1
|
Crofts KF, Holbrook BC, Soto-Pantoja DR, Ornelles DA, Alexander-Miller MA. TCR Dependent Metabolic Programming Regulates Autocrine IL-4 Production Resulting in Self-Tuning of the CD8 + T Cell Activation Setpoint. Front Immunol 2020; 11:540. [PMID: 32300344 PMCID: PMC7145404 DOI: 10.3389/fimmu.2020.00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/09/2020] [Indexed: 11/21/2022] Open
Abstract
The ability of T cells to sense and respond to environmental cues by altering their functional capabilities is critical for a safe and optimally protective immune response. One of the important properties that contributes to this goal is the activation set-point of the T cell. Here we report a new pathway through which TCR transgenic OT-I CD8+ T cells can self-tune their activation threshold. We find that in the presence of a strong TCR engagement event there is a shift in the metabolic programming of the cell where both glycolysis and oxidative phosphorylation are significantly increased. This diverges from the switch to a predominantly glycolytic profile that would be predicted following naïve T cell activation. Our data suggest this altered metabolic program results in the production of autocrine IL-4. Both metabolic pathways are required for this cytokine to be made. IL-4 signaling in the activated OT-I CD8+ T cell results in modulation of the sensitivity of the cell, establishing a higher activation setpoint that is maintained over time. Together these data demonstrate a novel mechanism for the regulation of IL-4 production in CD8+ T cells. Further, they reveal a new pathway for the self-tuning of peptide sensitivity. Finally, these studies uncover an unexpected role for oxidative phosphorylation in regulating differentiation in these cells.
Collapse
Affiliation(s)
- Kali F Crofts
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Beth C Holbrook
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - David R Soto-Pantoja
- Department of Cancer Biology, Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - David A Ornelles
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Martha A Alexander-Miller
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
2
|
Bracey DN, Seyler TM, Jinnah AH, Smith TL, Ornelles DA, Deora R, Parks GD, Van Dyke ME, Whitlock PW. A porcine xenograft-derived bone scaffold is a biocompatible bone graft substitute: An assessment of cytocompatibility and the alpha-Gal epitope. Xenotransplantation 2019; 26:e12534. [PMID: 31342586 DOI: 10.1111/xen.12534] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/20/2019] [Accepted: 05/08/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Xenografts are an attractive alternative to traditional bone grafts because of the large supply from donors with predictable morphology and biology as well as minimal risk of human disease transmission. Clinical series involving xenograft bone transplantation, most commonly from bovine sources, have reported poor results with frequent graft rejection and failure to integrate with host tissue. Failures have been attributed to residual alpha-Gal epitope in the xenograft which humans produce natural antibody against. To the authors' knowledge, there is currently no xenograft-derived bone graft substitute that has been adopted by orthopedic surgeons for routine clinical use. METHODS In the current study, a bone scaffold intended to serve as a bone graft substitute was derived from porcine cancellous bone using a tissue decellularization and chemical oxidation protocol. In vitro cytocompatibility, pathogen clearance, and alpha-Gal quantification tests were used to assess the safety of the bone scaffold intended for human use. RESULTS In vitro studies showed the scaffold was free of processing chemicals and biocompatible with mouse and human cell lines. When bacterial and viral pathogens were purposefully added to porcine donor tissue, processing successfully removed these pathogens to comply with sterility assurance levels established by allograft tissue providers. Critically, 98.5% of the alpha-Gal epitope was removed from donor tissue after decellularization as shown by ELISA inhibition assay and immunohistochemical staining. CONCLUSIONS The current investigation supports the biologic safety of bone scaffolds derived from porcine donors using a decellularization protocol that meets current sterility assurance standards. The majority of the highly immunogenic xenograft carbohydrate was removed from donor tissue, and these findings support further in vivo investigation of xenograft-derived bone tissue for orthopedic clinical application.
Collapse
Affiliation(s)
- Daniel N Bracey
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Thorsten M Seyler
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Alexander H Jinnah
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Thomas L Smith
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - David A Ornelles
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Rajendar Deora
- Department of Microbial Infection and Immunity, Department of Microbiology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Griffith D Parks
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida
| | - Mark E Van Dyke
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Patrick W Whitlock
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
3
|
Cuevas-Romero JS, Blomström AL, Berg M. Molecular and epidemiological studies of Porcine rubulavirus infection - an overview. Infect Ecol Epidemiol 2015; 5:29602. [PMID: 26584829 PMCID: PMC4653323 DOI: 10.3402/iee.v5.29602] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/07/2015] [Accepted: 10/21/2015] [Indexed: 11/27/2022] Open
Abstract
Porcine rubulavirus-La Piedad-Michoacan-Mexico virus (PorPV-LPMV) was identified as the causative agent of a viral disease that emerged spontaneously in Mexican swine in the 1980s. Since the report of the initial outbreak of the disease, only one full-length genome from a strain isolated in 1984 (PorPV-LPMV/1984) has been sequenced; sequence data are scarce from other isolates. The genetic variation of this virus that has spread throughout the main endemic region of Mexico is almost a complete mystery. The development of molecular techniques for improved diagnostics and to investigate the persistence, molecular epidemiology, and the possible reservoirs of PorPV are needed. Together, this will provide greater knowledge regarding the molecular genetic changes and useful data to establish new strategies in the control of this virus in Mexico.
