1
|
Teixeira BM, Logan N, Cruz JCM, Reis JKP, Brandão PE, Richtzenhain LJ, Hagiwara MK, Willett BJ, Hosie MJ. Genetic diversity of Brazilian isolates of feline immunodeficiency virus. Arch Virol 2015; 155:379-84. [PMID: 20084530 DOI: 10.1007/s00705-009-0587-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Bruno Marques Teixeira
- Department of Medical Clinics, College of Veterinary Medicine, University of São Paulo, Av. Prof. Dr. Orlando Marques Paiva, 87, São Paulo, SP, 05508-270, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Stickney AL, Dunowska M, Cave NJ. Sequence variation of the feline immunodeficiency virus genome and its clinical relevance. Vet Rec 2013; 172:607-14. [PMID: 23749359 DOI: 10.1136/vr.f101460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ongoing evolution of feline immunodeficiency virus (FIV) has resulted in the existence of a diverse continuum of viruses. FIV isolates differ with regards to their mutation and replication rates, plasma viral loads, cell tropism and the ability to induce apoptosis. Clinical disease in FIV-infected cats is also inconsistent. Genomic sequence variation of FIV is likely to be responsible for some of the variation in viral behaviour. The specific genetic sequences that influence these key viral properties remain to be determined. With knowledge of the specific key determinants of pathogenicity, there is the potential for veterinarians in the future to apply this information for prognostic purposes. Genomic sequence variation of FIV also presents an obstacle to effective vaccine development. Most challenge studies demonstrate acceptable efficacy of a dual-subtype FIV vaccine (Fel-O-Vax FIV) against FIV infection under experimental settings; however, vaccine efficacy in the field still remains to be proven. It is important that we discover the key determinants of immunity induced by this vaccine; such data would compliment vaccine field efficacy studies and provide the basis to make informed recommendations on its use.
Collapse
Affiliation(s)
- A L Stickney
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand.
| | | | | |
Collapse
|
3
|
Marçola TG, Gomes CPC, Silva PA, Fernandes GR, Paludo GR, Pereira RW. Identification of a novel subtype of feline immunodeficiency virus in a population of naturally infected felines in the Brazilian Federal District. Virus Genes 2013; 46:546-50. [PMID: 23329009 DOI: 10.1007/s11262-013-0877-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 01/07/2013] [Indexed: 10/27/2022]
Abstract
The feline immunodeficiency virus (FIV) is a retrovirus that is found worldwide, and it can be assigned to six subtypes (A, B, C, D, E, and a putative subtype F) based on sequencing analysis of the env and gag genes. Subtypes A and B are the most common worldwide. In Brazil, several authors have isolated only subtype B, and its prevalence differs markedly among investigated populations. Blood samples from 200 domestic felines from the Federal District in Brazil were analyzed by PCR. Samples that tested positive for FIV were then cloned, sequenced, and analyzed phylogenetically and statistically. The results represent the first description of FIV infection in the Central Region of Brazil and suggest that only 2 % of felines in this region are positive for the virus. In addition, the analysis showed that one out of the four positive samples that we detected could not be assigned to any of the six classical subtypes. This sample was taken as a putative novel subtype of the FIV virus. The remaining three positive samples were assigned to subtype B, with differences existing among these samples.
Collapse
Affiliation(s)
- T G Marçola
- Laboratório de Microbiologia e Patologia Veterinária, Faculdade de Agronomia e Medicina Veterinária, Universidad de Brasília(UnB), Brasília, Brazil
| | | | | | | | | | | |
Collapse
|
4
|
Viral transcriptome analysis of feline immunodeficiency virus infected cells using second generation sequencing technology. Vet Immunol Immunopathol 2011; 143:314-24. [PMID: 21742384 DOI: 10.1016/j.vetimm.2011.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Feline immunodeficiency virus (FIV) is a widespread pathogen causing immunodeficiency in domestic cats and related wild cat species. The virus genome includes the main structural genes common to all retroviruses as well as accessory genes displaying essential functions during the viral life cycle. Expression of viral genes involves transcription of provirus genomes into full-length transcripts, which are partially processed into several spliced mRNA variants for the translation of particular proteins. Among several FIV isolates derived from domestic cats, notable differences in pathogenicity could be observed leading to identification of low and high pathogenic virus isolates. This study investigates the viral transcriptome of two differentially virulent FIV strains using second generation sequencing (SGS) technology. The expression levels of viral genes as detected by SGS were additionally determined by reverse transcription quantitative PCR analysis in order to compare two methods of mRNA quantification. The different properties of both methods, especially regarding normalization between samples, had to be considered when comparing the resulting data. SGS turned out to be a suitable technique for comparing mRNA transcription between both FIV infected cell lines and the identification of spliced viral transcripts. In contrast to this, the quantification of these spliced isoforms using SGS data was impeded by the short length of sequencing reads. In summary, SGS analysis revealed very consistent mRNA levels for the majority of viral genes between the low pathogenic Petaluma and the more highly pathogenic Glasgow 8 isolate. Notable differences among the two FIV strains could be observed in the viral mRNA splicing where Glasgow 8 displays similarities to the transcription pattern seen in the early stages of natural lentivirus infections. Thus, divergences in the regulation of post-transcriptional RNA processing might represent an additional contributor to the diverse pathogenic effects of individual FIV isolates. Taken together, this study aims to investigate the viral transcriptome as one part of the complex network of virus-host interactions, which will contribute to gaining deeper insights into FIV pathogenesis.
Collapse
|
5
|
Weaver EA. A detailed phylogenetic analysis of FIV in the United States. PLoS One 2010; 5:e12004. [PMID: 20711253 PMCID: PMC2918497 DOI: 10.1371/journal.pone.0012004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 07/12/2010] [Indexed: 12/02/2022] Open
Abstract
Background Feline immunodeficiency virus (FIV) is a lentivirus associated with AIDS-like illnesses in cats and has been used as a model for the study of human immunodeficiency virus (HIV). A feature of HIV and FIV infection is the continually increasing divergence among viral isolates between different individuals, as well as within the same individuals. Methodology/Principal Findings The goal of this study was to determine the phylogenetic patterns of viral isolates obtained within the United States (U.S.) by focusing on the variable, V3-V4, region of the FIV envelope gene. Conclusions/Significance Data indicate that FIV, from within the U.S., localize to four viral clades, A, B, C, and F. Also shown is the geographic isolation of strains where clade A and clade B are found predominately on the west coast; however, clade B is also found throughout the U.S. and represents the predominant clade. This study presents a complete and conclusive analysis of FIV isolates from within the U.S. and may be used as the essential basis for the development of an effective multi-clade vaccine.
