1
|
Xie J, Crepeau RL, Chen CW, Zhang W, Otani S, Coopersmith CM, Ford ML. Sepsis erodes CD8 + memory T cell-protective immunity against an EBV homolog in a 2B4-dependent manner. J Leukoc Biol 2019; 105:565-575. [PMID: 30624806 DOI: 10.1002/jlb.4a0718-292r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/28/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022] Open
Abstract
Epstein-Barr virus (EBV) reactivation commonly occurs following sepsis, but the mechanisms underlying this are unknown. We utilized a murine EBV homolog (gHV) and the cecal ligation and puncture model of polymicrobial sepsis to study the impact of sepsis on gHV reactivation and CD8+ T cell immune surveillance following a septic insult. We observed a significant increase in the frequency of gHV-infected germinal center B cells on day 7 following sepsis. This increase in viral load was associated with a concomitant significant decrease in the frequencies of gHV-specific CD8+ T cells, as measured by class I MHC tetramers corresponding to the immunodominant viral epitopes. Phenotypic analysis revealed an increased frequency of gHV-specific CD8+ T cells expressing the 2B4 coinhibitory receptor in septic animals compared with sham controls. We sought to interrogate the role of 2B4 in modulating the gHV-specific CD8+ T cell response during sepsis. Results indicated that in the absence of 2B4, gHV-specific CD8+ T cell populations were maintained during sepsis, and gHV viral load was unchanged in 2B4-/- septic animals relative to 2B4-/- sham controls. WT CD8+ T cells upregulated PD-1 during sepsis, whereas 2B4-/- CD8+ T cells did not. Finally, adoptive transfer studies revealed a T cell-intrinsic effect of 2B4 coinhibition on virus-specific CD8+ T cells and gHV viral load during sepsis. These data demonstrate that sepsis-induced immune dysregulation erodes antigen-specific CD8+ responses against a latent viral infection and suggest that blockade of 2B4 may better maintain protective immunity against EBV in the context of sepsis.
Collapse
Affiliation(s)
- Jianfeng Xie
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Rebecca L Crepeau
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ching-Wen Chen
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Wenxiao Zhang
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Shunsuke Otani
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Craig M Coopersmith
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA.,Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mandy L Ford
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA.,Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia, USA.,Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Banerjee S, Uppal T, Strahan R, Dabral P, Verma SC. The Modulation of Apoptotic Pathways by Gammaherpesviruses. Front Microbiol 2016; 7:585. [PMID: 27199919 PMCID: PMC4847483 DOI: 10.3389/fmicb.2016.00585] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/11/2016] [Indexed: 12/11/2022] Open
Abstract
Apoptosis or programmed cell death is a tightly regulated process fundamental for cellular development and elimination of damaged or infected cells during the maintenance of cellular homeostasis. It is also an important cellular defense mechanism against viral invasion. In many instances, abnormal regulation of apoptosis has been associated with a number of diseases, including cancer development. Following infection of host cells, persistent and oncogenic viruses such as the members of the Gammaherpesvirus family employ a number of different mechanisms to avoid the host cell’s “burglar” alarm and to alter the extrinsic and intrinsic apoptotic pathways by either deregulating the expressions of cellular signaling genes or by encoding the viral homologs of cellular genes. In this review, we summarize the recent findings on how gammaherpesviruses inhibit cellular apoptosis via virus-encoded proteins by mediating modification of numerous signal transduction pathways. We also list the key viral anti-apoptotic proteins that could be exploited as effective targets for novel antiviral therapies in order to stimulate apoptosis in different types of cancer cells.
Collapse
Affiliation(s)
- Shuvomoy Banerjee
- Amity Institute of Virology and Immunology, Amity University Noida, India
| | - Timsy Uppal
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Roxanne Strahan
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Prerna Dabral
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Subhash C Verma
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| |
Collapse
|
3
|
Jha HC, Banerjee S, Robertson ES. The Role of Gammaherpesviruses in Cancer Pathogenesis. Pathogens 2016; 5:pathogens5010018. [PMID: 26861404 PMCID: PMC4810139 DOI: 10.3390/pathogens5010018] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/27/2016] [Indexed: 12/15/2022] Open
Abstract
Worldwide, one fifth of cancers in the population are associated with viral infections. Among them, gammaherpesvirus, specifically HHV4 (EBV) and HHV8 (KSHV), are two oncogenic viral agents associated with a large number of human malignancies. In this review, we summarize the current understanding of the molecular mechanisms related to EBV and KSHV infection and their ability to induce cellular transformation. We describe their strategies for manipulating major cellular systems through the utilization of cell cycle, apoptosis, immune modulation, epigenetic modification, and altered signal transduction pathways, including NF-kB, Notch, Wnt, MAPK, TLR, etc. We also discuss the important EBV latent antigens, namely EBNA1, EBNA2, EBNA3’s and LMP’s, which are important for targeting these major cellular pathways. KSHV infection progresses through the engagement of the activities of the major latent proteins LANA, v-FLIP and v-Cyclin, and the lytic replication and transcription activator (RTA). This review is a current, comprehensive approach that describes an in-depth understanding of gammaherpes viral encoded gene manipulation of the host system through targeting important biological processes in viral-associated cancers.
Collapse
Affiliation(s)
- Hem Chandra Jha
- Department of Microbiology and Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610, Hamilton Walk, Philadelphia, PA 19104, USA.
| | - Shuvomoy Banerjee
- Department of Microbiology and Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610, Hamilton Walk, Philadelphia, PA 19104, USA.
| | - Erle S Robertson
- Department of Microbiology and Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610, Hamilton Walk, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Epstein-Barr Virus (EBV) Tegument Protein BGLF2 Promotes EBV Reactivation through Activation of the p38 Mitogen-Activated Protein Kinase. J Virol 2015; 90:1129-38. [PMID: 26559845 DOI: 10.1128/jvi.01410-15] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 10/15/2015] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Epstein-Barr virus (EBV) is a ubiquitous gammaherpesvirus associated with both B cell and epithelial cell malignancies. EBV infection of B cells triggers activation of several signaling pathways that are critical for cell survival, virus latency, and growth transformation. To identify EBV proteins important for regulating cell signaling, we used a proteomic approach to screen viral proteins for AP-1 and NF-κB promoter activity in AP-1- and NF-κB-luciferase reporter assays. We found that EBV BGLF2 activated AP-1 but not NF-κB reporter activity. Expression of EBV BGLF2 in cells activated p38 and c-Jun N-terminal kinase (JNK), both of which are important for mitogen-activated protein kinase (MAPK) signaling. Deletion of the carboxyl-terminal 66 amino acids of BGLF2 reduced the ability of BGLF2 to activate JNK and p38. Expression of BGLF2 enhanced BZLF1 expression in latently EBV-infected lymphoblastoid cell lines, and knockdown of BGLF2 reduced EBV reactivation induced by IgG cross-linking. Expression of BGLF2 induced BZLF1 expression and virus production in EBV-infected gastric carcinoma cells. BGLF2 enhanced BZLF1 expression and EBV production by activating p38; chemical inhibition of p38 and MAPK/ERK kinases 1 and 2 (MEK1/2) reduced expression of BZLF1 and virus production induced by BGLF2. In summary, the EBV tegument protein BGLF2, which is delivered to the cell at the onset of virus infection, activates the AP-1 pathway and enhances EBV reactivation and virus production. IMPORTANCE Epstein-Barr virus (EBV) is associated with both B cell and epithelial cell malignancies, and the virus activates multiple signaling pathways important for its persistence in latently infected cells. We identified a viral tegument protein, BGLF2, which activates members of the mitogen-activated protein kinase signaling pathway. Expression of BGLF2 increased expression of EBV BZLF1, which activates a switch from latent to lytic virus infection, and increased production of EBV. Inhibition of BGFL2 expression or inhibition of p38/MAPK, which is activated by BGLF2, reduced virus reactivation from latency. These results indicate that a viral tegument protein which is delivered to cells upon infection activates signaling pathways to enhance virus production and facilitate virus reactivation from latency.
