1
|
Shahriari S, Ghildyal R. The actin-binding protein palladin associates with the respiratory syncytial virus matrix protein. J Virol 2024; 98:e0143524. [PMID: 39360826 PMCID: PMC11494977 DOI: 10.1128/jvi.01435-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/09/2024] [Indexed: 10/23/2024] Open
Abstract
The respiratory syncytial virus (RSV) matrix (M) protein plays an important role in infection as it can interact with viral components as well as the host cell actin microfilaments. The M-actin interaction may play a role in facilitating the transportation of virion components to the apical surface, where RSV is released. We show that M protein's association with actin is facilitated by palladin, an actin-binding protein. Cells were infected with RSV or transfected to express full-length M as a green fluorescent protein (GFP)-tagged protein, followed by removal of nuclear and cytosolic proteins to enrich for cytoskeleton and its associated proteins. M protein was present in inclusion bodies tethered to microfilaments in infected cells. In transfected cells, GFP-M was presented close to microfilaments, without association, suggesting the possible involvement of an additional protein in this interaction. As palladin can bind to proteins that also bind actin, we investigated its interaction with M. Cells were co-transfected to express GFP-M and palladin as an mCherry fluorescent-tagged protein, followed by cytoskeleton enrichment. M and palladin were observed to colocalize towards microfilaments, suggesting that palladin is involved in the M-actin interaction. In co-immunoprecipitation studies, M was found to associate with two isoforms of palladin, of 140 and 37 kDa. Interestingly, siRNA downregulation of palladin resulted in reduced titer of released RSV, while cell associated RSV titer increased, suggesting a role for palladin in virus release. Together, our data show that the M-actin interaction mediated by palladin is important for RSV budding and release.IMPORTANCERespiratory syncytial virus is responsible for severe lower respiratory tract infections in young children under 5 years old, the elderly, and the immunosuppressed. The interaction of the respiratory syncytial virus matrix protein with the host actin cytoskeleton is important in infection but has not been investigated in depth. In this study, we show that the respiratory syncytial virus matrix protein associates with actin microfilaments and the actin-binding protein palladin, suggesting a role for palladin in respiratory syncytial virus release. This study provides new insight into the role of the actin cytoskeleton in respiratory syncytial virus infection, a key host-RSV interaction in assembly. Understanding the mechanism by which the RSV M protein and actin interact will ultimately provide a basis for the development of therapeutics targeted at RSV infections.
Collapse
Affiliation(s)
- Shadi Shahriari
- Biomedical Research Cluster, Faculty of Science and Technology, University of Canberra, Canberra, Australia
| | - Reena Ghildyal
- Biomedical Research Cluster, Faculty of Science and Technology, University of Canberra, Canberra, Australia
| |
Collapse
|
2
|
Faghirabadi F, Abuei H, Malekzadeh MH, Mojiri A, Farhadi A. Intracellular delivery of antiviral shRNA using penetratin-based complexes effectively inhibits respiratory syncytial virus replication and host cell apoptosis. Virol J 2024; 21:235. [PMID: 39350281 PMCID: PMC11443668 DOI: 10.1186/s12985-024-02519-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Cell-penetrating peptides (CPPs) are effective for delivering therapeutic molecules with minimal toxicity. This study focuses on the use of penetratin, a well-characterized CPP, to deliver a DNA vector encoding short hairpin RNA (shRNA) targeting the respiratory syncytial virus (RSV) F gene into infected cells. RSV is known to cause severe lower respiratory infections in infants and poses significant risks to immunocompromised individuals and the elderly. We evaluated the antiviral efficacy of the penetratin-shRNA complex by comparing its ability to inhibit RSV replication and induce apoptosis with ribavirin treatment. METHODS Penetratin-shRNA complexes were prepared at different ratios and analyzed using gel retardation assays, dynamic light scattering, and zeta potential measurements. The complexes were tested in HEp-2 and A549 cells for transfection efficiency, cytotoxicity, viral load, and apoptosis using plaque assays, real-time reverse transcription-polymerase chain reaction (RT-PCR), DNA fragmentation, propidium iodide staining, and caspase 3/7 activation assays. RESULTS The gel shift assay determined that a 20:1 CPP-to-shRNA ratio was optimal for effective complexation, resulting in particles with a size of 164 nm and a zeta potential of 8.7 mV. Transfection efficiency in HEp-2 cells was highest at this ratio, reaching up to 93%. The penetratin-shRNA complex effectively silenced the RSV F gene, reduced viral titers, and decreased DNA fragmentation and apoptosis in infected cells. CONCLUSION Penetratin effectively delivers shRNA targeting the RSV F gene, significantly reducing viral load and preventing apoptosis without toxicity. This approach surpasses Lipofectamine and shows potential for future therapeutic interventions, especially when combined with ribavirin, against RSV infection.
Collapse
Affiliation(s)
- Faezeh Faghirabadi
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haniyeh Abuei
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Malekzadeh
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Anahita Mojiri
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, 77030, TX, USA
| | - Ali Farhadi
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Chen L, Zhang J, Xu W, Chen J, Tang Y, Xiong S, Li Y, Zhang H, Li M, Liu Z. Cholesterol-rich lysosomes induced by respiratory syncytial virus promote viral replication by blocking autophagy flux. Nat Commun 2024; 15:6311. [PMID: 39060258 PMCID: PMC11282085 DOI: 10.1038/s41467-024-50711-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Respiratory syncytial virus (RSV) hijacks cholesterol or autophagy pathways to facilitate optimal replication. However, our understanding of the associated molecular mechanisms remains limited. Here, we show that RSV infection blocks cholesterol transport from lysosomes to the endoplasmic reticulum by downregulating the activity of lysosomal acid lipase, activates the SREBP2-LDLR axis, and promotes uptake and accumulation of exogenous cholesterol in lysosomes. High cholesterol levels impair the VAP-A-binding activity of ORP1L and promote the recruitment of dynein-dynactin, PLEKHM1, or HOPS VPS39 to Rab7-RILP, thereby facilitating minus-end transport of autophagosomes and autolysosome formation. Acidification inhibition and dysfunction of cholesterol-rich lysosomes impair autophagy flux by inhibiting autolysosome degradation, which promotes the accumulation of RSV fusion protein. RSV-F storage is nearly abolished after cholesterol depletion or knockdown of LDLR. Most importantly, the knockout of LDLR effectively inhibits RSV infection in vivo. These findings elucidate the molecular mechanism of how RSV co-regulates lysosomal cholesterol reprogramming and autophagy and reveal LDLR as a novel target for anti-RSV drug development.
Collapse
Affiliation(s)
- Lifeng Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment & College of Pharmacy, Jinan University, Guangzhou, China
- Department of Dermatology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jingjing Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment & College of Pharmacy, Jinan University, Guangzhou, China
| | - Weibin Xu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment & College of Pharmacy, Jinan University, Guangzhou, China
| | - Jiayi Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment & College of Pharmacy, Jinan University, Guangzhou, China
| | - Yujun Tang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment & College of Pharmacy, Jinan University, Guangzhou, China
| | - Si Xiong
- State Key Laboratory of Bioactive Molecules and Druggability Assessment & College of Pharmacy, Jinan University, Guangzhou, China
| | - Yaolan Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment & College of Pharmacy, Jinan University, Guangzhou, China
| | - Hong Zhang
- Department of Dermatology, The First Affiliated Hospital, Jinan University, Guangzhou, China.
| | - Manmei Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment & College of Pharmacy, Jinan University, Guangzhou, China.
| | - Zhong Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment & College of Pharmacy, Jinan University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Bioengineering Medicine & College of Life Science and Technology, Jinan University, Guangzhou, China.
| |
Collapse
|
4
|
Sake SM, Zhang X, Rajak MK, Urbanek-Quaing M, Carpentier A, Gunesch AP, Grethe C, Matthaei A, Rückert J, Galloux M, Larcher T, Le Goffic R, Hontonnou F, Chatterjee AK, Johnson K, Morwood K, Rox K, Elgaher WAM, Huang J, Wetzke M, Hansen G, Fischer N, Eléouët JF, Rameix-Welti MA, Hirsch AKH, Herold E, Empting M, Lauber C, Schulz TF, Krey T, Haid S, Pietschmann T. Drug repurposing screen identifies lonafarnib as respiratory syncytial virus fusion protein inhibitor. Nat Commun 2024; 15:1173. [PMID: 38332002 PMCID: PMC10853176 DOI: 10.1038/s41467-024-45241-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/16/2024] [Indexed: 02/10/2024] Open
Abstract
Respiratory syncytial virus (RSV) is a common cause of acute lower respiratory tract infection in infants, older adults and the immunocompromised. Effective directly acting antivirals are not yet available for clinical use. To address this, we screen the ReFRAME drug-repurposing library consisting of 12,000 small molecules against RSV. We identify 21 primary candidates including RSV F and N protein inhibitors, five HSP90 and four IMPDH inhibitors. We select lonafarnib, a licensed farnesyltransferase inhibitor, and phase III candidate for hepatitis delta virus (HDV) therapy, for further follow-up. Dose-response analyses and plaque assays confirm the antiviral activity (IC50: 10-118 nM). Passaging of RSV with lonafarnib selects for phenotypic resistance and fixation of mutations in the RSV fusion protein (T335I and T400A). Lentiviral pseudotypes programmed with variant RSV fusion proteins confirm that lonafarnib inhibits RSV cell entry and that these mutations confer lonafarnib resistance. Surface plasmon resonance reveals RSV fusion protein binding of lonafarnib and co-crystallography identifies the lonafarnib binding site within RSV F. Oral administration of lonafarnib dose-dependently reduces RSV virus load in a murine infection model using female mice. Collectively, this work provides an overview of RSV drug repurposing candidates and establishes lonafarnib as a bona fide fusion protein inhibitor.
Collapse
Affiliation(s)
- Svenja M Sake
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Xiaoyu Zhang
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Manoj Kumar Rajak
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Luebeck, Luebeck, Germany
| | - Melanie Urbanek-Quaing
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Arnaud Carpentier
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Antonia P Gunesch
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Christina Grethe
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Alina Matthaei
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Jessica Rückert
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Marie Galloux
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | | | - Ronan Le Goffic
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | | | | | | | | | - Katharina Rox
- Department of Chemical Biology, Helmholtz Center of Infection Research, Braunschweig, Germany
- German Centre for Infection Research, Partner site Braunschweig-Hannover, Braunschweig, Germany
| | - Walid A M Elgaher
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-HZI, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Jiabin Huang
- Insitute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Wetzke
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Partner Site Hannover, BREATH, Hannover, Germany
| | - Gesine Hansen
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Partner Site Hannover, BREATH, Hannover, Germany
| | - Nicole Fischer
- Insitute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Marie-Anne Rameix-Welti
- Université Paris-Saclay, Université de Versailles St. Quentin; UMR 1173 (2I), INSERM; Assistance Publique des Hôpitaux de Paris, Hôpital Ambroise Paré, Laboratoire de Microbiologie, DMU15, Versailles, France
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-HZI, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Helmholtz International Lab for Anti-infectives, HZI, Braunschweig, Germany
| | - Elisabeth Herold
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Luebeck, Luebeck, Germany
| | - Martin Empting
- German Centre for Infection Research, Partner site Braunschweig-Hannover, Braunschweig, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-HZI, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Chris Lauber
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Thomas F Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Partner site Braunschweig-Hannover, Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Thomas Krey
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Luebeck, Luebeck, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Luebeck-Borstel-Riems, Luebeck, Germany
| | - Sibylle Haid
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.
| | - Thomas Pietschmann
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.
