1
|
Characterizing the Pathogenesis and Immune Response of Equine Herpesvirus 8 Infection in Lung of Mice. Animals (Basel) 2022; 12:ani12192495. [PMID: 36230234 PMCID: PMC9559255 DOI: 10.3390/ani12192495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Equine herpesvirus 8 (EHV-8) is an important pathogen primarily affecting the horse and donkey industry, but there is little information about the pathogenicity and immune response of EHV-8 in a mouse model. We aim to investigate the pathogenicity and immune response in the lung during EHV-8 infection in BALB/c mice. The results showed that EHV-8 could effectively replicate and elicits a strong proinflammatory response in the lung tissues of a mouse model. The mouse model of viral respiratory disease proposed here will also be useful for studying the underlying mechanisms of the pathology of respiration. Abstract Equine herpesvirus type 8 (EHV-8), associated with abortion and severe respiratory disease in donkeys and horses, causes significant economic losses in the global equine industry. However, the pathogenicity of EHV-8 is still unknown. Mice are widely used as an animal model to evaluate virus replication and virulence. The present study aimed to evaluate the pathogenicity of the EHV-8 SDLC66 strain in BALB/c mice. Mice were used to test for infection-associated parameters (such as clinical signs, body weights, virus replication in tissues, viremia, and cytokines) and sacrificed at 0, 2, 4, and 6 days post-infection (dpi). The mice inoculated with EHV-8 exhibited lethargy, dyspnea signs, loss in body weight, and viremia. EHV-8 was detected in the liver, spleen, brain, and lung by PCR at 4 dpi and 6 dpi, effectively replicating these tissues detected by TCID50 at 6 dpi. Proinflammatory cytokines, including IL-6, IL-1β, and TNF-α, were significantly increased at the 4 dpi and 6 dpi in the lung than in the control group. However, IFN-γ was only increased at 6 dpi in the EHV-8-infected group. These data showed that EHV-8 could enter the lungs of mice and cause respiratory disease in the mouse model, which helps reveal the pathogenicity of EHV-8.
Collapse
|
2
|
Interferon Gamma Inhibits Equine Herpesvirus 1 Replication in a Cell Line-Dependent Manner. Pathogens 2021; 10:pathogens10040484. [PMID: 33923733 PMCID: PMC8073143 DOI: 10.3390/pathogens10040484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
The sole equine herpesvirus 1 (EHV-1) immediate-early protein (IEP) is essential for viral replication by transactivating viral immediate-early (IE), early (E), and late (L) genes. Here, we report that treatment of mouse MH-S, equine NBL6, and human MRC-5 cells with 20 ng/mL of IFN-γ reduced EHV-1 yield by 1122-, 631-, and 10,000-fold, respectively. However, IFN-γ reduced virus yield by only 2–4-fold in mouse MLE12, mouse L-M, and human MeWo cells compared to those of untreated cells. In luciferase assays with the promoter of the EHV-1 early regulatory EICP0 gene, IFN-γ abrogated trans-activation activity of the IEP by 96% in MH-S cells, but only by 21% in L-M cells. Similar results were obtained in assays with the early regulatory UL5 and IR4 promoter reporter plasmids. IFN-γ treatment reduced IEP protein expression by greater than 99% in MH-S cells, but only by 43% in L-M cells. The expression of IEP and UL5P suppressed by IFN-γ was restored by JAK inhibitor treatment, indicating that the inhibition of EHV-1 replication is mediated by JAK/STAT1 signaling. These results suggest that IFN-γ blocks EHV-1 replication by inhibiting the production of the IEP in a cell line-dependent manner. Affymetrix microarray analyses of IFN-γ-treated MH-S and L-M cells revealed that five antiviral ISGs (MX1, SAMHD1, IFIT2, NAMPT, TREX1, and DDX60) were upregulated 3.2–18.1-fold only in MH-S cells.
Collapse
|
3
|
Mesquita LP, Costa RC, Zanatto DA, Bruhn FRP, Mesquita LLR, Lara MCCSH, Villalobos EMC, Massoco CO, Mori CMC, Mori E, Maiorka PC. Equine herpesvirus 1 elicits a strong pro-inflammatory response in the brain of mice. J Gen Virol 2021; 102. [PMID: 33528354 DOI: 10.1099/jgv.0.001556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Equine herpesvirus type 1 (EHV-1) is an emerging pathogen that causes encephalomyelitis in horses and non-equid species. Several aspects of the immune response in the central nervous system (CNS), mainly regarding the role of inflammatory mediators during EHV-1 encephalitis, remain unknown. Moreover, understanding the mechanisms underlying extensive neuropathology induced by viruses would be helpful to establish therapeutic strategies. Therefore, we aimed to evaluate some aspects of the innate immune response during highly neurovirulent EHV-1 infection. C57BL/6 mice infected intranasally with A4/72 and A9/92 EHV-1 strains developed a fulminant neurological disease at 3 days post-inoculation with high viral titres in the brain. These mice developed severe encephalitis with infiltration of monocytes and CD8+ T cells to the brain. The inflammatory infiltrate followed the detection of the chemokines CCL2, CCL3, CCL4, CCL5, CXCL2, CXCL9 and CXCL-10 in the brain. Notably, the levels of CCL3, CCL4, CCL5 and CXCL9 were higher in A4/72-infected mice, which presented higher numbers of inflammatory cells within the CNS. Pro-inflammatory cytokines, such as interleukins (ILs) IL-1α, IL-1β, IL-6, IL-12β, and tumour necrosis factor (TNF), were also detected in the CNS, and Toll-like receptor (TLR) TLR2, TLR3 and TLR9 genes were also upregulated within the brain of EHV-1-infected mice. However, no expression of interferon-γ (IFN-γ) and IL-12α, which are important for controlling the replication of other herpesviruses, was detected in EHV-1-infected mice. The results show that the activated innate immune mechanisms could not prevent EHV-1 replication within the CNS, but most likely contributed to the extensive neuropathology. The mouse model of viral encephalitis proposed here will also be useful to study the mechanisms underlying extensive neuropathology.