Collapse
|
5
|
The A2 gene of alcelaphine herpesvirus-1 is a transcriptional regulator affecting cytotoxicity in virus-infected T cells but is not required for malignant catarrhal fever induction in rabbits. Virus Res 2014; 188:68-80. [PMID: 24732177 DOI: 10.1016/j.virusres.2014.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/31/2014] [Accepted: 04/03/2014] [Indexed: 01/10/2023]
Abstract
Alcelaphine herpesvirus-1 (AlHV-1) causes malignant catarrhal fever (MCF). The A2 gene of AlHV-1 is a member of the bZIP transcription factor family. We wished to determine whether A2 is a virulence gene or not and whether it is involved in pathogenesis by interference with host transcription pathways. An A2 gene knockout (A2ΔAlHV-1) virus, revertant (A2revAlHV-1) virus, and wild-type virus (wtAlHV-1) were used to infect three groups of rabbits. A2ΔAlHV-1-infected rabbits succumbed to MCF, albeit with a delayed onset compared to the control groups, so A2 is not a critical virulence factor. Differential gene transcription analysis by RNAseq and qRT-PCR validation of a selection of these was performed in infected large granular lymphocyte (LGL) T cells obtained in culture from the MCF-affected animals. A2 was involved in the transcriptional regulation of immunological, cell cycle and apoptosis pathways. In particular, there was a bias towards γδ T cell receptor (TCR) expression and downregulation of αβ TCR. TCR signalling, apoptosis, cell cycle, IFN-γ and NFAT pathways were affected. Of particular interest was partial inhibition of the cytotoxicity-associated pathways involving perforin and the granzymes A and B in the A2ΔAlHV-1-infected LGLs compared to controls. In functional assays, A2ΔAlHV-1-infected LGLs were significantly less cytotoxic than wtAlHV-1- and A2revAlHV-1-infected LGLs using rabbit corneal epithelial cells (SIRC) as targets. This implies that A2 is involved in a pathway enhancing the expression of LGL cytotoxicity. This is important as virus-infected T cell cytotoxicity in vivo has been suggested as a potential mechanism of disease induction in MCF.
Collapse
|
6
|
Harari A, Wood CE, Van Doorslaer K, Chen Z, Domaingue MC, Elmore D, Koenig P, Wagner JD, Jennings RN, Burk RD. Condylomatous genital lesions in cynomolgus macaques from Mauritius. Toxicol Pathol 2012; 41:893-901. [PMID: 23262641 DOI: 10.1177/0192623312467521] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Genital condyloma-like lesions were observed on male and female cynomolgus macaque monkeys (Macaca fascicularis) originating from the island of Mauritius. Cytobrush and/or biopsy samples were obtained from lesions of 57 affected macaques. Primary histologic features included eosinophilic, neutrophilic, and lymphoplasmacytic penile and vulvar inflammation, epidermal hyperplasia with acanthosis, and increased collagenous stroma. Polymerase chain reaction-based assays to amplify viral DNA revealed the presence of macaque lymphocryptovirus (LCV) DNA but not papillomavirus or poxvirus DNA. Subsequent DNA analyses of 3 genomic regions of LCV identified isolates associated with lesions in 19/25 (76%) biopsies and 19/57 (33%) cytology samples. Variable immunolabeling for proteins related to the human LCV Epstein Barr Virus was observed within intralesional plasma cells, stromal cells, and epithelial cells. Further work is needed to characterize the epidemiologic features of these lesions and their association with LCV infection in Mauritian-origin macaques.
Collapse
Affiliation(s)
- Ariana Harari
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Pirooz SD, Lee JH, Zhao Z, Ni D, Oh S, Liang C. Measurement of γHV68 infection in mice. J Vis Exp 2011:3472. [PMID: 22127138 DOI: 10.3791/3472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
γ-Herpesviruses (γ-HVs) are notable for their ability to establish latent infections of lymphoid cells(1). The narrow host range of human γ-HVs, such as EBV and KSHV, has severely hindered detailed pathogenic studies. Murine γ-herpesvirus 68 (γHV68) shares extensive genetic and biological similarities with human γ-HVs and is a natural pathogen of murid rodents(2). As such, evaluation of γHV68 infection of mice inbred strains at different stages of viral infection provides an important model for understanding viral lifecycle and pathogenesis during γ-HVs infection. Upon intranasal inoculation, γHV68 infection results in acute viremia in the lung that is later resolved into a latent infection of splenocytes and other cells, which may be reactivated throughout the life of the host(3,4). In this protocol, we will describe how to use the plaque assay to assess infectious virus titer in the lung homogenates on Vero cell monolayers at the early stage (5 - 7 days) of post-intranasal infection (dpi). While acute infection is largely cleared 2 - 3 weeks postinfection, a latent infection of γHV68 is established around 14 dpi and maintained later on in the spleen of the mice. Latent infection usually affects a very small population of cells in the infected tissues, whereby the virus stays dormant and shuts off most of its gene expression. Latently-infected splenocytes spontaneously reactivate virus upon explanting into tissue culture, which can be recapitulated by an infectious center (IC) assay to determine the viral latent load. To further estimate the amount of viral genome copies in the acutely and/or latently infected tissues, quantitative real-time PCR (qPCR) is used for its maximal sensitivity and accuracy. The combined analyses of the results of qPCR and plaque assay, and/or IC assay will reveal the spatiotemporal profiles of viral replication and infectivity in vivo.
Collapse
Affiliation(s)
- Sara Dolatshahi Pirooz
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, USA
| | | | | | | | | | | |
Collapse
|
8
|
Barton E, Mandal P, Speck SH. Pathogenesis and host control of gammaherpesviruses: lessons from the mouse. Annu Rev Immunol 2011; 29:351-97. [PMID: 21219186 DOI: 10.1146/annurev-immunol-072710-081639] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gammaherpesviruses are lymphotropic viruses that are associated with the development of lymphoproliferative diseases, lymphomas, as well as other nonlymphoid cancers. Most known gammaherpesviruses establish latency in B lymphocytes. Research on Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV68/γHV68/MHV4) has revealed a complex relationship between virus latency and the stage of B cell differentiation. Available data support a model in which gammaherpesvirus infection drives B cell proliferation and differentiation. In general, the characterized gammaherpesviruses exhibit a very narrow host tropism, which has severely limited studies on the human gammaherpesviruses EBV and Kaposi's sarcoma-associated herpesvirus. As such, there has been significant interest in developing animal models in which the pathogenesis of gammaherpesviruses can be characterized. MHV68 represents a unique model to define the effects of chronic viral infection on the antiviral immune response.
Collapse
Affiliation(s)
- Erik Barton
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
9
|
Array-based transcript profiling and limiting-dilution reverse transcription-PCR analysis identify additional latent genes in Kaposi's sarcoma-associated herpesvirus. J Virol 2010; 84:5565-73. [PMID: 20219929 DOI: 10.1128/jvi.02723-09] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a B-lymphotropic herpesvirus strongly linked to both lymphoproliferative diseases and Kaposi's sarcoma. The viral latency program of KSHV is central to persistent infection and plays important roles in the pathogenesis of KSHV-related tumors. Up to six polypeptides and 18 microRNAs are known to be expressed in latency, but it is unclear if all major latency genes have been identified. Here, we have employed array-based transcript profiling and limiting-dilution reverse transcription-PCR (RT-PCR) methodologies to explore this issue in several KSHV-infected cell lines. Our results show that RNAs encoding the K1 protein are found at low levels in most latently infected cell lines. The gene encoding v-IL-6 is also expressed as a latent transcript in some contexts. Both genes encode powerful signaling molecules with particular relevance to B cell biology: K1 mimics signaling through the B cell receptor, and v-IL-6 promotes B cell survival. These data resolve earlier controversies about K1 and v-IL-6 expression and indicate that, in addition to core latency genes, some transcripts can be expressed in KSHV latency in a context-dependent manner.
Collapse
|
10
|
Lacoste V, Lavergne A, de Thoisy B, Pouliquen JF, Gessain A. Genetic diversity and molecular evolution of human and non-human primate Gammaherpesvirinae. INFECTION GENETICS AND EVOLUTION 2009; 10:1-13. [PMID: 19879975 DOI: 10.1016/j.meegid.2009.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 10/19/2009] [Accepted: 10/21/2009] [Indexed: 12/26/2022]
Abstract
The Gammaherpesvirinae sub-family is divided into two genera: Lymphocryptovirus and Rhadinovirus. Until the middle of the 1990s, the Rhadinovirus genus was only represented by Herpesvirus saimiri and Herpesvirus ateles, which infect New World monkey species. Until the year 2000, Epstein-Barr virus (EBV), the human prototype of the Lymphocryptovirus, and simian homologues had only been detected in humans and Old World non-human primates. It was thought, therefore, that the separation of the continents had resulted in drastic changes in Gammaherpesvirinae evolution. The discovery of Kaposi's sarcoma-associated herpesvirus in humans, belonging to the Rhadinovirus, followed by the identification of CalHV3 (Callitrichine herpesvirus 3), a lymphocryptovirus of the marmoset, challenged this paradigm. The description of numerous viruses belonging to this sub-family from various Old and New World primate species enabled a cospeciation hypothesis for these viruses and their hosts to be developed. This review focuses on the current knowledge of primate Gammaherpesvirinae genetic diversity and molecular evolution. We discuss the various theories based on current genetic data regarding evolutionary relationships between lymphocryptoviruses of Old World primates, the use of these data as a tool to study evolutionary relationships between New World monkey species, and the possible existence of a ninth human herpesvirus belonging to the Rhadinovirus genus.