- German Centre for Infection Research, Partner site Braunschweig-Hannover, Braunschweig, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
- Helmholtz International Lab for Anti-infectives, HZI, Braunschweig, Germany.
| |
Collapse
|
5
|
Carriazo S, Abasheva D, Duarte D, Ortiz A, Sanchez-Niño MD. SCARF Genes in COVID-19 and Kidney Disease: A Path to Comorbidity-Specific Therapies. Int J Mol Sci 2023; 24:16078. [PMID: 38003268 PMCID: PMC10671056 DOI: 10.3390/ijms242216078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which has killed ~7 million persons worldwide. Chronic kidney disease (CKD) is the most common risk factor for severe COVID-19 and one that most increases the risk of COVID-19-related death. Moreover, CKD increases the risk of acute kidney injury (AKI), and COVID-19 patients with AKI are at an increased risk of death. However, the molecular basis underlying this risk has not been well characterized. CKD patients are at increased risk of death from multiple infections, to which immune deficiency in non-specific host defenses may contribute. However, COVID-19-associated AKI has specific molecular features and CKD modulates the local (kidney) and systemic (lung, aorta) expression of host genes encoding coronavirus-associated receptors and factors (SCARFs), which SARS-CoV-2 hijacks to enter cells and replicate. We review the interaction between kidney disease and COVID-19, including the over 200 host genes that may influence the severity of COVID-19, and provide evidence suggesting that kidney disease may modulate the expression of SCARF genes and other key host genes involved in an effective adaptive defense against coronaviruses. Given the poor response of certain CKD populations (e.g., kidney transplant recipients) to SARS-CoV-2 vaccines and their suboptimal outcomes when infected, we propose a research agenda focusing on CKD to develop the concept of comorbidity-specific targeted therapeutic approaches to SARS-CoV-2 infection or to future coronavirus infections.
Collapse
Affiliation(s)
- Sol Carriazo
- Division of Nephrology, Department of Medicine, University Health Network, University of Toronto, Toronto, ON M5G 2C4, Canada;
- RICORS2040, 28049 Madrid, Spain;
| | - Daria Abasheva
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28049 Madrid, Spain; (D.A.); (D.D.)
| | - Deborah Duarte
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28049 Madrid, Spain; (D.A.); (D.D.)
| | - Alberto Ortiz
- RICORS2040, 28049 Madrid, Spain;
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28049 Madrid, Spain; (D.A.); (D.D.)
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- RICORS2040, 28049 Madrid, Spain;
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28049 Madrid, Spain; (D.A.); (D.D.)
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
6
|
PIK-24 Inhibits RSV-Induced Syncytium Formation via Direct Interaction with the p85α Subunit of PI3K. J Virol 2022; 96:e0145322. [PMID: 36416586 PMCID: PMC9749462 DOI: 10.1128/jvi.01453-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Phosphoinositide-3 kinase (PI3K) signaling regulates many cellular processes, including cell survival, differentiation, proliferation, cytoskeleton reorganization, and apoptosis. The actin cytoskeleton regulated by PI3K signaling plays an important role in plasma membrane rearrangement. Currently, it is known that respiratory syncytial virus (RSV) infection requires PI3K signaling. However, the regulatory pattern or corresponding molecular mechanism of PI3K signaling on cell-to-cell fusion during syncytium formation remains unclear. This study synthesized a novel PI3K inhibitor PIK-24 designed with PI3K as a target and used it as a molecular probe to investigate the involvement of PI3K signaling in syncytium formation during RSV infection. The results of the antiviral mechanism revealed that syncytium formation required PI3K signaling to activate RHO family GTPases Cdc42, to upregulate the inactive form of cofilin, and to increase the amount of F-actin in cells, thereby causing actin cytoskeleton reorganization and membrane fusion between adjacent cells. PIK-24 treatment significantly abolished the generation of these events by blocking the activation of PI3K signaling. Moreover, PIK-24 had an obvious binding activity with the p85α regulatory subunit of PI3K. The anti-RSV effect similar to PIK-24 was obtained after knockdown of p85α in vitro or knockout of p85α in vivo, suggesting that PIK-24 inhibited RSV infection by targeting PI3K p85α. Most importantly, PIK-24 exerted a potent anti-RSV activity, and its antiviral effect was stronger than that of the classic PI3K inhibitor LY294002, PI-103, and broad-spectrum antiviral drug ribavirin. Thus, PIK-24 has the potential to be developed into a novel anti-RSV agent targeting cellular PI3K signaling. IMPORTANCE PI3K protein has many functions and regulates various cellular processes. As an important regulatory subunit of PI3K, p85α can regulate the activity of PI3K signaling. Therefore, it serves as the key target for virus infection. Indeed, p85α-regulated PI3K signaling facilitates various intracellular plasma membrane rearrangement events by modulating the actin cytoskeleton, which may be critical for RSV-induced syncytium formation. In this study, we show that a novel PI3K inhibitor inhibits RSV-induced PI3K signaling activation and actin cytoskeleton reorganization by targeting the p85α protein, thereby inhibiting syncytium formation and exerting a potent antiviral effect. Respiratory syncytial virus (RSV) is one of the most common respiratory pathogens, causing enormous morbidity, mortality, and economic burden. Currently, no effective antiviral drugs or vaccines exist for RSV infection. This study contributes to understanding the molecular mechanism by which PI3K signaling regulates syncytium formation and provides a leading compound for anti-RSV infection drug development.
Collapse
|
7
|
Paluck A, Osan J, Hollingsworth L, Talukdar SN, Saegh AA, Mehedi M. Role of ARP2/3 Complex-Driven Actin Polymerization in RSV Infection. Pathogens 2021; 11:26. [PMID: 35055974 PMCID: PMC8781601 DOI: 10.3390/pathogens11010026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 01/30/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the leading viral agent causing bronchiolitis and pneumonia in children under five years old worldwide. The RSV infection cycle starts with macropinocytosis-based entry into the host airway epithelial cell membrane, followed by virus transcription, replication, assembly, budding, and spread. It is not surprising that the host actin cytoskeleton contributes to different stages of the RSV replication cycle. RSV modulates actin-related protein 2/3 (ARP2/3) complex-driven actin polymerization for a robust filopodia induction on the infected lung epithelial A549 cells, which contributes to the virus's budding, and cell-to-cell spread. Thus, a comprehensive understanding of RSV-induced cytoskeletal modulation and its role in lung pathobiology may identify novel intervention strategies. This review will focus on the role of the ARP2/3 complex in RSV's pathogenesis and possible therapeutic targets to the ARP2/3 complex for RSV.
Collapse
Affiliation(s)
- Autumn Paluck
- School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (A.P.); (J.O.); (L.H.); (S.N.T.); (A.A.S.)
| | - Jaspreet Osan
- School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (A.P.); (J.O.); (L.H.); (S.N.T.); (A.A.S.)
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lauren Hollingsworth
- School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (A.P.); (J.O.); (L.H.); (S.N.T.); (A.A.S.)
| | - Sattya Narayan Talukdar
- School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (A.P.); (J.O.); (L.H.); (S.N.T.); (A.A.S.)
| | - Ali Al Saegh
- School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (A.P.); (J.O.); (L.H.); (S.N.T.); (A.A.S.)
| | - Masfique Mehedi
- School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (A.P.); (J.O.); (L.H.); (S.N.T.); (A.A.S.)
| |
Collapse
|
8
|
Porcine Sapovirus-Induced Tight Junction Dissociation via Activation of RhoA/ROCK/MLC Signaling Pathway. J Virol 2021; 95:JVI.00051-21. [PMID: 33692204 PMCID: PMC8139687 DOI: 10.1128/jvi.00051-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tight junctions (TJs) are a major barrier and also an important portal of entry for different pathogens. Porcine sapovirus (PSaV) induces early disruption of the TJ integrity of polarized LLC-PK cells, allowing it to bind to the buried occludin co-receptors hidden beneath the TJs on the basolateral surface. However, the signaling pathways involved in the PSaV-induced TJ dissociation are not yet known. Here, we found that the RhoA/ROCK/MLC signaling pathway was activated in polarized LLC-PK cells during the early infection of PSaV Cowden strain in the presence of bile acid. Specific inhibitors of RhoA, ROCK, and MLC restored PSaV-induced reduction of transepithelial resistance, increase of paracellular flux, intracellular translocation of occludin, and lateral membrane lipid diffusion. Moreover, each inhibitor significantly reduced PSaV replication, as evidenced by a reduction in viral protein synthesis, genome copy number, and progeny viruses. The PKC/MLCK and RhoA/ROCK/MYPT signaling pathways, known to dissociate TJs, were not activated during early PSaV infection. Among the above signaling pathways, the RhoA/ROCK/MLC signaling pathway was only activated by PSaV in the absence of bile acid, and specific inhibitors of this signaling pathway restored early TJ dissociation. Our findings demonstrate that PSaV binding to cell surface receptors activates the RhoA/ROCK/MLC signaling pathway, which in turn disrupts TJ integrity via the contraction of the actomyosin ring. Our study contributes to understanding how PSaV enters the cells and will aid in developing efficient and affordable therapies against PSaV and other calicivirus infections.IMPORTANCEPorcine sapovirus (PSaV), one of the most important enteric pathogens, is known to disrupt tight junction (TJ) integrity to expose its buried co-receptor occludin in polarized LLC-PK cells. However, the cellular signaling pathways that facilitate TJ dissociation are not yet completely understood. Here, we demonstrate that early infection of PSaV in polarized LLC-PK cells in either the presence or absence of bile acids activates the RhoA/ROCK/MLC signaling pathway, whose inhibitors reverse the early PSaV infection-induced early dissociation of TJs and reduce PSaV replication. However, early PSaV infection did not activate the PKC/MLCK and RhoA/ROCK/MYPT signaling pathways, which are also known to dissociate TJs. This study provides a better understanding of the mechanism involved in early PSaV infection-induced disruption of TJs, which is important for controlling or preventing PSaV and other calicivirus infections.