Collapse
Affiliation(s)
- Leonardo P Mesquita
- Department of Pathology, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, Av. Professor Dr Orlando Marques de Paiva, 87, São Paulo, SP, 5508-010, Brazil
| | - Rafael C Costa
- Department of Pathology, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, Av. Professor Dr Orlando Marques de Paiva, 87, São Paulo, SP, 5508-010, Brazil
| | - Dennis A Zanatto
- Department of Pathology, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, Av. Professor Dr Orlando Marques de Paiva, 87, São Paulo, SP, 5508-010, Brazil
| | - Fábio R P Bruhn
- College of Veterinary Medicine, Federal University of Pelotas, Campus Universitário, Capão do Leão, Rio Grande do Sul, RS, 96160-000, Brazil
| | - Laís L R Mesquita
- Department of Pathology, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, Av. Professor Dr Orlando Marques de Paiva, 87, São Paulo, SP, 5508-010, Brazil
| | - M C C S H Lara
- Biological Institute, Av. Conselheiro Rodrigues Alves, 1252, São Paulo, SP, 04014-002, Brazil
| | - E M C Villalobos
- Biological Institute, Av. Conselheiro Rodrigues Alves, 1252, São Paulo, SP, 04014-002, Brazil
| | - Cristina O Massoco
- Department of Pathology, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, Av. Professor Dr Orlando Marques de Paiva, 87, São Paulo, SP, 5508-010, Brazil
| | - Claudia M C Mori
- Department of Pathology, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, Av. Professor Dr Orlando Marques de Paiva, 87, São Paulo, SP, 5508-010, Brazil
| | - Enio Mori
- Pasteur Institute, Av. Paulista, 393, São Paulo, SP, 01311-000, Brazil
| | - Paulo C Maiorka
- Department of Pathology, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, Av. Professor Dr Orlando Marques de Paiva, 87, São Paulo, SP, 5508-010, Brazil
| |
Collapse
|
4
|
Saleh AG, El-Habashi N, Abd-Ellatieff HA, Abas OM, Anwar S, Fukushi H, Yanai T. Comparative Study of the Pathogenesis of Rhinopneumonitis Induced by Intranasal Inoculation of Hamsters with Equine Herpesvirus-9, Equine Herpesvirus-1 strain Ab4p and Zebra-borne Equine Herpesvirus-1. J Comp Pathol 2020; 180:35-45. [PMID: 33222872 DOI: 10.1016/j.jcpa.2020.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/25/2020] [Accepted: 08/03/2020] [Indexed: 10/23/2022]
Abstract
Equine herpesvirus-9 (EHV-9), equine herpesvirus-1 (EHV-1) and zebra-borne EHV-1 are members of the family Herpesviridae and cause encephalitis and rhinopneumonitis in a range of animal species. The aim of this study was to characterize and compare the rhinopneumonitis induced by experimental intranasal inoculation of groups of hamsters with EHV-9, EHV-1 strain Ab4p or zebra-borne EHV-1 viruses. Animals inoculated with EHV-9 had earlier and more severe neurological and respiratory signs than those inoculated with EHV-1 strain Ab4p or zebra-borne EHV-1. At 4-5 days post inoculation (dpi), hamsters inoculated with EHV-9 had significantly increased expression of open reading fame (ORF) 30, the viral gene encoding the DNA polymerase, in lung tissue. ORF 30 expression at these time points was higher in the hamsters infected with EHV-9 than in those inoculated with the other two viruses. Severe, mild or very mild rhinitis was seen in animals inoculated with EHV-1 strain Ab4p, EHV-9 and zebra-borne EHV-1, respectively. Viral antigen was detected in olfactory receptor neurons, inflammatory cells and desquamated epithelial cells in animals in all groups until 5 dpi. Tracheitis was also seen in all three virus-infected groups with viral antigen detected in tracheal epithelium. Inoculated hamsters developed interstitial pneumonia of increasing severity over the course of the experiment. Bronchopneumonia and vasculitis were also seen in all three infected groups. These results confirm that, in addition to their neurotropism, EHV-9 and zebra-borne EHV-1 are pneumotropic viruses. EHV-1 strain Ab4p caused more severe upper respiratory tract disease, but no significant differences were detected in the severity of pneumonia induced by each virus.
Collapse
Affiliation(s)
- Asmaa G Saleh
- Laboratory of Veterinary Pathology and Microbiology, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan; Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhur University, El-Beheira
| | - Nagwan El-Habashi
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Hoda A Abd-Ellatieff
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Damanhur University, El-Beheira, Egypt
| | - Osama M Abas
- Laboratory of Veterinary Microbiology, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan; Department of Animal Medicine, Faculty of Veterinary Medicine, Alexandria University, Alexandria Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Shehata Anwar
- Neuroscience Laboratory, CHU de Québec Research Centre, Department of Molecular Medicine, Faculty of Medicine, Laval University, Canada
| | - Hideto Fukushi
- Laboratory of Veterinary Pathology and Microbiology, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Tokuma Yanai
- Laboratory of Veterinary Pathology and Microbiology, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan; Laboratory of Wildlife and Forensic Science, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan.
| |
Collapse
|
5
|
Kim SK, Shakya AK, O'Callaghan DJ. Intranasal treatment with CpG-B oligodeoxynucleotides protects CBA mice from lethal equine herpesvirus 1 challenge by an innate immune response. Antiviral Res 2019; 169:104546. [PMID: 31247247 PMCID: PMC6699901 DOI: 10.1016/j.antiviral.2019.104546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/05/2019] [Accepted: 06/24/2019] [Indexed: 02/07/2023]
Abstract
Equine herpesvirus 1 (EHV-1) is the causative agent of a number of equine disease manifestations, including severe disease of the central nervous system, respiratory infections, and abortion storms. Our results showed that intranasal treatment with CpG-B oligodeoxynucleotides (ODN 1826) protected CBA mice from pathogenic EHV-1 RacL11 challenge. The IFN-γ gene and seven interferon-stimulated genes (ISGs) were upregulated 39.4- to 260.3-fold at 8 h postchallenge in the lungs of RacL11-challenged mice that had been treated with CpG-B ODN. Interestingly, IFN-γ gene expression was upregulated by 26-fold upon RacL11 challenge in CpG-B ODN-treated mice lungs as compared to that of CpG-A ODN (ODN 1585)-treated mice lungs; however, the seven ISGs were upregulated by 2.4-5.0-fold, suggesting that IFN-γ is a major factor in the protection of CBA mice from the lethal challenge. Pre-treatment with IFN-γ significantly reduced EHV-1 yield in murine alveolar macrophage MH-S cells, but not in mouse lung epithelial MLE12 cells. These results suggest that CpG-B ODN may be used as a prophylactic agent in horses and provide a basis for more effective treatment of EHV-1 infection.