Collapse
Affiliation(s)
- Julieta Sandra Cuevas-Romero
- Centro Nacional de Investigaciones Disciplinarias en Microbiología Animal, INIFAP, México City, Mexico.,Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden;
| | - Anne-Lie Blomström
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mikael Berg
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
4
|
Heat shock protein 70 regulates degradation of the mumps virus phosphoprotein via the ubiquitin-proteasome pathway. J Virol 2014; 89:3188-99. [PMID: 25552722 DOI: 10.1128/jvi.03343-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Mumps virus (MuV) infection induces formation of cytoplasmic inclusion bodies (IBs). Growing evidence indicates that IBs are the sites where RNA viruses synthesize their viral RNA. However, in the case of MuV infection, little is known about the viral and cellular compositions and biological functions of the IBs. In this study, pulldown purification and N-terminal amino acid sequencing revealed that stress-inducible heat shock protein 70 (Hsp72) was a binding partner of MuV phosphoprotein (P protein), which was an essential component of the IB formation. Immunofluorescence and immunoblotting analyses revealed that Hsp72 was colocalized with the P protein in the IBs, and its expression was increased during MuV infection. Knockdown of Hsp72 using small interfering RNAs (siRNAs) had little, if any, effect on viral propagation in cultured cells. Knockdown of Hsp72 caused accumulation of ubiquitinated P protein and delayed P protein degradation. These results show that Hsp72 is recruited to IBs and regulates the degradation of MuV P protein through the ubiquitin-proteasome pathway. IMPORTANCE Formation of cytoplasmic inclusion bodies (IBs) is a common characteristic feature in mononegavirus infections. IBs are considered to be the sites of viral RNA replication and transcription. However, there have been few studies focused on host factors recruited to the IBs and their biological functions. Here, we identified stress-inducible heat shock protein 70 (Hsp72) as the first cellular partner of mumps virus (MuV) phosphoprotein (P protein), which is an essential component of the IBs and is involved in viral RNA replication/transcription. We found that the Hsp72 mobilized to the IBs promoted degradation of the MuV P protein through the ubiquitin-proteasome pathway. Our data provide new insight into the role played by IBs in mononegavirus infection.
Collapse
|
5
|
Holbrook BC, Yammani RD, Blevins LK, Alexander-Miller MA. In vivo modulation of avidity in highly sensitive CD8(+) effector T cells following viral infection. Viral Immunol 2013; 26:302-13. [PMID: 23971914 DOI: 10.1089/vim.2013.0042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Numerous studies have demonstrated a critical role for T cell avidity in predicting in vivo efficacy. Even though the measurement of avidity is now a routine assessment for the analysis of effector and memory T cell populations, our understanding of how this property is controlled in vivo at both the population and individual cell levels is limited. Our previous studies have identified high avidity as a property of the initial effector population generated in mice following respiratory virus infection. As the response progresses, lower avidity cells appear in the effector pool. The studies described here investigate the mechanistic basis of this in vivo regulation of avidity. We present data supporting in vivo avidity modulation within the early high avidity responders that results in a population of lower avidity effector cells. Changes in avidity were correlated with decreased lck expression and increased sensitivity to lck inhibitors in effector cells present at late versus early times postinfection. The possibility of tuning within select individual effectors is a previously unappreciated mechanism for the control of avidity in vivo.
Collapse
Affiliation(s)
- Beth C Holbrook
- Department of Microbiology and Immunology, Wake Forest University School of Medicine , Winston-Salem, North Carolina
| | | | | | | |
Collapse
|
6
|
Functional divergence among CD103+ dendritic cell subpopulations following pulmonary poxvirus infection. J Virol 2010; 84:10191-9. [PMID: 20660207 DOI: 10.1128/jvi.00892-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A large number of dendritic cell (DC) subsets have now been identified based on the expression of a distinct array of surface markers as well as differences in functional capabilities. More recently, the concept of unique subsets has been extended to the lung, although the functional capabilities of these subsets are only beginning to be explored. Of particular interest are respiratory DCs that express CD103. These cells line the airway and act as sentinels for pathogens that enter the lung, migrating to the draining lymph node, where they add to the already complex array of DC subsets present at this site. Here we assessed the contributions of these individual populations to the generation of a CD8(+) T-cell response following respiratory infection with poxvirus. We found that CD103(+) DCs were the most effective antigen-presenting cells (APC) for naive CD8(+) T-cell activation. Surprisingly, we found no evidence that lymph node-resident or parenchymal DCs could prime virus-specific cells. The increased efficacy of CD103(+) DCs was associated with the increased presence of viral antigen as well as high levels of maturation markers. Within the CD103(+) DCs, we observed a population that expressed CD8alpha. Interestingly, cells bearing CD8alpha were less competent for T-cell activation than their CD8alpha(-) counterparts. These data show that lung-migrating CD103(+) DCs are the major contributors to CD8(+) T-cell activation following poxvirus infection. However, the functional capabilities of cells within this population differ with the expression of CD8, suggesting that CD103(+) cells may be divided further into distinct subsets.
