1
|
Su C, Huang T, Zhang M, Zhang Y, Zeng Y, Chen X. Glucocorticoid receptor signaling in the brain and its involvement in cognitive function. Neural Regen Res 2025; 20:2520-2537. [PMID: 39248182 PMCID: PMC11801288 DOI: 10.4103/nrr.nrr-d-24-00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/07/2024] [Accepted: 07/06/2024] [Indexed: 09/10/2024] Open
Abstract
The hypothalamic-pituitary-adrenal axis regulates the secretion of glucocorticoids in response to environmental challenges. In the brain, a nuclear receptor transcription factor, the glucocorticoid receptor, is an important component of the hypothalamic-pituitary-adrenal axis's negative feedback loop and plays a key role in regulating cognitive equilibrium and neuroplasticity. The glucocorticoid receptor influences cognitive processes, including glutamate neurotransmission, calcium signaling, and the activation of brain-derived neurotrophic factor-mediated pathways, through a combination of genomic and non-genomic mechanisms. Protein interactions within the central nervous system can alter the expression and activity of the glucocorticoid receptor, thereby affecting the hypothalamic-pituitary-adrenal axis and stress-related cognitive functions. An appropriate level of glucocorticoid receptor expression can improve cognitive function, while excessive glucocorticoid receptors or long-term exposure to glucocorticoids may lead to cognitive impairment. Patients with cognitive impairment-associated diseases, such as Alzheimer's disease, aging, depression, Parkinson's disease, Huntington's disease, stroke, and addiction, often present with dysregulation of the hypothalamic-pituitary-adrenal axis and glucocorticoid receptor expression. This review provides a comprehensive overview of the functions of the glucocorticoid receptor in the hypothalamic-pituitary-adrenal axis and cognitive activities. It emphasizes that appropriate glucocorticoid receptor signaling facilitates learning and memory, while its dysregulation can lead to cognitive impairment. This provides clues about how glucocorticoid receptor signaling can be targeted to overcome cognitive disability-related disorders.
Collapse
Affiliation(s)
- Chonglin Su
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Taiqi Huang
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Meiyu Zhang
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yanyu Zhang
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Xingxing Chen
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Wei B, Shi H, Yu X, Shi Y, Zeng H, Zhao Y, Zhao Z, Song Y, Sun M, Wang B. GR/Ahi1 regulates WDR68-DYRK1A binding and mediates cognitive impairment in prenatally stressed offspring. Cell Mol Life Sci 2024; 81:20. [PMID: 38195774 PMCID: PMC11073104 DOI: 10.1007/s00018-023-05075-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024]
Abstract
Accumulating research shows that prenatal exposure to maternal stress increases the risk of behavioral and mental health problems for offspring later in life. However, how prenatal stress affects offspring behavior remains unknown. Here, we found that prenatal stress (PNS) leads to reduced Ahi1, decreased synaptic plasticity and cognitive impairment in offspring. Mechanistically, Ahi1 and GR stabilize each other, inhibit GR nuclear translocation, promote Ahi1 and WDR68 binding, and inhibit DYRK1A and WDR68 binding. When Ahi1 deletion or prenatal stress leads to hyperactivity of the HPA axis, it promotes the release of GC, leading to GR nuclear translocation and Ahi1 degradation, which further inhibits the binding of Ahi1 and WDR68, and promotes the binding of DYRK1A and WDR68, leading to elevated DYRK1A, reduced synaptic plasticity, and cognitive impairment. Interestingly, we identified RU486, an antagonist of GR, which increased Ahi1/GR levels and improved cognitive impairment and synaptic plasticity in PNS offspring. Our study contributes to understanding the signaling mechanisms of prenatal stress-mediated cognitive impairment in offspring.
Collapse
Affiliation(s)
- Bin Wei
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Haixia Shi
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Xi Yu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yajun Shi
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Hongtao Zeng
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yan Zhao
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Zejun Zhao
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yueyang Song
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Bin Wang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
3
|
Mehrabipour M, Jasemi NSK, Dvorsky R, Ahmadian MR. A Systematic Compilation of Human SH3 Domains: A Versatile Superfamily in Cellular Signaling. Cells 2023; 12:2054. [PMID: 37626864 PMCID: PMC10453029 DOI: 10.3390/cells12162054] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
SRC homology 3 (SH3) domains are fundamental modules that enable the assembly of protein complexes through physical interactions with a pool of proline-rich/noncanonical motifs from partner proteins. They are widely studied modular building blocks across all five kingdoms of life and viruses, mediating various biological processes. The SH3 domains are also implicated in the development of human diseases, such as cancer, leukemia, osteoporosis, Alzheimer's disease, and various infections. A database search of the human proteome reveals the existence of 298 SH3 domains in 221 SH3 domain-containing proteins (SH3DCPs), ranging from 13 to 720 kilodaltons. A phylogenetic analysis of human SH3DCPs based on their multi-domain architecture seems to be the most practical way to classify them functionally, with regard to various physiological pathways. This review further summarizes the achievements made in the classification of SH3 domain functions, their binding specificity, and their significance for various diseases when exploiting SH3 protein modular interactions as drug targets.
Collapse
Affiliation(s)
- Mehrnaz Mehrabipour
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| | - Neda S. Kazemein Jasemi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| | - Radovan Dvorsky
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
- Center for Interdisciplinary Biosciences, P. J. Šafárik University, 040 01 Košice, Slovakia
| | - Mohammad R. Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| |
Collapse
|
4
|
Downie ML, Gupta S, Voinescu C, Levine AP, Sadeghi-Alavijeh O, Dufek-Kamperis S, Cao J, Christian M, Kari JA, Thalgahagoda S, Ranawaka R, Abeyagunawardena A, Gbadegesin R, Parekh R, Kleta R, Bockenhauer D, Stanescu HC, Gale DP. Common Risk Variants in AHI1 Are Associated With Childhood Steroid Sensitive Nephrotic Syndrome. Kidney Int Rep 2023; 8:1562-1574. [PMID: 37547536 PMCID: PMC10403666 DOI: 10.1016/j.ekir.2023.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/21/2023] [Accepted: 05/22/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Steroid-sensitive nephrotic syndrome (SSNS) is the most common form of kidney disease in children worldwide. Genome-wide association studies (GWAS) have demonstrated the association of SSNS with genetic variation at HLA-DQ/DR and have identified several non-HLA loci that aid in further understanding of disease pathophysiology. We sought to identify additional genetic loci associated with SSNS in children of Sri Lankan and European ancestry. Methods We conducted a GWAS in a cohort of Sri Lankan individuals comprising 420 pediatric patients with SSNS and 2339 genetic ancestry matched controls obtained from the UK Biobank. We then performed a transethnic meta-analysis with a previously reported European cohort of 422 pediatric patients and 5642 controls. Results Our GWAS confirmed the previously reported association of SSNS with HLA-DR/DQ (rs9271602, P = 1.12 × 10-27, odds ratio [OR] = 2.75). Transethnic meta-analysis replicated these findings and identified a novel association at AHI1 (rs2746432, P = 2.79 × 10-8, OR = 1.37), which was also replicated in an independent South Asian cohort. AHI1 is implicated in ciliary protein transport and immune dysregulation, with rare variation in this gene contributing to Joubert syndrome type 3. Conclusions Common variation in AHI1 confers risk of the development of SSNS in both Sri Lankan and European populations. The association with common variation in AHI1 further supports the role of immune dysregulation in the pathogenesis of SSNS and demonstrates that variation across the allele frequency spectrum in a gene can contribute to disparate monogenic and polygenic diseases.