Collapse
Affiliation(s)
- Vincent Lacoste
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de Guyane, 23 avenue Pasteur, BP6010, 97306 Cayenne Cedex, French Guiana.
| | | | | | | | | |
Collapse
|
11
|
Cho NH, Choi YK, Choi JK. Multi-transmembrane protein K15 of Kaposi's sarcoma-associated herpesvirus targets Lyn kinase in the membrane raft and induces NFAT/AP1 activities. Exp Mol Med 2009; 40:565-73. [PMID: 18985015 DOI: 10.3858/emm.2008.40.5.565] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Viral proteins of gamma-2 herpesviruses, such as LMP2A of Epstein Barr virus (EBV) and Tip of herpesvirus saimiri (HVS) dysregulate lymphocyte signaling by interacting with Src family kinases. K15 open reading frame of Kaposi's sarcoma associated herpesvirus (KSHV), located at the right end of the viral genome, encodes several splicing variants differing in numbers of transmembrane domains. Previously, we demonstrated that the cytoplasmic tail of the K15 protein interfered with B cell receptor signal transduction to cellular tyrosine phosphorylation and calcium mobilization. However, the detailed mechanism underlying this phenomenon was not understood. In the C-terminal cytoplasmic region of K15, putative binding domains for Src-SH2 and -SH3 were identified. In this study, we attempted to characterize these modular elements and cellular binding protein(s) by GST pull down and co-immunoprecipitation assays. These studies revealed that K15 interacted with the major B cell tyrosine kinase Lyn. In vitro kinase and transient co-expression assays showed that the expression of K15 protein resulted in activation of Lyn kinase activity. In addition, GST pull down assay suggested that the SH2 domain of Lyn alone was necessary for interaction with the C-terminal SH2B (YEEV) of K15, but the addition of Lyn SH3 to the SH2 domain increases the binding affinity to K15 protein. The data from luciferase assays indicate that K15 expression in BJAB cells induced NFAT and AP1 activities. The tyrosine residue in the C-terminal end of K15 required for the Lyn interaction appeared to be essential for NFAT/AP1 activation, highlighting the significance of the C-terminal SH2B of K15 as a modular element in interfering with B lymphocyte signaling through interaction with Lyn kinase.
Collapse
Affiliation(s)
- Nam-Hyuk Cho
- Department of Microbiology and Immunology, College of Medicine and Institute of Endemic Diseases, Seoul National University Medical Research Center and Bundang Hospital, Seoul 110-799, Korea
| | | | | |
Collapse
|
12
|
Dai W, Jia Q, Bortz E, Shah S, Liu J, Atanasov I, Li X, Taylor KA, Sun R, Hong Zhou Z. Unique structures in a tumor herpesvirus revealed by cryo-electron tomography and microscopy. J Struct Biol 2008; 161:428-38. [PMID: 18096403 PMCID: PMC2714863 DOI: 10.1016/j.jsb.2007.10.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 10/12/2007] [Accepted: 10/13/2007] [Indexed: 11/17/2022]
Abstract
Gammaherpesviruses, including the human pathogens Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus, are causative agents of lymphomas and other malignancies. The structural characterization of these viruses has been limited due to difficulties in obtaining adequate amount of virion particles. Here we report the first three-dimensional structural characterization of a whole gammaherpesvirus virion by an emerging integrated approach of cryo-electron tomography combined with single-particle cryo-electron microscopy, using murine gammaherpesvirus-68 (MHV-68) as a model system. We found that the MHV-68 virion consists of distinctive envelope and tegument compartments, and a highly conserved nucleocapsid. Two layers of tegument are identified: an inner tegument layer tethered to the underlying capsid and an outer, flexible tegument layer conforming to the overlying, pleomorphic envelope, consistent with the sequential viral tegumentation process inside host cells. Surprisingly, comparison of the MHV-68 virion and capsid reconstructions shows that the interactions between the capsid and inner tegument proteins are completely different from those observed in alpha and betaherpesviruses. These observations support the notion that the inner layer tegument across different subfamilies of herpesviruses has evolved significantly to confer specific characteristics related to viral-host interactions, in contrast to a highly conserved capsid for genome encapsidation and protection.
Collapse
Affiliation(s)
- Wei Dai
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, Texas 77030, USA
- Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qingmei Jia
- Department of Molecular and Medical Pharmacology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Eric Bortz
- Department of Molecular and Medical Pharmacology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Sanket Shah
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | - Jun Liu
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Ivo Atanasov
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | - Xudong Li
- Department of Molecular and Medical Pharmacology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Kenneth A. Taylor
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Z. Hong Zhou
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, Texas 77030, USA
- Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Microbiology, Immunology & Molecular Genetics, and The California NanoSystems Institute (CNSI), University of California at Los Angeles, Los Angeles, CA 90095-1594
| |
Collapse
|
13
|
Deng B, O’Connor CM, Kedes DH, Zhou ZH. Cryo-electron tomography of Kaposi's sarcoma-associated herpesvirus capsids reveals dynamic scaffolding structures essential to capsid assembly and maturation. J Struct Biol 2008; 161:419-27. [PMID: 18164626 PMCID: PMC2692512 DOI: 10.1016/j.jsb.2007.10.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 10/12/2007] [Accepted: 10/13/2007] [Indexed: 11/19/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a recently discovered DNA tumor virus that belongs to the gamma-herpesvirus subfamily. Though numerous studies on KSHV and other herpesviruses, in general, have revealed much about their multilayered organization and capsid structure, the herpesvirus capsid assembly and maturation pathway remains poorly understood. Structural variability or irregularity of the capsid internal scaffolding core and the lack of adequate tools to study such structures have presented major hurdles to earlier investigations employing more traditional cryo-electron microscopy (cryoEM) single particle reconstruction. In this study, we used cryo-electron tomography (cryoET) to obtain 3D reconstructions of individual KSHV capsids, allowing direct visualization of the capsid internal structures and systematic comparison of the scaffolding cores for the first time. We show that B-capsids are not a structurally homogenous group; rather, they represent an ensemble of "B-capsid-like" particles whose inner scaffolding is highly variable, possibly representing different intermediates existing during the KSHV capsid assembly and maturation. This information, taken together with previous observations, has allowed us to propose a detailed pathway of herpesvirus capsid assembly and maturation.
Collapse
Affiliation(s)
- Binbin Deng
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX 77030
| | - Christine M. O’Connor
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, Department of Microbiology, University of Virginia, Charlottesville, VA 22908
- Department of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Dean H. Kedes
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, Department of Microbiology, University of Virginia, Charlottesville, VA 22908
- Department of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Z. Hong Zhou
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX 77030
| |
Collapse
|
14
|
Systematic mutagenesis of the murine gammaherpesvirus 68 M2 protein identifies domains important for chronic infection. J Virol 2008; 82:3295-310. [PMID: 18234799 DOI: 10.1128/jvi.02234-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Murine gammaherpesvirus 68 (MHV68) infection of inbred mice represents a genetically tractable small-animal model for assessing the requirements for the establishment of latency, as well as reactivation from latency, within the lymphoid compartment. By day 16 postinfection, MHV68 latency in the spleen is found in B cells, dendritic cells, and macrophages. However, as with Epstein-Barr virus, by 3 months postinfection MHV68 latency is predominantly found in isotype-switched memory B cells. The MHV68 M2 gene product is a latency-associated antigen with no discernible homology to any known cellular or viral proteins. However, depending on experimental conditions, the M2 protein has been shown to play a critical role in both the efficient establishment of latency in splenic B cells and reactivation from latently infected splenic B cells. Inspection of the sequence of the M2 protein reveals several hallmarks of a signaling molecule, including multiple PXXP motifs and two potential tyrosine phosphorylation sites. Here, we report the generation of a panel of recombinant MHV68 viruses harboring mutations in the M2 gene that disrupt putative functional motifs. Subsequent analyses of the panel of M2 mutant viruses revealed a functionally important cluster of PXXP motifs in the C-terminal region of M2, which have previously been implicated in binding Vav proteins (P. A. Madureira, P. Matos, I. Soeiro, L. K. Dixon, J. P. Simas, and E. W. Lam, J. Biol. Chem. 280:37310-37318, 2005; L. Rodrigues, M. Pires de Miranda, M. J. Caloca, X. R. Bustelo, and J. P. Simas, J. Virol. 80:6123-6135, 2006). Further characterization of two adjacent PXXP motifs in the C terminus of the M2 protein revealed differences in the functions of these domains in M2-driven expansion of primary murine B cells in culture. Finally, we show that tyrosine residues 120 and 129 play a critical role in both the establishment of splenic latency and reactivation from latency upon explant of splenocytes into tissue culture. Taken together, these analyses will aide future studies for identifying M2 interacting partners and B-cell signaling pathways that are manipulated by the M2 protein.