Collapse
|
7
|
Arimilli S, Sharma SK, Yammani R, Reid SD, Parks GD, Alexander-Miller MA. Pivotal Advance: Nonfunctional lung effectors exhibit decreased calcium mobilization associated with reduced expression of ORAI1. J Leukoc Biol 2010; 87:977-88. [PMID: 20103768 DOI: 10.1189/jlb.0809575] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
CD8(+) T cells play a critical role in the clearance of respiratory pathogens. Thus, it is surprising that functional inactivation of lung effectors has been observed in many models of viral infection. Currently, the molecular defect responsible for the shut-off of function in these cells is unknown. In the present study, we addressed this question using a model of respiratory infection with the paramyxovirus SV5. Nonfunctional cells were found to exhibit decreases in SOCE, resulting in reduced NFAT1 activation. Notably, function could be restored by the provision of increased levels of extracellular calcium. The reduced ability to mobilize calcium was associated with reduced expression of ORAI1, the CRAC channel subunit. These findings reveal a previously unknown mechanism for the negative regulation of function in effector T cells.
Collapse
Affiliation(s)
- Subhashini Arimilli
- 1. Room 5140 Gray Building, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | | | | | | | | | | |
Collapse
|
8
|
Cuevas JS, Rodríguez-Ropón A, Kennedy S, Moreno-López J, Berg M, Hernández-Jáuregui P. Investigation of T-cell responses and viral mRNA persistence in lymph nodes of pigs infected with porcine rubulavirus. Vet Immunol Immunopathol 2008; 127:148-52. [PMID: 18986711 DOI: 10.1016/j.vetimm.2008.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 09/01/2008] [Accepted: 09/12/2008] [Indexed: 10/21/2022]
Abstract
Selected lymphocyte subpopulations were studied and the distribution of viral mRNA were investigated during acute and persistent porcine rubulavirus (PoRV-LPMV) infection in Vietnamese pot-bellied pigs. Six pigs infected with PoRV-LPMV at 17 days of age exhibited clinical signs 7-10 days post-inoculation (pi). One infected piglet died 11 days pi while the other five recovered around day 13 pi and survived until euthanasia on day 277 pi. Increased numbers of CD8+, CD4+ and CD2+ T cells were detected during the acute phase of infection while CD8+ cells were elevated throughout the infection, including during the persistent stage. Specific antibodies against the haemagglutinin-neuraminidase protein of PoRV-LPMV were detected during persistent infection. Although infectious virus could not be recovered from tissues from any of the infected pigs at necropsy 277 days pi, PoRV-LPMV mRNA was detected in lymph nodes, pancreas and central nervous system using a nested polymerase chain reaction technique. Continued lymphocyte interaction with viral RNA may be an important factor in promoting cellular and humoral responses during persistent PoRV-LPMV infection.
Collapse
Affiliation(s)
- J Sandra Cuevas
- Department of Biomedical Sciences and Veterinary Public Health, Division of Parasitology and Virology, Swedish University of Agricultural Sciences, SLU, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
9
|
Plesa G, Snook AE, Waldman SA, Eisenlohr LC. Derivation and fluidity of acutely induced dysfunctional CD8+ T cells. THE JOURNAL OF IMMUNOLOGY 2008; 180:5300-8. [PMID: 18390711 DOI: 10.4049/jimmunol.180.8.5300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dysfunctional CD8(+) T (T(CD8(+))) cells lacking cytokine production have been identified in many viral infections, but their genesis is not well understood. Established results indicate that such cells could be either high avidity that enter a refractory state due to overstimulation or low avidity that are only partially stimulated. Using an acute, resolving infection model that results in rapid production of dysfunctional cells, we show that this IL2 unresponsive phenotype emerges from the low end of the avidity spectrum and is characterized by broad TCR usage and a reduced proliferation rate. Furthermore, the dysfunctional population is extremely fluid, being sustained by high Ag dose but virtually eliminated following low dose boosting. Together, these results suggest that persistence of dysfunctional cells generated in this manner depends upon continual exposure to high Ag levels and that such cells may ultimately predominate if functional cells become exhausted.