Collapse
|
9
|
Abstract
Viruses utilize a number of host factors in order to carry out their replication cycles. Influenza A virus (IAV) and human respiratory syncytial virus (RSV) both infect the tissues of the respiratory tract, and as such we hypothesize that they might require similar host factors. Several published genome-wide screens have identified putative IAV host factors; however, there is significant discordance between their hits. In order to build on this work, we integrated a variety of "OMICS" data sources using two complementary network analyses, yielding 51 genes enriched for both IAV and RSV replication. We designed a targeted small interfering RNA (siRNA)-based assay to screen these genes against IAV under robust conditions and identified 13 genes supported by two IAV subtypes in both primary and transformed human lung cells. One of these hits, RNA binding motif 14 (RBM14), was validated as a required host factor and furthermore was shown to relocalize to the nucleolus upon IAV infection but not with other viruses. Additionally, the IAV NS1 protein is both necessary and sufficient for RBM14 relocalization, and relocalization also requires the double-stranded RNA (dsRNA) binding capacity of NS1. This work reports the discovery of a new host requirement for IAV replication and exposes a novel example of interplay between IAV NS1 and the host protein, RBM14.IMPORTANCE Influenza A virus (IAV) and respiratory syncytial virus (RSV) present major global disease burdens. There are high economic costs associated with morbidity as well as significant mortality rates, especially in developing countries, in children, and in the elderly. There are currently limited therapeutic options for these viruses, which underscores the need for novel research into virus biology that may lead to the discovery of new therapeutic approaches. This work extends existing research into host factors involved in virus replication and explores the interaction between IAV and one such host factor, RBM14. Further study to fully characterize this interaction may elucidate novel mechanisms used by the virus during its replication cycle and open new avenues for understanding virus biology.
Collapse
|
10
|
Rotavirus-Induced Early Activation of the RhoA/ROCK/MLC Signaling Pathway Mediates the Disruption of Tight Junctions in Polarized MDCK Cells. Sci Rep 2018; 8:13931. [PMID: 30224682 PMCID: PMC6141481 DOI: 10.1038/s41598-018-32352-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 09/06/2018] [Indexed: 02/02/2023] Open
Abstract
Intestinal epithelial tight junctions (TJ) are a major barrier restricting the entry of various harmful factors including pathogens; however, they also represent an important entry portal for pathogens. Although the rotavirus-induced early disruption of TJ integrity and targeting of TJ proteins as coreceptors are well-defined, the precise molecular mechanisms involved remain unknown. In the present study, infection of polarized MDCK cells with the species A rotavirus (RVA) strains human DS-1 and bovine NCDV induced a redistribution of TJ proteins into the cytoplasm, a reversible decrease in transepithelial resistance, and an increase in paracellular permeability. RhoA/ROCK/MLC signaling was identified as activated at an early stage of infection, while inhibition of this pathway prevented the rotavirus-induced early disruption of TJ integrity and alteration of TJ protein distribution. Activation of pMYPT, PKC, or MLCK, which are known to participate in TJ dissociation, was not observed in MDCK cells infected with either rotavirus strain. Our data demonstrated that binding of RVA virions or cogent VP8* proteins to cellular receptors activates RhoA/ROCK/MLC signaling, which alters TJ protein distribution and disrupts TJ integrity via contraction of the perijunctional actomyosin ring, facilitating virion access to coreceptors and entry into cells.
Collapse
|
11
|
Openshaw PJ, Chiu C, Culley FJ, Johansson C. Protective and Harmful Immunity to RSV Infection. Annu Rev Immunol 2017; 35:501-532. [DOI: 10.1146/annurev-immunol-051116-052206] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Peter J.M. Openshaw
- Respiratory Infections, National Heart and Lung Institute, Imperial College London, London W2 1PG, United Kingdom
| | - Chris Chiu
- Respiratory Infections, National Heart and Lung Institute, Imperial College London, London W2 1PG, United Kingdom
| | - Fiona J. Culley
- Respiratory Infections, National Heart and Lung Institute, Imperial College London, London W2 1PG, United Kingdom
| | - Cecilia Johansson
- Respiratory Infections, National Heart and Lung Institute, Imperial College London, London W2 1PG, United Kingdom
| |
Collapse
|
12
|
Bakre A, Wu W, Hiscox J, Spann K, Teng MN, Tripp RA. Human respiratory syncytial virus non-structural protein NS1 modifies miR-24 expression via transforming growth factor-β. J Gen Virol 2016; 96:3179-3191. [PMID: 26253191 DOI: 10.1099/jgv.0.000261] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Human respiratory syncytial virus (RSV) is a major health challenge in the young and elderly owing to the lack of a safe and effective vaccine and proven antiviral drugs. Understanding the mechanisms by which viral genes and proteins modulate the host response to infection is critical for identifying novel disease intervention strategies. In this study, the RSV non-structural protein NS1 was shown to suppress miR-24 expression during infection. Lack of NS1 was linked to increased expression of miR-24, whilst NS1 overexpression suppressed miR-24 expression. NS1 was found to induce Kruppel-like factor 6 (KLF6), a transcription factor that positively regulates the transforming growth factor (TGF)-b pathway to induce cell cycle arrest. Silencing of KLF6 led to increased miR-24 expression via downregulation of TGF-β. Treatment with exogenous TGF-β suppressed miR-24 expression and induced KLF6. Confocal microscopy showed co-localization of KLF6 and RSV NS1. These findings indicated that RSV NS1 interacts with KLF6 and modulates miR-24 expression and TGF-β, which facilitates RSV replication.
Collapse
Affiliation(s)
- Abhijeet Bakre
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Weining Wu
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Julian Hiscox
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Kirsten Spann
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Michael N Teng
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Ralph A Tripp
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| |
Collapse
|
13
|
Ortega-Berlanga B, Musiychuk K, Shoji Y, Chichester JA, Yusibov V, Patiño-Rodríguez O, Noyola DE, Alpuche-Solís ÁG. Engineering and expression of a RhoA peptide against respiratory syncytial virus infection in plants. PLANTA 2016; 243:451-8. [PMID: 26474991 DOI: 10.1007/s00425-015-2416-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/23/2015] [Indexed: 06/05/2023]
Abstract
MAIN CONCLUSION : A RhoA-derived peptide fused to carrier molecules from plants showed enhanced biological activity of in vitro assays against respiratory syncytial virus compared to the RhoA peptide alone or the synthetic RhoA peptide. A RhoA-derived peptide has been reported for over a decade as a potential inhibitor of respiratory syncytial virus (RSV) infection both in vitro and in vivo and is anticipated to be a promising alternative to monoclonal antibody-based therapy against RSV infection. However, there are several challenges to furthering development of this antiviral peptide, including improvement in the peptide’s bioavailability, development of an efficient delivery system and identification of a cost-effective production platform. In this study, we have engineered a RhoA peptide as a genetic fusion to two carrier molecules, either lichenase (LicKM) or the coat protein (CP) of Alfalfa mosaic virus. These constructs were introduced into Nicotiana benthamiana plants using a tobacco mosaic virus-based expression vector and targets purified. The results demonstrated that the RhoA peptide fusion proteins were efficiently expressed in N. benthamiana plants, and that two of the resulting fusion proteins, RhoA-LicKM and RhoA2-FL-d25CP, inhibited RSV growth in vitro by 50 and 80 %, respectively. These data indicate the feasibility of transient expression of this biologically active antiviral RhoA peptide in plants and the advantage of using a carrier molecule to enhance target expression and efficacy.
Collapse
|
14
|
Abstract
Human respiratory syncytial virus (RSV) is understood to be a significant human pathogen in infants, young children, and the elderly and the immunocompromised. Over the last decade many important mechanisms contributing to RSV infection, replication, and disease pathogenesis have been revealed; however, there is still insufficient knowledge which has in part hampered vaccine development. Considerable information is accumulating regarding how RSV proteins modulate molecular signaling and immune responses to infection. Understanding how RSV interacts with its host is crucial to facilitate the development of safe and effective vaccines and therapeutic treatments.In this chapter, we provide a brief introduction into RSV replication, pathogenesis, and host immune response, and summarize the state of RSV vaccine and antiviral compounds in clinical stages of development. This chapter frames features of this book and the molecular methods used for understanding RSV interaction with the host.
Collapse
Affiliation(s)
- Patricia A Jorquera
- Department of Infectious Diseases, College of Veterinary Medicine, Animal Health Research Center, University of Georgia, 111 Carlton Street, Athens, GA, 30602, USA
| | - Lydia Anderson
- Department of Infectious Diseases, College of Veterinary Medicine, Animal Health Research Center, University of Georgia, 111 Carlton Street, Athens, GA, 30602, USA
| | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, Animal Health Research Center, University of Georgia, 111 Carlton Street, Athens, GA, 30602, USA.
| |
Collapse
|
15
|
Effect of amino acid sequence variations at position 149 on the fusogenic activity of the subtype B avian metapneumovirus fusion protein. Arch Virol 2015; 160:2445-53. [PMID: 26175070 DOI: 10.1007/s00705-015-2524-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/03/2015] [Indexed: 10/23/2022]
Abstract
The entry of enveloped viruses into host cells requires the fusion of viral and cell membranes. These membrane fusion reactions are mediated by virus-encoded glycoproteins. In the case of avian metapneumovirus (aMPV), the fusion (F) protein alone can mediate virus entry and induce syncytium formation in vitro. To investigate the fusogenic activity of the aMPV F protein, we compared the fusogenic activities of three subtypes of aMPV F proteins using a TCSD50 assay developed in this study. Interestingly, we found that the F protein of aMPV subtype B (aMPV/B) strain VCO3/60616 (aMPV/vB) was hyperfusogenic when compared with F proteins of aMPV/B strain aMPV/f (aMPV/fB), aMPV subtype A (aMPV/A), and aMPV subtype C (aMPV/C). We then further demonstrated that the amino acid (aa) residue 149F contributed to the hyperfusogenic activity of the aMPV/vB F protein. Moreover, we revealed that residue 149F had no effect on the fusogenic activities of aMPV/A, aMPV/C, and human metapneumovirus (hMPV) F proteins. Collectively, we provide the first evidence that the amino acid at position 149 affects the fusogenic activity of the aMPV/B F protein, and our findings will provide new insights into the fusogenic mechanism of this protein.
