, we derived a JSRV replication-defective virus (JS-RD) which expresses env under the control of its own long terminal repeat (LTR). JS-RD was produced by transiently transfecting 293T cells with a two plasmid system, involving (i) a packaging plasmid, with the putative JSRV packaging signal deleted, expressing the structural and enzymatic proteins Gag, Pro, and Pol, and (ii) a plasmid which expresses env in trans for JS-RD particles and provides the genomes necessary to deliver JSRV env upon infection. During the optimization of the JS-RD system we determined that both R-U5 (in the viral 5' LTR) and the env region are important for JSRV particle production. Two independent experimental transmission studies were carried out with newborn lambs. Four of five lambs inoculated with JS-RD showed OPA lesions in the lungs at various times between 4 and 12 months postinoculation. Abundant expression of JSRV Env was detected in tumor cells of JS-RD-infected animals and PCR assays confirmed the presence of the deleted JS-RD genome. These data strongly suggest that the JSRV Env functions as a dominant oncoprotein in the natural immunocompetent host and that JSRV can induce OPA in the absence of viral spread.
Collapse
Affiliation(s)
- Marco Caporale
- Institute of Comparative Medicine, University of Glasgow Veterinary School, 464 Bearsden Road, Glasgow G61 1QH, Scotland
| | | | | | | | | | | |
Collapse
|
33
|
Hartman TR, Qian S, Bolinger C, Fernandez S, Schoenberg DR, Boris-Lawrie K. RNA helicase A is necessary for translation of selected messenger RNAs. Nat Struct Mol Biol 2006; 13:509-16. [PMID: 16680162 DOI: 10.1038/nsmb1092] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Accepted: 04/10/2006] [Indexed: 01/12/2023]
Abstract
RNA helicase A (RHA) is a highly conserved DEAD-box protein that activates transcription, modulates RNA splicing and binds the nuclear pore complex. The life cycle of typical mRNA involves RNA processing and translation after ribosome scanning of a relatively unstructured 5' untranslated region (UTR). The precursor RNAs of retroviruses and selected cellular genes harbor a complex 5' UTR and use a yet-to-be-identified host post-transcriptional effector to stimulate efficient translation. Here we show that RHA recognizes a structured 5'-terminal post-transcriptional control element (PCE) of a retrovirus and the JUND growth-control gene. RHA interacts with PCE RNA in the nucleus and cytoplasm, facilitates polyribosome association and is necessary for its efficient translation. Our results reveal a previously unidentified role for RHA in translation and implicate RHA as an integrative effector in the continuum of gene expression from transcription to translation.
Collapse
Affiliation(s)
- Tiffiney Roberts Hartman
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210 USA
| | | | | | | | | | | |
Collapse
|
34
|
Yilmaz A, Fernandez S, Lairmore MD, Boris-Lawrie K. Coordinate enhancement of transgene transcription and translation in a lentiviral vector. Retrovirology 2006; 3:13. [PMID: 16480517 PMCID: PMC1388234 DOI: 10.1186/1742-4690-3-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Accepted: 02/15/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Coordinate enhancement of transgene transcription and translation would be a potent approach to significantly improve protein output in a broad array of viral vectors and nonviral expression systems. Many vector transgenes are complementary DNA (cDNA). The lack of splicing can significantly reduce the efficiency of their translation. Some retroviruses contain a 5' terminal post-transcriptional control element (PCE) that facilitates translation of unspliced mRNA. Here we evaluated the potential for spleen necrosis virus PCE to stimulate protein production from HIV-1 based lentiviral vector by: 1) improving translation of the internal transgene transcript; and 2) functionally synergizing with a transcriptional enhancer to achieve coordinate increases in RNA synthesis and translation. RESULTS Derivatives of HIV-1 SIN self-inactivating lentiviral vector were created that contain PCE and cytomegalovirus immediate early enhancer (CMV IE). Results from transfected cells and four different transduced cell types indicate that: 1) PCE enhanced transgene protein synthesis; 2) transcription from the internal promoter is enhanced by CMV IE; 3) PCE and CMV IE functioned synergistically to significantly increase transgene protein yield; 4) the magnitude of translation enhancement by PCE was similar in transfected and transduced cells; 5) differences were observed in steady state level of PCE vector RNA in transfected and transduced cells; 6) the lower steady state was not attributable to reduced RNA stability, but to lower cytoplasmic accumulation in transduced cells. CONCLUSION PCE is a useful tool to improve post-transcriptional expression of lentiviral vector transgene. Coordinate enhancement of transcription and translation is conferred by the combination of PCE with CMV IE transcriptional enhancer and increased protein yield up to 11 to 17-fold in transfected cells. The incorporation of the vector provirus into chromatin correlated with reduced cytoplasmic accumulation of PCE transgene RNA. We speculate that epigenetic modulation of promoter activity altered cotranscriptional recruitment of RNA processing factors and reduced the availability of fully processed transcript or the efficiency of export from the nucleus. Our results provide an example of the dynamic interplay between the transcription and post-transcription steps of gene expression and document that introduction of heterologous gene expression signals can yield disparate effects in transfected versus transduced cells.