Collapse
Affiliation(s)
- Gabriela Plesa
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
10
|
Gil D, Schrum AG, Daniels MA, Palmer E. A role for CD8 in the developmental tuning of antigen recognition and CD3 conformational change. THE JOURNAL OF IMMUNOLOGY 2008; 180:3900-9. [PMID: 18322198 DOI: 10.4049/jimmunol.180.6.3900] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TCR engagement by peptide-MHC class I (pMHC) ligands induces a conformational change (Deltac) in CD3 (CD3Deltac) that contributes to T cell signaling. We found that when this interaction took place between primary T lineage cells and APCs, the CD8 coreceptor was required to generate CD3Deltac. Interestingly, neither enhancement of Ag binding strength nor Src kinase signaling explained this coreceptor activity. Furthermore, Ag-induced CD3Deltac was developmentally attenuated by the increase in sialylation that accompanies T cell maturation and limits CD8 activity. Thus, both weak and strong ligands induced CD3Deltac in preselection thymocytes, but only strong ligands were effective in mature T cells. We propose that CD8 participation in the TCR/pMHC interaction can physically regulate CD3Deltac induction by "translating" productive Ag encounter from the TCR to the CD3 complex. This suggests one mechanism by which the developmentally regulated variation in CD8 sialylation may contribute to the developmental tuning of T cell sensitivity.
Collapse
Affiliation(s)
- Diana Gil
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
11
|
Arimilli S, Palmer EM, Alexander-Miller MA. Loss of function in virus-specific lung effector T cells is independent of infection. J Leukoc Biol 2008; 83:564-74. [PMID: 18079210 PMCID: PMC11650726 DOI: 10.1189/jlb.0407215] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Recently, several studies, including those with respiratory syncytial virus, mouse pneumovirus, and simian virus 5, have reported that virus-specific CD8+ effector cells entering the lung as a result of respiratory infection undergo significant loss of function. The impaired function in these cells has been proposed to be the result of infection-induced changes in the lung. Although virus-specific effects may contribute to regulation of T cells in the lung, the findings from this study provide evidence that the basal lung environment is sufficient to promote loss of function in effector cells. Loss of function occurs within 48 h of entry into the lung and is most evident in cells residing in the lung parenchyma. These findings suggest an additional paradigm for the immunoregulation of effector cells that enter the lung as a result of virus infection.
Collapse
Affiliation(s)
- Subhashini Arimilli
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Ellen M. Palmer
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Martha A. Alexander-Miller
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
12
|
Belyakov IM, Kozlowski S, Mage M, Ahlers JD, Boyd LF, Margulies DH, Berzofsky JA. Role of alpha3 domain of class I MHC molecules in the activation of high- and low-avidity CD8+ CTLs. Int Immunol 2007; 19:1413-20. [PMID: 17981793 DOI: 10.1093/intimm/dxm111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CD8 can serve as a co-receptor or accessory molecule on the surface of CTL. As a co-receptor, CD8 can bind to the alpha3 domain of the same MHC class I molecules as the TCR to facilitate TCR signaling. To evaluate the role of the MHC class I molecule alpha3 domain in the activation of CD8(+) CTL, we have produced a soluble 227 mutant of H-2D(d), with a point mutation in the alpha3 domain (Glu227 --> Lys). 227 mutant class I-peptide complexes were not able to effectively activate H-2D(d)-restricted CD8 T cells in vitro, as measured by IFN-gamma production by an epitope-specific CD8(+) CTL line. However, the 227 mutant class I-peptide complexes in the presence of another MHC class I molecule (H-2K(b)) (that cannot present the peptide) with a normal alpha3 domain can induce the activation of CD8(+) CTL. Therefore, in order to activate CD8(+) CTL, the alpha3 domain of MHC class I does not have to be located on the same molecule with the alpha1 and alpha2 domains of MHC class I. A low-avidity CD8(+) CTL line was significantly less sensitive to stimulation by the 227 mutant class I-peptide complexes in the presence of the H-2K(b) molecule. Thus, low-avidity CTL may not be able to take advantage of the interaction between CD8 and the alpha3 domain of non-presenting class I MHC molecules, perhaps because of a shorter dwell time for the TCR-MHC interaction.
Collapse
Affiliation(s)
- Igor M Belyakov
- Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Kroger CJ, Alexander-Miller MA. Cutting edge: CD8+ T cell clones possess the potential to differentiate into both high- and low-avidity effector cells. THE JOURNAL OF IMMUNOLOGY 2007; 179:748-51. [PMID: 17617563 DOI: 10.4049/jimmunol.179.2.748] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The property of functional avidity is recognized to be of critical importance in determining pathogen clearance. An unresolved question with regard to this property is whether distinct naive subsets exist that display inherent differences in their peptide sensitivity requirements for activation, i.e., functional avidity, or whether differences in peptide sensitivity are induced following peptide encounter. In this study, we demonstrate that naive populations that can give rise to both high- and low-avidity cells do not contain subsets that exhibit differences in the amount of peptide required for activation. Furthermore, we show that an individual T cell clone can generate both high- and low-avidity effectors. The work presented here provides the first formal demonstration that an individual cell can give rise to both high- and low-avidity progeny, suggesting that avidity modulation at the level of an individual cell may play an important role in the CD8(+) T cell response generated in vivo.