Collapse
Affiliation(s)
- Seong K Kim
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130-3932, USA.
| | - Akhalesh K Shakya
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130-3932, USA
| | - Dennis J O'Callaghan
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130-3932, USA
| |
Collapse
|
6
|
Minato E, Aoshima K, Kobayashi A, Ohnishi N, Sasaki N, Kimura T. Exogenous Expression of Equine MHC Class I Molecules in Mice Increases Susceptibility to Equine Herpesvirus 1 Pulmonary Infection. Vet Pathol 2019; 56:703-710. [PMID: 30866742 DOI: 10.1177/0300985819834616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Equine herpesvirus 1 (EHV-1) uses equine major histocompatibility complex class I (MHC class I) as an entry receptor. Exogenous expression of equine MHC class I genes in murine cell lines confers susceptibility to EHV-1 infection. To examine the in vivo role of equine MHC class I as an entry receptor for EHV-1, we generated transgenic (Tg) mice expressing equine MHC class I under the control of the CAG promoter. Equine MHC class I protein was expressed in the liver, spleen, lung, and brain of Tg mice, which was confirmed by Western blot. However, equine MHC class I antigen was only detected in bronchiolar epithelium and not in other tissues, using the immunofluorescence method employed in this study. Both Tg and wild-type (WT) mice developed pneumonia 3 days after intranasal infection with EHV-1. The bronchiolar epithelial cells of Tg mice showed more severe necrosis, compared with those in WT mice. In addition, the number of virus antigen-positive cells in the lungs was higher in Tg mice than in WT mice. These results suggest that exogenous expression of equine MHC class I renders mice more susceptible to EHV-1 infection.
Collapse
Affiliation(s)
- Erina Minato
- 1 Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Keisuke Aoshima
- 1 Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Atsushi Kobayashi
- 1 Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Naomi Ohnishi
- 2 Project for Personalized Cancer medicine, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Nobuya Sasaki
- 3 Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Takashi Kimura
- 1 Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
7
|
Shakya AK, O'Callaghan DJ, Kim SK. Comparative Genomic Sequencing and Pathogenic Properties of Equine Herpesvirus 1 KyA and RacL11. Front Vet Sci 2017; 4:211. [PMID: 29312962 PMCID: PMC5732242 DOI: 10.3389/fvets.2017.00211] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/23/2017] [Indexed: 12/20/2022] Open
Abstract
Equine herpesvirus 1 (EHV-1) is a major pathogen affecting equines worldwide. The virus causes respiratory disease, abortion, and, in some cases, neurological disease. EHV-1 Kentucky A (KyA) is attenuated in the mouse and equine, whereas wild-type pathogenic strain RacL11 induces severe inflammatory infiltration of the lung, causing infected mice to succumb. The complete DNA sequencing of the KyA genome revealed that genes UL17 (ORF17), US6 (ORF73; gI), US7 (ORF74; gE), and US8 (ORF75; 10 K) are deleted as compared to the RacL11 and Ab4 genomes. In-frame deletions in the US1 (ORF68), US4 (ORF71; gp2), and UL63 (ORF63; EICP0) genes and point mutations in 14 different open reading frames (ORFs) were detected in the KyA genome. Interestingly, UL1 (ORF1) and UL2 (ORF2) were deleted in both KyA and RacL11. Our previous studies showed that EHV-1 glycoproteins gI, gE, and full-length gp2 contribute to the pathogenesis of the RacL11 strain. The confirmation of these gene deletions in KyA suggests their contribution to the attenuation of this virus. The growth kinetics results revealed that KyA replicates to high titers in cell culture as compared to RacL11 and Ab4, indicating that the above genomic deletions and mutations in KyA do not have an inhibitory effect on KyA replication in cells of mouse, rabbit, equine, or human origin. Studies of EHV-1 pathogenesis in CBA mice showed that KyA is attenuated whereas mice infected with RacL11 succumbed by 3–6 days post-infection, which is consistent with our previous results.
Collapse
Affiliation(s)
- Akhalesh K Shakya
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Dennis J O'Callaghan
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Seong K Kim
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| |
Collapse
|
8
|
Intramuscular Immunization of Mice with the Live-Attenuated Herpes Simplex Virus 1 Vaccine Strain VC2 Expressing Equine Herpesvirus 1 (EHV-1) Glycoprotein D Generates Anti-EHV-1 Immune Responses in Mice. J Virol 2017; 91:JVI.02445-16. [PMID: 28404844 DOI: 10.1128/jvi.02445-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 03/14/2017] [Indexed: 11/20/2022] Open
Abstract
Vaccination remains the best option to combat equine herpesvirus 1 (EHV-1) infection, and several different strategies of vaccination have been investigated and developed over the past few decades. Herein, we report that the live-attenuated herpes simplex virus 1 (HSV-1) VC2 vaccine strain, which has been shown to be unable to enter into neurons and establish latency in mice, can be utilized as a vector for the heterologous expression of EHV-1 glycoprotein D (gD) and that the intramuscular immunization of mice results in strong antiviral humoral and cellular immune responses. The VC2-EHV-1-gD recombinant virus was constructed by inserting an EHV-1 gD expression cassette under the control of the cytomegalovirus immediate early promoter into the VC2 vector in place of the HSV-1 thymidine kinase (UL23) gene. The vaccines were introduced into mice through intramuscular injection. Vaccination with both the VC2-EHV-1-gD vaccine and the commercially available vaccine Vetera EHVXP 1/4 (Vetera; Boehringer Ingelheim Vetmedica) resulted in the production of neutralizing antibodies, the levels of which were significantly higher in comparison to those in VC2- and mock-vaccinated animals (P < 0.01 or P < 0.001). Analysis of EHV-1-reactive IgG subtypes demonstrated that vaccination with the VC2-EHV-1-gD vaccine stimulated robust IgG1 and IgG2a antibodies after three vaccinations (P < 0.001). Interestingly, Vetera-vaccinated mice produced significantly higher levels of IgM than mice in the other groups before and after challenge (P < 0.01 or P < 0.05). Vaccination with VC2-EHV-1-gD stimulated strong cellular immune responses, characterized by the upregulation of both interferon- and tumor necrosis factor-positive CD4+ T cells and CD8+ T cells. Overall, the data suggest that the HSV-1 VC2 vaccine strain may be used as a viral vector for the vaccination of horses as well as, potentially, for the vaccination of other economically important animals.IMPORTANCE A novel virus-vectored VC2-EHV-1-gD vaccine was constructed using the live-attenuated HSV-1 VC2 vaccine strain. This vaccine stimulated strong humoral and cellular immune responses in mice, suggesting that it could protect horses against EHV-1 infection.