Collapse
Affiliation(s)
- Mallory L. Downie
- Department of Renal Medicine, University College London, London, UK
- Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Sanjana Gupta
- Department of Renal Medicine, University College London, London, UK
| | - Catalin Voinescu
- Department of Renal Medicine, University College London, London, UK
| | - Adam P. Levine
- Department of Pathology, University College London, London, UK
| | | | | | - Jingjing Cao
- Division of Nephrology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada
| | | | - Jameela A. Kari
- Pediatric Nephrology Centre of Excellence, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | | | - Randula Ranawaka
- Department of Pediatrics, University of Peradeniya, Peradeniya, Sri Lanka
| | | | - Rasheed Gbadegesin
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Rulan Parekh
- Division of Nephrology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada
- Department of Medicine, Women’s College Hospital, Toronto, Canada
| | - Robert Kleta
- Department of Renal Medicine, University College London, London, UK
- Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Detlef Bockenhauer
- Department of Renal Medicine, University College London, London, UK
- Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | | | - Daniel P. Gale
- Department of Renal Medicine, University College London, London, UK
| |
Collapse
|
5
|
Amorini M, Iapadre G, Mancuso A, Ceravolo I, Farello G, Scardamaglia A, Gramaglia S, Ceravolo A, Salpietro A, Cuppari C. An Overview of Genes Involved in the Pure Joubert Syndrome and in Joubert Syndrome-Related Disorders (JSRD). JOURNAL OF PEDIATRIC NEUROLOGY 2023; 21:023-032. [DOI: 10.1055/s-0042-1760242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractJoubert syndrome (JS) is a rare autosomal recessive disease characterized by a peculiar brain malformation, hypotonia, ataxia, developmental delay, abnormal eye movements, and neonatal breathing abnormalities. This picture is often associated with variable multiorgan involvement, mainly of the retina, kidneys and liver, defining a group of conditions termed syndrome and Joubert syndrome-related disorders (JSRD). Currently, more than 30 causative genes have been identified, involved in the development and stability of the primary cilium. Correlations genotype–phenotype are emerging between clinical presentations and mutations in JSRD genes, with implications in terms of molecular diagnosis, prenatal diagnosis, follow-up, and management of mutated patients.
Collapse
Affiliation(s)
- Maria Amorini
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Alessio Mancuso
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giovanni Farello
- Department of Life, Health and Environmental Sciences, Pediatric Clinic, Coppito (AQ), Italy
| | - Annarita Scardamaglia
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Simone Gramaglia
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | | | | | - Caterina Cuppari
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| |
Collapse
|
6
|
Chen C, Gao J, Lv Q, Xu C, Xia Y, Du A. Retinitis pigmentosa and molar tooth sign caused by novel AHI1 compound heterozygote pathogenic variants. BMC Med Genomics 2021; 14:242. [PMID: 34627237 PMCID: PMC8502301 DOI: 10.1186/s12920-021-01089-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 09/23/2021] [Indexed: 11/30/2022] Open
Abstract
Background Joubert syndrome (JS) is a group of rare congenital disorders characterized by cerebellar vermis dysplasia, developmental delay, and retina dysfunctions. Herein, we reported a Chinese patient carrying a new variant in the AHI1 gene with mild JS, and the 3D structure of the affected Jouberin protein was also predicted. Case presentation The patient was a 31-year-old male, who presented difficulty at finding toys at the age of 2 years, night blindness from age of 5 years, intention tremor and walking imbalance from 29 years of age. Tubular visual field and retina pigmentation were observed on ophthalmology examinations, as well as molar tooth sign on brain magnetic resonance imaging (MRI). Whole exome sequence revealed two compound heterozygous variants at c.2105C>T (p.T702M) and c.1330A>T (p.I444F) in AHI1 gene. The latter one was a novel mutation. The 3D protein structure was predicted using I-TASSER and PyMOL, showing structural changes from functional β-sheet and α-helix to non-functional D-loop, respectively. Conclusions Mild JS due to novel variants at T702M and I444F in the AHI1 gene was reported. The 3D-structural changes in Jouberin protein might underlie the pathogenesis of JS.
Collapse
Affiliation(s)
- Chunyan Chen
- Department of Neurology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China
| | - Jiong Gao
- WuXiDiagnostice, No. 31 Yiwei Road Waigaoqiao Pilot Free Trade Zone, Shanghai, 200131, China
| | - Qing Lv
- Department of Neurology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China
| | - Chen Xu
- Department of Neurology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China
| | - Yu Xia
- Department of Neurology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China
| | - Ailian Du
- Department of Neurology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China.
| |
Collapse
|
7
|
Wang B, Xin N, Qian X, Zhai L, Miao Z, Yang Y, Li S, Sun M, Xu X, Li XJ. Ahi1 regulates the nuclear translocation of glucocorticoid receptor to modulate stress response. Transl Psychiatry 2021; 11:188. [PMID: 33782379 PMCID: PMC8007735 DOI: 10.1038/s41398-021-01305-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/21/2021] [Accepted: 03/03/2021] [Indexed: 12/21/2022] Open
Abstract
Stress activates the nuclear translocation of glucocorticoid receptors (GR) to trigger gene expression. Abnormal GR levels can alter the stress responses in animals and therapeutic effects of antidepressants. Here, we reported that stress-mediated nuclear translocation of GR reduced Ahi1 in the stressed cells and mouse brains. Ahi1 interacts with GR to stabilize each other in the cytoplasm. Importantly, Ahi1 deficiency promotes the degradation of GR in the cytoplasm and reduced the nuclear translocation of GR in response to stress. Genetic depletion of Ahi1 in mice caused hyposensitivity to antidepressants under the stress condition. These findings suggest that AHI1 is an important regulator of GR level and may serve as a therapeutic target for stress-related disorders.
Collapse
Affiliation(s)
- Bin Wang
- grid.429222.d0000 0004 1798 0228Institute for Fetology, The First Affiliated Hospital of Soochow University, 215006 Suzhou, China ,grid.263761.70000 0001 0198 0694Institute of Neuroscience, Soochow University, 215123 Suzhou, China
| | - Ning Xin
- grid.263761.70000 0001 0198 0694Institute of Neuroscience, Soochow University, 215123 Suzhou, China ,grid.413389.4Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 221000 Xuzhou, Jiangsu China
| | - Xuanchen Qian
- grid.263761.70000 0001 0198 0694Institute of Neuroscience, Soochow University, 215123 Suzhou, China
| | - Lijing Zhai
- grid.263761.70000 0001 0198 0694Institute of Neuroscience, Soochow University, 215123 Suzhou, China
| | - Zhigang Miao
- grid.263761.70000 0001 0198 0694Institute of Neuroscience, Soochow University, 215123 Suzhou, China
| | - Yong Yang
- grid.263761.70000 0001 0198 0694Department of Psychiatry, The Affiliated Guangji Hospital of Soochow University, 215008 Suzhou, China
| | - Shihua Li
- grid.258164.c0000 0004 1790 3548Guangdong Key Laboratory of non-human primate models, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632 Guangzhou, China
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, 215006, Suzhou, China.
| | - Xingshun Xu
- Institute of Neuroscience, Soochow University, 215123, Suzhou, China. .,Department of Neurology, The First Affiliated Hospital of Soochow University, 215006, Suzhou, China. .,Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, 215123, Suzhou, Jiangsu, China.