Collapse
Affiliation(s)
- Charles J Kroger
- Department of Microbiology & Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | |
Collapse
|
14
|
Pejawar-Gaddy S, Gitiban-Vaghefi N, Parks GD, Alexander-Miller MA. Distinct pathways for signaling maturation in macrophages and dendritic cells after infection with paramyxovirus simian virus 5. Viral Immunol 2007; 20:76-87. [PMID: 17425423 DOI: 10.1089/vim.2006.0070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Professional antigen-presenting cells are critical components of both the innate and adaptive immune responses. Although dendritic cells (DCs) are generally thought to be the primary activators of naive T cells, macrophages have also been shown to fulfill this role. As with DCs, the capacity to induce optimal activation of T cells requires that macrophages undergo a process that results in the increased expression of costimulatory molecules, such as CD40, CD80, and CD86, and the production of cytokines. In this study we analyzed the effect of infection of macrophages generated from BALB/c mice with the paramyxovirus simian virus 5 (SV5). Here we have shown that bone marrow-derived macrophages (BMMs) are not productively infected at any multiplicity of infection tested. Analysis of activation markers revealed that SV5-infected BMMs robustly upregulated CD40 and modestly upregulated CD86, but did not upregulate the expression of CD80. Further, SV5-infected BMMs secreted low levels of interferon-beta and interleukin (IL)-12p40, but high levels of tumor necrosis factor-alpha and IL-6. Intriguingly, upregulation of these molecules on BMMs, unlike our previous results using bone marrow-derived dendritic cells, was not dependent on live virus. These findings provide evidence that different professional antigen-presenting cells can detect and respond to virus via distinct mechanisms.
Collapse
Affiliation(s)
- Sharmila Pejawar-Gaddy
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | |
Collapse
|
15
|
Grayson JM, Weant AE, Holbrook BC, Hildeman D. Role of Bim in regulating CD8+ T-cell responses during chronic viral infection. J Virol 2006; 80:8627-38. [PMID: 16912311 PMCID: PMC1563887 DOI: 10.1128/jvi.00855-06] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Apoptosis is critical for the development and maintenance of the immune system. The proapoptotic Bcl-2 family member Bim is important for normal immune system homeostasis. Although previous experiments have shown that Bim is critical for the apoptosis of antigen-specific CD8(+) T cells during acute viral infection, the role of Bim during chronic viral infection is unclear. Using lymphocytic choriomeningitis virus clone 13 infection of mice, we demonstrate a role for Bim in CD8(+) T-cell apoptosis during chronic viral infection. Enumeration of antigen-specific CD8(+) T cells by major histocompatibility complex class I tetramer staining revealed that CD8(+) D(b)NP396-404(+) T cells, which undergo extensive deletion in wild-type mice, exhibited almost no decrease in Bim mutant mice. This contrasts with CD8(+) D(b)GP33-41(+) and CD8(+) D(b)GP276-286(+) T cells that underwent similar decreases in numbers in both Bim mutant and wild-type mice. Increased numbers of CD8(+) D(b)NP396-404(+) T cells in Bim mutant mice were due to lack of apoptosis and could not be explained by altered proliferation, differential homing to tissues, or increased help from CD4(+) T cells. When viral titers were examined, high levels were initially observed in both groups, but in Bim mutant mice, clearance from the spleen and sera was slightly accelerated. These experiments demonstrate the critical role of Bim during chronic viral infection to down-regulate CD8(+) T-cell responses and have implications for designing strategies for optimizing immunotherapies during situations where antigen persists, such as chronic infection, autoimmune syndromes, and cancer.
Collapse
Affiliation(s)
- Jason M Grayson
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | | | | | |
Collapse
|
16
|
Chen YH, Diassiti A, Randall RE. Genetic fusion of proteins to the SIV Tat protein enhances their immunogenicity. Vaccine 2006; 24:708-15. [PMID: 16203060 DOI: 10.1016/j.vaccine.2005.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Revised: 08/26/2005] [Accepted: 09/05/2005] [Indexed: 10/25/2022]
Abstract
The potential of genetically fusing recombinant proteins to the simian immunodeficiency virus (SIV) Tat protein has been investigated. The recombinant SIV Tat protein was initially expressed in very low amounts in E. coli, but optimization of the coding sequence for translation in the bacterial host significantly improved protein expression. Whilst fusion of SIV Tat to an experimental antigen (GST) facilitated the binding of the antigen to cell surfaces it did not appear to facilitate the transport of the protein into the cytosol. The immunogenicity of GST was significantly enhanced, in the absence of adjuvants, when fused to SIV Tat, with the induction of IgG1 and IgG2a antibodies indicative of a Th1 response being induced. However, no evidence was obtained that such an immunization scheme efficiently induced a CTL response.