Collapse
|
9
|
Equine herpesvirus type 1 induces both neurological and respiratory disease in Syrian hamsters. Vet Microbiol 2017; 203:117-124. [DOI: 10.1016/j.vetmic.2017.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 11/19/2022]
|
10
|
Kim SK, Shakya AK, O'Callaghan DJ. Immunization with Attenuated Equine Herpesvirus 1 Strain KyA Induces Innate Immune Responses That Protect Mice from Lethal Challenge. J Virol 2016; 90:8090-104. [PMID: 27356904 PMCID: PMC5008086 DOI: 10.1128/jvi.00986-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 06/24/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Equine herpesvirus 1 (EHV-1) is a major pathogen affecting equines worldwide. The virus causes respiratory disease, abortion, and, in some cases, neurological disease. EHV-1 strain KyA is attenuated in the mouse and equine, whereas wild-type strain RacL11 induces severe inflammation of the lung, causing infected mice to succumb at 4 to 6 days postinfection. Our previous results showed that KyA immunization protected CBA mice from pathogenic RacL11 challenge at 2 and 4 weeks postimmunization and that KyA infection elicited protective humoral and cell-mediated immune responses. To investigate the protective mechanisms of innate immune responses to KyA, KyA-immunized mice were challenged with RacL11 at various times postvaccination. KyA immunization protected mice from RacL11 challenge at 1 to 7 days postimmunization. Immunized mice lost less than 10% of their body weight and rapidly regained weight. Virus titers in the lungs of KyA-immunized mice were 1,000-fold lower at 2 days post-RacL11 challenge than virus titers in the lungs of nonimmunized mice, indicating accelerated virus clearance. Affymetrix microarray analysis revealed that gamma interferon (IFN-γ) and 16 antiviral interferon-stimulated genes (ISGs) were upregulated 3.1- to 48.2-fold at 8 h postchallenge in the lungs of RacL11-challenged mice that had been immunized with KyA. Murine IFN-γ inhibited EHV-1 infection of murine alveolar macrophages and protected mice against lethal EHV-1 challenge, suggesting that IFN-γ expression is important in mediating the protection elicited by KyA immunization. These results suggest that EHV-1 KyA may be used as a live attenuated EHV-1 vaccine as well as a prophylactic agent in horses. IMPORTANCE Viral infection of cells initiates a signal cascade of events that ultimately attempts to limit viral replication and prevent infection through the expression of host antiviral proteins. In this study, we show that EHV-1 KyA immunization effectively protected CBA mice from pathogenic RacL11 challenge at 1 to 7 days postvaccination and increased the expression of IFN-γ and 16 antiviral interferon-stimulated genes (ISGs). The administration of IFN-γ blocked EHV-1 replication in murine alveolar macrophages and mouse lungs and protected mice from lethal challenge. To our knowledge, this is the first report of an attenuated EHV-1 vaccine that protects the animal at 1 to 7 days postimmunization by innate immune responses. Our findings suggested that IFN-γ serves as a novel prophylactic agent and may offer new strategies for the development of anti-EHV-1 agents in the equine.
Collapse
Affiliation(s)
- Seong K Kim
- Department of Microbiology and Immunology and Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Akhalesh K Shakya
- Department of Microbiology and Immunology and Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Dennis J O'Callaghan
- Department of Microbiology and Immunology and Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| |
Collapse
|
11
|
Soboll Hussey G, Ashton LV, Quintana AM, Lunn DP, Goehring LS, Annis K, Landolt G. Innate immune responses of airway epithelial cells to infection with Equine herpesvirus-1. Vet Microbiol 2014; 170:28-38. [DOI: 10.1016/j.vetmic.2014.01.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/20/2014] [Accepted: 01/24/2014] [Indexed: 11/16/2022]
|
12
|
The role of secreted glycoprotein G of equine herpesvirus type 1 and type 4 (EHV-1 and EHV-4) in immune modulation and virulence. Virus Res 2012; 169:203-11. [PMID: 22902480 DOI: 10.1016/j.virusres.2012.07.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 07/23/2012] [Accepted: 07/25/2012] [Indexed: 11/24/2022]
Abstract
Equine herpesvirus type 1 and 4 (EHV-1 and EHV-4) are important pathogens of horses worldwide. Infection with EHV-4 usually remains restricted to the upper respiratory tract, whereas infection with EHV-1 can generalize after leukocyte-associated viremia. Here we examined whether differences in the immunomodulatory glycoprotein G (gG) between the two viruses determine EHV-1's ability to cause systemic infection. To this end, mutant viruses were constructed based on the neurovirulent EHV-1 strain OH-03, in which the entire gG gene or parts thereof were exchanged with EHV-4 gG sequences. In vitro chemotaxis assays showed that supernatants of cells infected with the various gG mutant viruses interfered to variable degrees with neutrophil migration. More specifically, supernatants of cells infected with the gG deletion virus (vOH-ΔgG1) or OH-03 expressing EHV-4 gG (vOH-gG4) were unable to interfere with chemotaxis. Re-insertion of the predicted chemokine-binding region of EHV-1 gG in the vOH-gG4 mutant (vOH-gG4hyp1) did not completely restore the ability to inhibit neutrophil migration, whereas insertion of the hypervariable region of EHV-4 gG into vOH-03 (vOH-gG1hyp4) did not lead to a complete loss of chemokine-binding function. Very similar results were obtained in an in vivo study where the amount of neutrophils present in bronchioalveolar lavages (BALs) of mice infected with the different mutants was analyzed by flow cytometry. Taken together, our results show that, in a virus background, the hypervariable region is not solely responsible for the immunomodulatory potential of EHV-1 gG.