Collapse
Affiliation(s)
- Alper Yilmaz
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210, USA
- Molecular, Cellular & Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Soledad Fernandez
- Center for Biostatistics, The Ohio State University, Columbus, OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Michael D Lairmore
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210, USA
- Department of Molecular Virology, Immunology & Medical Genetics, The Ohio State University, Columbus, OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
- Molecular, Cellular & Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Kathleen Boris-Lawrie
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210, USA
- Department of Molecular Virology, Immunology & Medical Genetics, The Ohio State University, Columbus, OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
- Molecular, Cellular & Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
35
|
Altanerova V, Holicova D, Kucerova L, Altaner C, Lairmore MD, Boris-Lawrie K. Long-term infection with retroviral structural gene vector provides protection against bovine leukemia virus disease in rabbits. Virology 2005; 329:434-9. [PMID: 15518821 PMCID: PMC3049242 DOI: 10.1016/j.virol.2004.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Revised: 08/19/2004] [Accepted: 09/03/2004] [Indexed: 01/19/2023]
Abstract
Bovine leukemia virus (BLV) infection of rabbits is a tractable model system to evaluate vaccination strategies against lymphotropic retroviruses, which represent a global human health problem. We have previously developed genetically simplified BLV structural gene vector (SGV) that replicates BLV structural and enzymatic genes independently of BLV regulatory and accessory genes. Results of a 20-month study in a rabbit model demonstrated that BLV SGV induces an antiviral immunological response and lacks pathogenicity. Here, these chronically infected-BLV SGV rabbits are assessed in a proof-of-principle study of preventative vaccination against challenge with pathogenic BLV. This study commences 24 months after BLV SGV inoculation and proceeds for an additional 20 months. The previously characterized BLV SGV rabbits and age-matched control rabbits were challenged with 1 x 10(8) fetal lamb kidney/BLV producer cells. BLV SGV rabbits seroconverted upon BLV challenge, but did not progress to BLV infection nor clinical disease. By contrast, naive rabbits became infected and succumbed to lymphotropic disease. Our findings provide proof-of-principle that chronic infection with BLV SGV induces protection against BLV infection. The data indicate that SGV based on HTLV or HIV is a promising approach against lymphotropic disease by human retroviruses.
Collapse
Affiliation(s)
- Veronika Altanerova
- Cancer Research Institute, Slovak Academy of Sciences, SK-833 91 Bratislava, Slovakia
- Centre of Excellence of SAS Bratislava Molecular Medicine, Slovak Academy of Sciences, SK-833 91 Bratislava, Slovakia
| | - Dana Holicova
- Cancer Research Institute, Slovak Academy of Sciences, SK-833 91 Bratislava, Slovakia
| | - Lucia Kucerova
- Cancer Research Institute, Slovak Academy of Sciences, SK-833 91 Bratislava, Slovakia
| | - Cestmir Altaner
- Cancer Research Institute, Slovak Academy of Sciences, SK-833 91 Bratislava, Slovakia
- Centre of Excellence of SAS Bratislava Molecular Medicine, Slovak Academy of Sciences, SK-833 91 Bratislava, Slovakia
| | - Michael D. Lairmore
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, 43210-1093, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210-1093, USA
- Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH, 43210-1093, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210-1093, USA
| | - Kathleen Boris-Lawrie
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, 43210-1093, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210-1093, USA
- Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH, 43210-1093, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210-1093, USA
- Corresponding author. Center for Retrovirus Research, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210-1093. Fax: +1 614 292 6473.