Collapse
Affiliation(s)
- Eric A Weaver
- Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, United States of America.
| |
Collapse
|
6
|
Willett BJ, Kraase M, Logan N, McMonagle EL, Samman A, Hosie MJ. Modulation of the virus-receptor interaction by mutations in the V5 loop of feline immunodeficiency virus (FIV) following in vivo escape from neutralising antibody. Retrovirology 2010; 7:38. [PMID: 20420700 PMCID: PMC2873508 DOI: 10.1186/1742-4690-7-38] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 04/26/2010] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND In the acute phase of infection with feline immunodeficiency virus (FIV), the virus targets activated CD4+ T cells by utilising CD134 (OX40) as a primary attachment receptor and CXCR4 as a co-receptor. The nature of the virus-receptor interaction varies between isolates; strains such as GL8 and CPGammer recognise a "complex" determinant on CD134 formed by cysteine-rich domains (CRDs) 1 and 2 of the molecule while strains such as PPR and B2542 require a more "simple" determinant comprising CRD1 only for infection. These differences in receptor recognition manifest as variations in sensitivity to receptor antagonists. In this study, we ask whether the nature of the virus-receptor interaction evolves in vivo. RESULTS Following infection with a homogeneous viral population derived from a pathogenic molecular clone, a quasispecies emerged comprising variants with distinct sensitivities to neutralising antibody and displaying evidence of conversion from a "complex" to a "simple" interaction with CD134. Escape from neutralising antibody was mediated primarily by length and sequence polymorphisms in the V5 region of Env, and these alterations in V5 modulated the virus-receptor interaction as indicated by altered sensitivities to antagonism by both anti-CD134 antibody and soluble CD134. CONCLUSIONS The FIV-receptor interaction evolves under the selective pressure of the host humoral immune response, and the V5 loop contributes to the virus-receptor interaction. Our data are consistent with a model whereby viruses with distinct biological properties are present in early versus late infection and with a shift from a "complex" to a "simple" interaction with CD134 with time post-infection.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Cats
- Feline Acquired Immunodeficiency Syndrome/immunology
- Feline Acquired Immunodeficiency Syndrome/virology
- Immunodeficiency Virus, Feline/genetics
- Immunodeficiency Virus, Feline/immunology
- Immunodeficiency Virus, Feline/isolation & purification
- Immunodeficiency Virus, Feline/physiology
- Models, Molecular
- Mutation, Missense/immunology
- Protein Conformation
- Receptors, Virus/metabolism
- Selection, Genetic
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Virus Attachment
Collapse
Affiliation(s)
- Brian J Willett
- Retrovirus Research Laboratory, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Martin Kraase
- Retrovirus Research Laboratory, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Nicola Logan
- Retrovirus Research Laboratory, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Elizabeth L McMonagle
- Retrovirus Research Laboratory, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Ayman Samman
- Retrovirus Research Laboratory, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Margaret J Hosie
- Retrovirus Research Laboratory, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| |
Collapse
|
7
|
Bellier B, Huret C, Miyalou M, Desjardins D, Frenkiel MP, Despres P, Tangy F, Dalba C, Klatzmann D. DNA vaccines expressing retrovirus-like particles are efficient immunogens to induce neutralizing antibodies. Vaccine 2009; 27:5772-80. [DOI: 10.1016/j.vaccine.2009.07.059] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 07/11/2009] [Accepted: 07/19/2009] [Indexed: 12/21/2022]
|
8
|
Vaccination reduces the viral load and the risk of transmission of Jembrana disease virus in Bali cattle. Virology 2009; 386:317-24. [PMID: 19261319 DOI: 10.1016/j.virol.2009.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 02/02/2009] [Accepted: 02/03/2009] [Indexed: 02/06/2023]
Abstract
The efficacy of a tissue-derived vaccine, which is currently used in Indonesia to control the spread of Jembrana disease in Bali cattle, was determined by quantifying the viral load in plasma following experimental infection with Jembrana disease virus. Virus transmission is most likely to occur during the acute phase of infection when viral titers are greater than 10(6) genomes/ml. Vaccinated cattle were found to have a 96% reduction in viral load above this threshold compared to control cattle. This would reduce the chance of virus transmission as the number of days above the threshold in the vaccinated cattle was reduced by 33%. Viral loads at the onset and resolution of fever were significantly lower in the vaccinated cattle and immune function was maintained with the development of antibody responses to Env proteins within 10-24 days post challenge. There was, however, no significant reduction in the duration of the febrile period in vaccinated animals. The duration and severity of clinical parameters were found to be variable within each group of cattle but the quantification of viral load revealed the benefits of vaccinating to reduce the risk of virus transmission as well as to ameliorate disease.
Collapse
|
9
|
Reggeti F, Bienzle D. Alloimmunity does not protect from challenge with the feline immunodeficiency virus. Vet Immunol Immunopathol 2008; 124:152-62. [PMID: 18471896 DOI: 10.1016/j.vetimm.2008.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 02/27/2008] [Accepted: 03/07/2008] [Indexed: 10/22/2022]
Abstract
Immune responses against polymorphic host molecules incorporated into lentiviral envelopes during cell budding have induced protection against primate immunodeficiency virus infection. Dendritic cells (DCs) express high levels of MHC molecules and are infectable by lentiviruses. Therefore, in this pilot study we addressed the hypothesis that immunization of cats with allogeneic DC would induce immune responses that protect against challenge with the feline immunodeficiency virus. Two groups of 3 cats each received 3 subcutaneous injections of allogeneic or autologous DC, and were then challenged with viruses propagated in the immunizing DC. Infection status and lymphocyte parameters of cats were assessed during 6 weeks after challenge. MHC II antigens were incorporated into viral particles as identified by Western blot; and antibodies reactive with MHC class II antigens were detected in the serum of cats immunized with allogeneic but not autologous DC. After challenge, all cats had proviral DNA in blood leukocytes from 2 weeks post-challenge onward and seroconverted. Cats immunized with allogeneic DC maintained higher total and CD21(+) lymphocyte concentrations, and higher CD4(+)/CD8(+) lymphocyte ratios; however, these differences were not significantly different from cats that received autologous DC immunizations. Plasma viral load was not significantly different between groups of cats (p=0.204). These results suggest that immunization of cats with allogeneic DC does not induce protective immunity against FIV infection.
Collapse
Affiliation(s)
- F Reggeti
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | |
Collapse
|
10
|
Huisman W, Schrauwen EJA, Rimmelzwaan GF, Osterhaus ADME. Intrahost evolution of envelope glycoprotein and OrfA sequences after experimental infection of cats with a molecular clone and a biological isolate of feline immunodeficiency virus. Virus Res 2008; 137:24-32. [PMID: 18602181 DOI: 10.1016/j.virusres.2008.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 05/14/2008] [Accepted: 05/15/2008] [Indexed: 11/20/2022]
Abstract
Feline immunodeficiency virus (FIV) is a member of the genus Lentivirus and causes AIDS-like disease in its natural host, the cat. Like other lentiviruses, FIV displays a high degree of nucleotide sequence variability that is reflected in both the geographic distribution of the viruses and the different cat species that are infected. Although a lot of data on sequence variation at the population level is available, relatively little is known about the intrahost variation of FIV sequences. In the present study, cats were infected with either a biological isolate of FIV or a molecular clone that was derived from the same isolate, AM19. After infection, the cats were monitored for up to 3 years and at various time points sequences were obtained of virus circulating in the plasma. Regions of the env gene and the orfA gene were amplified, cloned and their nucleotide sequence analyzed. Furthermore, the extent of sequence variation in the original inocula was also determined. It was found that FIV is displaying relative little sequence variation during infection of its host, both in the env and the orfA gene, especially after infection with molecular clone 19k1. Although the extent of variation was higher after infection with biological isolate AM19, a large portion of these variant sequences was already present in the inoculum.