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of non-human primate models, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632, Guangzhou, China.
| |
Collapse
|
8
|
Shen Y, Wang H, Liu Z, Luo M, Ma S, Lu C, Cao Z, Yu Y, Cai R, Chen C, Li Q, Gao H, Peng Y, Xu B, Ma X. Identification of two novel pathogenic variants of PIBF1 by whole exome sequencing in a 2-year-old boy with Joubert syndrome. BMC MEDICAL GENETICS 2020; 21:192. [PMID: 33004012 PMCID: PMC7531107 DOI: 10.1186/s12881-020-01130-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 09/22/2020] [Indexed: 01/20/2023]
Abstract
Background Joubert syndrome (OMIM 213300) is an autosomal recessive disorder with gene heterogeneity. Causal genes and their variants have been identified by sequencing or other technologies for Joubert syndrome subtypes. Case presentation A two-year-old boy was diagnosed with Joubert syndrome by global development delay and molar tooth sign of mid-brain. Whole exome sequencing was performed to detect the causative gene variants in this individual, and the candidate pathogenic variants were verified by Sanger sequencing. We identified two pathogenic variants (NM_006346.2: c.1147delC and c.1054A > G) of PIBF1 in this Joubert syndrome individual, which is consistent with the mode of autosomal recessive inheritance. Conclusion In this study, we identified two novel pathogenic variants in PIBF1 in a Joubert syndrome individual using whole exome sequencing, thereby expanding the PIBF1 pathogenic variant spectrum of Joubert syndrome.
Collapse
Affiliation(s)
- Yue Shen
- National Research Institute for Family Planning, Beijing, China.,National Human Genetic Resources Center, Beijing, China
| | - Hao Wang
- China National Clinical Research Center of Respiratory Diseases, Respiratory Department of Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Zhimin Liu
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Minna Luo
- National Research Institute for Family Planning, Beijing, China.,National Human Genetic Resources Center, Beijing, China
| | - Siyu Ma
- National Research Institute for Family Planning, Beijing, China.,National Human Genetic Resources Center, Beijing, China
| | - Chao Lu
- National Research Institute for Family Planning, Beijing, China.,National Human Genetic Resources Center, Beijing, China
| | - Zongfu Cao
- National Research Institute for Family Planning, Beijing, China.,National Human Genetic Resources Center, Beijing, China
| | - Yufei Yu
- National Research Institute for Family Planning, Beijing, China.,National Human Genetic Resources Center, Beijing, China
| | - Ruikun Cai
- National Research Institute for Family Planning, Beijing, China.,National Human Genetic Resources Center, Beijing, China
| | - Cuixia Chen
- National Research Institute for Family Planning, Beijing, China.,National Human Genetic Resources Center, Beijing, China
| | - Qian Li
- National Research Institute for Family Planning, Beijing, China.,National Human Genetic Resources Center, Beijing, China
| | - Huafang Gao
- National Research Institute for Family Planning, Beijing, China.,National Human Genetic Resources Center, Beijing, China
| | - Yun Peng
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Baoping Xu
- China National Clinical Research Center of Respiratory Diseases, Respiratory Department of Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
| | - Xu Ma
- National Research Institute for Family Planning, Beijing, China. .,National Human Genetic Resources Center, Beijing, China.
| |
Collapse
|
9
|
Muñoz-Estrada J, Ferland RJ. Ahi1 promotes Arl13b ciliary recruitment, regulates Arl13b stability and is required for normal cell migration. J Cell Sci 2019; 132:jcs.230680. [PMID: 31391239 DOI: 10.1242/jcs.230680] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/24/2019] [Indexed: 12/14/2022] Open
Abstract
Mutations in the Abelson-helper integration site 1 (AHI1) gene are associated with neurological/neuropsychiatric disorders, and cause the neurodevelopmental ciliopathy Joubert syndrome (JBTS). Here, we show that deletion of the transition zone (TZ) protein Ahi1 in mouse embryonic fibroblasts (MEFs) has a small effect on cilia formation. However, Ahi1 loss in these cells results in: (1) reduced localization of the JBTS-associated protein Arl13b to the ciliary membrane, (2) decreased sonic hedgehog signaling, (3) and an abnormally elongated ciliary axoneme accompanied by an increase in ciliary IFT88 concentrations. While no changes in Arl13b levels are detected in crude cell membrane extracts, loss of Ahi1 significantly reduced the level of non-membrane-associated Arl13b and its stability via the proteasome pathway. Exogenous expression of Ahi1-GFP in Ahi1-/- MEFs restored ciliary length, increased ciliary recruitment of Arl13b and augmented Arl13b stability. Finally, Ahi1-/- MEFs displayed defects in cell motility and Pdgfr-α-dependent migration. Overall, our findings support molecular mechanisms underlying JBTS etiology that involve: (1) disruptions at the TZ resulting in defects of membrane- and non-membrane-associated proteins to localize to primary cilia, and (2) defective cell migration.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Jesús Muñoz-Estrada
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Russell J Ferland
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA .,Department of Neurology, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
10
|
Zhao XW, Huang DW, Zhu HL, Pan XC, Wang XX, Qi YX, Cheng GL, Zhao HL, Yang YX. Alterations of the circular RNA profile in the jejunum of neonatal calves in response to colostrum and milk feeding. J Dairy Sci 2019; 102:7038-7048. [PMID: 31178190 DOI: 10.3168/jds.2018-15942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/10/2019] [Indexed: 12/25/2022]
Abstract
Circular RNA (circRNA) have been suggested to contribute to regulating gene expression in various tissues and cells of eukaryotes. However, little is known regarding the expression pattern of circRNA and their potential function in the small intestine of neonatal calves that receive colostrum. In the current study, jejunum tissue samples were collected from control calves (2 h after birth; CT; n = 3) and neonatal calves that ingested colostrum (24 h after birth; CO; n = 3) or milk (24 h after birth; MK; n = 3) to compare the circRNA expression patterns using a high-throughput RNA sequencing approach. A total of 21,213, 17,861, and 21,737 circRNA were identified in the CT, CO, and MK groups, respectively. Only 13,254 of these circRNA were common to the 3 groups, suggesting high specificity of circRNA expression depending on nutrient type. In total, 243, 249, and 283 circRNA were differentially expressed in the CO versus CT, CO versus MK, and MK versus CT comparisons, respectively. Gene ontology analysis showed that the differentially expressed circRNA and their predicted or known target genes from the CO and MK groups were mainly involved in macromolecule metabolic process, response to stress, and vesicle-mediated transport. Moreover, pathway analysis showed that the Rap1 signaling pathway, focal adhesion, ubiquitin-mediated proteolysis, and extracellular matrix-receptor interaction were the most significantly enriched pathways. These data collectively indicate that circRNA are abundant and dynamically expressed when calves receive colostrum and act as microRNA sponges to regulate their target genes for jejunum function during the early development of newborn calves.