| |
Collapse
|
36
|
Goodrich A, Parveen Z, Dornburg R, Schnell MJ, Pomerantz RJ. Spliced spleen necrosis virus vector RNA is not encapsidated: implications for retroviral replication and vector design. Mol Ther 2004; 9:557-65. [PMID: 15093186 DOI: 10.1016/j.ymthe.2004.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Accepted: 01/10/2004] [Indexed: 11/18/2022] Open
Abstract
RNA splicing is a complex event in the retroviral life cycle and can involve multiple steps, as well as cis-acting sequences, to maintain a proper balance of spliced and unspliced viral RNA for translation and encapsidation. The retroviral RNA can be processed by cellular machinery and enables the removal of intronic sequences. We aimed to utilize the removal of a synthetic intron for targeted gene expression. To analyze intron removal and gene expression, we have constructed a novel self-inactivating gene-activating (SIGA) vector for potential universal gene therapy. New vectors for gene therapy are necessary for safe and effective gene delivery in humans. The SIGA vector is derived from spleen necrosis virus (SNV), which is an avian reticuloendotheliosis virus. The vector was designed so that expression of a therapeutic gene is blocked in helper cell lines due to an intervening sequence containing various blocks in transcription and translation. However, after one round of retroviral replication, the intervening sequence should be removed by the cellular machinery and the therapeutic gene will be selectively expressed in target cells. Our studies show that the intervening sequence in SIGA vector RNA is partially spliced. However, spliced vector RNA was not transduced to target cells. Previous studies showed that an infectious SNV vector enabled transduction of spliced RNA. However, yet-undefined differences in infectious and replication-deficient retroviral replication may have an effect on the transduction of spliced RNA. The results of this study present key information on spliced RNA and its encapsidation, as well as data for the construction of a new generation of SNV-derived retroviral vectors.
Collapse
Affiliation(s)
- Adrienne Goodrich
- Center for Human Virology and Biodefense, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
37
|
Parveen Z, Mukhtar M, Goodrich A, Acheampong E, Dornburg R, Pomerantz RJ. Cross-packaging of human immunodeficiency virus type 1 vector RNA by spleen necrosis virus proteins: construction of a new generation of spleen necrosis virus-derived retroviral vectors. J Virol 2004; 78:6480-8. [PMID: 15163741 PMCID: PMC416548 DOI: 10.1128/jvi.78.12.6480-6488.2004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The ability of the nonlentiviral retrovirus spleen necrosis virus (SNV) to cross-package the genomic RNA of the distantly related human immunodeficiency virus type 1 (HIV-1) and vice versa was analyzed. Such a model may allow us to further study HIV-1 replication and pathogenesis, as well as to develop safe gene therapy vectors. Our results suggest that SNV can cross-package HIV-1 genomic RNA but with lower efficiency than HIV-1 proteins. However, HIV-1-specific proteins were unable to cross-package SNV RNA. We also constructed SNV-based gag-pol chimeric variants by replacing the SNV integrase with the HIV-1 integrase, based on multiple sequence alignments and domain analyses. These analyses revealed that there are conserved domains in all retroviral integrase open reading frames (orf), despite the divergence in the primary sequences. The transcomplementation assays suggested that SNV proteins recognized one of the chimeric variants. This demonstrated that HIV-1 integrase is functional in the SNV gag-pol orf with a lower transduction efficiency, utilizing homologous (SNV) RNA, as well as the heterologous vector RNA of HIV-1. These findings suggest that homology in the conserved sequences of the integrase protein may not be fully competent in the replacement of protein(s) from one retrovirus to another, and there are likely several other factors involved in each of the steps related to replication, integration, and infection. However, further studies to dissect the gag-pol region will be critical for understanding the mechanisms involved in the cleavage of reverse transcriptase, RNase H, and integrase. These studies should provide further insight into the design and development of novel molecular approaches to block HIV-1 replication and to construct a new generation of SNV-based vectors.
Collapse
Affiliation(s)
- Zahida Parveen
- Dorrance H. Hamilton Laboratories, Center for Human Virology and Biodefense, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, 1020 Locust St., Ste. 329, Philadelphia, PA 19107, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Hull S, Boris-Lawrie K. Analysis of synergy between divergent simple retrovirus posttranscriptional control elements. Virology 2003; 317:146-54. [PMID: 14675633 PMCID: PMC4862584 DOI: 10.1016/j.virol.2003.08.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mason-Pfizer monkey virus (MPMV) and spleen necrosis virus (SNV) are simple retroviruses that encode functionally divergent cis-acting RNA elements that use cellular proteins to facilitate nuclear export and translation of unspliced viral RNA. We tested the hypothesis that a combination of MPMV constitutive transport element (CTE) and SNV or MPMV RU5 translational enhancer on unspliced HIV-1 gag-pol reporter RNA synergistically augments Gag production. Results of transient transfection assays validate the hypothesis of synergistic augmentation in COS cells, but not 293 cells. RNA targeting experiments verified comparable responsiveness to CTE-interactive proteins tethered by RRE and RevM10Tap in COS and 293 cells. Exogeneous expression of Tap and NXT1 was necessary and sufficient to rescue Gag augmentation in 293 cells. Overexpression experiments established that CTE, but not RU5, confers the responsiveness to Tap and NXT1 and that CTE in conjunction with Tap and NXT1 conferred a 30-fold increase in translational utilization of the cytoplasmic RNA. Our results uncovered a previously unidentified role of CTE in conjunction with Tap and NXT1 in commitment to efficient cytoplasmic RNA utilization.