Collapse
|
16
|
Simões EAF, DeVincenzo JP, Boeckh M, Bont L, Crowe JE, Griffiths P, Hayden FG, Hodinka RL, Smyth RL, Spencer K, Thirstrup S, Walsh EE, Whitley RJ. Challenges and opportunities in developing respiratory syncytial virus therapeutics. J Infect Dis 2015; 211 Suppl 1:S1-S20. [PMID: 25713060 PMCID: PMC4345819 DOI: 10.1093/infdis/jiu828] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Two meetings, one sponsored by the Wellcome Trust in 2012 and the other by the Global Virology Foundation in 2013, assembled academic, public health and pharmaceutical industry experts to assess the challenges and opportunities for developing antivirals for the treatment of respiratory syncytial virus (RSV) infections. The practicalities of clinical trials and establishing reliable outcome measures in different target groups were discussed in the context of the regulatory pathways that could accelerate the translation of promising compounds into licensed agents. RSV drug development is hampered by the perceptions of a relatively small and fragmented market that may discourage major pharmaceutical company investment. Conversely, the public health need is far too large for RSV to be designated an orphan or neglected disease. Recent advances in understanding RSV epidemiology, improved point-of-care diagnostics, and identification of candidate antiviral drugs argue that the major obstacles to drug development can and will be overcome. Further progress will depend on studies of disease pathogenesis and knowledge provided from controlled clinical trials of these new therapeutic agents. The use of combinations of inhibitors that have different mechanisms of action may be necessary to increase antiviral potency and reduce the risk of resistance emergence.
Collapse
Affiliation(s)
- Eric A F Simões
- Department of Pediatrics, University of Colorado School of Medicine, and Colorado School of Public Health, Aurora
| | - John P DeVincenzo
- Department of Pediatrics, Division of Infectious Diseases, and Department of Microbiology, Immunology and Biochemistry, University of Tennessee School of Medicine Children's Foundation Research Institute at Le Bonheur Children's Hospital, Memphis
| | - Michael Boeckh
- Fred Hutchinson Cancer Research Center and University of Washington, Seattle
| | - Louis Bont
- Department of Pediatrics and Laboratory of Translational Immunology, University Medical Center Utrecht, The Netherlands
| | - James E Crowe
- Department of Pediatrics and the Vanderbilt Vaccine Center, Vanderbilt University, Nashville, Tennessee
| | - Paul Griffiths
- Centre for Virology, University College London Medical School
| | - Frederick G Hayden
- Department of Medicine, University of Virginia School of Medicine, Charlottesville
| | - Richard L Hodinka
- Clinical Virology Laboratory, Children's Hospital of Philadelphia, Pennsylvania
| | - Rosalind L Smyth
- Department of Pediatrics, University College London Institute of Child Health
| | | | - Steffen Thirstrup
- NDA Advisory Services Ltd, Leatherhead, United Kingdom Department of Health Sciences, University of Copenhagen, Denmark
| | - Edward E Walsh
- Department of Medicine, Infectious Diseases Unit, Rochester General Hospital, New York
| | - Richard J Whitley
- Department of Pediatrics, Microbiology, Medicine and Neurosurgery, University of Alabama at Birmingham
| |
Collapse
|
17
|
Gordts SC, Renders M, Férir G, Huskens D, Van Damme EJM, Peumans W, Balzarini J, Schols D. NICTABA and UDA, two GlcNAc-binding lectins with unique antiviral activity profiles. J Antimicrob Chemother 2015; 70:1674-85. [PMID: 25700718 PMCID: PMC7537945 DOI: 10.1093/jac/dkv034] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/18/2015] [Accepted: 01/25/2015] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES This study aimed to assess the antiviral properties of a unique lectin (NICTABA) produced by the tobacco plant, Nicotiana tabacum. METHODS Cellular assays were used to investigate the antiviral activity of NICTABA and Urtica dioica agglutinin (UDA). Surface plasmon resonance (SPR) studies were performed to study the sugar specificity and the interactions of both lectins with the envelope glycoproteins of HIV-1. RESULTS The N-acetyl-d-glucosamine (GlcNAc)-binding lectins exhibited broad-spectrum activity against several families of enveloped viruses including influenza A/B, Dengue virus type 2, herpes simplex virus types 1 and 2 and HIV-1/2. The IC50 of NICTABA for various HIV-1 strains, clinical isolates and HIV-2 assessed in PBMCs ranged from 5 to 30 nM. Furthermore, NICTABA inhibited syncytium formation between persistently HIV-1-infected T cells and uninfected CD4+ T lymphocytes and prevented DC-SIGN-mediated HIV-1 transmission to CD4+ target T lymphocytes. However, unlike many other antiviral carbohydrate-binding agents (CBAs) described so far, NICTABA did not block HIV-1 capture to DC-SIGN+ cells and it did not interfere with the binding of the human monoclonal antibody 2G12 to gp120. SPR studies with HIV-1 envelope glycoproteins showed that the affinity of NICTABA for gp120 and gp41 was in the low nanomolar range. The specific binding of NICTABA to gp120 could be prevented in the presence of a GlcNAc trimer, but not in the presence of mannose trimers. NICTABA displayed no antiviral activity against non-enveloped viruses. CONCLUSIONS Since CBAs possess a high genetic barrier for the development of viral resistance and NICTABA shows a broad antiviral activity profile, this CBA may qualify as a potential antiviral candidate with a pleiotropic mode of action aimed at targeting the entry of enveloped viruses.
Collapse
Affiliation(s)
- Stephanie C Gordts
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Marleen Renders
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Geoffrey Férir
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Dana Huskens
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Els J M Van Damme
- Laboratory of Biochemistry and Glycobiology, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Willy Peumans
- Laboratory of Biochemistry and Glycobiology, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Jan Balzarini
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| |
Collapse
|
18
|
Peptide entry inhibitors of enveloped viruses: the importance of interfacial hydrophobicity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2180-97. [PMID: 24780375 PMCID: PMC7094693 DOI: 10.1016/j.bbamem.2014.04.015] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/08/2014] [Accepted: 04/17/2014] [Indexed: 12/16/2022]
Abstract
There are many peptides known that inhibit the entry of enveloped viruses into cells, including one peptide that is successfully being used in the clinic as a drug. In this review, we discuss the discovery, antiviral activity and mechanism of action of such peptides. While peptide entry inhibitors have been discovered by a wide variety of approaches (structure-based, accidental, intentional, rational and brute force) we show here that they share a common physical chemical property: they are at least somewhat hydrophobic and/or amphipathic and have a propensity to interact with membrane interfaces. We propose that this propensity drives a shared mechanism of action for many peptide entry inhibitors, involving direct interactions with viral and cellular membranes, as well as interactions with the complex hydrophobic protein/lipid interfaces that are exposed, at least transiently, during virus-cell fusion. By interacting simultaneously with the membrane interfaces and other critical hydrophobic surfaces, we hypothesize that peptide entry inhibitors can act by changing the physical chemistry of the membranes, and the fusion protein interfaces bridging them, and by doing so interfere with the fusion of cellular and viral membranes. Based on this idea, we propose that an approach that focuses on the interfacial hydrophobicity of putative entry inhibitors could lead to the efficient discovery of novel, broad-spectrum viral entry inhibitors. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.
Collapse
|
19
|
Van den Broeke C, Jacob T, Favoreel HW. Rho'ing in and out of cells: viral interactions with Rho GTPase signaling. Small GTPases 2014; 5:e28318. [PMID: 24691164 DOI: 10.4161/sgtp.28318] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rho GTPases are key regulators of actin and microtubule dynamics and organization. Increasing evidence shows that many viruses have evolved diverse interactions with Rho GTPase signaling and manipulate them for their own benefit. In this review, we discuss how Rho GTPase signaling interferes with many steps in the viral replication cycle, especially entry, replication, and spread. Seen the diversity between viruses, it is not surprising that there is considerable variability in viral interactions with Rho GTPase signaling. However, several largely common effects on Rho GTPases and actin architecture and microtubule dynamics have been reported. For some of these processes, the molecular signaling and biological consequences are well documented while for others we just begin to understand them. A better knowledge and identification of common threads in the different viral interactions with Rho GTPase signaling and their ultimate consequences for virus and host may pave the way toward the development of new antiviral drugs that may target different viruses.
Collapse
Affiliation(s)
- Céline Van den Broeke
- Department of Virology, Parasitology, and Immunology; Faculty of Veterinary Medicine; Ghent University; Ghent, Belgium
| | - Thary Jacob
- Department of Virology, Parasitology, and Immunology; Faculty of Veterinary Medicine; Ghent University; Ghent, Belgium
| | - Herman W Favoreel
- Department of Virology, Parasitology, and Immunology; Faculty of Veterinary Medicine; Ghent University; Ghent, Belgium
| |
Collapse
|
20
|
Yeganeh B, Wiechec E, Ande SR, Sharma P, Moghadam AR, Post M, Freed DH, Hashemi M, Shojaei S, Zeki AA, Ghavami S. Targeting the mevalonate cascade as a new therapeutic approach in heart disease, cancer and pulmonary disease. Pharmacol Ther 2014; 143:87-110. [PMID: 24582968 DOI: 10.1016/j.pharmthera.2014.02.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 02/04/2014] [Indexed: 12/21/2022]
Abstract
The cholesterol biosynthesis pathway, also known as the mevalonate (MVA) pathway, is an essential cellular pathway that is involved in diverse cell functions. The enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase (HMGCR) is the rate-limiting step in cholesterol biosynthesis and catalyzes the conversion of HMG-CoA to MVA. Given its role in cholesterol and isoprenoid biosynthesis, the regulation of HMGCR has been intensely investigated. Because all cells require a steady supply of MVA, both the sterol (i.e. cholesterol) and non-sterol (i.e. isoprenoid) products of MVA metabolism exert coordinated feedback regulation on HMGCR through different mechanisms. The proper functioning of HMGCR as the proximal enzyme in the MVA pathway is essential under both normal physiologic conditions and in many diseases given its role in cell cycle pathways and cell proliferation, cholesterol biosynthesis and metabolism, cell cytoskeletal dynamics and stability, cell membrane structure and fluidity, mitochondrial function, proliferation, and cell fate. The blockbuster statin drugs ('statins') directly bind to and inhibit HMGCR, and their use for the past thirty years has revolutionized the treatment of hypercholesterolemia and cardiovascular diseases, in particular coronary heart disease. Initially thought to exert their effects through cholesterol reduction, recent evidence indicates that statins also have pleiotropic immunomodulatory properties independent of cholesterol lowering. In this review we will focus on the therapeutic applications and mechanisms involved in the MVA cascade including Rho GTPase and Rho kinase (ROCK) signaling, statin inhibition of HMGCR, geranylgeranyltransferase (GGTase) inhibition, and farnesyltransferase (FTase) inhibition in cardiovascular disease, pulmonary diseases (e.g. asthma and chronic obstructive pulmonary disease (COPD)), and cancer.