Collapse
Affiliation(s)
- Yun-Hsiang Chen
- School of Biomedical Sciences, University of St. Andrews, Biomolecular Sciences Bldg., North Haugh, St. Andrews, Fife, Scotland KY16 9ST, United Kingdom
| | | | | |
Collapse
|
17
|
Chung C, Mealey RH, McGuire TC. Evaluation of high functional avidity CTL to Gag epitope clusters in EIAV carrier horses. Virology 2005; 342:228-39. [PMID: 16139857 PMCID: PMC3348724 DOI: 10.1016/j.virol.2005.07.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 05/25/2005] [Accepted: 07/29/2005] [Indexed: 11/24/2022]
Abstract
Cytotoxic T lymphocytes (CTL) are critical for lentivirus control including EIAV. Since CTL from most EIAV carrier horses recognize Gag epitope clusters (EC), the hypothesis that carrier horses would have high functional avidity CTL to optimal epitopes in Gag EC was tested. Twenty-two optimal EC epitopes were identified; two in EC1, six in EC2, and seven each in EC3 and 4. However, only five of nine horses had high functional avidity CTL (<or=11 nM) recognizing six epitopes in EC; four in relatively conserved EC3; and one each in EC1 and 2. Horses with high functional avidity CTL had significantly more days since the last clinical episode than horses with low avidity CTL, and this was not explained by analyzing duration of infection. Furthermore, there was a significant inverse correlation between the CTL functional avidity of the nine horses and the days since the last clinical episode. Gag CTL epitope escape variants were found in three horses, but only one of these was recognized by high functional avidity CTL. Thus, not all carrier horses had high functional avidity CTL to Gag EC, but those that did had longer periods without disease episodes.
Collapse
|
18
|
Hodge JW, Chakraborty M, Kudo-Saito C, Garnett CT, Schlom J. Multiple costimulatory modalities enhance CTL avidity. THE JOURNAL OF IMMUNOLOGY 2005; 174:5994-6004. [PMID: 15879092 PMCID: PMC1924685 DOI: 10.4049/jimmunol.174.10.5994] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent studies in both animal models and clinical trials have demonstrated that the avidity of T cells is a major determinant of antitumor and antiviral immunity. In this study, we evaluated several different vaccine strategies for their ability to enhance both the quantity and avidity of CTL responses. CD8(+) T cell quantity was measured by tetramer binding precursor frequency, and avidity was measured by both tetramer dissociation and quantitative cytolytic function. We have evaluated a peptide, a viral vector expressing the Ag transgene alone, with one costimulatory molecule (B7-1), and with three costimulatory molecules (B7-1, ICAM-1, and LFA-3), with anti-CTLA-4 mAb, with GM-CSF, and combinations of the above. We have evaluated these strategies in both a foreign Ag model using beta-galactosidase as immunogen, and in a "self" Ag model, using carcinoembryonic Ag as immunogen in carcinoembryonic Ag transgenic mice. The combined use of several of these strategies was shown to enhance not only the quantity, but, to a greater magnitude, the avidity of T cells generated; a combination strategy is also shown to enhance antitumor effects. The results reported in this study thus demonstrate multiple strategies that can be used in both antitumor and antiviral vaccine settings to generate higher avidity host T cell responses.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/genetics
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/immunology
- Antigens, CD
- Antigens, Differentiation/immunology
- CTLA-4 Antigen
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Carcinoembryonic Antigen/administration & dosage
- Carcinoembryonic Antigen/genetics
- Carcinoembryonic Antigen/immunology
- Cell Line, Tumor
- Colonic Neoplasms/immunology
- Colonic Neoplasms/pathology
- Colonic Neoplasms/prevention & control
- Combined Modality Therapy
- Cytotoxicity Tests, Immunologic/methods
- Female
- Genetic Vectors
- Granulocyte-Macrophage Colony-Stimulating Factor/administration & dosage
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Peptide Fragments/administration & dosage
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Protein Binding/immunology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- beta-Galactosidase/administration & dosage
- beta-Galactosidase/genetics
- beta-Galactosidase/immunology
Collapse
Affiliation(s)
- James W Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
19
|
Pejawar SS, Parks GD, Alexander-Miller MA. Abortive versus productive viral infection of dendritic cells with a paramyxovirus results in differential upregulation of select costimulatory molecules. J Virol 2005; 79:7544-57. [PMID: 15919909 PMCID: PMC1143689 DOI: 10.1128/jvi.79.12.7544-7557.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dendritic cells are the most potent antigen-presenting cell for priming naive T cells. Optimal activation of T cells requires that dendritic cells undergo a process of maturation resulting in the increased expression of costimulatory molecules, such as CD40, CD86, and CD80, and the production of cytokines. In this study we analyzed the effect of infection of dendritic cells obtained from two strains of mice, BALB/c and C57BL/6, with the paramyxovirus simian virus 5 (SV5). Our results show that C57BL/6 bone marrow-derived dendritic cells (BMDC) are much more permissive to infection with SV5 at a multiplicity of infection (MOI) of 10 PFU/cell compared to BALB/c BMDC, as determined by the production of viral proteins and progeny. However, infection of BALB/c BMDC with a higher MOI of 50 PFU/cell resulted in a productive infection with the production of significant amounts of viral proteins and progeny. Regardless of the permissivity to infection, both BALB/c and C57BL/6 BMDC efficiently upregulated CD40 and CD86. However, CD80 upregulation correlated with the level of expression of viral proteins and the production of viral progeny. While secreted alpha/beta interferon was required for increased expression of all three molecules, optimal CD80 expression was dependent on an additional signal provided by a productive viral infection. These findings provide evidence that the signals controlling the expression of costimulatory molecules following viral infection are distinct. Further, they suggest that the amount of virus encountered and/or the permissivity of a dendritic cell to infection can alter the resulting maturation phenotype and functional capacity of the infected dendritic cell.