Collapse
Affiliation(s)
- Stacey Hull
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210-1093, USA
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210-1093, USA
| | - Kathleen Boris-Lawrie
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210-1093, USA
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210-1093, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210-1093, USA
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210-1093, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210-1093, USA
- Corresponding author. Fax: 1-614-292-6473. (K. Boris-Lawrie)
| |
Collapse
|
39
|
Roberts TM, Boris-Lawrie K. Primary sequence and secondary structure motifs in spleen necrosis virus RU5 confer translational utilization of unspliced human immunodeficiency virus type 1 reporter RNA. J Virol 2003; 77:11973-84. [PMID: 14581534 PMCID: PMC254288 DOI: 10.1128/jvi.77.22.11973-11984.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 5' long terminal repeat (LTR) of spleen necrosis virus (SNV) contains a unique posttranscriptional control element that facilitates Rev/Rev-responsive element-independent expression of unspliced human immunodeficiency virus type 1 (HIV-1) gag reporter RNA. HIV-1 Gag expression is eliminated when SNV LTR is repositioned to the 3' untranslated region or when the RU5 region is positioned in the antisense orientation. RU5 corresponds to the 5' RNA terminus, and results presented here indicate that Gag production is sustained upon introduction of transcribed spacers that reposition SNV RU5 35 to 200 nucleotides downstream. Concordant results of deletion and point mutagenesis identified two functionally redundant and synergistic motifs (designated A and C) that are necessary and sufficient for SNV RU5 activity. Enzymatic analysis of SNV RU5 RNA structure determined that A and C correspond to stem-loop structures. Quantitative RNA and protein analysis of A and C mutants revealed that the structural integrity of A and C is necessary for protein production, and loss of function correlates with little change in steady-state level, splicing efficiency, or cytoplasmic accumulation of HIV-1 gag reporter RNA. Instead, the structural mutations eliminate cytoplasmic utilization as an mRNA template for Gag protein production. Point mutations of unpaired loop-and-bulge nucleotides that maintain the structure of A eliminate activity. The results show that the unpaired UUGU loop and U-rich bulges function together and are candidate SNV RU5 binding sites for the host cell protein(s) that directs cytoplasmic utilization of unspliced HIV-1 reporter RNA.
Collapse
Affiliation(s)
- Tiffiney M Roberts
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio 43210-1093, USA
| | | |
Collapse
|
40
|
Wilson CA, Laeeq S, Ritzhaupt A, Colon-Moran W, Yoshimura FK. Sequence analysis of porcine endogenous retrovirus long terminal repeats and identification of transcriptional regulatory regions. J Virol 2003; 77:142-9. [PMID: 12477819 PMCID: PMC140639 DOI: 10.1128/jvi.77.1.142-149.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Porcine cells express endogenous retroviruses, some of which are infectious for human cells. To better understand the replication of these porcine endogenous retroviruses (PERVs) in cells of different types and animal species, we have performed studies of the long terminal repeat (LTR) region of known gammaretroviral isolates of PERV. Nucleotide sequence determination of the LTRs of PERV-NIH, PERV-C, PERV-A, and PERV-B revealed that the PERV-A and PERV-B LTRs are identical, whereas the PERV-NIH and PERV-C LTRs have significant sequence differences in the U3 region between each other and with the LTRs of PERV-A and PERV-B. Sequence analysis revealed a similar organization of basal promoter elements compared with other gammaretroviruses, including the presence of enhancer-like repeat elements. The sequences of the PERV-NIH and PERV-C repeat element are similar to that of the PERV-A and PERV-B element with some differences in the organization of these repeats. The sequence of the PERV enhancer-like repeat elements differs significantly from those of other known gammaretroviral enhancers. The transcriptional activities of the PERV-A, PERV-B, and PERV-C LTRs relative to each other were similar in different cell types of different animal species as determined by transient expression assays. On the other hand, the PERV-NIH LTR was considerably weaker in these cell types. The transcriptional activity of all PERV LTRs was considerably lower in porcine ST-IOWA cells than in cell lines from other species. Deletion mutant analysis of the LTR of a PERV-NIH isolate identified regions that transactivate or repress transcription depending on the cell type.