Collapse
|
13
|
Marcelin G, Aldridge JR, Duan S, Ghoneim HE, Rehg J, Marjuki H, Boon ACM, McCullers JA, Webby RJ. Fatal outcome of pandemic H1N1 2009 influenza virus infection is associated with immunopathology and impaired lung repair, not enhanced viral burden, in pregnant mice. J Virol 2011; 85:11208-19. [PMID: 21865394 PMCID: PMC3194964 DOI: 10.1128/jvi.00654-11] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 08/10/2011] [Indexed: 01/22/2023] Open
Abstract
Pandemic A (H1N1) 2009 influenza virus (pH1N1) infection in pregnant women can be severe. The mechanisms that affect infection outcome in this population are not well understood. To address this, pregnant and nonpregnant BALB/c mice were inoculated with the wild-type pH1N1 strain A/California/04/09. To determine whether innate immune responses are associated with severe infection, we measured the innate cells trafficking into the lungs of pregnant versus nonpregnant animals. Increased infiltration of pulmonary neutrophils and macrophages strongly correlated with an elevated mortality in pregnant mice. In agreement with this, the product of nitric oxide (nitrite) and several cytokines associated with recruitment and/or function of these cells were increased in the lungs of pregnant animals. Surprisingly, increased mortality in pregnant mice was not associated with higher virus load because equivalent virus titers and immunohistochemical staining were observed in the nasal cavities or lungs of all mice. To determine whether exacerbated inflammatory responses and elevated cellularity resulted in lung injury, epithelial regeneration was measured. The lungs of pregnant mice exhibited reduced epithelial regeneration, suggesting impaired lung repair. Despite these immunologic alterations, pregnant animals demonstrated equivalent percentages of pulmonary influenza virus-specific CD8(+) T lymphocytes, although they displayed elevated levels of T-regulator lymphocytes (Tregs) in the lung. Also, pregnant mice mounted equal antibody titers in response to virus or immunization with a monovalent inactivated pH1N1 A/California/07/09 vaccine. Therefore, immunopathology likely caused by elevated cellular recruitment is an implicated mechanism of severe pH1N1 infection in pregnant mice.
Collapse
Affiliation(s)
| | | | - Susu Duan
- Department of Infectious Diseases, Division of Virology
| | | | - Jerold Rehg
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105
| | - Henju Marjuki
- Department of Infectious Diseases, Division of Virology
| | | | | | | |
Collapse
|
14
|
Charvat RA, Breitenbach JE, Ahn B, Zhang Y, O’Callaghan DJ. The UL4 protein of equine herpesvirus 1 is not essential for replication or pathogenesis and inhibits gene expression controlled by viral and heterologous promoters. Virology 2011; 412:366-77. [PMID: 21324502 PMCID: PMC3060994 DOI: 10.1016/j.virol.2011.01.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 11/23/2010] [Accepted: 01/19/2011] [Indexed: 11/26/2022]
Abstract
Defective interfering particles (DIP) of equine herpesvirus 1 (EHV-1) inhibit standard virus replication and mediate persistent infection. The DIP genome is comprised of only three genes: UL3, UL4, and a hybrid gene composed of portions of the IR4 (EICP22) and UL5 (EICP27) genes. The hybrid gene is important for DIP interference, but the function(s) of the UL3 and UL4 genes are unknown. Here, we show that UL4 is an early gene activated solely by the immediate early protein. The UL4 protein (UL4P) was detected at 4hours post-infection, was localized throughout the nucleus and cytoplasm, and was not present in purified virions. EHV-1 lacking UL4P expression was infectious and displayed cell tropism and pathogenic properties in the mouse model similar to those of parental and revertant viruses. Reporter assays demonstrated that the UL4P has a broad inhibitory function, suggesting a potential role in establishing and/or maintaining DIP-mediated persistent infection.
Collapse
Affiliation(s)
- Robert A. Charvat
- Center for Molecular and Tumor Virology, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | | | - ByungChul Ahn
- Center for Molecular and Tumor Virology, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | - Yunfei Zhang
- Center for Molecular and Tumor Virology, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | - Dennis J. O’Callaghan
- Center for Molecular and Tumor Virology, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| |
Collapse
|
15
|
Wimer CL, Damiani A, Osterrieder N, Wagner B. Equine herpesvirus type-1 modulates CCL2, CCL3, CCL5, CXCL9, and CXCL10 chemokine expression. Vet Immunol Immunopathol 2011; 140:266-74. [DOI: 10.1016/j.vetimm.2011.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/17/2011] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
|
16
|
Oslund KL, Adamson G, Wu R. Evaluation of MUC5AC expression and upregulation in airway epithelial cells of horses. Am J Vet Res 2010; 71:690-6. [PMID: 20513186 DOI: 10.2460/ajvr.71.6.690] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To isolate and culture primary equine airway epithelial cells in vitro and elucidate the major cytokines involved in expression of the gel-forming mucin gene MUC5AC in horses. SAMPLE POPULATION 12 tracheas obtained within 5 hours after euthanasia from horses free from respiratory tract disease. PROCEDURES Tracheal rings were digested overnight in 0.2% protease, and dissociated airway epithelial cells were grown in a serum-free defined medium at an air-liquid interface until confluence was achieved. Differentiated airway epithelial cells were treated with a panel of recombinant equine cytokines followed by quantitative reverse transcriptase PCR assay for mRNA of equine MUC5AC and the control gene glyceraldehyde 3-phosphate dehydrogenase. Cultures were incubated in the presence of isohelenin, a nuclear factor kappaB-DNA-binding inhibitor, to investigate transcriptional regulation of MUC5AC. RESULTS Light and electron microscopy revealed a differentiated epithelium with ciliated cells, nonciliated mucous cells, and basal-like cells. Recombinant equine tumor necrosis factor-alpha was the major mediator in the cytokine panel that significantly increased MUC5AC mRNA by a factor of 5 in a dose- and time-dependent manner. This enhancement was attenuated by isohelenin. CONCLUSIONS AND CLINICAL RELEVANCE Data suggested that a nuclear factor KB-based transcriptional mechanism is involved in induction of MUC5AC expression by tumor necrosis factor-A. Understanding the molecular mechanism of cytokine-enhanced MUC5AC expression in horses may lead to better treatment options and understanding of the pathogenesis of equine pulmonary diseases.