Collapse
Affiliation(s)
- Behzad Yeganeh
- Hospital for Sick Children Research Institute, Department of Physiology & Experimental Medicine, University of Toronto, Toronto, Canada
| | - Emilia Wiechec
- Dept. Clinical & Experimental Medicine, Division of Cell Biology & Integrative Regenerative Med. Center (IGEN), Linköping University, Sweden
| | - Sudharsana R Ande
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Pawan Sharma
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Faculty of Medicine, University of Calgary, 4C46 HRIC, 3280 Hospital Drive NW, Calgary, Alberta, Canada
| | - Adel Rezaei Moghadam
- Scientific Association of Veterinary Medicine, Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran; Young Researchers and Elite Club, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| | - Martin Post
- Hospital for Sick Children Research Institute, Department of Physiology & Experimental Medicine, University of Toronto, Toronto, Canada
| | - Darren H Freed
- Department of Physiology, St. Boniface Research Centre, University of Manitoba, Winnipeg, Canada
| | - Mohammad Hashemi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Shahla Shojaei
- Department of Biochemistry, Recombinant Protein Laboratory, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir A Zeki
- U.C. Davis, School of Medicine, U.C. Davis Medical Center, Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Center for Comparative Respiratory Biology & Medicine, Davis, CA, USA.
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, St. Boniface Research Centre, Manitoba Institute of Child Health, Biology of Breathing Theme, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
21
|
Douglas JL. In search of a small-molecule inhibitor for respiratory syncytial virus. Expert Rev Anti Infect Ther 2014; 2:625-39. [PMID: 15482225 DOI: 10.1586/14787210.2.4.625] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Respiratory syncytial virus has been an ongoing health problem for 50 years. Hospitalization rates due to virus-induced respiratory illness continue to be substantial for infants, small children, the elderly and the immunocompromised. The only currently available treatments are a broad-spectrum antiviral and two immunoprophylactic antibodies, all of which are reserved for high-risk patients. The combination of this limited therapeutic repertoire and the lack of a vaccine clearly demonstrates the need to continue the search for more efficacious and safe agents against respiratory syncytial virus. The following is a review on the current progress of that search.
Collapse
|
22
|
Tayyari F, Hegele RG. Identifying targets in the hunt for effective respiratory syncytial virus interventions. Expert Rev Respir Med 2012; 6:215-22. [PMID: 22455493 DOI: 10.1586/ers.12.8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Respiratory syncytial virus (RSV) is a major cause of human infections worldwide. There is currently no effective vaccine or antiviral therapy available for widespread clinical use; prophylaxis with anti-RSV antibodies is used in only a small percentage of potential recipients. New targets for effective RSV interventions are needed. Previous anti-RSV intervention strategies have focused on targeting aspects of the virus, an approach that can lead to the emergence of resistant RSV strains. Increased understanding of the biology of RSV-host interactions provides an alternative approach for identifying novel targets for RSV interventions that focus on host factors, and exploiting them with the aim to limit the incidence and severity of RSV infections.
Collapse
Affiliation(s)
- Farnoosh Tayyari
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Room 6231, Toronto, ON, M5S 1A8, Canada
| | | |
Collapse
|
23
|
Viral Pneumonia. KENDIG & CHERNICKÂS DISORDERS OF THE RESPIRATORY TRACT IN CHILDREN 2012. [PMCID: PMC7152221 DOI: 10.1016/b978-1-4377-1984-0.00028-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Asada M, Yoshida M, Hatachi Y, Sasaki T, Yasuda H, Deng X, Nishimura H, Kubo H, Nagatomi R, Yamaya M. l-carbocisteine inhibits respiratory syncytial virus infection in human tracheal epithelial cells. Respir Physiol Neurobiol 2011; 180:112-8. [PMID: 22080978 DOI: 10.1016/j.resp.2011.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 10/18/2011] [Accepted: 10/27/2011] [Indexed: 11/25/2022]
Abstract
To examine the effects of l-carbocisteine on airway infection with respiratory syncytial (RS) virus, human tracheal epithelial cells were pretreated with l-carbocisteine and infected with RS virus. Viral titer, virus RNA, and pro-inflammatory cytokine secretion, including interleukin (IL)-1 and IL-6, increased with time after infection. l-carbocisteine reduced the viral titer in the supernatant fluids, the amount of RS virus RNA, RS virus infection susceptibility, and the concentration of pro-inflammatory cytokines induced by virus infection. l-carbocisteine reduced the expression of intercellular adhesion molecule (ICAM)-1, an RS virus receptor, on the cells. However, l-carbocisteine had no effects on the expression of heparan sulfate, a glycosaminoglycan that binds to the RS virus attachment protein, or on the amount of intracellular activated-RhoA, isoform A of the Ras-homologous family, that binds to the RS virus fusion protein. These findings suggest that l-carbocisteine may inhibit RS virus infection by reducing the expression of ICAM-1. It may also modulate airway inflammation during RS virus infection.
Collapse
Affiliation(s)
- Masanori Asada
- Department of Infectious Disease, Sendai City Hospital, Sendai, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Takaguchi M, Takahashi T, Hosokawa C, Ueyama H, Fukushima K, Hayakawa T, Itoh K, Ikeda K, Suzuki T. A single amino acid mutation at position 170 of human parainfluenza virus type 1 fusion glycoprotein induces obvious syncytium formation and caspase-3-dependent cell death. ACTA ACUST UNITED AC 2010; 149:191-202. [DOI: 10.1093/jb/mvq139] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Recombinant respiratory syncytial virus F protein expression is hindered by inefficient nuclear export and mRNA processing. Virus Genes 2010; 40:212-21. [PMID: 20111897 DOI: 10.1007/s11262-010-0449-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 01/11/2010] [Indexed: 11/26/2022]
Abstract
Studies of the fusion activity of respiratory syncytial virus (RSV) F protein are significantly hindered by low recombinant expression levels. While infection produces F protein levels detectable by western blot, recombinant expression produces undetectable to low levels of F protein. Identifying the obstacles that hinder recombinant F protein expression may lead to improved expression and facilitate the study of F protein function. We hypothesized that nuclear localization and/or inefficient RNA polymerase II-mediated transcription contribute to poor recombinant F protein expression. This study shows a combination of stalled nuclear export, premature polyadenylation, and low mRNA abundance all contribute to low recombinant F protein expression levels. In addition, this study provides an expression optimization strategy that results in greater F protein expression levels than observed by codon-optimization of the F protein gene, which will be useful for future studies of F protein function.
Collapse
|
27
|
Natividad A, Hull J, Luoni G, Holland M, Rockett K, Joof H, Burton M, Mabey D, Kwiatkowski D, Bailey R. Innate immunity in ocular Chlamydia trachomatis infection: contribution of IL8 and CSF2 gene variants to risk of trachomatous scarring in Gambians. BMC MEDICAL GENETICS 2009; 10:138. [PMID: 20015396 PMCID: PMC2810293 DOI: 10.1186/1471-2350-10-138] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2009] [Accepted: 12/16/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND Trachoma, a chronic keratoconjunctivitis caused by Chlamydia trachomatis, is the world's commonest infectious cause of blindness. Blindness is due to progressive scarring of the conjunctiva (trachomatous scarring) leading to in-turning of eyelashes (trichiasis) and corneal opacification. We evaluated the contribution of genetic variation across the chemokine and cytokine clusters in chromosomes 4q and 5q31 respectively to risk of scarring trachoma and trichiasis in a large case-control association study in a Gambian population. METHODS Linkage disequilibrium (LD) mapping was used to investigate risk effects across the 4q and 5q31 cytokine clusters in relation to the risk of scarring sequelae of ocular Ct infection. Disease association and epistatic effects were assessed in a population based study of 651 case-control pairs by conditional logistic regression (CLR) analyses. RESULTS LD mapping suggested that genetic effects on risk within these regions mapped to the pro-inflammatory innate immune genes interleukin 8 (IL8) and granulocyte-macrophage colony stimulatory factor (CSF2) loci. The IL8-251 rare allele (IL8-251 TT) was associated with protection from scarring trachoma (OR = 0.29 p = 0.027). The intronic CSF2_27348 A allele in chromosome 5q31 was associated with dose dependent protection from trichiasis, with each copy of the allele reducing risk by 37% (p = 0.005). There was evidence of epistasis, with effects at IL8 and CSF2 loci interacting with those previously reported at the MMP9 locus, a gene acting downstream to IL8 and CSF2 in the inflammatory cascade. CONCLUSION innate immune response SNP-haplotypes are linked to ocular Ct sequelae. This work illustrates the first example of epistatic effects of two genes on trachoma.
Collapse
Affiliation(s)
- Angels Natividad
- London School of Hygiene and Tropical Medicine, London University, London, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Yunus AS, Jackson TP, Crisafi K, Burimski I, Kilgore NR, Zoumplis D, Allaway GP, Wild CT, Salzwedel K. Elevated temperature triggers human respiratory syncytial virus F protein six-helix bundle formation. Virology 2009; 396:226-37. [PMID: 19922971 DOI: 10.1016/j.virol.2009.10.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 08/11/2009] [Accepted: 10/26/2009] [Indexed: 10/20/2022]
Abstract
Human respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract infection in infants, immunocompromised patients, and the elderly. The RSV fusion (F) protein mediates fusion of the viral envelope with the target cell membrane during virus entry and is a primary target for antiviral drug and vaccine development. The F protein contains two heptad repeat regions, HR1 and HR2. Peptides corresponding to these regions form a six-helix bundle structure that is thought to play a critical role in membrane fusion. However, characterization of six-helix bundle formation in native RSV F protein has been hindered by the fact that a trigger for F protein conformational change has yet to be identified. Here we demonstrate that RSV F protein on the surface of infected cells undergoes a conformational change following exposure to elevated temperature, resulting in the formation of the six-helix bundle structure. We first generated and characterized six-helix bundle-specific antibodies raised against recombinant peptides modeling the RSV F protein six-helix bundle structure. We then used these antibodies as probes to monitor RSV F protein six-helix bundle formation in response to a diverse array of potential triggers of conformational changes. We found that exposure of 'membrane-anchored' RSV F protein to elevated temperature (45-55 degrees C) was sufficient to trigger six-helix bundle formation. Antibody binding to the six-helix bundle conformation was detected by both flow cytometry and cell-surface immunoprecipitation of the RSV F protein. None of the other treatments, including interaction with a number of potential receptors, resulted in significant binding by six-helix bundle-specific antibodies. We conclude that native, untriggered RSV F protein exists in a metastable state that can be converted in vitro to the more stable, fusogenic six-helix bundle conformation by an increase in thermal energy. These findings help to better define the mechanism of RSV F-mediated membrane fusion and have important implications for the identification of therapeutic strategies and vaccines targeting RSV F protein conformational changes.