Collapse
Affiliation(s)
- Carolyn A Wilson
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
41
|
Hull S, Boris-Lawrie K. RU5 of Mason-Pfizer monkey virus 5' long terminal repeat enhances cytoplasmic expression of human immunodeficiency virus type 1 gag-pol and nonviral reporter RNA. J Virol 2002; 76:10211-8. [PMID: 12239296 PMCID: PMC136562 DOI: 10.1128/jvi.76.20.10211-10218.2002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retroviruses utilize an unspliced version of their primary transcription product as an RNA template for synthesis of viral Gag and Pol structural and enzymatic proteins. Cytoplasmic expression of the gag-pol RNA is achieved despite the lack of intron removal and the presence of a long and highly structured 5' untranslated region that inhibits efficient ribosome scanning. In this study, we have identified for the first time that the 5' long terminal repeat (LTR) of Mason-Pfizer monkey virus (MPMV) facilitates Rev/Rev-responsive element-independent expression of HIV-1 gag-pol reporter RNA. The MPMV RU5 region of the LTR is necessary and directs functional interaction with cellular posttranscriptional modulators present in human 293 and monkey COS cells but not in quail QT-6 cells and does not require any viral protein. Deletion of MPMV RU5 decreases the abundance of spliced mRNA but has little effect on cytoplasmic accumulation of unspliced gag-pol RNA despite complete elimination of detectable Gag protein production. MPMV RU5 also exerts a positive effect on the cytoplasmic expression of intronless luc RNA, and ribosomal profile analysis demonstrates that MPMV RU5 directs subcellular localization of the luc transcript to polyribosomes. Our findings have a number of similarities with those of reports on 5' terminal posttranscriptional control elements in spleen necrosis virus and human foamy virus RNA and support the model that divergent retroviruses share 5' terminal RNA elements that interact with host proteins to program retroviral RNA for productive cytoplasmic expression.
Collapse
Affiliation(s)
- Stacey Hull
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210-1093, USA
| | | |
Collapse
|
42
|
Nègre D, Duisit G, Mangeot PE, Moullier P, Darlix JL, Cosset FL. Lentiviral vectors derived from simian immunodeficiency virus. Curr Top Microbiol Immunol 2002; 261:53-74. [PMID: 11892253 DOI: 10.1007/978-3-642-56114-6_3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- D Nègre
- Laboratoire de Vectorologie Rétrovirale et Thérapie Génique, INSERM U412, Ecole Normale Supérieure de Lyon, IFR 74, 46 Allée d'Italie, 69364 Lyon, France
| | | | | | | | | | | |
Collapse
|
43
|
Dangel AW, Hull S, Roberts TM, Boris-Lawrie K. Nuclear interactions are necessary for translational enhancement by spleen necrosis virus RU5. J Virol 2002; 76:3292-300. [PMID: 11884554 PMCID: PMC136029 DOI: 10.1128/jvi.76.7.3292-3300.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 5' long terminal repeat of spleen necrosis virus (SNV) facilitates Rev/Rev-responsive element (RRE)-independent expression of intron-containing human immunodeficiency virus type 1 (HIV-1) gag. The SNV RU5 region, which corresponds to the 165-nucleotide 5' RNA terminus, functions in a position- and orientation-dependent manner to enhance polysome association of intron-containing HIV-1 gag RNA and also nonviral luc RNA. Evidence is mounting that association with nuclear factors during intron removal licenses mRNAs for nuclear export, efficient translation, and nonsense-mediated decay. This project addressed the relationship between the nuclear export pathway of SNV RU5-reporter RNA and translational enhancement. Results of RNA transfection experiments suggest that cytoplasmic proteins are insufficient for SNV RU5 translational enhancement of gag or luc RNA. Reporter gene assays, leptomycin B (LMB) sensitivity experiments, and RNase protection assays indicate that RU5 gag RNA accesses a nuclear export pathway that is distinct from the LMB-inhibited leucine-rich nuclear export sequence-dependent CRM1 pathway, which is used by the HIV-1 RRE. As a unique tool with which to investigate the relationship between different RNA trafficking routes and translational enhancement, SNV RU5 and Rev/RRE were combined on a single gag RNA. We observed a less-than-synergistic effect on cytoplasmic mRNA utilization. Instead, Rev/RRE diverts RU5 gag RNA to the CRM1-dependent, LMB-inhibited pathway and abrogates translational enhancement by SNV RU5. Our study is the first to show that a nuclear factor(s) directs SNV RU5-containing RNAs to a distinct export pathway that is not inhibited by LMB and programs the intron-containing transcript for translational enhancement.