Collapse
Affiliation(s)
- X W Zhao
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - D W Huang
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - H L Zhu
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - X C Pan
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - X X Wang
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Y X Qi
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - G L Cheng
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - H L Zhao
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Y X Yang
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| |
Collapse
|
11
|
Zhu L, Chen L, Yan L, Perkins BD, Li S, Li B, Xu HA, Li XJ. Mutant Ahi1 Affects Retinal Axon Projection in Zebrafish via Toxic Gain of Function. Front Cell Neurosci 2019; 13:81. [PMID: 30949029 PMCID: PMC6438259 DOI: 10.3389/fncel.2019.00081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/18/2019] [Indexed: 12/23/2022] Open
Abstract
Joubert syndrome (JBTS) is an inherited autosomal recessive disorder associated with cerebellum and brainstem malformation and can be caused by mutations in the Abelson helper integration site-1 (AHI1) gene. Although AHI1 mutations in humans cause abnormal cerebellar development and impaired axonal decussation in JBTS, these phenotypes are not robust or are absent in various mouse models with Ahi1 mutations. AHI1 contains an N-terminal coiled-coil domain, multiple WD40 repeats, and a C-terminal Src homology 3 (SH3) domain, suggesting that AHI1 functions as a signaling or scaffolding protein. Since most AHI1 mutations in humans can result in truncated AHI1 proteins lacking WD40 repeats and the SH3 domain, it remains unclear whether mutant AHI1 elicits toxicity via a gain-of-function mechanism by the truncated AHI1. Because Ahi1 in zebrafish and humans share a similar N-terminal region with a coiled-coil domain that is absent in mouse Ahi1, we used zebrafish as a model to investigate whether Ahi1 mutations could affect axonal decussation. Using in situ hybridization, we found that ahi1 is highly expressed in zebrafish ocular tissues, especially in retina, allowing us to examine its effect on retinal ganglion cell (RGC) projection and eye morphology. We injected a morpholino to zebrafish embryos, which can generate mutant Ahi1 lacking the intact WD40 repeats, and found RGC axon misprojection and ocular dysplasia in 4 dpf (days post-fertilization) larvae after the injection. However, ahi1 null zebrafish showed normal RGC axon projection and ocular morphology. We then used CRISPR/Cas9 to generate truncated ahi1 and also found similar defects in the RGC axon projection as seen in those injected with ahi1 morpholino. Thus, the aberrant retinal axon projection in zebrafish is caused by the presence of mutant ahi1 rather than the loss of ahi1, suggesting that mutant Ahi1 may affect axonal decussation via toxic gain of function.
Collapse
Affiliation(s)
- Louyin Zhu
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, China.,Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric Diseases, Nanchang, China.,Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Laiqiang Chen
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, China.,Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
| | - Lingya Yan
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, China
| | - Brian D Perkins
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
| | - Shihua Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Baoming Li
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, China.,Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric Diseases, Nanchang, China
| | - Hong A Xu
- School of Life Sciences and Institute of Life Science, Nanchang University, Nanchang, China.,Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric Diseases, Nanchang, China
| | - Xiao-Jiang Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
12
|
Effect of chronic unpredictable stress on mice with developmental under-expression of the Ahi1 gene: behavioral manifestations and neurobiological correlates. Transl Psychiatry 2018; 8:124. [PMID: 29967406 PMCID: PMC6028478 DOI: 10.1038/s41398-018-0171-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/25/2018] [Accepted: 05/11/2018] [Indexed: 12/13/2022] Open
Abstract
The Abelson helper integration site 1 (Ahi1) gene plays a pivotal role in brain development and is associated with genetic susceptibility to schizophrenia, and other neuropsychiatric disorders. Translational research in genetically modified mice may reveal the neurobiological mechanisms of such associations. Previous studies of mice heterozygous for Ahi1 knockout (Ahi1+/-) revealed an attenuated anxiety response on various relevant paradigms, in the context of a normal glucocorticoid response to caffeine and pentylenetetrazole. Resting-state fMRI showed decreased amygdalar connectivity with various limbic brain regions and altered network topology. However, it was not clear from previous studies whether stress-hyporesponsiveness reflected resilience or, conversely, a cognitive-emotional deficit. The present studies were designed to investigate the response of Ahi1+/- mice to chronic unpredictable stress (CUS) applied over 9 weeks. Wild type (Ahi1+/+) mice were significantly affected by CUS, manifesting decreased sucrose preference (p < 0.05); reduced anxiety on the elevated plus maze and light dark box and decreased thigmotaxis in the open field (p < 0.01 0.05); decreased hyperthermic response to acute stress (p < 0.05); attenuated contextual fear conditioning (p < 0.01) and increased neurogenesis (p < 0.05). In contrast, Ahi1+/- mice were indifferent to the effects of CUS assessed with the same parameters. Our findings suggest that Ahi1 under-expression during neurodevelopment, as manifested by Ahi1+/- mice, renders these mice stress hyporesponsive. Ahi1 deficiency during development may attenuate the perception and/or integration of environmental stressors as a result of impaired corticolimbic connectivity or aberrant functional wiring. These neural mechanisms may provide initial clues as to the role Ahi1 in schizophrenia and other neuropsychiatric disorders.
Collapse
|
13
|
Hua K, Ferland RJ. Primary cilia proteins: ciliary and extraciliary sites and functions. Cell Mol Life Sci 2018; 75:1521-1540. [PMID: 29305615 PMCID: PMC5899021 DOI: 10.1007/s00018-017-2740-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/21/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023]
Abstract
Primary cilia are immotile organelles known for their roles in development and cell signaling. Defects in primary cilia result in a range of disorders named ciliopathies. Because this organelle can be found singularly on almost all cell types, its importance extends to most organ systems. As such, elucidating the importance of the primary cilium has attracted researchers from all biological disciplines. As the primary cilia field expands, caution is warranted in attributing biological defects solely to the function of this organelle, since many of these "ciliary" proteins are found at other sites in cells and likely have non-ciliary functions. Indeed, many, if not all, cilia proteins have locations and functions outside the primary cilium. Extraciliary functions are known to include cell cycle regulation, cytoskeletal regulation, and trafficking. Cilia proteins have been observed in the nucleus, at the Golgi apparatus, and even in immune synapses of T cells (interestingly, a non-ciliated cell). Given the abundance of extraciliary sites and functions, it can be difficult to definitively attribute an observed phenotype solely to defective cilia rather than to some defective extraciliary function or a combination of both. Thus, extraciliary sites and functions of cilia proteins need to be considered, as well as experimentally determined. Through such consideration, we will understand the true role of the primary cilium in disease as compared to other cellular processes' influences in mediating disease (or through a combination of both). Here, we review a compilation of known extraciliary sites and functions of "cilia" proteins as a means to demonstrate the potential non-ciliary roles for these proteins.
Collapse
Affiliation(s)
- Kiet Hua
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA.
| | - Russell J Ferland
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA.
- Department of Neurology, Albany Medical College, Albany, NY, 12208, USA.
| |
Collapse
|
14
|
Lai D, Chen M, Su J, Liu X, Rothe K, Hu K, Forrest DL, Eaves CJ, Morin GB, Jiang X. PP2A inhibition sensitizes cancer stem cells to ABL tyrosine kinase inhibitors in BCR-ABL
+
human leukemia. Sci Transl Med 2018; 10. [DOI: 10.1126/scitranslmed.aan8735] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
PP2A inhibitors and BCR-ABL inhibitors synergize to kill drug-insensitive leukemia cells.
Collapse
Affiliation(s)
- Damian Lai
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Min Chen
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
| | - Jiechuang Su
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada
| | - Xiaohu Liu
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Katharina Rothe
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada
| | - Kaiji Hu
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
| | - Donna L. Forrest
- Department of Medicine, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
- Leukemia/Bone Marrow Transplant Program of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Connie J. Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada
| | - Gregg B. Morin
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada
- Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
| | - Xiaoyan Jiang
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada
| |
Collapse
|
15
|
Kaskow BJ, Buttrick TS, Klein HU, White C, Bourgeois JR, Ferland RJ, Patsopoulos N, Bradshaw EM, De Jager PL, Elyaman W. MS AHI1 genetic risk promotes IFNγ + CD4 + T cells. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2017; 5:e414. [PMID: 29379820 PMCID: PMC5778810 DOI: 10.1212/nxi.0000000000000414] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/18/2017] [Indexed: 01/30/2023]
Abstract
Objective To study the influence of the Abelson helper integration site 1 (AHI1) locus associated with MS susceptibility on CD4+ T cell function. Methods We characterized the chromatin state of T cells in the MS-associated AHI1 linkage disequilibrium (LD) block. The expression and the role of the AHI1 variant were examined in T cells from genotyped healthy subjects who were recruited from the PhenoGenetic Project, and the function of AHI1 was explored using T cells from Ahi1 knockout mice. Results Chromatin state analysis reveals that the LD block containing rs4896153, which is robustly associated with MS susceptibility (odds ratio 1.15, p = 1.65 × 10-13), overlaps with strong enhancer regions that are present in human naive and memory CD4+ T cells. Relative to the rs4896153A protective allele, the rs4896153T susceptibility allele is associated with decreased AHI1 mRNA expression, specifically in naive CD4+ T cells (p = 1.73 × 10-74, n = 213), and we replicate this effect in an independent set of subjects (p = 2.5 × 10-9, n = 32). Functional studies then showed that the rs4896153T risk variant and the subsequent decreased AHI1 expression were associated with reduced CD4+ T cell proliferation and a specific differentiation into interferon gamma (IFNγ)-positive T cells when compared with the protective rs4896153A allele. This T cell phenotype was also observed in murine CD4+ T cells with genetic deletion of Ahi1. Conclusions Our findings suggest that the effect of the AHI1 genetic risk for MS is mediated, in part, by enhancing the development of proinflammatory IFNγ+ T cells that have previously been implicated in MS and its mouse models.