Collapse
Affiliation(s)
- Abdul S Yunus
- Panacos Pharmaceuticals, Inc., 209 Perry Parkway, Suite 7, Gaithersburg, MD 20877, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Asada M, Yoshida M, Suzuki T, Hatachi Y, Sasaki T, Yasuda H, Nakayama K, Nishimura H, Nagatomi R, Kubo H, Yamaya M. Macrolide antibiotics inhibit respiratory syncytial virus infection in human airway epithelial cells. Antiviral Res 2009; 83:191-200. [PMID: 19463856 DOI: 10.1016/j.antiviral.2009.05.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 04/28/2009] [Accepted: 05/12/2009] [Indexed: 11/18/2022]
Abstract
To examine the effects of macrolide antibiotics on RS virus infection in airways, human tracheal epithelial cells were pre-treated with bafilomycin A(1) and clarithromycin, and infected with RS virus. Viral titers in supernatant fluids and RNA of RS virus, and concentrations of cytokines in supernatant fluids, including interleukin-6 increased with time after infection. Bafilomycin A(1) and clarithromycin reduced viral titers in supernatant fluids of RS virus, RNA of RS virus, the susceptibility to RS virus infection, and concentrations of cytokines induced by virus infection. N-acetyl-S-geranylgeranyl-L-cysteine, an inhibitor for a small GTP binding protein of RhoA, isoform A of the Ras-homologus (Rho) family, an active form of which is associated with RS virus infection via binding to its fusion protein (F protein), reduced viral titers in supernatant fluids and RNA of RS virus. Bafilomycin A(1) and clarithromycin inhibited RhoA activation induced by lysophosphatidic acid in the cells. Fasudil, an inhibitor of Rho kinase, also reduced viral titers in supernatant fluids and RNA of RS virus. These findings suggest that macrolide antibiotics may inhibit RS virus infection, partly through the reduced expression of F protein receptor, activated RhoA, and the inhibition of subsequent Rho kinase activation in human airway epithelial cells.
Collapse
Affiliation(s)
- Masanori Asada
- Department of Geriatrics and Gerontology, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ma GF, Miettinen S, Porola P, Hedman K, Salo J, Konttinen YT. Human parainfluenza virus type 2 (HPIV2) induced host ADAM8 expression in human salivary adenocarcinoma cell line (HSY) during cell fusion. BMC Microbiol 2009; 9:55. [PMID: 19284887 PMCID: PMC2662866 DOI: 10.1186/1471-2180-9-55] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 03/16/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of the study was to investigate expression of ADAMs (A Disintegrin and A Metalloproteinase) of host cell origin during cell-cell fusion induced by human parainfluenza virus type 2 (HPIV2). RESULTS Induction of host cell ADAM9 was observed in GMK cells, but the applicability of this model was restricted by lack of cross-reactivity of the anti-human ADAM8 antibodies with the corresponding green monkey antigens. HSG cells were not susceptible to HPIV2 virus infection. In contrast, in human parotid gland HSY cells, a natural host cell for paramyxoviruses, HPIV2 induced ADAM8 expression. ADAM8 staining increased dramatically over time from 7.9 +/- 3% at zero hours to 99.2 +/- 0.8% at 72 hours (p = 0.0001). Without HPIV2 the corresponding percentages were only 7.7% and 8.8%. Moreover, ADAM8 positive cells formed bi- (16.2%) and multinuclear cells (3.5%) on day one and the corresponding percentages on day three were 15.6% for binuclear and 57.2% for multinuclear cells. CONCLUSION ADAM8, well recognized for participation in cell-to-cell fusion especially in osteoclast formation, is up-regulated upon formation of multinuclear giant cells after HPIV2 induction in HSY cells. The virus-HSY cell system provides a novel experimental model for study of the molecular mechanism of cell fusion events.
Collapse
Affiliation(s)
- Guo-Feng Ma
- Department of Medicine/invärtes medicin, Helsinki University Central Hospital, PO Box 700, Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
31
|
Fernandes LB, Henry PJ, Goldie RG. Rho kinase as a therapeutic target in the treatment of asthma and chronic obstructive pulmonary disease. Ther Adv Respir Dis 2009; 1:25-33. [PMID: 19124345 DOI: 10.1177/1753465807080740] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Asthma is a complex inflammatory disease of the airways involving reversible bronchoconstriction. Chronic obstructive pulmonary disease is typified by inflammation and airflow limitation that has an irreversible component. There is now substantial evidence that Rho kinase is involved in many of the pathways that contribute to the pathologies associated with these respiratory diseases including bronchoconstriction, airway inflammation, airway remodelling, neuromodulation and exacerbations due to respiratory tract viral infection. Indeed the Rho kinase inhibitor Y-27632 causes bronchodilatation and reduces pulmonary eosinophilia trafficking and airways hyperresponsiveness. Furthermore, accumulating evidence suggests that inhibition of Rho kinase could have a major beneficial impact on symptoms and disease progression in asthma and COPD by modulating several other systems and processes. Thus, the Rho kinase pathway may indeed be a worthwhile therapeutic target in the treatment of asthma and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Lynette B Fernandes
- Pharmacology and Anaesthesiology Unit, School of Medicine & Pharmacology, and Western Australian Institute for Medical Research, The University of Western Australia, Perth, Australia
| | | | | |
Collapse
|
32
|
Sarmiento R, Arias C, Méndez E, Gómez B. Characterization of a persistent respiratory syncytial virus showing a low-fusogenic activity associated to an impaired F protein. Virus Res 2009; 139:39-47. [DOI: 10.1016/j.virusres.2008.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 10/06/2008] [Accepted: 10/08/2008] [Indexed: 10/21/2022]
|
33
|
Batonick M, Oomens AGP, Wertz GW. Human respiratory syncytial virus glycoproteins are not required for apical targeting and release from polarized epithelial cells. J Virol 2008; 82:8664-72. [PMID: 18562526 PMCID: PMC2519684 DOI: 10.1128/jvi.00827-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 06/10/2008] [Indexed: 12/11/2022] Open
Abstract
Human respiratory syncytial virus (HRSV) is released from the apical membrane of polarized epithelial cells. However, little is known about the processes of assembly and release of HRSV and which viral gene products are involved in the directional maturation of the virus. Based on previous studies showing that the fusion (F) glycoprotein contained an intrinsic apical sorting signal and that N- and O-linked glycans can act as apical targeting signals, we investigated whether the glycoproteins of HRSV were involved in its directional targeting and release. We generated recombinant viruses with each of the three glycoprotein genes deleted individually or in groups. Each deleted gene was replaced with a reporter gene to maintain wild-type levels of gene expression. The effects of deleting the glycoprotein genes on apical maturation and on targeting of individual proteins in polarized epithelial cells were examined by using biological, biochemical, and microscopic assays. The results of these studies showed that the HRSV glycoproteins are not required for apical maturation or release of the virus. Further, deletion of one or more of the glycoprotein genes did not affect the intracellular targeting of the remaining viral glycoproteins or the nucleocapsid protein to the apical membrane.
Collapse
Affiliation(s)
- Melissa Batonick
- Department of Pathology, University of Virginia, Charlottesville, Virginia 22908-0904, USA
| | | | | |
Collapse
|
34
|
The fusion protein of respiratory syncytial virus triggers p53-dependent apoptosis. J Virol 2008; 82:3236-49. [PMID: 18216092 DOI: 10.1128/jvi.01887-07] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with respiratory syncytial virus (RSV) frequently causes inflammation and obstruction of the small airways, leading to severe pulmonary disease in infants. We show here that the RSV fusion (F) protein, an integral membrane protein of the viral envelope, is a strong elicitor of apoptosis. Inducible expression of F protein in polarized epithelial cells triggered caspase-dependent cell death, resulting in rigorous extrusion of apoptotic cells from the cell monolayer and transient loss of epithelial integrity. A monoclonal antibody directed against F protein inhibited apoptosis and was also effective if administered to A549 lung epithelial cells postinfection. F protein expression in epithelial cells caused phosphorylation of tumor suppressor p53 at serine 15, activation of p53 transcriptional activity, and conformational activation of proapoptotic Bax. Stable expression of dominant-negative p53 or p53 knockdown by RNA interference inhibited the apoptosis of RSV-infected A549 cells. HEp-2 tumor cells with low levels of p53 were not sensitive to RSV-triggered apoptosis. We propose a new model of RSV disease with the F protein as an initiator of epithelial cell shedding, airway obstruction, secondary necrosis, and consequent inflammation. This makes the RSV F protein a key target for the development of effective postinfection therapies.
Collapse
|
35
|
Moore ML, Peebles RS. Respiratory syncytial virus disease mechanisms implicated by human, animal model, and in vitro data facilitate vaccine strategies and new therapeutics. Pharmacol Ther 2006; 112:405-24. [PMID: 16820210 DOI: 10.1016/j.pharmthera.2006.04.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 04/26/2006] [Indexed: 02/07/2023]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of bronchiolitis, pneumonia, mechanical ventilation, and respiratory failure in infants in the US. No effective post-infection treatments are widely available, and currently there is no vaccine. RSV disease is the result of virus-induced airway damage and complex inflammatory processes. The outcome of infection depends on host and viral genetics. Here, we review disease mechanisms in primary RSV infection that are implicated by clinical studies, in vitro systems, and animal models. Defining RSV disease mechanisms is difficult because there is a wide range of RSV disease phenotypes in humans, and there are disparities in RSV disease phenotypes among the animal models of RSV infection. However, host factors identified by multiple lines of investigation as playing important roles in RSV pathogenesis are providing key insights. A better understanding of RSV molecular biology and RSV pathogenesis is facilitating rational vaccine design strategies and molecular targets for new therapeutics.
Collapse
Affiliation(s)
- Martin L Moore
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, T-1218 MCN, Vanderbilt University School of Medicine, Nashville, TN 37232-2650, USA
| | | |
Collapse
|
36
|
Crim RL, Audet SA, Feldman SA, Mostowski HS, Beeler JA. Identification of linear heparin-binding peptides derived from human respiratory syncytial virus fusion glycoprotein that inhibit infectivity. J Virol 2006; 81:261-71. [PMID: 17050595 PMCID: PMC1797247 DOI: 10.1128/jvi.01226-06] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
It has been shown previously that the fusion glycoprotein of human respiratory syncytial virus (RSV-F) interacts with cellular heparan sulfate. Synthetic overlapping peptides derived from the F-protein sequence of RSV subtype A (strain A2) were tested for their ability to bind heparin using heparin-agarose affinity chromatography (HAAC). This evaluation identified 15 peptides representing eight linear heparin-binding domains (HBDs) located within F1 and F2 and spanning the protease cleavage activation site. All peptides bound to Vero and A549 cells, and binding was inhibited by soluble heparins and diminished by either enzymatic treatment to remove cell surface glycosaminoglycans or by treatment with sodium chlorate to decrease cellular sulfation. RSV-F HBD peptides were less likely to bind to glycosaminoglycan-deficient CHO-745 cells than parental CHO-K1 cells that express these molecules. Three RSV-F HBD peptides (F16, F26, and F55) inhibited virus infectivity; two of these peptides (F16 and F55) inhibited binding of virus to Vero cells, while the third (F26) did not. These studies provided evidence that two of the linear HBDs mapped by peptides F16 and F55 may mediate one of the first steps in the attachment of virus to cells while the third, F26, inhibited infectivity at a postattachment step, suggesting that interactions with cell surface glycosaminoglycans may play a role in infectivity of some RSV strains.