Collapse
|
15
|
Chung YH, Jhun BH, Ryu SC, Kim HS, Kim CM, Kim BS, Kim YO, Lee SJ. STP-C, an Oncoprotein of Herpesvirus saimiri Augments the Activation of NF-κB through Ubiquitination of TRAF6. BMB Rep 2007; 40:341-8. [PMID: 17562285 DOI: 10.5483/bmbrep.2007.40.3.341] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesvirus saimiri (HVS), a member of the gamma-herpesvirus family, encodes an oncoprotein called Saimiri Transforming Protein (STP) which is required for lymphoma induction in non-human primates. Previous study has shown that STP-C, an oncoprotein of HVS, activates NF-kappaB signaling pathway. However, the detailed mechanism of STP-C-mediated NF-kappaB activation has not been reported yet. We first report that STP-C interacts with TRAF6 protein in vivo and in vitro and further investigation shows that Glu(12) residue of STP-C is critical for binding to TRAF6. Introduction of ubiquitin together with STP-C augments NF-kappaB activity compared to that of STP-C expression alone. STP-C expression further induces ubiquitination of endogenous TRAF6. In addition, either a deubiquitination enzyme, CYLD or a dominant negative E2-conjugation enzyme reduced NF-kappaB activity in spite of the presence of STP-C, supporting that the interaction between STP-C and TRAF6 induces ubiquitination of TRAF6. NF-kappaB activation by STP-C through the ubiquitinated TRAF6 causes the increased production of IL-8, an inflammatory chemokine and the enhanced expression of costimulatory molecule ICAM, which might ultimately contribute cellular transformation by the exposure of HVS-infected cells with inflammatory microenvironment and chronic activation.
Collapse
Affiliation(s)
- Young-Hwa Chung
- Department of Nanomedical Engineering, Joint Research Center of PNU-Fraunhofer IGB, Pusan National University, Miryang 627-706, Korea.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Zapata HJ, Nakatsugawa M, Moffat JF. Varicella-zoster virus infection of human fibroblast cells activates the c-Jun N-terminal kinase pathway. J Virol 2006; 81:977-90. [PMID: 17079291 PMCID: PMC1797429 DOI: 10.1128/jvi.01470-06] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The transcription factors ATF-2 and c-Jun are important for transactivation of varicella-zoster virus (VZV) genes. c-Jun is activated by the c-Jun N-terminal kinase (JNK), a member of the mitogen-activated protein kinase pathway that responds to stress and cytokines. To study the effects of VZV on this pathway, confluent human foreskin fibroblasts were infected with cell-associated VZV for 1 to 4 days. Immunoblots showed that phosphorylated JNK and c-Jun levels increased in VZV-infected cells, and kinase assays determined that phospho-JNK was active. Phospho-JNK was detected after 24 h, and levels rose steadily over 4 days in parallel with accumulation of VZV antigen. The two main activators of JNK are MKK4 and MKK7, and levels of their active, phosphorylated forms also increased. The competitive inhibitor of JNK, SP600125, caused a dose-dependent reduction in VZV yield (50% effective concentration, congruent with 8 microM). Specificity was verified by immunoblotting; phospho-c-Jun was eliminated by 18 microM SP600125 in VZV-infected cells. Immunofluorescent confocal microscopy showed that phospho-c-Jun and most of phospho-JNK were in the nuclei of VZV-infected cells; some phospho-JNK was in the cytoplasm. MKK4, MKK7, JNK, and phospho-JNK were detected by immunoblotting in purified preparations of VZV virions, but c-Jun was absent. JNK was located in the virion tegument, as determined by biochemical fractionation and immunogold transmission electron microscopy. Overall, these results demonstrate the importance of the JNK pathway for VZV replication and advance the idea that JNK is a useful drug target against VZV.
Collapse
Affiliation(s)
- Heidi J Zapata
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| | | | | |
Collapse
|
17
|
Cho IR, Jeong S, Jhun BH, An WG, Lee B, Kwak YT, Lee SH, Jung JU, Chung YH. Activation of non-canonical NF-kappaB pathway mediated by STP-A11, an oncoprotein of Herpesvirus saimiri. Virology 2006; 359:37-45. [PMID: 17028057 DOI: 10.1016/j.virol.2006.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 06/16/2006] [Accepted: 09/07/2006] [Indexed: 12/15/2022]
Abstract
Although Saimiri Transforming Protein (STP)-A11, an oncoprotein of Herpesvirus saimiri, has been known to activate NF-kappaB signaling pathway, the detailed mechanism has not been reported yet. We herein report that STP-A11 activates non-canonical NF-kappaB pathway, resulting in p100 processing to p52. In addition, translocation of p52 protein (NF-kappaB2) into the nucleus is observed by the expression of STP-A11. STP-A11-mediated processing of p100 to p52 protein requires proteosome-mediated proteolysis because MG132 treatment clearly blocked p52 production in spite of the expression of STP-A11. Analysis of STP-A11 mutants to activate NF-kappaB2 pathway discloses the requirement of TRAF6-binding site not Src-binding site for STP-A11-mediated NF-kappaB2 pathway. Blockage of STP-A11-mediated p52 production using siRNA against p52 enhanced a chemotherapeutic drug-mediated cell death, suggesting that p52 production induced by the expression of STP-A11 would contribute to cellular transformation, which results from a resistance to cell death.
Collapse
Affiliation(s)
- Il-Rae Cho
- Department of Nanomedical Engineering, Joint-Research Center of Pusan National University-Fraunhofer IGB, Pusan National University, Miryang, Gyeongnam 627-706, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The K15 gene product of Kaposi's sarcoma-associated herpesvirus (KSHV) is a transmembrane protein that is encoded by the last open reading frame of the KSHV genome. The K15 protein has been implicated in modulation of B-cell signal transduction and activation of the Ras/mitogen-activated protein kinase and NF-kappaB signal transduction pathways. Here we report the identification of the transcriptional start site of the full-length K15 gene in KSHV-positive BCBL-1 cells. We have mapped the K15 transcriptional start site to a position 152 nucleotides upstream from the translation start site by rapid amplification of cDNA ends and RNase protection assays. We have also characterized the K15 promoter element. To analyze the cis-acting elements necessary to regulate K15 gene expression, a series of 5' promoter deletion constructs were generated and subcloned upstream of the luciferase reporter gene. Transcriptional assays with these mutant promoters demonstrated that chemical induction in latently infected KSHV-positive BCBL-1 cells activated K15 transcription. In addition, K15 promoter transactivation was also mediated by the viral immediate-early protein Orf50/Rta, suggesting that the K15 gene is actively transcribed during lytic replication.
Collapse
Affiliation(s)
- Emily L Wong
- Lineberger Comprehensive Cancer Center, CB 7295, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
19
|
Abstract
Gammaherpesviruses are members of an emerging subfamily among the Herpesviridae. Two genera are discriminated: (i) lymphocryptovirus, including its type species Epstein-Barr virus (EBV), and (ii) rhadinovirus, including viruses of interest for medicine, veterinary medicine, and biomedical research, i.e. alcelaphine herpesvirus 1, bovine herpesvirus 4, equine herpesvirus 2, human herpesvirus 8, mouse herpesvirus 68, and ovine herpesvirus 2 (OvHV-2). The perception that these viruses have a narrow host range is misleading, since they cover a surprisingly wide host range, both on the cellular and the organism's level. For example, the natural range of OvHV-2 infection extends over a common animal order. While the host range determinants of EBV are well known, the corresponding features of the rhadinoviruses need still to be defined. Similarly, the gene expression patterns of the veterinary rhadinoviruses during latency require further characterization. In vivo, the gammaherpesviruses have evolved to actively protect their latently infected cells from being destroyed by immune functions of their native host. In return, those reservoir hosts have evolved to being infected and transmit the virus without overt disease symptoms. However, a balanced immune response needs to be in control over the number of infected cells. Virus excretion is usually at low level and may occur either constantly or intermittently. Animal species that are targeted by the virus but did not participate in the process of co-evolution as well as hosts with immune deficiencies are known to loose control over the amount of latently infected cells, which results in the development of lethal diseases, such as malignant catarrhal fever or Kaposi's sarcoma.
Collapse
Affiliation(s)
- Mathias Ackermann
- Institute of Virology, University of Zurich, Winterthurerstrasse 266a, CH-8057 Zurich, Switzerland.
| |
Collapse
|
20
|
Abstract
Herpesvirus saimiri (Saimiriine herpesvirus-2), a gamma2-herpesvirus (rhadinovirus) of non-human primates, causes T-lymphoproliferative diseases in susceptible organisms and transforms human and non-human T lymphocytes to continuous growth in vitro in the absence of stimulation. T cells transformed by H. saimiri retain many characteristics of intact T lymphocytes, such as the sensitivity to interleukin-2 and the ability to recognize the corresponding antigens. As a result, H. saimiri is widely used in immunobiology for immortalization of various difficult-to-obtain and/or -to-maintain T cells in order to obtain useful experimental models. In particular, H. saimiri-transformed human T cells are highly susceptible to infection with HIV-1 and -2. This makes them a convenient tool for propagation of poorly replicating strains of HIV, including primary clinical isolates. Therefore, the mechanisms mediating transformation of T cells by H. saimiri are of considerable interest. A single transformation-associated protein, StpA or StpB, mediates cell transformation by H. saimiri strains of group A or B, respectively. Strains of group C, which exhibit the highest oncogenic potential, have two proteins involved in transformation-StpC and Tip. Both proteins have been shown to dramatically affect signal transduction pathways leading to the activation of crucial transcription factors. This review is focused on the biological effects and molecular mechanisms of action of proteins involved in H. saimiri-dependent transformation.