Collapse
Affiliation(s)
- Andrew W Dangel
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio 43210-1093, USA
| | | | | | | |
Collapse
|
44
|
Mautino MR, Morgan RA. Gene therapy of HIV-1 infection using lentiviral vectors expressing anti-HIV-1 genes. AIDS Patient Care STDS 2002; 16:11-26. [PMID: 11839215 DOI: 10.1089/108729102753429361] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The use of vectors based on primate lentiviruses for gene therapy of human immunodeficiency virus type 1 (HIV-1) infection has many potential advantages over the previous murine retroviral vectors used for delivery of genes that inhibit replication of HIV-1. First, lentiviral vectors have the ability to transduce dividing and nondividing cells that constitute the targets of HIV-1 infection such as resting T cells, dendritic cells, and macrophages. Lentiviral vectors can also transfer genes to hematopoietic stem cells with a superior gene transfer efficiency and without affecting the repopulating capacity of these cells. Second, these vectors could be potentially mobilized in vivo by the wild-type virus to secondary target cells, thus expanding the protection to previously untransduced cells. And finally, lentiviral vector backbones have the ability to block HIV-1 replication by several mechanisms that include sequestration of the regulatory proteins Tat and Rev, competition for packaging into virions, and by inhibition of reverse transcription in heterodimeric virions with possible generation of nonfunctional recombinants between the vector and viral genomes. The inhibitory ability of lentiviral vectors can be further increased by expression of anti-HIV-1 genes. In this case, the lentiviral vector packaging system has to be modified to become resistant to the anti-HIV-1 genes expressed by the vector in order to avoid self-inhibition of the vector packaging system during vector production. This review focuses on the use of lentiviral vectors as the main agents to mediate inhibition of HIV-1 replication and discusses the different genetic intervention strategies for gene therapy of HIV-1 infection.
Collapse
Affiliation(s)
- Mario R Mautino
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
45
|
Russell RA, Zeng Y, Erlwein O, Cullen BR, McClure MO. The R region found in the human foamy virus long terminal repeat is critical for both Gag and Pol protein expression. J Virol 2001; 75:6817-24. [PMID: 11435560 PMCID: PMC114408 DOI: 10.1128/jvi.75.15.6817-6824.2001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been suggested that sequences located within the 5' noncoding region of human foamy virus (HFV) are critical for expression of the viral Gag and Pol structural proteins. Here, we identify a discrete approximately 151-nucleotide sequence, located within the R region of the HFV long terminal repeat, that activates HFV Gag and Pol expression when present in the 5' noncoding region but that is inactive when inverted or when placed in the 3' noncoding region. Sequences that are critical for the expression of both Gag and Pol include not only the 5' splice site positioned at +51 in the R region, which is used to generate the spliced pol mRNA, but also intronic R sequences located well 3' to this splice site. Analysis of total cellular gag and pol mRNA expression demonstrates that deletion of the R region has little effect on gag mRNA levels but that R deletions that would be predicted to leave the pol 5' splice site intact nevertheless inhibit the production of the spliced pol mRNA. Gag expression can be largely rescued by the introduction of an intron into the 5' noncoding sequence in place of the R region but not by an intron or any one of several distinct retroviral nuclear RNA export sequences inserted into the mRNA 3' noncoding sequence. Neither the R element nor the introduced 5' intron markedly affects the cytoplasmic level of HFV gag mRNA. The poor translational utilization of these cytoplasmic mRNAs when the R region is not present in cis also extended to a cat indicator gene linked to an internal ribosome entry site introduced into the 3' noncoding region. Together these data imply that the HFV R region acts in the nucleus to modify the cytoplasmic fate of target HFV mRNA. The close similarity between the role of the HFV R region revealed in this study and previous data (M. Butsch, S. Hull, Y. Wang, T. M. Roberts, and K. Boris-Lawrie, J. Virol. 73:4847--4855, 1999) demonstrating a critical role for the R region in activating gene expression in the unrelated retrovirus spleen necrosis virus suggests that several distinct retrovirus families may utilize a common yet novel mechanism for the posttranscriptional activation of viral structural protein expression.
Collapse
Affiliation(s)
- R A Russell
- Jefferiss Research Trust Laboratories, Wright-Fleming Institute, Imperial College School of Medicine at St. Mary's, London W2 1PG, United Kingdom
| | | | | | | | | |
Collapse
|
46
|
Klimatcheva E, Planelles V, Day SL, Fulreader F, Renda MJ, Rosenblatt J. Defective lentiviral vectors are efficiently trafficked by HIV-1 and inhibit its replication. Mol Ther 2001; 3:928-39. [PMID: 11407907 DOI: 10.1006/mthe.2001.0344] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gene therapy against HIV infection should involve vector-mediated delivery of anti-HIV therapeutic genes into T-lymphocytes and macrophages or, alternatively, hematopoietic progenitors. Transduction of mature cells with defective vectors would have limited success because the vector would disappear with cell turnover. However, if a vector could be trafficked by wild-type HIV, initial transduction of a majority of the population would not be required, as the vector would be able to spread. We describe HIV-1-based lentiviral vectors that are efficiently packaged and trafficked by HIV-1, allowing a small number of cells initially transduced to spread the vector within a nontransduced cell population. We examined whether the presence or absence of the rev gene and the Rev-responsive element (RRE) would have a noticeable effect on the ability of lentiviral vectors to be trafficked and to inhibit HIV-1 replication. We found that replacement of rev/RRE with a constitutive transport element from Mason-Pfizer monkey virus had no apparent effect on trafficking and did not change the intrinsic inhibitory abilities of the vectors. We also constructed a rev/RRE-independent HIV-1-derived vector carrying a trans-dominant negative mutant of HIV-1 Rev, RevM10. This vector was less efficiently trafficked by HIV-1 and, despite the presence of an anti-HIV-1 gene, RevM10, was less efficient at inhibiting HIV-1 replication when introduced into a target T-cell population.