Collapse
Affiliation(s)
- Roberta L Crim
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
37
|
Arnold R, König W. Peroxisome proliferator-activated receptor-γ agonists inhibit the replication of respiratory syncytial virus (RSV) in human lung epithelial cells. Virology 2006; 350:335-46. [PMID: 16616290 DOI: 10.1016/j.virol.2006.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 02/13/2006] [Accepted: 03/09/2006] [Indexed: 11/16/2022]
Abstract
We have previously shown that peroxisome proliferator-activated receptor-gamma (PPARgamma) agonists inhibited the inflammatory response of RSV-infected human lung epithelial cells. In this study, we supply evidence that specific PPARgamma agonists (15d-PGJ2, ciglitazone, troglitazone, Fmoc-Leu) efficiently blocked the RSV-induced cytotoxicity and development of syncytia in tissue culture (A549, HEp-2). All PPARgamma agonists under study markedly inhibited the cell surface expression of the viral G and F protein on RSV-infected A549 cells. This was paralleled by a reduced cellular amount of N protein-encoding mRNA determined by real-time RT-PCR. Concomitantly, a reduced release of infectious progeny virus into the cell supernatants of human lung epithelial cells (A549, normal human bronchial epithelial cells (NHBE)) was observed. Similar results were obtained regardless whether PPARgamma agonists were added prior to RSV infection or thereafter, suggesting that the agonists inhibited viral gene expression and not the primary adhesion or fusion process.
Collapse
Affiliation(s)
- Ralf Arnold
- Institute of Medical Microbiology, Otto-von-Guericke-University, Leipzigerstr. 44, 39120 Magdeburg, Germany.
| | | |
Collapse
|
38
|
Tsurudome M. [Viral fusion mechanisms]. Uirusu 2006; 55:207-19. [PMID: 16557006 DOI: 10.2222/jsv.55.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The majority of viral fusion proteins can be divided into two classes. The influenza hemagglutinin (HA) belongs to the class I fusion proteins and undergoes a series of conformational changes at acidic pH, leading to membrane fusion. The crystal structures of the prefusion and the postfusion forms of HA have been revealed in 1981 and 1994, respectively. On the basis of these structures, a model for the mechanism of membrane fusion mediated by the conformational changes of HA has been proposed. The flavivirus E and alphavirus E1 proteins belong to the class II fusion proteins and mediate membrane fusion at acidic pH. Their prefusion structures are distinct from that of HA. Last year, however, it has become evident that the postfusion structures of these class I and class II fusion proteins are similar. The paramyxovirus F protein belongs to the class I fusion proteins. In contrast to HA, an interaction between F and its homologous attachment protein is required for F to undergo the conformational changes. Since F mediates fusion at neutral pH, the infected cells can fuse with neighboring uninfected cells. The crystal structures of F and the attachment protein HN have recently been clarified, which will facilitate studies of the molecular mechanism of F-mediated membrane fusion.
Collapse
Affiliation(s)
- Masato Tsurudome
- Department of Microbiology, Mie University Graduate School of Medicine, Tsu, Mie, Japan.
| |
Collapse
|
39
|
Viral Pneumonia. KENDIG'S DISORDERS OF THE RESPIRATORY TRACT IN CHILDREN 2006. [PMCID: PMC7150341 DOI: 10.1016/b978-0-7216-3695-5.50030-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Oomens AGP, Wertz GW. trans-Complementation allows recovery of human respiratory syncytial viruses that are infectious but deficient in cell-to-cell transmission. J Virol 2004; 78:9064-72. [PMID: 15308702 PMCID: PMC506912 DOI: 10.1128/jvi.78.17.9064-9072.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human respiratory syncytial virus (HRSV) expresses three transmembrane glycoproteins: small hydrophobic protein SH, attachment protein G, and fusion protein F. The genes encoding SH and G can be deleted from the HRSV genome and infectious virus recovered. In contrast, HRSVs lacking the F gene or a functional replacement thereof have not been reported. To generate a system with which to study the roles of the viral transmembrane glycoproteins, including F, in the HRSV life cycle, we generated a cell line expressing a heterologous viral glycoprotein for complementation of glycoprotein function in trans. We previously demonstrated that the baculovirus GP64 protein or a chimeric form of GP64 carrying the 12 C-terminal amino acids of the HRSV F protein (GP(64/F)) can efficiently mediate HRSV infectivity and improve its stability, when expressed from an engineered HRSV genome. Here, we report the development of a stably transfected Vero cell line (Vbac) constitutively expressing the GP(64/F) protein. From the Vbac cell line, viruses that lacked the SH and F open reading frames (ORFs) or the SH, G, and F ORFs could be recovered from cDNAs. These viruses, designated RSDeltaSH,F and RSDeltaSH,G,F, respectively, had place-keeper ORFs inserted in place of the deleted ORFs to maintain authentic transcription levels. In the Vbac cell line, RSDeltaSH,f and RSDeltaSH,G,F could be amplified to near wild-type-level titers, and the resulting viruses were infectious to Vero and HEp-2 cells. After entry into Vero or HEp-2 cells, however, neither virus RSDeltaSH,F nor virus RSDeltaSH,G,F was able to spread in the infected cultures. Growth analyses showed that infectious virions were not produced in Vero or HEp-2 cells infected with RSDeltaSH,F and RSDeltaSH,G,F. Combined, these data provide direct evidence that HRSV F is an essential viral protein required for cell-to-cell transmission and demonstrate that complementation with the GP64 protein in trans constitutes a powerful tool for the study of the role of individual HRSV transmembrane glycoproteins in virus assembly, morphogenesis, and pathogenesis. In addition, the ability to generate infectious but nonspreading viruses may provide an alternative approach for the development of safe and stable HRSV vaccine candidates.
Collapse
Affiliation(s)
- A G P Oomens
- University of Alabama School of Medicine, Birmingham, Alabama, USA
| | | |
Collapse
|
41
|
Budge PJ, Lebowitz J, Graham BS. Antiviral activity of RhoA-derived peptides against respiratory syncytial virus is dependent on formation of peptide dimers. Antimicrob Agents Chemother 2004; 47:3470-7. [PMID: 14576104 PMCID: PMC253766 DOI: 10.1128/aac.47.11.3470-3477.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A synthetic peptide containing amino acids 77 to 95 of the intracellular GTPase RhoA has previously been shown to inhibit replication of respiratory syncytial virus (RSV) in cultured cells. We show that residues 80 to 90 of RhoA are sufficient for this activity and that the cysteine residue at position 83 is critical. Further studies with an optimal peptide sequence containing amino acids 80 to 94 of RhoA revealed that the antiviral potency of the peptide is dependent on the oxidation of cysteine 83. Size-exclusion chromatography and sedimentation equilibrium studies of the peptide comprising residues 80 to 94 revealed that it is capable of forming aggregates in both reduced and oxidized states. A peptide (83A) in which the cysteine residue is replaced by an alanine does not form dimers or higher-order aggregates and did not inhibit RSV replication at any concentration tested. These data indicate that formation of peptide multimers is necessary for the antiviral activities of RhoA-derived peptides and suggest that the observed antiviral activities of these peptides may be unrelated to the biological functions of their parent molecule.
Collapse
Affiliation(s)
- Philip J Budge
- Department of Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
42
|
Budge PJ, Li Y, Beeler JA, Graham BS. RhoA-derived peptide dimers share mechanistic properties with other polyanionic inhibitors of respiratory syncytial virus (RSV), including disruption of viral attachment and dependence on RSV G. J Virol 2004; 78:5015-22. [PMID: 15113882 PMCID: PMC400344 DOI: 10.1128/jvi.78.10.5015-5022.2004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Large polyanionic molecules, such as sulfated polysaccharides (including soluble heparin and dextran sulfate), synthetic polyanionic polymers, and negatively charged proteins, have been shown to broadly inhibit several enveloped viruses. We recently reported the antiviral activity of a peptide derived from amino acids 77 to 95 of a potential binding partner of respiratory syncytial virus F protein (RSV F), the GTPase RhoA. A subsequent study with a truncated peptide (amino acids 80 to 94) revealed that optimal antiviral activity required dimerization via intermolecular disulfide bonds. We report here that the net negative charge of this peptide is also a determining factor for its antiviral activity and that it, like other polyanions, inhibits virus attachment. In a flow cytometry-based binding assay, peptide 80-94, heparin, and dextran sulfate inhibited the attachment of virus to cells at 4 degrees C at the same effective concentrations at which they prevent viral infectivity. Interestingly, time-of-addition experiments revealed that peptide 80-94 and soluble heparin were also able to inhibit the infectivity of a virus that had been prebound to cells at 4 degrees C, as had previously been shown for dextran sulfate, suggesting a potential role for postattachment effects of polyanions on RSV entry. Neutralization experiments with recombinant viruses showed that the antiviral activities of peptide 80-94 and dextran sulfate were diminished in the absence of the RSV attachment glycoprotein (G). Taken together, these data indicate that the antiviral activity of RhoA-derived peptides is functionally similar to that of other polyanions, is dependent on RSV G, and does not specifically relate to a protein-protein interaction between F and RhoA.
Collapse
Affiliation(s)
- Philip J Budge
- Department of Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
43
|
Easton AJ, Domachowske JB, Rosenberg HF. Animal pneumoviruses: molecular genetics and pathogenesis. Clin Microbiol Rev 2004; 17:390-412. [PMID: 15084507 PMCID: PMC387412 DOI: 10.1128/cmr.17.2.390-412.2004] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pneumoviruses are single-stranded, negative-sense, nonsegmented RNA viruses of the family Paramyxoviridae, subfamily Pneumovirinae, and include pathogens that infect humans (respiratory syncytial virus and human metapneumovirus), domestic mammals (bovine, ovine, and caprine respiratory syncytial viruses), rodents (pneumonia virus of mice), and birds (avian metapneumovirus). Among the topics considered in this review are recent studies focused on the roles of the individual virus-encoded components in promoting virus replication as well as in altering and evading innate antiviral host defenses. Advances in the molecular technology of pneumoviruses and the emergence of recombinant pneumoviruses that are leading to improved virus-based vaccine formulations are also discussed. Since pneumovirus infection in natural hosts is associated with a profound inflammatory response that persists despite adequate antiviral therapy, we also review the recent experimental treatment strategies that have focused on combined antiviral, anti-inflammatory, and immunomodulatory approaches.