Collapse
MESH Headings
- Animals
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Gene Expression Regulation, Viral/genetics
- HIV-1/genetics
- HIV-1/metabolism
- Herpesviridae Infections/genetics
- Herpesviridae Infections/metabolism
- Herpesvirus 2, Saimiriine/genetics
- Herpesvirus 2, Saimiriine/metabolism
- Humans
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/metabolism
- Models, Biological
- Oncogene Proteins, Viral/biosynthesis
- Oncogene Proteins, Viral/genetics
- Tumor Virus Infections/genetics
- Tumor Virus Infections/metabolism
Collapse
Affiliation(s)
- Alexander Y Tsygankov
- Department of Microbiology and Immunology, Temple University School of Medicine, 3400 N. Broad Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
21
|
Rajćáni J, Kúdelová M. Murine herpesvirus pathogenesis: a model for the analysis of molecular mechanisms of human gamma herpesvirus infections. Acta Microbiol Immunol Hung 2005; 52:41-71. [PMID: 15957234 DOI: 10.1556/amicr.52.2005.1.2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Murine herpes virus (MHV), a natural pathogen originally isolated from free-living rodents, constitutes the most amenable animal model for human gamma herpesviruses. Based on DNA sequence homology, this virus was classified as Murid Herpesvirus 4 to subfamily Gammaherpesvirinae. Pilot studies in our laboratory, using mice inoculated by the intranasal route, showed that MHV infects macrophages, B lymphocytes, lung alveolar as well as endothelial cells. From the lungs the virus spreads via the bloodstream to spleen and bone marrow and via the lymphatics to the mediastinal lymph nodes. Similarly to other gamma herpesviruses, MHV established life-long latency maintained in host B lymphocytes and macrophages. An IM-like syndrome (per analogy to EBV) may develop during acute MHV infection, in which the atypical T/CD8+ lymphocytes eliminate viral DNA carrying B cells expressing the M2 latency associated protein. During latency, the MHV LANA (a KSHV LANA homologue) maintains the latent viral genome, assuring its copying and partition to new carrier cells in the course of division of the maternal cell. The nonproductive latency is turned onto virus replication by means of Rta protein. The chronic lymphoproliferative syndrome of unclear pathogenesis, which occurs in a certain part of latent MHV carriers, is related to the expression of gamma herpesvirus common latency-associated genes such as v-cyclin and/or to that of a virus-specific (M11/bcl-2) gene. This review attempts to summarize our knowledge concerning the function of MHV genes (either gamma herpesvirus common or MHV specific) related to immune evasion, latency and lymphoproliferation when highlighting the unsolved problems and/or controversial opinions.
Collapse
Affiliation(s)
- J Rajćáni
- Institute of Virology, Slovak Academy of Sciences, Dubravská 9, 84505 Bratislava, Slovak Republic.
| | | |
Collapse
|
22
|
Chung YH, Cho NH, Garcia MI, Lee SH, Feng P, Jung JU. Activation of Stat3 transcription factor by Herpesvirus saimiri STP-A oncoprotein. J Virol 2004; 78:6489-97. [PMID: 15163742 PMCID: PMC416526 DOI: 10.1128/jvi.78.12.6489-6497.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The saimiri transforming protein (STP) oncogene of Herpesvirus saimiri subgroup A strain 11 (STP-A11) is not required for viral replication but is required for lymphoid cell immortalization in culture and lymphoma induction in primates. We previously showed that STP-A11 interacts with cellular Src kinase through its SH2 binding motif and that this interaction elicits Src signal transduction. Here we demonstrate that STP-A11 interacts with signal transducer and activator of transcription 3 (Stat3) independently of Src association and that the amino-terminal short proline-rich motif of STP-A11 and the central linker region of Stat3 are necessary for their interaction. STP-A11 formed a triple complex with Src kinase and Stat3 where Src kinase phosphorylated Stat3, resulting in the nuclear localization and transcriptional activation of Stat3. Consequently, the constitutively active Stat3 induced by STP-A11 elicited cellular signal transduction, which ultimately induced cell survival and proliferation upon serum deprivation. Furthermore, this activity was strongly correlated with the induction of Fos, cyclin D1, and Bcl-XL expression. These results demonstrate that STP-A11 independently targets two important cellular signaling molecules, Src and Stat3, and that these proteins cooperate efficiently to induce STP-A11-mediated transformation.
Collapse
Affiliation(s)
- Young-Hwa Chung
- Department of Microbiology and Molecular Genetics, Tumor Virology Division, New England Primate Research Center, Harvard Medical School, 1 Pine Hill Drive, Southborough, MA 01772-9102, USA
| | | | | | | | | | | |
Collapse
|
23
|
Assogba BD, Paik NW, Rho HM. Transcriptional Activation of Gammaherpesviral Oncogene Promoters by the Hepatitis B Viral X Protein (HBx). DNA Cell Biol 2004; 23:141-8. [PMID: 15068583 DOI: 10.1089/104454904322964733] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The latent membrane protein-1 (LMP1) of Epstein-Barr Virus (EBV), saimiri transformation protein (STP) of Herpesvirus saimiri (HVS), and K1 protein of Kaposi's sarcoma-associated herpesvirus (KSHV) are potent gammaherpesvirus oncogenes. To study the possible effects of double viral infection, we investigated the effects of oncogenic early proteins of DNA viruses E1A and E1B (adenovirus-5), E6 and E7 (human papillomavirus-16), HBx (hepatitis B virus), Tag (SV40), and gammaherpesviral oncogene during co-infection in human B-lymphoma (Ramos) and human T-cell leukemia (Jurkat) cell lines. HBx transactivated the promoters of LMP1, STP, and K1 the most, by about six-, three-, and twofold, respectively. Analyses of site-directed mutation and the heterologous promoter system showed that HBx activated the promoter activity of these genes via the NF-kappaB site. These results suggest that HBV (HBx) infection of cells previously infected by gammaherpesviruses transactivates their oncogenes, resulting in possible virus-related disease pathogenesis.
Collapse
|
24
|
Greenspan G, Geiger D, Gotch F, Bower M, Patterson S, Nelson M, Gazzard B, Stebbing J. Model-Based Inference of Recombination Hotspots in a Highly, Variable Oncogene. J Mol Evol 2004; 58:239-51. [PMID: 15045480 DOI: 10.1007/s00239-003-2543-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Accepted: 08/30/2003] [Indexed: 11/29/2022]
Abstract
An emergent problem in the study of pathogen evolution is our ability to determine the extent to which their rapidly evolving genomes recombine. Such information is necessary and essential for locating pathogenicity loci using association studies, and it also directs future screening, therapeutic and vaccination strategies. Recombination also complicates the use of phylogenetic approaches to infer evolutionary parameters including selection pressures. Reliable methods that identify the presence of regions of recombination are therefore vital. We illustrate the use of an integrated model-based approach to inferring recombination structure using all available sequences of the highly variable, transforming Kaposi's sarcoma-associated herpesviral gene, ORF-K1. This technique learns the parameters of a statistical model that takes recombination hotspots, population genetic effects, and variable rates of mutation into account. As there are no known mechanisms to explain the high mutation rate in this DNA viral gene, recombination may account for some of the variability observed. We infer recombination hotspots in conserved sites such as the tyrosine kinase signaling motif, referred to here as recombination drift, as well as in nonconserved sites, a process described as recombination shift.