Collapse
Affiliation(s)
- E Klimatcheva
- Department of Medicine, University of Rochester Cancer Center, 601 Elmwood Avenue, Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|
47
|
Pandya S, Boris-Lawrie K, Leung NJ, Akkina R, Planelles V. Development of an Rev-independent, minimal simian immunodeficiency virus-derived vector system. Hum Gene Ther 2001; 12:847-57. [PMID: 11339901 DOI: 10.1089/104303401750148847] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Lentiviral vectors are attractive candidates for gene therapy because of their ability to integrate into nondividing cells. To date, conventional HIV-1-based vectors can be produced at higher titers, but concerns regarding their safety for human use exist because of the possibility of recombination leading to production of infectious virions with pathogenic potential. Development of lentivirus vectors based on nonhuman lentiviruses constitutes an active area of research. We described a novel HIV-SIV hybrid vector system in which an HIV-1-derived transfer vector is encapsidated by SIVmac1A11 core particles and pseudotyped with VSV glycoprotein G. In an effort to further develop this vector system, we modified the packaging plasmid by deletion of the SIV accessory genes. Specifically, versions of the packaging plasmid (SIVpack) lacking vif, vpr, vpx, and/or nef were constructed. Our results indicate that, as with HIV-1-based packaging plasmids, deletion of accessory genes has no significant effect on transduction in either dividing or nondividing cells. The SIV packaging plasmid was also modified with regard to the requirement for RRE and rev. Deletion of the RRE and rev from SIVpack led to dramatic loss of transduction ability. Introduction of the 5' LTR from the spleen necrosis virus to packaging plasmids lacking RRE/Rev was then sufficient to fully restore vector titer. A minimal SIV transfer vector was also developed, which does not require RRE/Rev and exhibits no reduction in transduction efficiency in two packaging systems. The SIV-based vector system described here recapitulates the biological properties of minimal HIV-1-derived systems and is expected to provide an added level of safety for human gene transfer. We suggest that the SIV-derived vector system will also be useful to deliver anti-HIV-1 gene therapy reagents that would inhibit an HIV-1-derived vector.
Collapse
Affiliation(s)
- S Pandya
- Department of Medicine, University of Rochester Cancer Center, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
48
|
Guan Y, Whitney JB, Detorio M, Wainberg MA. Construction and in vitro properties of a series of attenuated simian immunodeficiency viruses with all accessory genes deleted. J Virol 2001; 75:4056-67. [PMID: 11287555 PMCID: PMC114151 DOI: 10.1128/jvi.75.9.4056-4067.2001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have generated simplified simian immunodeficiency virus (SIV) constructs lacking the nef, vpr, vpx, vif, tat, and rev genes (Delta6 viruses). To accomplish this, we began with an infectious molecular clone of SIV, i.e. SIVmac239, and replaced the deleted segments with three alternate elements: (i) a constitutive transport element (CTE) derived from simian retrovirus type 1 to replace the Rev/Rev-responsive element (RRE) posttranscriptional regulation system, (ii) a chimeric SIV long terminal repeat (LTR) containing a cytomegalovirus (CMV) promoter to augment transcription and virus production, and (iii) an internal ribosome entry site (IRES) upstream of the env gene to ensure expression of envelope proteins. This simplified construct (Delta6CCI) efficiently produced all viral structural proteins, and mature virions possessed morphology typical of wild-type virus. It was also observed that deletion of the six accessory genes dramatically affected both the specificity and efficiency of packaging of SIV genomic RNA into virions. However, the presence of both the CTE and the chimeric CMV promoter increased the specificity of viral genomic RNA packaging, while the presence of the IRES augmented packaging efficiency. The Delta6CCI virus was extremely attenuated in replication capacity yet retained infectiousness for CEMx174 and MT4 cells. We also generated constructs that retained either the rev gene or both the rev and vif genes and showed that these viruses, when complemented by the CMV promoter, i.e., Delta5-CMV and Delta4-CMV, were able to replicate in MT4 cells with moderate and high-level efficiency, respectively. Long-term culture of each of these constructs over 6 months revealed no potential for reversion. We hope to shortly evaluate these simplified constructs in rhesus macaques to determine their long-term safety as well as ability to induce protective immune responsiveness as proviral DNA vaccines.