Collapse
Affiliation(s)
- Karen L Oslund
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine and Center for Comparative Respiratory Biology and Medicine, School of Medicine, University of California-Davis, Davis, CA 95616, USA.
| | | | | |
Collapse
|
17
|
CCL3 and viral chemokine-binding protein gg modulate pulmonary inflammation and virus replication during equine herpesvirus 1 infection. J Virol 2007; 82:1714-22. [PMID: 18077722 DOI: 10.1128/jvi.02137-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CCL3 is a proinflammatory chemokine that mediates many of the cellular changes occurring in pulmonary disease. Here, CCL3(-/-) mice were used to investigate the role of this chemokine during respiratory herpesvirus infection. Compared to wild-type mice, CCL3(-/-) mice infected with the alphaherpesvirus equine herpesvirus 1 (EHV-1) displayed reduced body weight loss but had higher pulmonary viral loads. Lungs from infected CCL3(-/-) mice suffered a milder interstitial pneumonia, and fewer immune cells were recovered from the pulmonary airways after infection. We could also demonstrate that herpesvirus-encoded chemokine-binding glycoprotein G (gG) was capable of inhibiting the chemotactic functions of CCL3. This CCL3-mediated chemotaxis, however, was restored in the presence of gG-specific antibodies, which puts into question the advertised use of gG deletion mutants as marker vaccines. In summary, we concluded that CCL3 is a major player in controlling herpesvirus replication in the target organ, the lung, and does so by evoking a strong inflammatory response. The immunomodulatory activity of CCL3 is balanced by the expression of viral gG, whose chemokine-binding activity is mitigated in secondary infections by the production of anti-gG antibodies.
Collapse
|
18
|
Van de Walle GR, May ML, Sukhumavasi W, von Einem J, Osterrieder N. Herpesvirus Chemokine-Binding Glycoprotein G (gG) Efficiently Inhibits Neutrophil Chemotaxis In Vitro and In Vivo. THE JOURNAL OF IMMUNOLOGY 2007; 179:4161-9. [PMID: 17785855 DOI: 10.4049/jimmunol.179.6.4161] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glycoprotein G (gG) of alphaherpesviruses has been described to function as a viral chemokine-binding protein (vCKBP). More recently, mutant viruses devoid of gG have been shown to result in increased virulence, but it remained unclear whether the potential of gG to serve as a vCKBP is responsible for this observation. In this study, we used equine herpesvirus type 1 (EHV-1) as a model to study the pathophysiological importance of vCKBP activity. First, in vitro chemotaxis assays studying migration of immune cells, an important function of chemokines, were established. In such assays, supernatants of EHV-1-infected cells significantly inhibited IL-8-induced chemotaxis of equine neutrophils. Identification of gG as the responsible vCKBP was achieved by repeating similar experiments with supernatants from cells infected with a gG-negative mutant, which were unable to alter IL-8-induced equine neutrophil migration. Furthermore, rEHV-1 gG was able to significantly reduce neutrophil migration, establishing gG as a bona fide vCKBP. Second, and importantly, in vivo analyses in a murine model of EHV-1 infection showed that neutrophil migration in the target organ lung was significantly reduced in the presence of gG. In summary, we demonstrate for the first time that EHV-1 gG not only binds to chemokines but is also capable of inhibiting their chemotactic function both in vitro and in vivo, thereby contributing to viral pathogenesis and virulence.
Collapse
Affiliation(s)
- Gerlinde R Van de Walle
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
19
|
von Einem J, Smith PM, Van de Walle GR, O'Callaghan DJ, Osterrieder N. In vitro and in vivo characterization of equine herpesvirus type 1 (EHV-1) mutants devoid of the viral chemokine-binding glycoprotein G (gG). Virology 2007; 362:151-62. [PMID: 17250864 DOI: 10.1016/j.virol.2006.12.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 11/06/2006] [Accepted: 12/06/2006] [Indexed: 11/26/2022]
Abstract
Glycoprotein G (gG) of equine herpesvirus type 1 (EHV-1), a structural component of virions and secreted from virus-infected cells, was shown to bind to a variety of different chemokines and as such might be involved in immune modulation. Little is known, however, about its role in the replication cycle and infection of EHV-1 in vivo. Here we report on the function of gG in context of virus infection in vitro and in vivo. A gG deletion mutant of pathogenic EHV-1 strain RacL11 (vL11DeltagG) was constructed and analyzed. Deletion of gG had virtually no effect on the growth properties of vL11DeltagG in cell culture when compared to parental virus or a rescuant virus vL11DeltagGR, respectively, and virus titers and plaque formation were unaffected in the absence of the glycoprotein. Similarly, in the murine model of EHV-1 infection, no significant differences in virulence between the gG deletion mutant and RacL11 or vL11DeltagGR were found at high doses of infection. However, infection of mice at lower doses revealed that the gG deletion mutant was able to replicate to higher titers in lungs of infected mice. Additionally, these mice lost significantly more weight than those infected with RacL11 and a more pronounced inflammatory response in lungs was observed. Therefore we concluded that deletion of gG in EHV-1 seems to lead to an exacerbation of respiratory disease in the mouse.