Collapse
Affiliation(s)
- G Greenspan
- Computer Science Department, Technion, Technion City, Haifa 32000, Israel
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Eliopoulos AG, Caamano JH, Flavell J, Reynolds GM, Murray PG, Poyet JL, Young LS. Epstein-Barr virus-encoded latent infection membrane protein 1 regulates the processing of p100 NF-kappaB2 to p52 via an IKKgamma/NEMO-independent signalling pathway. Oncogene 2003; 22:7557-69. [PMID: 14576817 DOI: 10.1038/sj.onc.1207120] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The oncogenic Epstein-Barr virus (EBV)-encoded latent infection membrane protein 1 (LMP1) constitutively activates the 'canonical' NF-kappaB pathway that involves the phosphorylation and degradation of IkappaBalpha downstream of the IkappaB kinases (IKKs). In this study, we show that LMP1 also promotes the proteasome-mediated proteolysis of p100 NF-kappaB2 resulting in the generation of active p52, which translocates to the nucleus in complex with the p65 and RelB NF-kappaB subunits. LMP1-induced NF-kappaB transactivation is reduced in nf-kb2(-/-) mouse embryo fibroblasts, suggesting that p100 processing contributes to LMP1-mediated NF-kappaB transcriptional effects. This pathway is likely to operate in vivo, as the expression of LMP1 in primary EBV-positive Hodgkin's lymphoma and nasopharyngeal carcinoma biopsies correlates with the nuclear accumulation of p52. Interestingly, while the ability of LMP1 to activate the canonical NF-kappaB pathway is impaired in cells lacking IKKgamma/NEMO, the regulatory subunit of the IKK complex, p100 processing remains unaffected. As a result, nuclear translocation of p52, but not p65, occurs in the absence of IKKgamma. These data point to the existence of a novel signalling pathway that regulates NF-kappaB in LMP1-expressing cells, and may thereby play a role in both oncogenic transformation and the establishment of persistent EBV infection.
Collapse
Affiliation(s)
- Aristides G Eliopoulos
- Cancer Research UK Institute for Cancer Studies, The University of Birmingham Medical School, Birmingham B15 2TA, UK.
| | | | | | | | | | | | | |
Collapse
|
26
|
Brinkmann MM, Glenn M, Rainbow L, Kieser A, Henke-Gendo C, Schulz TF. Activation of mitogen-activated protein kinase and NF-kappaB pathways by a Kaposi's sarcoma-associated herpesvirus K15 membrane protein. J Virol 2003; 77:9346-58. [PMID: 12915550 PMCID: PMC187392 DOI: 10.1128/jvi.77.17.9346-9358.2003] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The K15 gene of Kaposi's sarcoma-associated herpesvirus (also known as human herpesvirus 8) consists of eight alternatively spliced exons and has been predicted to encode membrane proteins with a variable number of transmembrane regions and a common C-terminal cytoplasmic domain with putative binding sites for SH2 and SH3 domains, as well as for tumor necrosis factor receptor-associated factors. These features are reminiscent of the latent membrane proteins LMP-1 and LMP2A of Epstein-Barr virus and, more distantly, of the STP, Tip, and Tio proteins of the related gamma(2)-herpesviruses herpesvirus saimiri and herpesvirus ateles. These viral membrane proteins can activate a number of intracellular signaling pathways. We have therefore examined the abilities of different K15-encoded proteins to initiate intracellular signaling. We found that a 45-kDa K15 protein derived from all eight K15 exons and containing 12 predicted transmembrane domains in addition to the cytoplasmic domain activated the Ras/mitogen-activated protein kinase (MAPK) and NF-kappaB pathways, as well as (more weakly) the c-Jun N-terminal kinase/SAPK pathway. Activation of the MAPK and NF-kappaB pathways required phosphorylation of tyrosine residue 481 within a putative SH2-binding site (YEEVL). This motif was phosphorylated by the tyrosine kinases Src, Lck, Yes, Hck, and Fyn. The region containing the YEEVL motif interacted with tumor necrosis factor receptor-associated factor 2 (TRAF-2), and a dominant negative TRAF-2 mutant inhibited the K15-mediated activation of the Ras/MAPK pathway, suggesting the involvement of TRAF-2 in the initiation of these signaling routes. In contrast, several smaller K15 protein isoforms activated these pathways only weakly. All of the K15 isoforms tested were, however, localized in lipid rafts, suggesting that incorporation into lipid rafts is not sufficient to initiate signaling. Additional regions of K15, located presumably in exons 2 to 5, may therefore contribute to the activation of these pathways. These findings illustrate that the 45-kDa K15 protein engages pathways similar to LMP1, LMP2A, STP, Tip, and Tio but combines functional features that are separated between LMP1 and LMP2A or STP and Tip.
Collapse
Affiliation(s)
- Melanie M Brinkmann
- Institut für Virologie, Medizinische Hochschule Hannover, D-30625 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Wang FZ, Akula SM, Sharma-Walia N, Zeng L, Chandran B. Human herpesvirus 8 envelope glycoprotein B mediates cell adhesion via its RGD sequence. J Virol 2003; 77:3131-47. [PMID: 12584338 PMCID: PMC149745 DOI: 10.1128/jvi.77.5.3131-3147.2003] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human herpesvirus 8 (HHV-8) or Kaposi's sarcoma-associated herpesvirus, implicated in the pathogenesis of Kaposi's sarcoma, utilizes heparan sulfate-like molecules to bind the target cells via its envelope-associated glycoproteins gB and gpK8.1A. HHV-8-gB possesses the Arg-Gly-Asp (RGD) motif, the minimal peptide region of many proteins known to interact with subsets of host cell surface integrins. HHV-8 utilizes alpha3beta1 integrin as one of the receptors for its entry into the target cells via its gB interaction and induces the activation of focal adhesion kinase (FAK) (S. M. Akula, N. P. Pramod, F.-Z. Wang, and B. Chandran, Cell 108:407-419, 2002). Since FAK activation is the first step in the outside-in signaling necessary for integrin-mediated cytoskeletal rearrangements, cell adhesions, motility, and proliferation, the ability of HHV-8-gB to mediate the target cell adhesion was examined. A truncated form of gB without the transmembrane and carboxyl domains (gBdeltaTM) and a gBdeltaTM mutant (gBdeltaTM-RGA) with a single amino acid mutation (RGD to RGA) were expressed in a baculovirus system and purified. Radiolabeled HHV-8-gBdeltaTM, gBdeltaTM-RGA, and deltaTMgpK8.1A proteins bound to the human foreskin fibroblasts (HFFs), human dermal microvascular endothelial (HMVEC-d) cells, human B (BJAB) cells, and Chinese hamster ovary (CHO-K1) cells with equal efficiency, which was blocked by preincubation of proteins with soluble heparin. Maxisorp plate-bound gBdeltaTM protein induced the adhesion of HFFs and HMVEC-d and monkey kidney epithelial (CV-1) cells in a dose-dependent manner. In contrast, the gBdeltaTM-RGA and DeltaTMgpK8.1A proteins did not mediate adhesion. Adhesion mediated by gBdeltaTM was blocked by the preincubation of target cells with RGD-containing peptides or by the preincubation of plate-bound gBdeltaTM protein with rabbit antibodies against gB peptide containing the RGD sequence. In contrast, adhesion was not blocked by the preincubation of plate-bound gBdeltaTM protein with heparin, suggesting that the adhesion is mediated by the RGD amino acids of gB, which is independent of the heparin-binding domain of gB. Integrin-ligand interaction is dependent on divalent cations. Adhesion induced by the gBdeltaTM was blocked by EDTA, thus suggesting the role of integrins in the observed adhesions. Focal adhesion components such as FAK and paxillin were activated by the binding of gBdeltaTM protein to the target cells but not by gBdeltaTM-RGA protein binding. Inhibition of FAK phosphorylation by genistein blocked gBdeltaTM-induced FAK activation and cell adhesion. These findings suggest that HHV-8-gB could mediate cell adhesion via its RGD motif interaction with the cell surface integrin molecules and indicate the induction of cellular signaling pathways, which may play roles in the infection of target cells and in Kaposi's sarcoma pathogenesis.
Collapse
Affiliation(s)
- Fu-Zhang Wang
- Department of Microbiology, Molecular Genetics and Immunology, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | |
Collapse
|
28
|
Rajcáni J, Kúdelová M. Gamma herpesviruses: pathogenesis of infection and cell signaling. Folia Microbiol (Praha) 2003; 48:291-318. [PMID: 12879740 DOI: 10.1007/bf02931360] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Altered cell signaling is the molecular basis for cell proliferation occurring in association with several gamma herpesvirus infections. Three gamma herpesviruses, namely EBV/HHV-4, KSHV/HHV-8 and the MHV-68 (and/or MHV-72) and their unusual cell-pirated gene products are discussed in this respect. The EBV, KSHV as well as the MHV DNA may persist lifelong in an episomal form in the host carrier cells (mainly in lymphocytes but also in macrophages, in non-hornifying squamous epithelium and/or in blood vessel endothelial cells). Under conditions of extremely limited transcription, the EBV-infected cells express EBNA1 (EB nuclear antigen 1), the KSHV infected cells express LANA1 (latent nuclear antigen 1), while the MHV DNA carrier cells express the latency-associated protein M2. With the full set of latency-associated proteins expressed, EBV carrier cells synthesize additional EBNAs and at least one LMP (latent membrane protein 1). The latent KSHV carrier cells, in addition to LANA1, may express a viral cyclin, a viral Fas-DD-like ICE inhibitor protein (vFLIP) and a virus-specific transformation protein called kaposin (K12). In MHV latency with a wide expression of latency-associated proteins, the carrier cells express a LANA analogue (ORF73), the M3 protein, the K3/IE (immediate early) proteins and M11/bcl-2 homologue proteins. During the period of limited gene expression, the latency-associated proteins serve mainly for the maintenance of the latent episomal DNA (a typical example is EBNA1). In contrast, during latency with a broader spectrum gene expression, the virus-encoded products activate transcription of otherwise silenced cellular genes, which leads to the synthesis of enzymes capable of promoting not only viral but also cellular DNA replication. Thus, the latency-associated proteins block apoptosis and drive host cells towards division and immortalization. Proliferation of hemopoetic cells, which had become gamma herpesvirus DNA carriers, can be initiated and strongly enhanced in the presence of inflammatory cytokines and by virus-encoded analogues of interleukins, chemokines and IFN regulator proteins. At early stages of tumor formation, many proliferating hemopoetic and/or endothelium cells, which had became transcriptionally active under the influence of chemokines and cytokines, may not yet be infected. In contrast, at later stages of oncogenesis, the virus-encoded proteins, inducing false signaling and activating the proliferation pathways, bring the previously infected cells into full transformation burst.