Collapse
Affiliation(s)
- Sharmila S Pejawar
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | |
Collapse
|
20
|
Gray PM, Arimilli S, Palmer EM, Parks GD, Alexander-Miller MA. Altered function in CD8+ T cells following paramyxovirus infection of the respiratory tract. J Virol 2005; 79:3339-49. [PMID: 15731228 PMCID: PMC1075682 DOI: 10.1128/jvi.79.6.3339-3349.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For many respiratory pathogens, CD8+ T cells have been shown to play a critical role in clearance. However, there are still many unanswered questions with regard to the factors that promote the most efficacious immune response and the potential for immunoregulation of effector cells at the local site of infection. We have used infection of the respiratory tract with the model paramyxovirus simian virus 5 (SV5) to study CD8+ T-cell responses in the lung. For the present study, we report that over time a population of nonresponsive, virus-specific CD8+ T cells emerged in the lung, culminating in a lack of function in approximately 85% of cells specific for the immunodominant epitope from the viral matrix (M) protein by day 40 postinfection. Concurrent with the induction of nonresponsiveness, virus-specific cells that retained function at later times postinfection exhibited an increased requirement for CD8 engagement. This change was coupled with a nearly complete loss of functional phosphoprotein-specific cells, a response previously shown to be almost exclusively CD8 independent. These studies add to the growing evidence for immune dysregulation following viral infection of the respiratory tract.
Collapse
Affiliation(s)
- Peter M Gray
- Department of Microbiology & Immunology, Room 5108, Gray Building, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | | | | | |
Collapse
|
21
|
Gray PM, Parks GD, Alexander-Miller MA. Modulation of CD8+ T cell avidity by increasing the turnover of viral antigen during infection. Cell Immunol 2004; 231:14-9. [PMID: 15919365 DOI: 10.1016/j.cellimm.2004.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Revised: 08/31/2004] [Accepted: 12/02/2004] [Indexed: 11/17/2022]
Abstract
The increased potency of high avidity CD8+ T cells for the clearance of viral infections has been well documented. We have previously reported the novel finding that intranasal infection with the paramyxovirus SV5 induces a CD8+ T cell response to the SV5 P protein that is almost exclusively of high avidity. Based on our results that the level of peptide presentation is a critical factor in the selective expansion of high versus low avidity cells in vitro, we hypothesized that the avidity of the anti-viral response generated in vivo could be altered by increasing the turnover of the P protein during viral infection through linkage to ubiquitin (UbP). Infection with a virus expressing UbP (VV-UbP) elicited a significant increase in low avidity cells in both BALB/c and C3H mice compared to the almost exclusively high avidity response elicited by VV-P. Our results are the first demonstration of the control of avidity during the antiviral response through an engineered change to a viral antigen. The implications of our findings for vaccine development are discussed.
Collapse
Affiliation(s)
- Peter M Gray
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | |
Collapse
|
22
|
Leggatt GR, Narayan S, Fernando GJP, Frazer IH. Changes to peptide structure, not concentration, contribute to expansion of the lowest avidity cytotoxic T lymphocytes. J Leukoc Biol 2004; 76:787-95. [PMID: 15240746 DOI: 10.1189/jlb.0104026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The efficient in vitro expansion of antigen-specific CD8+ cytotoxic T lymphocytes (CTL) for use in adoptive immunotherapy represents an important clinical goal. Furthermore, the avidity of expanded CTL populations often correlates closely with clinical outcome. In our study, high-avidity CTL lines could be expanded ex vivo from an antigen-primed animal using low peptide concentration, and intermediate peptide concentrations favored the generation of lower avidity CTL. Further increases in peptide concentration during culture inhibited the expansion of all peptide-specific CD8+ cells. In contrast, a single amino acid variant peptide efficiently generated functional CTL populations at high or low peptide concentration, which responded to wild-type epitope with the lowest average avidity seen in this study. We propose that for some peptides, the efficient generation of low-avidity CTL responses will be favored by stimulation with altered peptide rather than high concentrations of wild-type epitope. In addition, some variant peptides designed to have improved binding to major histocompatibility complex class I may reduce rather than enhance the functional avidity for the wild-type peptide of ex vivo-expanded CTL. These observations are relevant to in vitro expansion of CTL for immunotherapy and strategies to elicit regulatory or therapeutic immunity to neo-self-antigen when central tolerance has eliminated high-avidity, cognate T cells.