Collapse
Affiliation(s)
- Willem Huisman
- Erasmus MC, Institute of Virology, Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
11
|
Abstract
Advances in vaccine technology are occurring in the molecular techniques used to develop vaccines and in the assessment of vaccine efficacy, allowing more complete characterization of vaccine-induced immunity correlating to protection. FIV vaccine development has closely mirrored and occasionally surpassed the development of HIV-1 vaccine, leading to first licensed technology. This review will discuss technological advances in vaccine designs, challenge infection assessment, and characterization of vaccine immunity in the context of the protection detected with prototype and commercial dual-subtype FIV vaccines and in relation to HIV-1.
Collapse
Affiliation(s)
- Elizabeth W. Uhl
- Department of Veterinary Pathology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA 30602-7388, USA
| | - Marcus Martin
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611-0880, USA
| | - James K. Coleman
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611-0880, USA
| | - Janet K. Yamamoto
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611-0880, USA
| |
Collapse
|
12
|
Lecollinet S, Richardson J. Vaccination against the feline immunodeficiency virus: the road not taken. Comp Immunol Microbiol Infect Dis 2007; 31:167-90. [PMID: 17706778 DOI: 10.1016/j.cimid.2007.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2007] [Indexed: 11/28/2022]
Abstract
Natural infection of domestic cats by the feline immunodeficiency virus (FIV) causes acquired immunodeficiency syndrome (AIDS). FIV is genetically related to human immunodeficiency virus (HIV), and the clinical and biological features of infections caused by feline and human viruses in their respective hosts are highly analogous. Although the obstacles to vaccinating against FIV and HIV would seem to be of comparable difficulty, a licensed vaccine against feline AIDS is already in widespread use in several countries. While this seemingly major advance in prevention of AIDS would appear to be highly instructive for HIV vaccine development, its message has not been heeded by investigators in the HIV field. This review endeavours to relate what has been learned about vaccination against feline AIDS, and to suggest what this may mean for HIV vaccine development.
Collapse
Affiliation(s)
- Sylvie Lecollinet
- UMR 1161 Virologie INRA-AFSSA-ENVA, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, 94700 Maisons-Alfort, France
| | | |
Collapse
|
13
|
Abstract
Many experimental strategies have been adopted in experiments to protect cats from FIV infection by vaccination, and some have been successful. The interest in developing a vaccine arose both because FIV is a common cause of morbidity and mortality in pet cats and because the feline virus provides a model for its counterpart in man, human immunodeficiency virus (HIV), for which an effective vaccine is urgently required to halt the current tragic pandemic of acquired immunodeficiency syndrome (AIDS). Shortly after the discovery of FIV and its characterization as a lentivirus, attempts were made to produce a vaccine and success was soon achieved with relatively simple inactivated virus or inactivated virus-infected cell vaccines.82 Further development of this approach led to the introduction in 2002 of the first commercial vaccine against FIV.59 With an estimated prevalence of the infection of up to 25% in populations of pet cats, an effective FIV vaccine could have a significant influence on animal welfare. In addition, this success poses the question of whether a similar strategy might produce an effective vaccine against HIV.
Collapse
|
14
|
Abstract
Animal models for human immunodeficiency virus (HIV) infection play a key role in understanding the pathogenesis of AIDS and the development of therapeutic agents and vaccines. As the only lentivirus that causes an immunodeficiency resembling that of HIV infection, in its natural host, feline immunodeficiency virus (FIV) has been a unique and powerful model for AIDS research. FIV was first described in 1987 by Niels Pedersen and co-workers as the causative agent for a fatal immunodeficiency syndrome observed in cats housed in a cattery in Petaluma, California. Since this landmark observation, multiple studies have shown that natural and experimental infection of cats with biological isolates of FIV produces an AIDS syndrome very similar in pathogenesis to that observed for human AIDS. FIV infection induces an acute viremia associated with Tcell alterations including depressed CD4 :CD8 T-cell ratios and CD4 T-cell depletion, peripheral lymphadenopathy, and neutropenia. In later stages of FIV infection, the host suffers from chronic persistent infections that are typically self-limiting in an immunocompetent host, as well as opportunistic infections, chronic diarrhea and wasting, blood dyscracias, significant CD4 T-cell depletion, neurologic disorders, and B-cell lymphomas. Importantly, chronic FIV infection induces a progressive lymphoid and CD4 T-cell depletion in the infected cat. The primary mode of natural FIV transmission appears to be blood-borne facilitated by fighting and biting. However, experimental infection through transmucosal routes (rectal and vaginal mucosa and perinatal) have been well documented for specific FIV isolates. Accordingly, FIV disease pathogenesis exhibits striking similarities to that described for HIV-1 infection.
Collapse
|
15
|
Abstract
Since feline immunodeficiency virus (FIV) was first isolated, international research efforts have been directed towards developing a protective vaccine, not least because it may provide a model for a candidate human immunodeficiency virus (HIV) vaccine. This article reviews the challenges facing vaccine development, the current state of knowledge and future prospects for FIV vaccination.
Collapse
Affiliation(s)
- M J Hosie
- Retrovirus Research Laboratory, Institute for Comparative Medicine, Faculty of Veterinary Medicine, The University of Glasgow
| | | |
Collapse
|
16
|
Pistello M, Bonci F, Flynn JN, Mazzetti P, Isola P, Zabogli E, Camerini V, Matteucci D, Freer G, Pelosi P, Bendinelli M. AIDS vaccination studies with an ex vivo feline immunodeficiency virus model: analysis of the accessory ORF-A protein and DNA as protective immunogens. J Virol 2006; 80:8856-68. [PMID: 16940498 PMCID: PMC1563914 DOI: 10.1128/jvi.00397-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Determining which antigen must be included in AIDS vaccines to confer maximum protection is of utmost importance. In primate models, vaccines consisting of or including accessory viral proteins have yielded conflicting results. We investigated the protective potential of the accessory protein ORF-A of feline immunodeficiency virus (FIV) in cats. All three immunization strategies used (protein alone in alum adjuvant, DNA alone, or DNA prime-protein boost) clearly generated detectable immune responses. Upon challenge with ex vivo homologous FIV, ORF-A-immunized cats showed distinct enhancement of acute-phase infection relative to mock-immunized animals given alum or empty vector DNA. This effect was tentatively attributed to increased expression of the FIV receptor CD134 that was observed in the immunized cats. However, at subsequent sampling points that were continued for up to 10 months postchallenge, the average plasma viral loads of the ORF-A-immunized animals were slightly but consistently reduced relative to those of the control animals. In addition, CD4(+) T lymphocytes in the circulation system declined more slowly in immunized animals than in control animals. These findings support the contention that immunization with lentiviral accessory proteins can improve the host's ability to control virus replication and slow down disease progression but also draw attention to the fact that even simple immunogens that eventually contribute to protective activity can transiently exacerbate subsequent lentiviral infections.