Collapse
Affiliation(s)
- Belinda J Kaskow
- Ann Romney Center for Neurologic Diseases (B.J.K., T.S.B., N.P.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Center for Translational and Computational Neuroimmunology (H.-U.K., E.M.B., P.L.D.J., W.E.), Department of Neurology, Columbia University Medical Center, New York, NY; Program in Medical and Population Genetics (H.-U.K., C.W., E.M.B., P.L.D.J., W.E.), Broad Institute, Cambridge, MA; and Departments of Neuroscience and Experimental Therapeutics, and Neurology (J.R.B., R.J.F.), Albany Medical College, Albany, NY
| | - Thomas S Buttrick
- Ann Romney Center for Neurologic Diseases (B.J.K., T.S.B., N.P.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Center for Translational and Computational Neuroimmunology (H.-U.K., E.M.B., P.L.D.J., W.E.), Department of Neurology, Columbia University Medical Center, New York, NY; Program in Medical and Population Genetics (H.-U.K., C.W., E.M.B., P.L.D.J., W.E.), Broad Institute, Cambridge, MA; and Departments of Neuroscience and Experimental Therapeutics, and Neurology (J.R.B., R.J.F.), Albany Medical College, Albany, NY
| | - Hans-Ulrich Klein
- Ann Romney Center for Neurologic Diseases (B.J.K., T.S.B., N.P.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Center for Translational and Computational Neuroimmunology (H.-U.K., E.M.B., P.L.D.J., W.E.), Department of Neurology, Columbia University Medical Center, New York, NY; Program in Medical and Population Genetics (H.-U.K., C.W., E.M.B., P.L.D.J., W.E.), Broad Institute, Cambridge, MA; and Departments of Neuroscience and Experimental Therapeutics, and Neurology (J.R.B., R.J.F.), Albany Medical College, Albany, NY
| | - Charles White
- Ann Romney Center for Neurologic Diseases (B.J.K., T.S.B., N.P.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Center for Translational and Computational Neuroimmunology (H.-U.K., E.M.B., P.L.D.J., W.E.), Department of Neurology, Columbia University Medical Center, New York, NY; Program in Medical and Population Genetics (H.-U.K., C.W., E.M.B., P.L.D.J., W.E.), Broad Institute, Cambridge, MA; and Departments of Neuroscience and Experimental Therapeutics, and Neurology (J.R.B., R.J.F.), Albany Medical College, Albany, NY
| | - Justin R Bourgeois
- Ann Romney Center for Neurologic Diseases (B.J.K., T.S.B., N.P.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Center for Translational and Computational Neuroimmunology (H.-U.K., E.M.B., P.L.D.J., W.E.), Department of Neurology, Columbia University Medical Center, New York, NY; Program in Medical and Population Genetics (H.-U.K., C.W., E.M.B., P.L.D.J., W.E.), Broad Institute, Cambridge, MA; and Departments of Neuroscience and Experimental Therapeutics, and Neurology (J.R.B., R.J.F.), Albany Medical College, Albany, NY
| | - Russell J Ferland
- Ann Romney Center for Neurologic Diseases (B.J.K., T.S.B., N.P.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Center for Translational and Computational Neuroimmunology (H.-U.K., E.M.B., P.L.D.J., W.E.), Department of Neurology, Columbia University Medical Center, New York, NY; Program in Medical and Population Genetics (H.-U.K., C.W., E.M.B., P.L.D.J., W.E.), Broad Institute, Cambridge, MA; and Departments of Neuroscience and Experimental Therapeutics, and Neurology (J.R.B., R.J.F.), Albany Medical College, Albany, NY
| | - Nikolaos Patsopoulos
- Ann Romney Center for Neurologic Diseases (B.J.K., T.S.B., N.P.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Center for Translational and Computational Neuroimmunology (H.-U.K., E.M.B., P.L.D.J., W.E.), Department of Neurology, Columbia University Medical Center, New York, NY; Program in Medical and Population Genetics (H.-U.K., C.W., E.M.B., P.L.D.J., W.E.), Broad Institute, Cambridge, MA; and Departments of Neuroscience and Experimental Therapeutics, and Neurology (J.R.B., R.J.F.), Albany Medical College, Albany, NY
| | - Elizabeth M Bradshaw
- Ann Romney Center for Neurologic Diseases (B.J.K., T.S.B., N.P.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Center for Translational and Computational Neuroimmunology (H.-U.K., E.M.B., P.L.D.J., W.E.), Department of Neurology, Columbia University Medical Center, New York, NY; Program in Medical and Population Genetics (H.-U.K., C.W., E.M.B., P.L.D.J., W.E.), Broad Institute, Cambridge, MA; and Departments of Neuroscience and Experimental Therapeutics, and Neurology (J.R.B., R.J.F.), Albany Medical College, Albany, NY
| | - Philip L De Jager
- Ann Romney Center for Neurologic Diseases (B.J.K., T.S.B., N.P.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Center for Translational and Computational Neuroimmunology (H.-U.K., E.M.B., P.L.D.J., W.E.), Department of Neurology, Columbia University Medical Center, New York, NY; Program in Medical and Population Genetics (H.-U.K., C.W., E.M.B., P.L.D.J., W.E.), Broad Institute, Cambridge, MA; and Departments of Neuroscience and Experimental Therapeutics, and Neurology (J.R.B., R.J.F.), Albany Medical College, Albany, NY
| | - Wassim Elyaman
- Ann Romney Center for Neurologic Diseases (B.J.K., T.S.B., N.P.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Center for Translational and Computational Neuroimmunology (H.-U.K., E.M.B., P.L.D.J., W.E.), Department of Neurology, Columbia University Medical Center, New York, NY; Program in Medical and Population Genetics (H.-U.K., C.W., E.M.B., P.L.D.J., W.E.), Broad Institute, Cambridge, MA; and Departments of Neuroscience and Experimental Therapeutics, and Neurology (J.R.B., R.J.F.), Albany Medical College, Albany, NY
| |
Collapse
|
16
|
Huang J, Khan A, Au BC, Barber DL, López-Vásquez L, Prokopishyn NL, Boutin M, Rothe M, Rip JW, Abaoui M, Nagree MS, Dworski S, Schambach A, Keating A, West ML, Klassen J, Turner PV, Sirrs S, Rupar CA, Auray-Blais C, Foley R, Medin JA. Lentivector Iterations and Pre-Clinical Scale-Up/Toxicity Testing: Targeting Mobilized CD34 + Cells for Correction of Fabry Disease. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 5:241-258. [PMID: 28603745 PMCID: PMC5453867 DOI: 10.1016/j.omtm.2017.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/08/2017] [Indexed: 12/22/2022]
Abstract
Fabry disease is a rare lysosomal storage disorder (LSD). We designed multiple recombinant lentivirus vectors (LVs) and tested their ability to engineer expression of human α-galactosidase A (α-gal A) in transduced Fabry patient CD34+ hematopoietic cells. We further investigated the safety and efficacy of a clinically directed vector, LV/AGA, in both ex vivo cell culture studies and animal models. Fabry mice transplanted with LV/AGA-transduced hematopoietic cells demonstrated α-gal A activity increases and lipid reductions in multiple tissues at 6 months after transplantation. Next we found that LV/AGA-transduced Fabry patient CD34+ hematopoietic cells produced even higher levels of α-gal A activity than normal CD34+ hematopoietic cells. We successfully transduced Fabry patient CD34+ hematopoietic cells with “near-clinical grade” LV/AGA in small-scale cultures and then validated a clinically directed scale-up transduction process in a GMP-compliant cell processing facility. LV-transduced Fabry patient CD34+ hematopoietic cells were subsequently infused into NOD/SCID/Fabry (NSF) mice; α-gal A activity corrections and lipid reductions were observed in several tissues 12 weeks after the xenotransplantation. Additional toxicology studies employing NSF mice xenotransplanted with the therapeutic cell product demonstrated minimal untoward effects. These data supported our successful clinical trial application (CTA) to Health Canada and opening of a “first-in-the-world” gene therapy trial for Fabry disease.