Collapse
Affiliation(s)
- J Rajcáni
- Institute of Microbiology and Immunology, Jessenius Medical Faculty, Martin, Slovakia.
| | | |
Collapse
|
29
|
Naranatt PP, Akula SM, Zien CA, Krishnan HH, Chandran B. Kaposi's sarcoma-associated herpesvirus induces the phosphatidylinositol 3-kinase-PKC-zeta-MEK-ERK signaling pathway in target cells early during infection: implications for infectivity. J Virol 2003; 77:1524-39. [PMID: 12502866 PMCID: PMC140802 DOI: 10.1128/jvi.77.2.1524-1539.2003] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human herpesvirus 8 (HHV-8) is implicated in the pathogenesis of Kaposi's sarcoma. HHV-8 envelope glycoprotein B (gB) possesses the RGD motif known to interact with integrin molecules, and HHV-8 infectivity was inhibited by RGD peptides, by antibodies against alpha3 and beta1 integrins, and by soluble alpha3beta1 integrin (S. M. Akula, N. P. Pramod, F.-Z. Wang, and B. Chandran, Cell 108:407-419, 2002). Anti-gB antibodies immunoprecipitated the virus alpha3 and beta1 complexes, and virus-binding studies suggest a role for alpha3beta1 in HHV-8 entry. HHV-8 infection induced the integrin-mediated activation of focal adhesion kinase (FAK), implicating a role for integrin and the associated signaling pathways in HHV-8 entry into the target cells. Immediately after infection, target cells exhibited morphological changes and cytoskeletal rearrangements, suggesting the induction of signal pathways. As early as 5 min postinfection, HHV-8 activated the MEK-ERK1/2 pathway. The focal adhesion components phosphatidylinositol 3-kinase (PI 3-kinase) and protein kinase C-zeta (PKC-zeta) were recruited as upstream mediators of the HHV-8-induced ERK pathway. Anti-HHV-8 gB-neutralizing antibodies and soluble alpha3beta1 integrin inhibited the virus-induced signaling pathways. Early kinetics of the cellular signaling pathway and its activation by UV-inactivated HHV-8 suggest a role for virus binding and/or entry but not viral gene expression in this induction. Studies with human alpha3 integrin-transfected Chinese hamster ovary cells and FAK-negative mouse DU3 cells suggest that the alpha3beta1 integrin and FAK play roles in the HHV-8 mediated signal induction. Inhibitors specific for PI 3-kinase, PKC-zeta, MEK, and ERK significantly reduced the virus infectivity without affecting virus binding to the target cells. Examination of viral DNA entry suggests a role for PI 3-kinase in HHV-8 entry into the target cells and a role for PKC-zeta, MEK, and ERK at a post-viral entry stage of infection. These findings implicate a critical role for integrin-associated mitogenic signaling in HHV-8's infection of target cells and suggest that, by orchestrating the signal cascade, HHV-8 may create an appropriate intracellular environment to facilitate the infection.
Collapse
Affiliation(s)
- Pramod P Naranatt
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City 66160, USA
| | | | | | | | | |
Collapse
|
30
|
Feng P, Park J, Lee BS, Lee SH, Bram RJ, Jung JU. Kaposi's sarcoma-associated herpesvirus mitochondrial K7 protein targets a cellular calcium-modulating cyclophilin ligand to modulate intracellular calcium concentration and inhibit apoptosis. J Virol 2002; 76:11491-504. [PMID: 12388711 PMCID: PMC136794 DOI: 10.1128/jvi.76.22.11491-11504.2002] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
On viral infection, infected cells can become the target of host immune responses or can go through a programmed cell death process, called apoptosis, as a defense mechanism to limit the ability of the virus to replicate. To prevent this, viruses have evolved elaborate mechanisms to subvert the apoptotic process. Here, we report the identification of a novel antiapoptotic K7 protein of Kaposi's sarcoma-associated herpesvirus (KSHV) which expresses during lytic replication. The KSHV K7 gene encodes a small mitochondrial membrane protein, and its expression efficiently inhibits apoptosis induced by a variety of apoptogenic agents. The yeast two-hybrid screen has demonstrated that K7 targets cellular calcium-modulating cyclophilin ligand (CAML), a protein that regulates the intracellular Ca(2+) concentration. Similar to CAML, K7 expression significantly enhances the kinetics and amplitudes of the increase in intracellular Ca(2+) concentration on apoptotic stimulus. Mutational analysis showed that K7 interaction with CAML is required for its function in the inhibition of apoptosis. This indicates that K7 targets cellular CAML to increase the cytosolic Ca(2+) response, which consequently protects cells from mitochondrial damage and apoptosis. This is a novel viral antiapoptosis strategy where the KSHV mitochondrial K7 protein targets a cellular Ca(2+)-modulating protein to confer resistance to apoptosis, which allows completion of the viral lytic replication and, eventually, maintenance of persistent infection in infected host.
Collapse
Affiliation(s)
- Pinghui Feng
- Department of Microbiology and Molecular Genetics and Tumor Virology Division, New England Regional Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772, USA
| | | | | | | | | | | |
Collapse
|
31
|
Sharp TV, Wang HW, Koumi A, Hollyman D, Endo Y, Ye H, Du MQ, Boshoff C. K15 protein of Kaposi's sarcoma-associated herpesvirus is latently expressed and binds to HAX-1, a protein with antiapoptotic function. J Virol 2002; 76:802-16. [PMID: 11752170 PMCID: PMC136811 DOI: 10.1128/jvi.76.2.802-816.2002] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Kaposi's sarcoma-associated herpesvirus (KSHV) (or human herpesvirus 8) open reading frame (ORF) K15 encodes a putative integral transmembrane protein in the same genomic location as latent membrane protein 2A of Epstein-Barr virus. Ectopic expression of K15 in cell lines revealed the presence of several different forms ranging in size from full length, approximately 50 kDa, to 17 kDa. Of these different species the 35- and 23-kDa forms were predominant. Mutational analysis of the initiator AUG indicated that translation initiation from this first AUG is required for K15 expression. Computational analysis indicates that the different forms detected may arise due to proteolytic cleavage at internal signal peptide sites. We show that K15 is latently expressed in KSHV-positive primary effusion lymphoma cell lines and in multicentric Castleman's disease. Using a yeast two-hybrid screen we identified HAX-1 (HS1 associated protein X-1) as a binding partner to the C terminus of K15 and show that K15 interacts with cellular HAX-1 in vitro and in vivo. Furthermore, HAX-1 colocalizes with K15 in the endoplasmic reticulum and mitochondria. The function of HAX-1 is unknown, although the similarity of its sequence to those of Nip3 and Bcl-2 infers a role in the regulation of apoptosis. We show here that HAX-1 can form homodimers in vivo and is a potent inhibitor of apoptosis and therefore represents a new apoptosis regulatory protein. The putative functions of K15 with respect to its interaction with HAX-1 are discussed.