Collapse
Affiliation(s)
- Mauro Pistello
- Dipartimento di Patologia Sperimentale, Università di Pisa, Via San Zeno 37, I-56127 Pisa, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
VandeWoude S, Apetrei C. Going wild: lessons from naturally occurring T-lymphotropic lentiviruses. Clin Microbiol Rev 2006; 19:728-62. [PMID: 17041142 PMCID: PMC1592692 DOI: 10.1128/cmr.00009-06] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Over 40 nonhuman primate (NHP) species harbor species-specific simian immunodeficiency viruses (SIVs). Similarly, more than 20 species of nondomestic felids and African hyenids demonstrate seroreactivity against feline immunodeficiency virus (FIV) antigens. While it has been challenging to study the biological implications of nonfatal infections in natural populations, epidemiologic and clinical studies performed thus far have only rarely detected increased morbidity or impaired fecundity/survival of naturally infected SIV- or FIV-seropositive versus -seronegative animals. Cross-species transmissions of these agents are rare in nature but have been used to develop experimental systems to evaluate mechanisms of pathogenicity and to develop animal models of HIV/AIDS. Given that felids and primates are substantially evolutionarily removed yet demonstrate the same pattern of apparently nonpathogenic lentiviral infections, comparison of the biological behaviors of these viruses can yield important implications for host-lentiviral adaptation which are relevant to human HIV/AIDS infection. This review therefore evaluates similarities in epidemiology, lentiviral genotyping, pathogenicity, host immune responses, and cross-species transmission of FIVs and factors associated with the establishment of lentiviral infections in new species. This comparison of consistent patterns in lentivirus biology will expose new directions for scientific inquiry for understanding the basis for virulence versus avirulence.
Collapse
Affiliation(s)
- Sue VandeWoude
- Department of Microbiology, Immunology and Pathology, College of Veterinary and Biomedical Sciences, Colorado State University, Fort Collins, CO 80538-1619, USA
| | | |
Collapse
|
18
|
Tasker S, Caney SMA, Day MJ, Dean RS, Helps CR, Knowles TG, Lait PJP, Pinches MDG, Gruffydd-Jones TJ. Effect of chronic FIV infection, and efficacy of marbofloxacin treatment, on Mycoplasma haemofelis infection. Vet Microbiol 2006; 117:169-79. [PMID: 16876338 DOI: 10.1016/j.vetmic.2006.06.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 06/08/2006] [Accepted: 06/12/2006] [Indexed: 10/24/2022]
Abstract
The purpose of this study was to investigate the effect of chronic feline immunodeficiency virus (FIV) infection, and efficacy of marbofloxacin treatment, on Mycoplasma haemofelis infection. Six cats chronically infected with FIV-Glasgow8 (Group X) and six FIV-free cats (Group Y) were infected with M. haemofelis on Day 0 by intravenous blood inoculation. From Day 0 until Day 86 post-infection (pi), blood samples were collected for M. haemofelis and FIV provirus quantitative real-time PCR and haematology. Three of the six cats in each of Groups X and Y were randomly selected to receive marbofloxacin treatment (2 mg/kg PO q24 h) from Day 16 to 43 pi, with the remaining cats being untreated controls with no antibiotic treatment. The M. haemofelis copy numbers and haematological data were compared between Groups X and Y, and between marbofloxacin-treated and control cats using a Mann-Whitney U-test. M. haemofelis infection was associated with development of macrocytic hypochromic anaemia. In some cats, marked variation in M. haemofelis copy number over time (>100,000-fold difference within 48 h in some cats) and/or cycling of copy number was seen. No correlation was found between FIV provirus copy number and M. haemofelis copy number or haematological variables. No significant effect of chronic FIV infection on M. haemofelis copy number kinetics or haematological changes due to M. haemofelis infection was found, other than MCHC (P=0.03). Marbofloxacin treatment was associated with a significant decrease in M. haemofelis copy number (P=0.002), although consistent clearance of infection was not demonstrated. This study reveals the presence of marked fluctuations in M. haemofelis copy number kinetics in vivo and a significant response to marbofloxacin antibiotic treatment.
Collapse
Affiliation(s)
- Séverine Tasker
- School of Clinical Veterinary Science, University of Bristol, Langford, Bristol, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Dunham SP, Bruce J, Klein D, Flynn JN, Golder MC, MacDonald S, Jarrett O, Neil JC. Prime-boost vaccination using DNA and whole inactivated virus vaccines provides limited protection against virulent feline immunodeficiency virus. Vaccine 2006; 24:7095-108. [PMID: 17049683 DOI: 10.1016/j.vaccine.2006.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 04/03/2006] [Accepted: 07/03/2006] [Indexed: 10/24/2022]
Abstract
Protection against feline immunodeficiency virus (FIV) has been achieved using a variety of vaccines notably whole inactivated virus (WIV) and DNA. However protection against more virulent isolates, typical of those encountered in natural infections, has been difficult to achieve. In an attempt to improve protection against virulent FIV(GL8), we combined both DNA and WIV vaccines in a "prime-boost" approach. Thirty cats were divided into four groups receiving vaccinations and one unvaccinated control group. Following viral challenge, two vaccinated animals, one receiving DNA alone and one the prime-boost vaccine remained free of viraemia, whilst all controls became viraemic. Animals vaccinated with WIV showed apparent early enhancement of infection at 2 weeks post challenge (pc) with higher plasma viral RNA loads than control animals or cats immunised with DNA alone. Despite this, animals vaccinated with WIV or DNA alone showed significantly lower proviral loads in peripheral blood mononuclear cells and mesenteric lymph node cells, whilst those receiving the DNA-WIV prime-boost vaccine showed significantly lower proviral loads in PBMC, than control animals, at 35 weeks pc. Therefore both DNA and WIV vaccines conferred limited protection against viral challenge but the combination of WIV and DNA in a prime-boost approach appeared to offer no significant advantage over either vaccine alone.
Collapse
Affiliation(s)
- Stephen P Dunham
- Retrovirus Research Laboratory, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Feline immunodeficiency virus (FIV) is a natural infection of domestic cats, which produces a disease with many similarities to human immunodeficiency virus (HIV) infection in man. The virus is an important cause of morbidity and mortality in pet cats worldwide. As such an effective vaccine is desirable both for its use in veterinary medicine and also as a model for the development of an HIV vaccine. A large number of candidate vaccines have been tested against feline immunodeficiency virus. These include inactivated virus and infected cell vaccines, DNA and viral vectored vaccines, subunit and peptide vaccines and vaccines using bacterial vectors. Ultimately, the development of inactivated virus and infected cell vaccines led to the release of the first licensed vaccine against FIV, in 2002. This review highlights some of the difficulties associated with the development of lentiviral vaccines and some of the lessons that have been learned in the FIV model that are of particular relevance to the development of HIV vaccines.