Collapse
Affiliation(s)
- Jens von Einem
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
20
|
Smith PM, Kahan SM, Rorex CB, von Einem J, Osterrieder N, O'Callaghan DJ. Expression of the full-length form of gp2 of equine herpesvirus 1 (EHV-1) completely restores respiratory virulence to the attenuated EHV-1 strain KyA in CBA mice. J Virol 2005; 79:5105-15. [PMID: 15795295 PMCID: PMC1069573 DOI: 10.1128/jvi.79.8.5105-5115.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wild-type equine herpesvirus 1 (EHV-1) strains express a large (250-kDa) glycoprotein, gp2, that is encoded by EUs4 (gene 71) located within the unique short region of the genome. DNA sequence analysis revealed that EUs4 of the pathogenic EHV-1 strain RacL11 is an open reading frame of 2,376 bp that encodes a protein of 791 amino acids. The attenuated EHV-1 vaccine strain KyA harbors an in-frame deletion of 1,242 bp from bp 222 to 1461 and expresses a truncated gp2 of 383 amino acids. To determine the relative contribution of gp2 to EHV-1 pathogenesis, we compared the course of respiratory infection of CBA mice infected with either wild-type RacL11, attenuated KyA, or a recombinant KyA that expresses the full-length gp2 protein (KyARgp2F). Mice infected with KyA lost a negligible amount of body weight (0.18% total weight loss) on day 1 postinfection and regained weight thereafter, whereas mice infected with KyARgp2F or RacL11 steadily lost weight beginning on day 1 and experienced a 20 and 18% loss in body weight, respectively, by day 3. Immunohistochemical and flow cytometric analyses revealed higher numbers of T and B lymphocytes and an extensive consolidation consisting of large numbers of Mac-1-positive cells in the lungs of animals infected with KyARgp2F compared to animals infected with KyA. RNase protection analyses revealed increased expression of numerous cytokines and chemokines, including interleukin-1beta (IL-1beta), IL-6, tumor necrosis factor alpha, macrophage inflammatory protein 1alpha (MIP-1alpha), MIP-1beta, MIP-2, interferon gamma-inducible protein, monocyte chemotactic protein 1, and T-cell activation gene 3 at 12 h postinfection with KyARgp2F. Three independent DNA array experiments confirmed these results and showed a 2- to 13-fold increase in the expression of 31 inflammatory genes at 8 and 12 h postinfection with KyARgp2F compared to infection with KyA. Taken together, the results indicate that expression of full-length gp2 is sufficient to restore full respiratory virulence to the attenuated KyA strain and raise caution concerning the inclusion of full-length gp2 in the development of EHV-1 vaccines.
Collapse
Affiliation(s)
- Patrick M Smith
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Maeda K, Kai K, Hayashi T, Hasegawa K, Matsumura T. Intercellular Adhesion Molecule-1 (ICAM-1) and Lymphocyte Function-associated Antigen-1 (LFA-1) Contribute to the Elimination of Equine Herpesvirus Type 1 (EHV-1) from the Lungs of Intranasally Infected BALB/c Mice. J Comp Pathol 2004; 130:162-70. [PMID: 15003474 DOI: 10.1016/j.jcpa.2003.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2002] [Accepted: 10/30/2003] [Indexed: 10/26/2022]
Abstract
The role of intercellular adhesion molecule-1 (ICAM-1) and lymphocyte function-associated antigen-1 (LFA-1) on equine herpesvirus type 1 (EHV-1) infection in BALB/c mice produced by intranasal inoculation was studied. Infected mice were found to lose bodyweight (BW) during the acute phase of infection (i.e., within 1 week of inoculation) but to regain it during the convalescent phase. The intraperitoneal administration of monoclonal antibodies (mAbs) against ICAM-1 and LFA-1 one day before EHV-1 infection reduced the BW loss in the acute phase and retarded the recovery of BW in the convalescent phase. When mice pretreated with mAbs were killed 21 days after infection, the epithelial cells of the bronchi and bronchioles were found to contain viral antigens and to show degeneration and necrosis. In non-pretreated control mice, no viral antigens were detected and lesions were mild or absent. It was concluded that ICAM-1 and LFA-1 contributed to the elimination of EHV-1 from the lung, and to recovery. These findings may be relevant to EHV-1 infection in the horse.
Collapse
Affiliation(s)
- K Maeda
- Laboratory of Veterinary Microbiology, Faculty of Agriculture, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-city, Yamaguchi 753-8515, Japan
| | | | | | | | | |
Collapse
|
22
|
Zhang Y, Smith PM, Frampton AR, Osterrieder N, Jennings SR, O'Callaghan DJ. Cytokine profiles and long-term virus-specific antibodies following immunization of CBA mice with equine herpesvirus 1 and viral glycoprotein D. Viral Immunol 2004; 16:307-20. [PMID: 14583146 DOI: 10.1089/088282403322396118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Equine herpesvirus 1 (EHV-1)-specific antibody-secreting cells (ASC) isolated from the lung and spleen of mice at 12 months after immunization with attenuated EHV-1 KyA, heat-killed KyA, or recombinant viral glycoprotein D (rgD) assessed by ELISPOT showed a three- to fivefold increase in three immunoglobulin isotypes at 3 days post-challenge with pathogenic EHV-1 RacL11 as compared to control mice. ELISPOT assays demonstrated a high frequency of cells secreting proinflammatory tumor necrosis factor-alpha (TNF-alpha), interferon gamma (IFN-gamma), and interleukin 4 (IL-4) in the lungs in response to infection with KyA or RacL11 or immunization with rgD. Cytokine production elicited by EHV-1 KyA or RacL11 infection revealed similar frequencies of EHV-1-specific IFN-gamma and IL-4 spot forming cells in the mediastinal lymph nodes and spleen. However, KyA induced significantly greater amounts of IFN-gamma producing cells in the lungs than did RacL11. Intranasal immunization with KyA or rgD induced long-term immunity that provided protection against pathogenic EHV-1 challenge infection at 12 months post-immunization. Overall, the data indicate that immunization with infectious KyA or rgD induces significant levels of cytokines, virus-specific ASC in the lungs and spleen, and long-term virus specific B-cell responses.