Collapse
|
44
|
Bose S, Banerjee AK. Beta-catenin associates with human parainfluenza virus type 3 ribonucleoprotein complex and activates transcription of viral genome RNA in vitro. Gene Expr 2004; 11:241-9. [PMID: 15200236 PMCID: PMC5991151 DOI: 10.3727/000000003783992252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2004] [Indexed: 11/24/2022]
Abstract
Several studies have indicated that human parainfluenza virus type 3 (HPIV-3) requires polymeric actin for transcription of its genome RNA in vitro and in vivo. In the current study, we have identified beta-catenin, an actin-bound protein, as one of the transcriptional activators for HPIV-3 genome RNA. Beta-catenin was packaged within the purified HPIV-3 virions and was associated with the HPIV-3 ribonucleoproteins (RNP) from infected cells. Moreover, purified beta-catenin interacted with bacterially expressed HPIV-3 nucleocapsid protein (N) and phosphoprotein (P) fused to glutathione S-transferase (GST). Double-labeled immunofluorescent confocal microscopic analysis revealed colocalization of beta-catenin with HPIV-3 RNP at cell periphery in infected cells. The HPIV-3 RNP-associated beta-catenin functioned as a transactivator of HPIV-3 genome, because purified beta-catenin stimulated transcription of viral RNP in an in vitro transcription assay. These results demonstrate that beta-catenin, a multifunctional protein that is involved in cell-cell adhesion and embryogenesis, acts as one of the transcriptional activators of HPIV-3 genome RNA.
Collapse
Affiliation(s)
- Santanu Bose
- Department of Virology, The Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | |
Collapse
|
45
|
Harris J, Werling D. Binding and entry of respiratory syncytial virus into host cells and initiation of the innate immune response. Cell Microbiol 2003; 5:671-80. [PMID: 12969373 DOI: 10.1046/j.1462-5822.2003.00313.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Respiratory syncytial virus (RSV) is the most common cause of severe lower respiratory tract infection in infants and the elderly. There is currently no effective antiviral treatment for the infection, but advances in our understanding of RSV uptake, especially the role of surfactant proteins, the attachment protein G and the fusion protein F, as well as the post-binding events, have revealed potential targets for new therapies and vaccine development. RSV infection triggers an intense inflammatory response, mediated initially by the infected airway epithelial cells and antigen-presenting cells. Humoral and cell-mediated immune responses are important in controlling the extent of infection and promoting viral clearance. The initial innate immune response may play a critical role by influencing the subsequent adaptive response generated. This review summarizes our current understanding of RSV binding and uptake in mammalian cells and how these initial interactions influence the subsequent innate immune response generated.
Collapse
Affiliation(s)
- James Harris
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK.
| | | |
Collapse
|
46
|
Saladino R, Ciambecchini U, Nencioni L, Palamara AT. Recent advances in the chemistry of parainfluenza-1 (Sendai) virus inhibitors. Med Res Rev 2003; 23:427-55. [PMID: 12710019 DOI: 10.1002/med.10036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Purine and pyrimidine derivatives, antioxidants, fusion inhibitors, statins, prostaglandins, antibiotic nucleosides, inhibitors of Ca(2+) homeostasis, carbohydrate derivatives, antisense polynucleotides and chimeras, are described as inhibitors of parainfluenza-1 (Sendai) viral infections.
Collapse
Affiliation(s)
- Raffaele Saladino
- Agrobiological and Agrochemical Department, University of Tuscia, via San Camillo de Lellis snc, 00100, Viterbo, Italy.
| | | | | | | |
Collapse
|
47
|
Bitko V, Oldenburg A, Garmon NE, Barik S. Profilin is required for viral morphogenesis, syncytium formation, and cell-specific stress fiber induction by respiratory syncytial virus. BMC Microbiol 2003; 3:9. [PMID: 12740026 PMCID: PMC156654 DOI: 10.1186/1471-2180-3-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2003] [Accepted: 05/09/2003] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Actin is required for the gene expression and morphogenesis of respiratory syncytial virus (RSV), a clinically important Pneumovirus of the Paramyxoviridae family. In HEp-2 cells, RSV infection also induces actin stress fibers, which may be important in the immunopathology of the RSV disease. Profilin, a major regulator of actin polymerization, stimulates viral transcription in vitro. Thus, we tested the role of profilin in RSV growth and RSV-actin interactions in cultured cells (ex vivo). RESULTS We tested three cell lines: HEp-2 (human), A549 (human), and L2 (rat). In all three, RSV grew well and produced fused cells (syncytium), and two RSV proteins, namely, the phosphoprotein P and the nucleocapsid protein N, associated with profilin. In contrast, induction of actin stress fibers by RSV occurred in HEp-2 and L2 cells, but not in A549. Knockdown of profilin by RNA interference had a small effect on viral macromolecule synthesis but strongly inhibited maturation of progeny virions, cell fusion, and induction of stress fibers. CONCLUSIONS Profilin plays a cardinal role in RSV-mediated cell fusion and viral maturation. In contrast, interaction of profilin with the viral transcriptional proteins P and N may only nominally activate viral RNA-dependent RNA polymerase. Stress fiber formation is a cell-specific response to infection, requiring profilin and perhaps other signaling molecules that are absent in certain cell lines. Stress fibers per se play no role in RSV replication in cell culture. Clearly, the cellular architecture controls multiple steps of host-RSV interaction, some of which are regulated by profilin.
Collapse
Affiliation(s)
- Vira Bitko
- Department of Biochemistry and Molecular Biology, University of South Alabama, College of Medicine, 307 University Blvd., Mobile, Alabama, USA 36688-0002
| | - Anja Oldenburg
- Department of Biochemistry and Molecular Biology, University of South Alabama, College of Medicine, 307 University Blvd., Mobile, Alabama, USA 36688-0002
| | - Nicolle E Garmon
- Department of Biochemistry and Molecular Biology, University of South Alabama, College of Medicine, 307 University Blvd., Mobile, Alabama, USA 36688-0002
| | - Sailen Barik
- Department of Biochemistry and Molecular Biology, University of South Alabama, College of Medicine, 307 University Blvd., Mobile, Alabama, USA 36688-0002
| |
Collapse
|
48
|
Jeffree CE, Rixon HWM, Brown G, Aitken J, Sugrue RJ. Distribution of the attachment (G) glycoprotein and GM1 within the envelope of mature respiratory syncytial virus filaments revealed using field emission scanning electron microscopy. Virology 2003; 306:254-67. [PMID: 12642099 DOI: 10.1016/s0042-6822(02)00016-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Field emission scanning electron microscopy (FE SEM) was used to visualize the distribution of virus-associated components, the virus-attachment (G) protein, and the host-cell-derived lipid, GM1, in respiratory syncytial virus (RSV) filaments. RSV-infected cells were labeled in situ with a G protein antibody (MAb30) whose presence was detected using a second antibody conjugated to colloidal gold. No bound MAb30 was detected in mock-infected cells, whereas significant quantities bound to viral filaments revealing G protein clusters throughout the filaments. GM1 was detected using cholera toxin B subunit conjugated to colloidal gold. Mock-infected cells revealed numerous GM1 clusters on the cell surface. In RSV-infected cells, these gold clusters were detected on the filaments in low, but significant, amounts, indicating the incorporation of GM1 within the viral envelope. This report describes the first use of FE SEM to map the distribution of specific structural components within the envelope of a Paramyxovirus.
Collapse
Affiliation(s)
- Chris E Jeffree
- Institute of Cell and Molecular Biology, Biological Sciences EM Facility, University of Edinburgh, Waddington Building, King's Building, Mayfield Road, EH9 3JN, Edinburgh, UK
| | | | | | | | | |
Collapse
|
49
|
McCurdy LH, Graham BS. Role of plasma membrane lipid microdomains in respiratory syncytial virus filament formation. J Virol 2003; 77:1747-56. [PMID: 12525608 PMCID: PMC140864 DOI: 10.1128/jvi.77.3.1747-1756.2003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fusion protein (F) of respiratory syncytial virus (RSV) is the envelope glycoprotein responsible for the characteristic cytopathology of syncytium formation. RSV has been shown to bud from selective areas of the plasma membrane as pleomorphic virions, including both filamentous and round particles. With immunofluorescent microscopy, we demonstrated evidence of RSV filaments incorporating the fusion protein F and colocalizing with a lipid microdomain-specific fluorescent dye, 1,1-dihexadecyl-3,3,3,3-tetramethylindocarbocyanine perchlorate. Western blot analysis of Triton X-100 cold-extracted membrane fractions confirmed the presence of RSV proteins within the lipid microdomains. RSV proteins also colocalized with cellular proteins associated with lipid microdomains, caveolin-1, and CD44, as well as with RhoA, a small GTPase. ADP-ribosylation of RhoA by Clostridium botulinum exotoxin inactivated RhoA signaling and resulted in the absence of RSV-induced syncytia despite no significant change in viral titer. We demonstrated an overall decrease in both the number and length of the viral filaments and a shift in the localization of F to nonlipid microdomain regions of the membrane in the presence of C3 toxin. This suggests that the selective incorporation of RSV proteins into lipid microdomains during virus assembly may lead to critical interactions of F with cellular proteins, resulting in microvillus projections necessary for the formation of filamentous virus particles and syncytium formation. Thus, manipulation of membrane lipid microdomains may lead to alterations in the production of viral filaments and RSV pathogenesis and provide a new pharmacologic target for RSV therapy.
Collapse
Affiliation(s)
- Lewis H McCurdy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-3017, USA.
| | | |
Collapse
|
50
|
Torrence PF, Powell LD. The quest for an efficacious antiviral for respiratory syncytial virus. Antivir Chem Chemother 2002; 13:325-44. [PMID: 12718405 DOI: 10.1177/095632020201300601] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Respiratory syncytial virus (RSV) continues as an emerging infectious disease not only among infants and children, but also for the immune-suppressed, hospitalized and the elderly. To date, ribavirin (Virazole) remains the only therapeutic agent approved for the treatment of RSV. The prophylactic administration of palivizumab is problematic and costly. The quest for an efficacious RSV antiviral has produced a greater understanding of the viral fusion process, a new hypothesis for the mechanism of action of ribavirin, and a promising antisense strategy combining the 2'-5' oligoadenylate antisense (2-5A-antisense) approach and RSV genomics.
Collapse
Affiliation(s)
- Paul F Torrence
- Department of Chemistry, Northern Arizona University, Flagstaff, Ariz., USA.
| | | |
Collapse
|