Collapse
Affiliation(s)
- Stephen P Dunham
- Retrovirus Research Laboratory, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, United Kingdom.
| |
Collapse
|
21
|
Flynn JN, Pistello M, Isola P, Zaccaro L, Del Santo B, Ricci E, Matteucci D, Bendinelli M. Adoptive immunotherapy of feline immunodeficiency virus with autologous ex vivo-stimulated lymphoid cells modulates virus and T-cell subsets in blood. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2006; 12:736-45. [PMID: 15939748 PMCID: PMC1151978 DOI: 10.1128/cdli.12.6.736-745.2005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The potential of immunotherapy with autologous virus-specific T cells to affect the course of feline immunodeficiency virus (FIV) infection was explored in a group of specific-pathogen-free cats infected with FIV a minimum of 10 months earlier. Popliteal lymph node cells were stimulated by cocultivation with UV-inactivated autologous fibroblasts infected with recombinant vaccinia viruses expressing either FIV gag or env gene products, followed by expansion in interleukin-2. One or two infusions of both Gag- and Env-stimulated cells resulted in a slow increase in FIV-specific gamma interferon-secreting T cells in the circulation of cats. In the same animals, viral set points fluctuated widely during the first 2 to 3 weeks after adoptive transfer and then returned to pretreatment levels. The preexisting viral quasispecies was also found to be modulated, whereas no novel viral variants were detected. Circulating CD4(+) counts underwent a dramatic decline early after treatment. CD4/CD8 ratios remained instead essentially unchanged and eventually improved in some animals. In contrast, a single infusion of Gag-stimulated cells alone produced no apparent modulations of infection.
Collapse
Affiliation(s)
- J Norman Flynn
- Dipartimento di Patologia Sperimentale, Università di Pisa, Via San Zeno 37, I-56127 Pisa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Tasker S, Caney SMA, Day MJ, Dean RS, Helps CR, Knowles TG, Lait PJP, Pinches MDG, Gruffydd-Jones TJ. Effect of chronic feline immunodeficiency infection, and efficacy of marbofloxacin treatment, on 'Candidatus Mycoplasma haemominutum' infection. Microbes Infect 2006; 8:653-61. [PMID: 16483821 DOI: 10.1016/j.micinf.2005.08.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Revised: 08/20/2005] [Accepted: 08/30/2005] [Indexed: 11/28/2022]
Abstract
The purpose of this study was to investigate the effect of chronic feline immunodeficiency virus (FIV) infection, and efficacy of marbofloxacin treatment, on 'Candidatus Mycoplasma haemominutum' infection. Six cats chronically infected with FIV-Glasgow8 (group A) and six FIV-free cats (group B) were infected with 'Candidatus M. haemominutum' on day 0 by intravenous inoculation of blood. From day 0 to 105 post-infection (pi), blood samples were collected for 'Candidatus M. haemominutum' and FIV provirus quantitative real-time polymerase chain reaction (PCR) and haematological examination. Three of the six cats in each of the groups were randomly selected to receive marbofloxacin treatment (2mg/kg PO SID) from day 49 to day 76 pi, with the remaining cats being untreated controls. Maximum 'Candidatus M. haemominutum' copy number was reached around day 30 pi. No overt cycling or marked variation in copy number was observed. No significant effect of FIV infection on 'Candidatus M. haemominutum' copy number kinetics or anaemia indices was found. No correlation was found between FIV provirus copy number and 'Candidatus M. haemominutum' copy number or haematological variables. Although marbofloxacin treatment was associated with a significant decrease in 'Candidatus M. haemominutum' copy number, the copy number plateaued during treatment, with no negative PCR results. Additionally, after termination of marbofloxacin treatment the copy numbers of the treated cats increased to reach levels similar to those of the untreated cats within 7-10 days. This study documents, for the first time, the infection kinetics and antibiotic responsiveness of 'Candidatus M. haemominutum' infection.
Collapse
Affiliation(s)
- Séverine Tasker
- School of Clinical Veterinary Science, University of Bristol, Langford, Bristol, BS40 5DU, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Broche-Pierre S, Richardson J, Moraillon A, Sonigo P. Evaluation of live feline immunodeficiency virus vaccines with modified antigenic properties. J Gen Virol 2005; 86:2495-2506. [PMID: 16099908 DOI: 10.1099/vir.0.80469-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Live-attenuated viruses have typically been generated from pathogenic viruses by genetic modifications that modified their replicative capacity. The present study investigated whether modification of the antigenic properties of live-attenuated viruses might improve upon the protection that such vaccines afford against lentivirus infection. In a previous study, random amino acid substitutions were introduced into the transmembrane envelope glycoprotein of the feline immunodeficiency virus (FIV), within a highly conserved domain (principal immunodominant domain) bearing immunodominant B-cell epitopes. Amongst a wide set of mutants, mutations that modified antibody specificity without abolishing infectivity ex vivo were selected. In the present study, two such mutants, TN14 and TN92, were evaluated for their replicative capacities and pathogenic properties in vivo in comparison with the parental virus, FIV 34TF10. No significant differences in viral load were observed between mutant and parental viruses. After 1 year of infection, all animals were subjected to a heterologous intraclade superinfection with a primary strain of FIV. Whilst both parental and modified viruses protected cats from high viral loads after superinfection, the TN92 virus afforded a higher degree of protection (P=0·0079). Such improvement in protection might correlate with a decrease in the immunogenicity of a B-cell epitope potentially involved in antibody enhancement of infection.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Antibodies, Viral/blood
- Base Sequence
- Cat Diseases/immunology
- Cat Diseases/prevention & control
- Cat Diseases/virology
- Cats
- Epitopes, B-Lymphocyte/immunology
- Gene Products, env/administration & dosage
- Gene Products, env/genetics
- Gene Products, env/immunology
- Immunodeficiency Virus, Feline/genetics
- Immunodeficiency Virus, Feline/immunology
- Immunodeficiency Virus, Feline/pathogenicity
- Immunodominant Epitopes/immunology
- Lentivirus Infections/immunology
- Lentivirus Infections/prevention & control
- Lentivirus Infections/veterinary
- Lentivirus Infections/virology
- Molecular Sequence Data
- Vaccination
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Sophie Broche-Pierre
- Génétique des Virus, Institut Cochin (INSERM U567, CNRS UMR8104), 22 rue Méchain, 75014 Paris, France
| | - Jennifer Richardson
- Génétique des Virus, Institut Cochin (INSERM U567, CNRS UMR8104), 22 rue Méchain, 75014 Paris, France
| | - Anne Moraillon
- UMR INRA-ENVA-AFSSA 1161 de Virologie, Ecole Nationale Vétérinaire d'Alfort (ENVA), 7 rue du Général de Gaulle, 94704 Maisons-Alfort, France
| | - Pierre Sonigo
- Génétique des Virus, Institut Cochin (INSERM U567, CNRS UMR8104), 22 rue Méchain, 75014 Paris, France
| |
Collapse
|
24
|
Pistello M, Bonci F, Isola P, Mazzetti P, Merico A, Zaccaro L, Matteucci D, Bendinelli M. Evaluation of feline immunodeficiency virus ORF-A mutants as candidate attenuated vaccine. Virology 2005; 332:676-90. [PMID: 15680433 DOI: 10.1016/j.virol.2004.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 11/19/2004] [Accepted: 12/04/2004] [Indexed: 11/17/2022]
Abstract
Feline immunodeficiency virus (FIV) made defective in the accessory gene ORF-A were previously shown to be greatly attenuated in its ability to replicate in lymphocytes but to grow normally or near normally in other cell types. Here, we examined whether FIV thus mutated could protect specific pathogen-free cats against challenge with ex vivo fully virulent homologous virus. No reversion of the vaccinating infections to wild type ORF-A was noted over 22 months of in vivo infection. Following challenge, 6/6 unvaccinated control cats became readily and heavily infected. In contrast, 3/9 vaccinees showed no evidence of the challenge virus over a 15-month observation period. In the other vaccinees, the challenge virus was predominant for various periods of time, but pre-existing viral loads and CD4 lymphocyte counts were either unaffected or altered only marginally and transiently. These findings show that ORF-A-defective FIV should be further examined as a candidate live attenuated vaccine.