Collapse
Affiliation(s)
- Tyson V Sharp
- The CRC Viral Oncology Group, Wolfson Institute for Biomedical Research, University College London, London, United Kingdom WC1E 6BT
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Thome M, Gaide O, Micheau O, Martinon F, Bonnet D, Gonzalez M, Tschopp J. Equine herpesvirus protein E10 induces membrane recruitment and phosphorylation of its cellular homologue, bcl-10. J Cell Biol 2001; 152:1115-22. [PMID: 11238466 PMCID: PMC2198798 DOI: 10.1083/jcb.152.5.1115] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
v-E10, a caspase recruitment domain (CARD)-containing gene product of equine herpesvirus 2, is the viral homologue of the bcl-10 protein whose gene was found to be translocated in mucosa-associated lymphoid tissue (MALT) lymphomas. v-E10 efficiently activates the c-jun NH(2)-terminal kinase (JNK), p38 stress kinase, and the nuclear factor (NF)-kappaB transcriptional pathway and interacts with its cellular homologue, bcl-10, via a CARD-mediated interaction. Here we demonstrate that v-E10 contains a COOH-terminal geranylgeranylation consensus site which is responsible for its plasma membrane localization. Expression of v-E10 induces hyperphosphorylation and redistribution of bcl-10 from the cytoplasm to the plasma membrane, a process which is dependent on the intactness of the v-E10 CARD motif. Both membrane localization and a functional CARD motif are important for v-E10-mediated NF-kappaB induction, but not for JNK activation, which instead requires a functional v-E10 binding site for tumor necrosis factor receptor-associated factor (TRAF)6. Moreover, v-E10-induced NF-kappaB activation is inhibited by a dominant negative version of the bcl-10 binding protein TRAF1, suggesting that v-E10-induced membrane recruitment of cellular bcl-10 induces constitutive TRAF-mediated NF-kappaB activation.
Collapse
Affiliation(s)
- M Thome
- Institute of Biochemistry, University of Lausanne, BIL Biomedical Research Center, CH-1066 Epalinges, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
33
|
Cho Y, Ramer J, Rivailler P, Quink C, Garber RL, Beier DR, Wang F. An Epstein-Barr-related herpesvirus from marmoset lymphomas. Proc Natl Acad Sci U S A 2001; 98:1224-9. [PMID: 11158621 PMCID: PMC14736 DOI: 10.1073/pnas.98.3.1224] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epstein-Barr virus (EBV) is implicated in the development of human B cell lymphomas and carcinomas. Although related oncogenic herpesviruses were believed to be endemic only in Old World primate species, we now find these viruses to be endemic in New World primates. We have isolated a transforming, EBV-related virus from spontaneous B cell lymphomas of common marmosets (Callithrix jacchus). Sequencing of two-thirds of the genome reveals considerable divergence from the genomes of EBV and Old World primate EBV-related viruses, including differences in genes important for virus-induced cell growth transformation and pathogenesis. DNA related to the C. jacchus herpesvirus is frequently detected in squirrel monkey peripheral blood lymphocytes, indicating that persistent infection with EBV-related viruses is prevalent in both New World primate families. Understanding how these more divergent EBV-related viruses achieve similar biologic outcomes in their natural host is likely to provide important insights into EBV infection, B cell growth transformation, and oncogenesis.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Callithrix
- Cloning, Molecular
- DNA, Viral/genetics
- Gammaherpesvirinae/classification
- Gammaherpesvirinae/genetics
- Gammaherpesvirinae/isolation & purification
- Genetic Variation
- Genome, Viral
- Glutathione Transferase/genetics
- Herpesvirus 4, Human/classification
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/isolation & purification
- Herpesvirus 8, Human/genetics
- Humans
- Lymphoma, B-Cell/veterinary
- Lymphoma, B-Cell/virology
- Molecular Sequence Data
- Open Reading Frames
- Phylogeny
- Primate Diseases/virology
- Saimiri
- Sequence Alignment
- Sequence Homology, Amino Acid
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Y Cho
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Coulter LJ, Wright H, Reid HW. Molecular genomic characterization of the viruses of malignant catarrhal fever. J Comp Pathol 2001; 124:2-19. [PMID: 11428184 DOI: 10.1053/jcpa.2000.0524] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- L J Coulter
- Moredun Research Institute, International Research Centre, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| | | | | |
Collapse
|
35
|
Kawaguchi Y, Nakajima K, Igarashi M, Morita T, Tanaka M, Suzuki M, Yokoyama A, Matsuda G, Kato K, Kanamori M, Hirai K. Interaction of Epstein-Barr virus nuclear antigen leader protein (EBNA-LP) with HS1-associated protein X-1: implication of cytoplasmic function of EBNA-LP. J Virol 2000; 74:10104-11. [PMID: 11024139 PMCID: PMC102049 DOI: 10.1128/jvi.74.21.10104-10111.2000] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) consists of W1W2 repeats and a unique C-terminal Y1Y2 domain and has been suggested to play an important role in EBV-induced transformation. To identify the cellular factors interacting with EBNA-LP, we performed a yeast two-hybrid screen, using EBNA-LP cDNA containing four W1W2 repeats as bait and an EBV-transformed human peripheral blood lymphocyte cDNA library as the source of cellular genes. Our results were as follows. (i) All three cDNAs in positive yeast colonies were found to encode the same cellular protein, HS1-associated protein X-1 (HAX-1), which is localized mainly in the cytoplasm and has been suggested to be involved in the regulation of B-cell signal transduction and apoptosis. (ii) Mutational analysis of EBNA-LP revealed that the association with HAX-1 is mediated by the W1W2 repeat domain. (iii) A purified chimeric protein consisting of glutathione S-transferase fused to EBNA-LP specifically formed complexes with HAX-1 transiently expressed in COS-7 cells. (iv) When EBNA-LP and HAX-1 were coexpressed in COS-7 cells, EBNA-LP was specifically coimmunoprecipitated with HAX-1. (v) Careful cell fractionation experiments of an EBV-infected lymphoblastoid cell line revealed that EBNA-LP is localized in the cytoplasm as well as in the nucleus. (vi) When EBNA-LP containing four W1W2 repeats was expressed in COS-7 cells, EBNA-LP was detected mainly in the nucleus by immunofluorescence assay. Interestingly, when EBNA-LP containing a single W1W2 repeat was expressed in COS-7 cells, EBNA-LP was localized predominantly in the cytoplasm and was colocalized with HAX-1. These results indicate that EBNA-LP is in fact present and may have a significant function in the cytoplasm, possibly by interacting with and affecting the function of HAX-1.
Collapse
Affiliation(s)
- Y Kawaguchi
- Department of Tumor Virology, Division of Virology and Immunology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Several of the gamma-herpesviruses are known to have cellular transforming and oncogenic properties. The genomes of eight distinct gamma-herpesviruses have been sequenced, and the resulting database of information has enabled the identification of genetic similarities and differences between evolutionarily closely related and distant viruses of the subfamily and between the gamma-herpesviruses and other members of the herpesvirus family. The recognition of coincident loci of genetic divergence between individual gamma-herpesviruses and the identification of novel genes and cellular gene homologues in these genomic regions has delineated a subset of genes that are likely to contribute to the unique biological properties of these viruses. These genes, together with gamma-herpesvirus conserved genes not found in viruses outside the family, might be responsible for virus specific pathogenicity and pathogenic effects, such as viral associated neoplasia, characteristic of the subfamily. The presence of the gamma-herpesvirus major divergent genomic loci and the apparent increased mutational frequencies of homologous genes (where they occur) within these regions, indicates that these loci possess particular features that drive genetic divergence. Whatever the mechanisms underlying this phenomenon, it potentially provides the basis for the relatively rapid adaptation and evolution of gamma-herpesviruses and the diversity of biological and pathogenic properties.
Collapse
Affiliation(s)
- J Nicholas
- Department of Oncology, John Hopkins University School of Medicine, Baltimore, Maryland 21231, USA.
| |
Collapse
|
37
|
Choi JK, Ishido S, Jung JU. The collagen repeat sequence is a determinant of the degree of herpesvirus saimiri STP transforming activity. J Virol 2000; 74:8102-10. [PMID: 10933720 PMCID: PMC112343 DOI: 10.1128/jvi.74.17.8102-8110.2000] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Herpesvirus saimiri (HVS) is divided into three subgroups, A, B, and C, based on sequence divergence at the left end of genomic DNA in which the saimiri transforming protein (STP) resides. Subgroup A and C strains transform primary common marmoset lymphocytes to interleukin-2-independent growth, whereas subgroup B strains do not. To investigate the nononcogenic phenotype of the subgroup B viruses, STP genes from seven subgroup B virus isolates were cloned and sequenced. Consistent with the lack of oncogenic activity of HVS subgroup B viruses, STP-B was deficient for transforming activity in rodent fibroblast cells. Sequence comparison reveals that STP-B lacks the signal-transducing modules found in STP proteins of the other subgroups, collagen repeats and an authentic SH2 binding motif. Substitution mutations demonstrated that the lack of collagen repeats but not an SH2 binding motif contributed to the nontransforming phenotype of STP-B. Introduction of the collagen repeat sequence induced oligomerization of STP-B, resulting in activation of NF-kappaB activity and deregulation of cell growth control. These results demonstrate that the collagen repeat sequence is a determinant of the degree of HVS STP transforming activity.
Collapse
Affiliation(s)
- J K Choi
- Department of Microbiology and Molecular Genetics and Division of Tumor Virology, New England Regional Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772-9102, USA
| | | | | |
Collapse
|