Collapse
Affiliation(s)
- Y Guan
- McGill University AIDS Centre, Lady Davis Institute-Jewish General Hospital, Montreal, Quebec, Canada H3T 1E2
| | | | | | | |
Collapse
|
49
|
Dang Q, Hu WS. Effects of homology length in the repeat region on minus-strand DNA transfer and retroviral replication. J Virol 2001; 75:809-20. [PMID: 11134294 PMCID: PMC113977 DOI: 10.1128/jvi.75.2.809-820.2001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Homology between the two repeat (R) regions in the retroviral genome mediates minus-strand DNA transfer during reverse transcription. We sought to define the effects of R homology lengths on minus-strand DNA transfer. We generated five murine leukemia virus (MLV)-based vectors that contained identical sequences but different lengths of the 3' R (3, 6, 12, 24 and 69 nucleotides [nt]); 69 nt is the full-length MLV R. After one round of replication, viral titers from the vector with a full-length downstream R were compared with viral titers generated from the other four vectors with reduced R lengths. Viral titers generated from vectors with R lengths reduced to one-third (24 nt) or one-sixth (12 nt) that of the wild type were not significantly affected; however, viral titers generated from vectors with only 3- or 6-nt homology in the R region were significantly lower. Because expression and packaging of the RNA were similar among all the vectors, the differences in the viral titers most likely reflected the impact of the homology lengths on the efficiency of minus-strand DNA transfer. The molecular nature of minus-strand DNA transfer was characterized in 63 proviruses. Precise R-to-R transfer was observed in most proviruses generated from vectors with 12-, 24-, or 69-nt homology in R, whereas aberrant transfers were predominantly used to generate proviruses from vectors with 3- or 6-nt homology. Reverse transcription using RNA transcribed from an upstream promoter, termed read-in RNA transcripts, resulted in most of the aberrant transfers. These data demonstrate that minus-strand DNA transfer is homology driven and a minimum homology length is required for accurate and efficient minus-strand DNA transfer.
Collapse
Affiliation(s)
- Q Dang
- Department of Microbiology and Immunology, School of Medicine, West Virginia University, Morgantown, West Virginia 26506, USA
| | | |
Collapse
|
50
|
Butsch M, Boris-Lawrie K. Translation is not required To generate virion precursor RNA in human immunodeficiency virus type 1-infected T cells. J Virol 2000; 74:11531-7. [PMID: 11090150 PMCID: PMC112433 DOI: 10.1128/jvi.74.24.11531-11537.2000] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The retroviral primary transcription product is a multifunctional RNA that is utilized as pre-mRNA, mRNA, and genomic RNA. The relationship between human immunodeficiency virus type 1 (HIV-1) unspliced transcripts used as mRNA for viral protein synthesis and as virion precursor RNA (vpRNA) for encapsidation remains an important question. We developed a biochemical assay to evaluate the hypothesis that prior utilization as mRNA template for protein synthesis is necessary to generate vpRNA. HIV-1-infected T cells were treated with translation inhibitors under conditions that maintain virus production. Immunoprecipitation of newly synthesized HIV-1 Gag protein revealed that de novo translation is not necessary to sustain assembly, release, or processing of Gag structural protein. Both newly synthesized protein and steady-state Gag are competent for assembly, and the extracellular accumulation of Gag is proportional to the intracellular abundance of Gag. As early as 2 h after transcription, newly synthesized RNA is detectable in cell-free virions and encapsidation is sustained upon inhibition of host cell translation. Results of both [(3)H]uridine incorporation assays and HIV-1-specific RNase protection assays (RPAs) indicate that translation inhibition reduces the absolute amounts of both cytoplasmic and virion-associated RNA. Evaluation of encapsidation efficiency by RPA revealed that the cytoplasmic availability of vpRNA is increased, indicating that HIV-1 unspliced mRNA can be rerouted to function as vpRNA. Our data contrast with results from the HIV-2 and murine leukemia virus systems and indicate that HIV-1 unspliced RNA constitutes a single functional pool that can function interchangeably as mRNA and as vpRNA.
Collapse
Affiliation(s)
- M Butsch
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio 43210-1093, USA
| | | |
Collapse
|