Collapse
Affiliation(s)
- Ju Huang
- University Health Network, Toronto, ON M5G 1L7, Canada
| | - Aneal Khan
- Department of Medical Genetics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Bryan C Au
- University Health Network, Toronto, ON M5G 1L7, Canada
| | - Dwayne L Barber
- University Health Network, Toronto, ON M5G 1L7, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Lucía López-Vásquez
- University Health Network, Toronto, ON M5G 1L7, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nicole L Prokopishyn
- Department of Pathology and Laboratory Medicine, University of Calgary and Cellular Therapy Laboratory, Calgary Lab Services, Calgary, AB T2N 1N4, Canada
| | - Michel Boutin
- Division of Medical Genetics, Department of Pediatrics, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Jack W Rip
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 5C1, Canada
| | - Mona Abaoui
- Division of Medical Genetics, Department of Pediatrics, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Murtaza S Nagree
- University Health Network, Toronto, ON M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Shaalee Dworski
- University Health Network, Toronto, ON M5G 1L7, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Michael L West
- Division of Nephrology, Department of Medicine, Dalhousie University, Halifax, NS B3H 1V8, Canada
| | - John Klassen
- Department of Hematology, University of Calgary, Foothills Hospital, Calgary, AB T2N 2T9, Canada
| | - Patricia V Turner
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sandra Sirrs
- Division of Endocrinology, Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - C Anthony Rupar
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 5C1, Canada
| | - Christiane Auray-Blais
- Division of Medical Genetics, Department of Pediatrics, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Ronan Foley
- Juravinski Hospital and Cancer Centre, Hamilton, ON L8V 5C2, Canada
| | - Jeffrey A Medin
- University Health Network, Toronto, ON M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada.,Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
17
|
Min X, Fan H, Zhao G, Liu G. Identification of 2 Potentially Relevant Gene Mutations Involved in Strabismus Using Whole-Exome Sequencing. Med Sci Monit 2017; 23:1719-1724. [PMID: 28391287 PMCID: PMC5395132 DOI: 10.12659/msm.902823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background The etiology of strabismus has a genetic component. Our study aimed to localize the candidate causative gene mutant in a Chinese family with strabismus and to describe its underlying etiology. Material/Methods Genomic DNA was extracted from the affected individual and his parents in a Chinese pedigree with strabismus. The resulting exomes were sequenced by whole-exome sequencing. After variant calling and filtering, the candidate causative gene mutations were selected for the rarity and predicted damaging effect, which complied with the model of recessive disease transmission. Results We examined a Chinese strabismus pedigree with the parents unaffected and 2 offspring affected. Whole-exome sequencing and bioinformatics filtering identified 2 variants including Abelson helper integration site 1 (AHI1) gene and nebulin (NEB) gene. The variant in the AHI1 gene, c.A3257G (p.E1086G), and the altered amino acid had a damaging effect on the encoded protein predicted by Polyphen2. Moreover, this change was located in the conserved SH3 domain of AHI1. Biallelic pathogenic variant in AHI1 gene can cause Joubert syndrome-related disorders with oculomotor apraxia characteristics. Additionally, c.A914G mutation was found in nebulin (NEB) gene. Therefore, we concluded that AHI1 c.3257A>G and NEB c.914 A>G were potential causal variants in this strabismus pedigree. Conclusions We detected an AHI1 homozygous mutation in the affected individual. Whole-exome sequencing is a powerful way to identify causally relevant genes, improving the understanding of this disorder.
Collapse
Affiliation(s)
- Xiangrong Min
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland).,Department of Ophthalmology, Jining No. 1 People's Hospital, Jining, Shandong, China (mainland)
| | - Haiying Fan
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Guixiang Liu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| |
Collapse
|
18
|
Liu X, Rothe K, Yen R, Fruhstorfer C, Maetzig T, Chen M, Forrest DL, Humphries RK, Jiang X. A novel AHI-1-BCR-ABL-DNM2 complex regulates leukemic properties of primitive CML cells through enhanced cellular endocytosis and ROS-mediated autophagy. Leukemia 2017; 31:2376-2387. [PMID: 28366933 PMCID: PMC5668499 DOI: 10.1038/leu.2017.108] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 03/17/2017] [Accepted: 03/22/2017] [Indexed: 02/07/2023]
Abstract
Tyrosine kinase inhibitor (TKI) therapies induce clinical remission with remarkable effects on chronic myeloid leukemia (CML). However, very few TKIs completely eradicate the leukemic clone and persistence of leukemic stem cells (LSCs) remains challenging, warranting new, distinct targets for improved treatments. We demonstrated that the scaffold protein AHI-1 is highly deregulated in LSCs and interacts with multiple proteins, including Dynamin-2 (DNM2), to mediate TKI-resistance of LSCs. We have now demonstrated that the SH3 domain of AHI-1 and the proline rich domain of DNM2 are mainly responsible for this interaction. DNM2 expression was significantly increased in CML stem/progenitor cells; knockdown of DNM2 greatly impaired their survival and sensitized them to TKI treatments. Importantly, a new AHI-1-BCR-ABL-DNM2 protein complex was uncovered, which regulates leukemic properties of these cells through a unique mechanism of cellular endocytosis and ROS-mediated autophagy. Thus, targeting this complex may facilitate eradication of LSCs for curative therapies.