Collapse
Affiliation(s)
- M Pistello
- Department of Experimental Pathology, Retrovirus Center and Virology Section, University of Pisa, Via San Zeno, 37, Pisa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Hosie MJ, Klein D, Binley JM, Dunsford TH, Jarrett O, Neil JC, Knapp E, Giannecchini S, Matteucci D, Bendinelli M, Hoxie JA, Willett BJ. Vaccination with an inactivated virulent feline immunodeficiency virus engineered to express high levels of Env. J Virol 2005; 79:1954-7. [PMID: 15650222 PMCID: PMC544106 DOI: 10.1128/jvi.79.3.1954-1957.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An inactivated virus vaccine was prepared from a pathogenic isolate of feline immunodeficiency virus containing a mutation that eliminated an endocytic sorting signal in the envelope glycoprotein, increasing its expression on virions. Cats immunized with inactivated preparations of this modified virus exhibited strong titers of antibody to Env by enzyme-linked immunosorbent assay. Evidence of protection following challenge demonstrated the potential of this approach to lentiviral vaccination.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Viral/blood
- Cat Diseases/prevention & control
- Cat Diseases/virology
- Cats
- Feline Acquired Immunodeficiency Syndrome/prevention & control
- Feline Acquired Immunodeficiency Syndrome/virology
- Gene Products, env/genetics
- Gene Products, env/immunology
- Gene Products, env/metabolism
- Genetic Engineering/methods
- Humans
- Immunodeficiency Virus, Feline/genetics
- Immunodeficiency Virus, Feline/immunology
- Immunodeficiency Virus, Feline/pathogenicity
- Molecular Sequence Data
- Mutation
- Neutralization Tests
- Vaccination/veterinary
- Vaccines, Inactivated/administration & dosage
- Vaccines, Inactivated/genetics
- Vaccines, Inactivated/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Margaret J Hosie
- Retrovirus Research Laboratory, Institute of Comparative Medicine, University of Glasgow, Bearsden Rd., Glasgow G61 1QH, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Pu R, Coleman J, Coisman J, Sato E, Tanabe T, Arai M, Yamamoto JK. Dual-subtype FIV vaccine (Fel-O-Vax FIV) protection against a heterologous subtype B FIV isolate. J Feline Med Surg 2005; 7:65-70. [PMID: 15686976 PMCID: PMC10911555 DOI: 10.1016/j.jfms.2004.08.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2004] [Indexed: 10/26/2022]
Abstract
Vaccine trials were undertaken to determine whether the Fel-O-Vax FIV, a commercial dual-subtype (subtypes A and D) feline immunodeficiency virus (FIV) vaccine, is effective against a subtype B FIV isolate. Current results demonstrate the Fel-O-Vax FIV to be effective against a subtype B virus, a subtype reported to be the most common in the USA.
Collapse
Affiliation(s)
- Ruiyu Pu
- Department of Pathobiology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611-0880, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Dunham SP, Bruce J. Isolation, expression and bioactivity of feline granulocyte–macrophage colony-stimulating factor. Gene 2004; 332:97-106. [PMID: 15145059 DOI: 10.1016/j.gene.2004.02.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Revised: 12/04/2003] [Accepted: 02/09/2004] [Indexed: 11/25/2022]
Abstract
A cDNA encoding feline granulocyte-macrophage colony stimulating factor was cloned from alveolar macrophages using the reverse transcriptase-polymerase chain reaction (RT-PCR). The cDNA is 426 bp in length and encodes a predicted mature protein of 127 amino acids and the majority of the signal peptide. The recombinant protein (rfGM-CSF) was expressed in both Escherichia coli, as a calmodulin fusion protein, and mammalian cells. Biological activity of both recombinant proteins was demonstrated using the human erythroleukaemic cell line, TF-1. In a soft agar clonogenic assay, rfGM-CSF supported the development of granulocyte, macrophage and granulocyte-macrophage colonies. In combination with phytohaemagglutin (PHA) lymphocyte-conditioned medium, the number and size of such colonies were increased. Culture of feline bone marrow cells with rfGM-CSF was an efficient method for producing cells with morphology typical of dendritic cells (DC). The availability of the recombinant cytokine will permit further studies, in particular, the evaluation of the role of dendritic cells in feline immunopathology and its potential as a vaccine adjuvant.
Collapse
Affiliation(s)
- Stephen P Dunham
- Department of Veterinary Pathology, Retrovirus Research Laboratory, Institute of Comparative Medicine, University of Glasgow Veterinary School, Bearsden Road, Glasgow G61 1QH, UK.
| | | |
Collapse
|
28
|
Pistello M, Matteucci D, Bonci F, Isola P, Mazzetti P, Zaccaro L, Merico A, Del Mauro D, Flynn N, Bendinelli M. AIDS vaccination studies using an ex vivo feline immunodeficiency virus model: protection from an intraclade challenge administered systemically or mucosally by an attenuated vaccine. J Virol 2003; 77:10740-50. [PMID: 14512524 PMCID: PMC224962 DOI: 10.1128/jvi.77.20.10740-10750.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Feline immunodeficiency virus (FIV) infection of domestic cats represents a valuable system through which to investigate criteria for antilentiviral vaccines in a natural host species. Here, we examined whether vaccination with a strain of FIV attenuated as a result of prolonged growth in vitro could protect against a fully virulent, highly heterologous intraclade challenge. The results indicated that the vaccine virus produced a low-grade infection with no detectable pathological effects and afforded a long-lasting sterilizing immunity if the challenge was delivered intraperitoneally as cell-free virus but not against a cell-associated intravaginal challenge. In the latter case, however, the replication and pathological consequences of the challenge virus were markedly suppressed. Together with similar results obtained in rhesus monkey models, these findings should give impulse to the development of attenuated FIV vaccines to be tested in controlled studies in field cats. Field studies may provide answers to some of the existing safety concerns surrounding attenuated AIDS vaccines in humans.
Collapse
Affiliation(s)
- Mauro Pistello
- Retrovirus Center and Virology Section, Department of Experimental Pathology, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ryan G, Klein D, Knapp E, Hosie MJ, Grimes T, Mabruk MJEMF, Jarrett O, Callanan JJ. Dynamics of viral and proviral loads of feline immunodeficiency virus within the feline central nervous system during the acute phase following intravenous infection. J Virol 2003; 77:7477-85. [PMID: 12805447 PMCID: PMC164807 DOI: 10.1128/jvi.77.13.7477-7485.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2002] [Accepted: 04/12/2003] [Indexed: 11/20/2022] Open
Abstract
Animal models of human immunodeficiency virus 1, such as feline immunodeficiency virus (FIV), provide the opportunities to dissect the mechanisms of early interactions of the virus with the central nervous system (CNS). The aims of the present study were to evaluate viral loads within CNS, cerebrospinal fluid (CSF), ocular fluid, and the plasma of cats in the first 23 weeks after intravenous inoculation with FIV(GL8). Proviral loads were also determined within peripheral blood mononuclear cells (PBMCs) and brain tissue. In this acute phase of infection, virus entered the brain in the majority of animals. Virus distribution was initially in a random fashion, with more diffuse brain involvement as infection progressed. Virus in the CSF was predictive of brain parenchymal infection. While the peak of virus production in blood coincided with proliferation within brain, more sustained production appeared to continue in brain tissue. In contrast, proviral loads in the brain decreased to undetectable levels in the presence of a strengthening PBMC load. A final observation in this study was that there was no direct correlation between viral loads in regions of brain or ocular tissue and the presence of histopathology.