Collapse
Affiliation(s)
- Graham R Leggatt
- Centre for Immunology and Cancer Research, University of Queensland, Princess Alexandra Hospital, Brisbane, Australia.
| | | | | | | |
Collapse
|
23
|
Young VA, Parks GD. Simian virus 5 is a poor inducer of chemokine secretion from human lung epithelial cells: identification of viral mutants that activate interleukin-8 secretion by distinct mechanisms. J Virol 2003; 77:7124-30. [PMID: 12768033 PMCID: PMC156154 DOI: 10.1128/jvi.77.12.7124-7130.2003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have compared chemokine secretion from human lung A549 cells infected with simian virus 5 (SV5) with other members of the Rubulavirus genus of paramyxoviruses. High levels of the chemokines interleukin-8 (IL-8) and macrophage chemoattractant protein-1 (MCP-1) were secreted from A549 cells infected with Human parainfluenza virus type 2 (HPIV-2) but not from cells infected with wild-type (WT) SV5. The lack of IL-8 secretion from SV5-infected cells was not due to a global block in all signal transduction pathways leading to IL-8 secretion, since SV5-infected A549 cells secreted IL-8 after stimulation with exogenously added tumor necrosis factor alpha or by coinfection with HPIV-2. A previously described, recombinant SV5 containing substitutions in the shared region of the P/V gene (rSV5-P/V-CPI-) induced IL-8 secretion by a mechanism that was dependent on viral gene expression. By contrast, an SV5 variant isolated from persistently infected cells (Wake Forest strain of Canine parainfluenza virus) induced IL-8 secretion by a mechanism that was largely not affected by inhibitors of viral gene expression. Together, these data demonstrate that SV5 is unusual compared to other closely related paramyxoviruses, since SV5 is a very poor inducer of the cytokines IL-8 and MCP-1. The isolation of two recombinant SV5 mutants that are defective in preventing chemokine induction will allow an identification of mechanisms utilized by WT SV5 to avoid activation of host cell innate immune responses to infection.
Collapse
Affiliation(s)
- Virginia A Young
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1064, USA
| | | |
Collapse
|
24
|
Gray PM, Parks GD, Alexander-Miller MA. High avidity CD8+ T cells are the initial population elicited following viral infection of the respiratory tract. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:174-81. [PMID: 12496398 DOI: 10.4049/jimmunol.170.1.174] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Following intranasal administration, the model paramyxovirus simian virus 5 (SV5) establishes an infection in the respiratory tract of mice, which is subsequently cleared by CD8+ T cells. In this study, we sought to understand the maturation of the antiviral immune response over time by assessing the functional avidity of the responding T cells and the expansion of immunodominant populations. Surprisingly, we determined that the initial response to Ag at day 3 (d3) in the mediastinal lymph node was exclusively high avidity. However, by d5 postinfection, low avidity cells were approximately 50% of the responding T cell population. Following secondary exposure to SV5, high avidity CD8+ T cells again are the exclusive cell type present at early times postinfection (d2). Similarly, high avidity cells were preferentially elicited at d3 following infection with the unrelated vaccinia virus. We also made the observation that the immunodominance profile has not been established at d3 postinfection with SV5. However, by d5 a clear immunodominance pattern arises and is permanently maintained. These data indicate that high avidity cells are the predominant population responding at early times postinfection following respiratory infection with SV5 or vaccinia virus. However, as the response progresses, low avidity cells are activated/expanded to a greater extent compared with high avidity cells.
Collapse
Affiliation(s)
- Peter M Gray
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | |
Collapse
|
25
|
O'Connor DH, Allen TM, Vogel TU, Jing P, DeSouza IP, Dodds E, Dunphy EJ, Melsaether C, Mothé B, Yamamoto H, Horton H, Wilson N, Hughes AL, Watkins DI. Acute phase cytotoxic T lymphocyte escape is a hallmark of simian immunodeficiency virus infection. Nat Med 2002; 8:493-9. [PMID: 11984594 DOI: 10.1038/nm0502-493] [Citation(s) in RCA: 319] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cytotoxic T-lymphocyte (CTL) responses peak coincident with the decline in acute HIV viremia. Despite two reports of CTL-resistant HIV variants emerging during acute infection, the contribution of acute CTL escape to HIV pathogenesis remains unclear. Difficulties inherent in studying acute HIV infection can be overcome by modeling virus-host interactions in SIV-infected rhesus macaques. We sequenced 21 complete simian immunodeficiency virus (SIV)mac239 genomes at four weeks post-infection to determine the extent of acute CTL escape. Here we show that viruses from 19 of 21 macaques escaped from CTLs during acute infection and that these escape-selecting CTLs were responsive to lower concentrations of peptide than other SIV-specific CTLs. Interestingly, CTLs that require low peptide concentrations for stimulation (high 'functional avidity') are particularly effective at controlling other viral infections. Our results suggest that acute viral escape from CTLs is a hallmark of SIV infection and that CTLs with high functional avidity can rapidly select for escape variants.
Collapse
Affiliation(s)
- David H O'Connor
- Wisconsin Regional Primate Research Center and Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|