Collapse
Affiliation(s)
- Yunfei Zhang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932, USA
| | | | | | | | | | | |
Collapse
|
23
|
Yao H, Osterrieder N, O'Callaghan DJ. Generation and characterization of an EICP0 null mutant of equine herpesvirus 1. Virus Res 2003; 98:163-72. [PMID: 14659563 DOI: 10.1016/j.virusres.2003.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The EICP0 gene (gene 63) of equine herpesvirus 1 (EHV-1) encodes an early regulatory protein that is a promiscuous trans-activator of all classes of viral genes. Bacterial artificial chromosome (BAC) technology and RecE/T cloning were employed to delete the EICP0 gene from EHV-1 strain KyA. Polymerase chain reaction, Southern blot analysis, and DNA sequencing confirmed the deletion of the EICP0 gene and its replacement with a kanamycin resistance gene in mutant KyA. Transfection of rabbit kidney cells with the EICP0 mutant genome produced infectious virus, indicating that the EICP0 gene is not essential for KyA replication in cell culture. Experiments to assess the effect of the EICP0 deletion on EHV-1 gene programming revealed that mRNA expression of the immediate-early gene and representative early and late genes as well as the synthesis of these viral proteins were reduced as compared to the kinetics of viral mRNA and protein synthesis observed for the wild type virus. However, the transition from early to late viral gene expression was not prevented or delayed, suggesting that the absence of the EICP0 gene did not disrupt the temporal aspects of EHV-1 gene regulation. The extracellular virus titer and plaque areas of the EICP0 mutant virus KyADeltaEICP0, in which the gp2-encoding gene 71 gene that is absent in the KyA BAC was restored, were reduced by 10-fold and 19%, respectively, when compared to parental KyA virus; while the titer and plaque areas of mutant KyADeltaEICP0Deltagp2 that lacks both the EICP0 gene and gene 71 were reduced more than 50-fold and 67%, respectively. The above results show that the EICP0 gene is dispensable for EHV-1 replication in cell culture, and that the switch from early to late viral gene expression for the representative genes examined does not require the EICP0 protein, but that the EICP0 protein may be structurally required for virus egress and cell-to-cell spread.
Collapse
Affiliation(s)
- Haijun Yao
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, P.O. Box 33932, Shreveport, LA 71130-3932, USA
| | | | | |
Collapse
|
24
|
Frampton AR, Smith PM, Zhang Y, Matsumura T, Osterrieder N, O'Callaghan DJ. Contribution of gene products encoded within the unique short segment of equine herpesvirus 1 to virulence in a murine model. Virus Res 2002; 90:287-301. [PMID: 12457983 DOI: 10.1016/s0168-1702(02)00245-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The pathogenesis of three equine herpesvirus 1 (EHV-1) recombinants was assessed in a CBA mouse model. Sequences encoding the majority of glycoproteins I (gI) and E (gE) were deleted from the pathogenic EHV-1 strain RacL11 (L11deltagIdeltagE), and sequences comprising the 3859 bp deletion within the strain KyA U(S) segment, which includes genes 73 (gI), 74 (gE), and 75 (putative 10 kDa protein 75), were re-inserted into attenuated KyA (KgI/gE/75). In addition, genes gE and 75 were inserted into KyA to generate the EHV-1 recombinant KgE/75. The insertion of the 3859 bp U(S) segment was sufficient to confer virulence to KyA, as indicated by pronounced signs of clinical disease including substantial weight loss. A large plaque morphology was observed in cells infected with KgI/gE/75 compared with KyA, and a small plaque phenotype was observed in cells infected with L11deltagIdeltagE compared with RacL11. These data indicate that gI and/or gI and gE contribute to the ability of EHV-1 to spread directly from cell-to-cell. The deletion of both gI and gE from the pathogenic RacL11 strain did not reduce clinical signs of disease in infected mice, but did decrease mortality compared with RacL11. Furthermore, the insertion of genes 74 (gE) and 75 into the vaccine strain KyA did not alter the attenuated phenotype of this virus. Finally, KgI/gE/75 and RacL11 elicited the production of the proinflammatory chemokines MIP-1alpha, MIP-1beta, and MIP-2 in the lungs of infected mice, while KyA did not, suggesting that gI and/or gI and gE contribute to the up-regulation of these mediators of inflammation. These findings show that gI, and/or gI and gE restore a virulent phenotype to the EHV-1 KyA strain, and indicate that virulence factors, in addition to gI and gE, contribute to the pathogenesis of the RacL11 strain.
Collapse
Affiliation(s)
- Arthur R Frampton
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Chemokines belong to a large family of structurally related proteins that play a pivotal role in immune system development and deployment. While a large number of chemokines (approximately 50) and their receptors (approximately 20) have been identified from humans or mice, only a few are known in domestic veterinary species. Recent data implicate CXCL8 (old name, IL-8), CXCL10 (old name, IP-10) (both CXC chemokines) and CCL2 (old name, MCP-1) (a CC chemokine) in veterinary infections, inflammatory diseases or reproduction. There is compelling evidence for neutrophil targeting chemokines such as CXCL8, in ovine bacterial mastitis, bovine pneumonic pasturellosis and equine chronic obstructive pulmonary disease (COPD). Monocyte and lymphocyte targeting chemokines appear to play a role in caprine arthritis encephalitis (CCL2) and canine endotoxemia (CXCL10). Interestingly CCL2 is considered a missing link between hormonal and cellular control of luteolysis. On the other hand, canine cardiovascular conditions are associated with overexpression of CCL2 and CXCL8. Furthermore, a number of veterinary viral pathogens encode chemokine/chemokine receptor like molecules or chemokine binding proteins that may help viruses to evade the immune system. Here, we provide an overview of the chemokine system and critically evaluate the current literature implicating chemokines in veterinary pathophysiology. Furthermore, we highlight promising areas for further research and discuss how and why chemokine antagonists are viewed as next generation anti-inflammatory drugs for the 21st century.
Collapse
Affiliation(s)
- Venu Gangur
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing 48824, USA.
| | | | | |
Collapse
|