Collapse
Affiliation(s)
- X Liu
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada.,Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - K Rothe
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - R Yen
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada.,Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - C Fruhstorfer
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - T Maetzig
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - M Chen
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - D L Forrest
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Leukemia/BMT Program of British Columbia, Vancouver, BC, Canada
| | - R K Humphries
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada.,Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - X Jiang
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada.,Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
19
|
Lotan A, Lifschytz T, Slonimsky A, Broner EC, Greenbaum L, Abedat S, Fellig Y, Cohen H, Lory O, Goelman G, Lerer B. Neural mechanisms underlying stress resilience in Ahi1 knockout mice: relevance to neuropsychiatric disorders. Mol Psychiatry 2014; 19:243-52. [PMID: 24042478 DOI: 10.1038/mp.2013.123] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 07/19/2013] [Accepted: 08/08/2013] [Indexed: 02/06/2023]
Abstract
The Abelson helper integration site 1 (AHI1) gene has a pivotal role in brain development. Studies by our group and others have demonstrated association of AHI1 with schizophrenia and autism. To elucidate the mechanism whereby alteration in AHI1 expression may be implicated in the pathogenesis of neuropsychiatric disorders, we studied Ahi1 heterozygous knockout (Ahi1(+/-)) mice. Although their performance was not different from wild-type mice on tests that model classical schizophrenia-related endophenotypes, Ahi1(+/-) mice displayed an anxiolytic-like phenotype across different converging modalities. Using behavioral paradigms that involve exposure to environmental and social stress, significantly decreased anxiety was evident in the open field, elevated plus maze and dark-light box, as well as during social interaction in pairs. Assessment of core temperature and corticosterone secretion revealed a significantly blunted response of the autonomic nervous system and the hypothalamic-pituitary-adrenal axis in Ahi1(+/-) mice exposed to environmental and visceral stress. However, response to centrally acting anxiogenic compounds was intact. On resting-state functional MRI, connectivity of the amygdala with other brain regions involved in processing of anxiogenic stimuli and inhibitory avoidance learning, such as the lateral entorhinal cortex, ventral hippocampus and ventral tegmental area, was significantly reduced in the mutant mice. Taken together, our data link Ahi1 under-expression with a defect in the process of threat detection. Alternatively, the results could be interpreted as representing an anxiety-related endophenotype, possibly granting the Ahi1(+/-) mouse relative resilience to various types of stress. The current knockout model highlights the contribution of translational approaches to understanding the genetic basis of emotional regulation and its associated neurocircuitry, with possible relevance to neuropsychiatric disorders.
Collapse
Affiliation(s)
- A Lotan
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - T Lifschytz
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - A Slonimsky
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - E C Broner
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - L Greenbaum
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - S Abedat
- Cardiovascular Research Center, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Y Fellig
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - H Cohen
- Anxiety and Stress Research Unit, Ben-Gurion University of the Negev, Beersheba, Israel
| | - O Lory
- MRI Lab, Medical Biophysics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - G Goelman
- MRI Lab, Medical Biophysics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - B Lerer
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
20
|
Loss of Ahi1 affects early development by impairing BM88/Cend1-mediated neuronal differentiation. J Neurosci 2013; 33:8172-84. [PMID: 23658157 DOI: 10.1523/jneurosci.0119-13.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Mutations in the Abelson helper integration site-1 (AHI1) gene result in N-terminal Ahi1 fragments and cause Joubert syndrome, an autosomal recessive brain malformation disorder associated with delayed development. How AHI1 mutations lead to delayed development remains unclear. Here we report that full-length, but not N-terminal, Ahi1 binds Hap1, a huntingtin-associated protein that is essential for the postnatal survival of mice and that this binding is regulated during neuronal differentiation by nerve growth factor. Nerve growth factor induces dephosphorylation of Hap1A and decreases its association with Ahi1, correlating with increased Hap1A distribution in neurite tips. Consistently, Ahi1 associates with phosphorylated Hap1A in cytosolic, but not in synaptosomal, fractions isolated from mouse brain, suggesting that Ahi1 functions mainly in the soma of neurons. Mass spectrometry analysis of cytosolic Ahi1 immunoprecipitates reveals that Ahi1 also binds Cend1 (cell cycle exit and neuronal differentiation protein 1)/BM88, a neuronal protein that mediates neuronal differentiation and is highly expressed in postnatal mouse brain. Loss of Ahi1 reduces the levels of Cend1 in the hypothalamus of Ahi1 KO mice, which show retarded growth during postnatal days. Overexpressed Ahi1 can stabilize Cend1 in cultured cells. Furthermore, overexpression of Cend1 can rescue the neurite extension defects of hypothalamic neurons from Ahi1 KO mice. Our findings suggest that Cend1 is involved in Ahi1-associated hypothalamic neuronal differentiation in early development, giving us fresh insight into the mechanism behind the delayed development in Joubert syndrome.
Collapse
|
21
|
Tuz K, Hsiao YC, Juárez O, Shi B, Harmon EY, Phelps IG, Lennartz MR, Glass IA, Doherty D, Ferland RJ. The Joubert syndrome-associated missense mutation (V443D) in the Abelson-helper integration site 1 (AHI1) protein alters its localization and protein-protein interactions. J Biol Chem 2013; 288:13676-94. [PMID: 23532844 DOI: 10.1074/jbc.m112.420786] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Missense mutations in AHI1 result in the neurodevelopmental ciliopathy called Joubert syndrome. RESULTS Mutations in AHI1 decrease cilia formation, alter its localization and stability, and change its binding to HAP1 and NPHP1. CONCLUSION Mutations in AHI1 affect ciliogenesis, AHI1 protein localization, and AHI1-protein interactions. SIGNIFICANCE This study begins to describe how missense mutations in AHI1 can cause Joubert syndrome. Mutations in AHI1 cause Joubert syndrome (JBTS), a neurodevelopmental ciliopathy, characterized by midbrain-hindbrain malformations and motor/cognitive deficits. Here, we show that primary cilia (PC) formation is decreased in fibroblasts from individuals with JBTS and AHI1 mutations. Most missense mutations in AHI1, causing JBTS, occur in known protein domains, however, a common V443D mutation in AHI1 is found in a region with no known protein motifs. We show that cells transfected with AHI1-V443D, or a new JBTS-causing mutation, AHI1-R351L, have aberrant localization of AHI1 at the basal bodies of PC and at cell-cell junctions, likely through decreased binding of mutant AHI1 to NPHP1 (another JBTS-causing protein). The AHI1-V443D mutation causes decreased AHI1 stability because there is a 50% reduction in AHI1-V443D protein levels compared with wild type AHI1. Huntingtin-associated protein-1 (Hap1) is a regulatory protein that binds Ahi1, and Hap1 knock-out mice have been reported to have JBTS-like phenotypes, suggesting a role for Hap1 in ciliogenesis. Fibroblasts and neurons with Hap1 deficiency form PC with normal growth factor-induced ciliary signaling, indicating that the Hap1 JBTS phenotype is likely not through effects at PC. These results also suggest that the binding of Ahi1 and Hap1 may not be critical for ciliary function. However, we show that HAP1 has decreased binding to AHI1-V443D indicating that this altered binding could be responsible for the JBTS-like phenotype through an unknown pathway. Thus, these JBTS-associated missense mutations alter their subcellular distribution and protein interactions, compromising functions of AHI1 in cell polarity and cilium-mediated signaling, thereby contributing to JBTS.