Collapse
Affiliation(s)
- G Ryan
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Uhl E, Heaton-Jones T, Pu R, Yamamoto J. FIV vaccine development and its importance to veterinary and human medicine: a review FIV vaccine 2002 update and review. Vet Immunol Immunopathol 2002; 90:113-32. [PMID: 12459160 PMCID: PMC7119750 DOI: 10.1016/s0165-2427(02)00227-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2002] [Revised: 08/05/2002] [Accepted: 08/14/2002] [Indexed: 10/27/2022]
Abstract
Feline immunodeficiency virus (FIV) is a natural infection of domestic cats that results in acquired immunodeficiency syndrome resembling human immunodeficiency virus (HIV) infection in humans. The worldwide prevalence of FIV infection in domestic cats has been reported to range from 1 to 28%. Hence, an effective FIV vaccine will have an important impact on veterinary medicine in addition to being used as a small animal AIDS model for humans. Since the discovery of FIV reported in 1987, FIV vaccine research has pursued both molecular and conventional vaccine approaches toward the development of a commercial product. Published FIV vaccine trial results from 1998 to the present have been compiled to update the veterinary clinical and research communities on the immunologic and experimental efficacy status of these vaccines. A brief report is included on the outcome of the 10 years of collaborative work between industry and academia which led to recent USDA approval of the first animal lentivirus vaccine, the dual-subtype FIV vaccine. The immunogenicity and efficacy of the experimental prototype, dual-subtype FIV vaccine and the efficacy of the currently approved commercial, dual-subtype FIV vaccine (Fel-O-Vax FIV) are discussed. Potential cross-reactivity complications between commercial FIV diagnostic tests, Idexx Snap Combo Test and Western blot assays, and sera from previously vaccinated cats are also discussed. Finally, recommendations are made for unbiased critical testing of new FIV vaccines, the currently USDA approved vaccine, and future vaccines in development.
Collapse
Affiliation(s)
- E.W Uhl
- Department of Pathobiology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611-0880, USA
| | - T.G Heaton-Jones
- Department of Pathobiology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611-0880, USA
| | - R Pu
- Department of Pathobiology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611-0880, USA
| | - J.K Yamamoto
- Department of Pathobiology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611-0880, USA
| |
Collapse
|
31
|
Abstract
Nucleic acid immunisation entails the delivery of DNA (or RNA) encoding a vaccine antigen to the recipient. The DNA is taken up by host cells and transcribed to mRNA, from which the vaccine proteins are then translated. The expressed proteins are recognised as foreign by the host immune system and elicit an immune response, which may have both cell-mediated and humoral components. DNA vaccines offer a number of advantages over conventional vaccines, including ease of production, stability and cost. They also allow the production of vaccines against organisms which are difficult or dangerous to culture in the laboratory. This review describes the principles of DNA vaccination and the application of DNA vaccines to veterinary species. Although a great deal of developmental work is required before the technology can give rise to commercial vaccines in domestic animals, there is ongoing research in many fields and it is expected that a number of exciting developments will arise in the next decade.
Collapse
Affiliation(s)
- Stephen P Dunham
- Department of Veterinary Pathology, Retrovirus Research Laboratory, University of Glasgow Veterinary School, Bearsden Road, Glasgow G61 1QH, UK.
| |
Collapse
|
32
|
Pistello M, Moscardini M, Mazzetti P, Bonci F, Zaccaro L, Isola P, Freer G, Specter S, Matteucci D, Bendinelli M. Development of feline immunodeficiency virus ORF-A (tat) mutants: in vitro and in vivo characterization. Virology 2002; 298:84-95. [PMID: 12093176 DOI: 10.1006/viro.2002.1442] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A functional ORF-A is essential for efficient feline immunodeficiency virus replication in lymphocytes. We have characterized a series of mutants of the Petaluma strain, derived from p34TF10 and having different combinations of stop codons and increasingly long deletions in ORF-A. Six clones proved fully replicative in fibroblastoid Crandell feline kidney cells and monocyte-derived macrophage cultures but failed to replicate in T cell lines and primary lymphoblasts. Cats inoculated with three selected mutants had considerably milder infections than controls given intact ORF-A virus. In vivo, the mutants maintained growth properties similar to those in vitro for at least 7 months, except that replication in lymphoid cells was strongly reduced but not ablated. One mutant underwent extensive ORF-A changes without, however, reverting to wild-type. Antiviral immune responses were feeble in all cats, suggesting that viral loads were too low to represent a sufficiently powerful antigenic stimulus.
Collapse
Affiliation(s)
- M Pistello
- Retrovirus Center and Virology Section, University of Pisa, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hosie MJ, Willett BJ, Klein D, Dunsford TH, Cannon C, Shimojima M, Neil JC, Jarrett O. Evolution of replication efficiency following infection with a molecularly cloned feline immunodeficiency virus of low virulence. J Virol 2002; 76:6062-72. [PMID: 12021339 PMCID: PMC136200 DOI: 10.1128/jvi.76.12.6062-6072.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of an effective vaccine against human immunodeficiency virus is considered to be the most practicable means of controlling the advancing global AIDS epidemic. Studies with the domestic cat have demonstrated that vaccinal immunity to infection can be induced against feline immunodeficiency virus (FIV); however, protection is largely restricted to laboratory strains of FIV and does not extend to primary strains of the virus. We compared the pathogenicity of two prototypic vaccine challenge strains of FIV derived from molecular clones; the laboratory strain PET(F14) and the primary strain GL8(414). PET(F14) established a low viral load and had no effect on CD4(+)- or CD8(+)-lymphocyte subsets. In contrast, GL8(414) established a high viral load and induced a significant reduction in the ratio of CD4(+) to CD8(+) lymphocytes by 15 weeks postinfection, suggesting that PET(F14) may be a low-virulence-challenge virus. However, during long-term monitoring of the PET(F14)-infected cats, we observed the emergence of variant viruses in two of three cats. Concomitant with the appearance of the variant viruses, designated 627(W135) and 628(W135,) we observed an expansion of CD8(+)-lymphocyte subpopulations expressing reduced CD8 beta-chain, a phenotype consistent with activation. The variant viruses both carried mutations that reduced the net charge of the V3 loop (K409Q and K409E), giving rise to a reduced ability of the Env proteins to both induce fusion and to establish productive infection in CXCR4-expressing cells. Further, following subsequent challenge of naïve cats with the mutant viruses, the viruses established higher viral loads and induced more marked alterations in CD8(+)-lymphocyte subpopulations than did the parent F14 strain of virus, suggesting that the E409K mutation in the PET(F14) strain contributes to the attenuation of the virus.
Collapse
Affiliation(s)
- Margaret J Hosie
- Department of Veterinary Pathology, University of Glasgow, Glasgow G61 1QH, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Dunham SP, Flynn JN, Rigby MA, Macdonald J, Bruce J, Cannon C, Golder MC, Hanlon L, Harbour DA, Mackay NA, Spibey N, Jarrett O, Neil JC. Protection against feline immunodeficiency virus using replication defective proviral DNA vaccines with feline interleukin-12 and -18. Vaccine 2002; 20:1483-96. [PMID: 11858854 DOI: 10.1016/s0264-410x(01)00507-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A molecular clone of the Glasgow-8 isolate of FIV (FIVGL8) was rendered replication defective by an in-frame deletion in either reverse transcriptase (deltaRT) or integrase (deltaIN) genes for use as DNA vaccines. To test the ability of these multi-gene vaccines to protect against two feline immunodeficiency virus (FIV) isolates of differing virulence, cats were immunized using either DNA vaccine alone or co-administered with interleukin-12 (IL-12) and/or interleukin-18 (IL-18) cytokine DNA. Animals were challenged sequentially with FIV-Petaluma (FIVPET) an FIV isolate of relatively low virulence and subsequently with the more virulent FIVGL8. A proportion of vaccinates (5/18 deltaIN and 2/12 deltaRT) were protected against primary challenge with FIV(PET). Five of the vaccinated-protected cats were re-challenged with FIV(PET); four (all deltaIN) remained free of viraemia whilst all naive controls became viraemic. Following subsequent challenge with the more virulent FIVGL8 these four vaccinated-protected animals all became viraemic but showed lower proviral loads than naive cats. This study suggests that while our current DNA vaccines may not produce sterilizing immunity against more virulent isolates of FIV, they may nevertheless significantly reduce the impact of infection.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Viral/biosynthesis
- Base Sequence
- Cats
- DNA, Viral/genetics
- Defective Viruses/enzymology
- Defective Viruses/genetics
- Defective Viruses/immunology
- Feline Acquired Immunodeficiency Syndrome/immunology
- Feline Acquired Immunodeficiency Syndrome/prevention & control
- Genes, Viral
- Immunodeficiency Virus, Feline/enzymology
- Immunodeficiency Virus, Feline/genetics
- Immunodeficiency Virus, Feline/immunology
- Immunodeficiency Virus, Feline/pathogenicity
- Integrases/genetics
- Interleukin-12/administration & dosage
- Interleukin-18/administration & dosage
- Molecular Sequence Data
- Proviruses/isolation & purification
- RNA-Directed DNA Polymerase/genetics
- Sequence Deletion
- T-Lymphocytes, Cytotoxic/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/pharmacology
- Viral Vaccines/administration & dosage
- Viral Vaccines/pharmacology
- Virulence
- Virus Replication/genetics
Collapse
Affiliation(s)
- Stephen P Dunham
- Retrovirus Research Laboratory, Department of Veterinary Pathology, University of Glasgow Veterinary School, Bearsden Road, Glasgow G61 1QH, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Brown AL, Dunsford TH, Jarrett O, Willett BJ, Hosie MJ. Demonstration of biological activity of CD40 ligand (CD154) in the domestic cat. Cytokine 2002; 17:140-8. [PMID: 11895332 DOI: 10.1006/cyto.2001.0993] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The interaction between CD40L (CD154) on T cells and CD40 on antigen-presenting cells induces expression of accessory molecules that facilitate immune activation. Therefore, CD40L may have utility as an adjuvant for the development of potent antigen-specific immune responses following vaccination. As there was no information about the feline homologue of CD40L or its function, we generated stable cell lines expressing cDNAs encoding the feline CD40L homologue. As a preliminary to investigating the use of CD40L as an adjuvant for vaccination of the domestic cat, we tested the biological activity of the feline cytokine molecule in vitro. We demonstrated that cells expressing feline CD40L induced proliferation of feline peripheral blood mononuclear cells (PBMC) and that purified B cells could be induced to proliferate in response to feline CD40L.
Collapse
Affiliation(s)
- Abigail L Brown
- Retrovirus Research Laboratory, University of Glasgow Veterinary School, Glasgow, UK
| | | | | | | | | |
Collapse
|
36
|
VandeWoude S, Hageman CA, O'Brien SJ, Hoover EA. Nonpathogenic Lion and Puma Lentiviruses Impart Resistance to Superinfection by Virulent Feline Immunodeficiency Virus. J Acquir Immune Defic Syndr 2002. [DOI: 10.1097/00042560-200201010-00001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
37
|
Giannecchini S, Matteucci D, Ferrari A, Pistello M, Bendinelli M. Feline immunodeficiency virus-infected cat sera associated with the development of broad neutralization resistance in vivo drive similar reversions in vitro. J Virol 2001; 75:8868-73. [PMID: 11507234 PMCID: PMC115134 DOI: 10.1128/jvi.75.18.8868-8873.2001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported that, upon reinoculation into cats, a neutralization-sensitive, tissue culture-adapted strain of feline immunodeficiency virus constantly reverted to the broad neutralization resistance typical of primary virus isolates and identified residue 481 in the V4 region of the surface glycoprotein as a key determinant of the reversion. Here, we found that well-characterized immune sera, obtained from cats in which such reversion had occurred, selected in tissue culture in favor of virus variants that also had a neutralization-resistant phenotype and had amino acid 481 changed, thus indicating that the host's humoral immune response is capable of driving the reversion in the absence of other intervening factors. In contrast, a second group of immune sera, elicited by a virus variant that had already reverted to neutralization resistance in independent cats, induced the emergence of escape mutants lacking broad neutralization resistance and neutralized fewer virus variants. It is proposed that the viral variants used to produce the two sets of sera may have generated different antibody repertoires.
Collapse
Affiliation(s)
- S Giannecchini
- Retrovirus Center and Virology Section, Department of Biomedicine, University of Pisa, Pisa, Italy
| | | | | | | | | |
Collapse
|
38
|
Giannecchini S, Del Mauro D, Matteucci D, Bendinelli M. AIDS vaccination studies using an ex vivo feline immunodeficiency virus model: reevaluation of neutralizing antibody levels elicited by a protective and a nonprotective vaccine after removal of antisubstrate cell antibodies. J Virol 2001; 75:4424-9. [PMID: 11287594 PMCID: PMC114190 DOI: 10.1128/jvi.75.9.4424-4429.2001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the feline immunodeficiency virus system, immunization with a fixed-infected-cell vaccine conferred protection against virulent homologous challenge but the immune effectors involved remained elusive. In particular, few or no neutralizing antibodies were detected in sera from vaccinated cats. Here we show that, when preadsorbed with selected feline cells, the same sera revealed clearly evident virus-neutralizing activity. Because high titers of neutralizing antibody in cell-adsorbed sera from 23 cats immunized with fixed-infected-cell or whole-inactivated-virus vaccines correlated with protection, it is likely that they were more important for protection than formerly realized. In vitro, the fixed-cell vaccine efficiently removed neutralizing antibody from immune sera while the whole-inactivated-virus vaccine was much less effective.
Collapse
Affiliation(s)
- S Giannecchini
- Department of Biomedicine and Retrovirus Center, University of Pisa, Pisa, Italy
| | | | | | | |
Collapse
|