Collapse
Affiliation(s)
- Karina Tuz
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York 12208, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Chen M, Gallipoli P, DeGeer D, Sloma I, Forrest DL, Chan M, Lai D, Jorgensen H, Ringrose A, Wang HM, Lambie K, Nakamoto H, Saw KM, Turhan A, Arlinghaus R, Paul J, Stobo J, Barnett MJ, Eaves A, Eaves CJ, Holyoake TL, Jiang X. Targeting primitive chronic myeloid leukemia cells by effective inhibition of a new AHI-1-BCR-ABL-JAK2 complex. J Natl Cancer Inst 2013; 105:405-23. [PMID: 23446755 PMCID: PMC3601953 DOI: 10.1093/jnci/djt006] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/25/2012] [Accepted: 01/03/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Imatinib mesylate (IM) induces clinical remission of chronic myeloid leukemia (CML). The Abelson helper integration site 1 (AHI-1) oncoprotein interacts with BCR-ABL and Janus kinase 2 (JAK2) to mediate IM response of primitive CML cells, but the effect of the interaction complex on the response to ABL and JAK2 inhibitors is unknown. METHODS The AHI-1-BCR-ABL-JAK2 interaction complex was analyzed by mutational analysis and coimmunoprecipitation. Roles of the complex in regulation of response or resistance to ABL and JAK2 inhibitors were investigated in BCR-ABL (+) cells and primary CML stem/progenitor cells and in immunodeficient NSG mice. All statistical tests were two-sided. RESULTS The WD40-repeat domain of AHI-1 interacts with BCR-ABL, whereas the N-terminal region interacts with JAK2; loss of these interactions statistically significantly increased the IM sensitivity of CML cells. Disrupting this complex with a combination of IM and an orally bioavailable selective JAK2 inhibitor (TG101209 [TG]) statistically significantly induced death of AHI-1-overexpressing and IM-resistant cells in vitro and enhanced survival of leukemic mice, compared with single agents (combination vs TG alone: 63 vs 53 days, ratio = 0.84, 95% confidence interval [CI] = 0.6 to 1.1, P = .004; vs IM: 57 days, ratio = 0.9, 95% CI = 0.61 to 1.2, P = .003). Combination treatment also statistically significantly enhanced apoptosis of CD34(+) leukemic stem/progenitor cells and eliminated their long-term leukemia-initiating activity in NSG mice. Importantly, this approach was effective against treatment-naive CML stem cells from patients who subsequently proved to be resistant to IM therapy. CONCLUSIONS Simultaneously targeting BCR-ABL and JAK2 activities in CML stem/progenitor cells may improve outcomes in patients destined to develop IM resistance.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Vesicular Transport
- Administration, Oral
- Animals
- Antigens, CD34/analysis
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Apoptosis/drug effects
- Benzamides/administration & dosage
- Benzamides/pharmacology
- Biological Availability
- Blotting, Western
- Cell Proliferation/drug effects
- DNA Mutational Analysis
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Imatinib Mesylate
- Immunoprecipitation
- Janus Kinase 2/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Mice
- Microfilament Proteins/metabolism
- Mutation
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Phosphorylation/drug effects
- Piperazines/administration & dosage
- Piperazines/pharmacology
- Protein Kinase Inhibitors/administration & dosage
- Protein Kinase Inhibitors/pharmacology
- Pyrimidines/administration & dosage
- Pyrimidines/pharmacology
- Remission Induction
- Sulfonamides/pharmacology
- Up-Regulation
Collapse
Affiliation(s)
- Min Chen
- Terry Fox Laboratory, BC Cancer Agency, 675 W 10th Ave, Vancouver, BC, V5Z 1L3, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Liu X, Chen M, Lobo P, An J, Grace Cheng SW, Moradian A, Morin GB, Van Petegem F, Jiang X. Molecular and structural characterization of the SH3 domain of AHI-1 in regulation of cellular resistance of BCR-ABL(+) chronic myeloid leukemia cells to tyrosine kinase inhibitors. Proteomics 2012; 12:2094-106. [PMID: 22623184 DOI: 10.1002/pmic.201100553] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
ABL tyrosine kinase inhibitor (TKI) therapy induces clinical remission in chronic myeloid leukemia (CML) patients but early relapses and later emergence of TKI-resistant disease remain problematic. We recently demonstrated that the AHI-1 oncogene physically interacts with BCR-ABL and JAK2 and mediates cellular resistance to TKI in CML stem/progenitor cells. We now show that deletion of the SH3 domain of AHI-1 significantly enhances apoptotic response of BCR-ABL(+) cells to TKIs compared to cells expressing full-length AHI-1. We have also discovered a novel interaction between AHI-1 and Dynamin-2, a GTPase, through the AHI-1 SH3 domain. The crystal structure of the AHI-1 SH3 domain at 1.53-Å resolution reveals that it adopts canonical SH3 folding, with the exception of an unusual C-terminal α helix. PD1R peptide, known to interact with the PI3K SH3 domain, was used to model the binding pattern between the AHI-1 SH3 domain and its ligands. These studies showed that an "Arg-Arg-Trp" stack may form within the binding interface, providing a potential target site for designing specific drugs. The crystal structure of the AHI-1 SH3 domain thus provides a valuable tool for identification of key interaction sites in regulation of drug resistance and for the development of small molecule inhibitors for CML.
Collapse
Affiliation(s)
- Xiaohu Liu
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Esmailzadeh S, Jiang X. AHI-1: a novel signaling protein and potential therapeutic target in human leukemia and brain disorders. Oncotarget 2012; 2:918-34. [PMID: 22248740 PMCID: PMC3282096 DOI: 10.18632/oncotarget.405] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Progress in the understanding of the molecular and cellular mechanisms of human cancer, including human leukemia and lymphomas, has been spurred by cloning of fusion genes created by chromosomal translocations or by retroviral insertional mutagenesis; a number of oncogenes and tumor suppressors involved in development of a number of malignancies have been identified in this manner. The BCR-ABL fusion gene, originating in a multipotent hematopoietic stem cell, is the molecular signature of chronic myeloid leukemia (CML). Discovery of this fusion gene has led to the development of one of the first successful targeted molecular therapies for cancer (Imatinib). It illustrates the advances that can result from an understanding of the molecular basis of disease. However, there still remain many as yet unidentified mutations that may influence the initiation or progression of human diseases. Thus, identification and characterization of the mechanism of action of genes that contribute to human diseases is an important and opportune area of current research. One promising candidate as a potential therapeutic target is Abelson helper integration site-1(Ahi-1/AHI-1) that was identified by retroviral insertional mutagenesis in murine models of leukemia/lymphomas and is highly elevated in certain human lymphoma and leukemia stem/progenitor cells. It encodes a unique protein with a SH3 domain, multiple SH3 binding sites and a WD40-repeat domain, suggesting that the normal protein has novel signaling activities. A new AHI-1-BCR-ABL-JAK2 interaction complex has recently been identified and this complex regulates transforming activities and drug resistance in CML stem/progenitor cells. Importantly, AHI-1 has recently been identified as a susceptibility gene involved in a number of brain disorders, including Joubert syndrome. Therefore, understanding molecular functions of the AHI-1 gene could lead to important and novel insights into disease processes involved in specific types of diseases. Ultimately, this knowledge will set the stage for translation into new and more effective diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Sharmin Esmailzadeh
- Terry Fox Laboratory, British Columbia Cancer Agency and Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
25
|
Expression changes of hypothalamic Ahi1 in mice brain: implication in sensing insulin signaling. Mol Biol Rep 2012; 39:9697-705. [PMID: 22740139 DOI: 10.1007/s11033-012-1834-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 06/10/2012] [Indexed: 10/28/2022]
Abstract
Growing evidence suggests that the brain, in particular the hypothalamus, directly senses hormones and nutrients to initiate feeding behavior and metabolic responses in the control of energy homeostasis. However, the molecular mechanisms underlying this important process have remained largely unknown. Our study provides the evidence for the role of Abelson helper integration site 1 (Ahi1) protein as a sensor of insulin signaling in the hypothalamus. We found that fasting increased the expression of hypothalamic Ahi1 which was accompanied by lower levels of circulating insulin compared with satiated mice, while re-feeding decreased the expression of hypothalamic Ahi1 which was accompanied by higher levels of circulating insulin. We also found the up-regulated expression of hypothalamic Ahi1 in high-fat induced obese mice, db/db mice, and streptozotocin induced diabetic mice. In addition, we demonstrated that insulin could decrease the expression of Ahi1 in neuroblastoma cell line N18TG2. Taken together, our results indicate that hypothalamic Ahi1 functions as a sensor of insulin signaling.
Collapse
|
26
|
Huang L, Teng D, Wang H, Sheng G, Liu T. Association of copy number variation in the AHI1 gene with risk of obesity in the Chinese population. Eur J Endocrinol 2012; 166:727-34. [PMID: 22285701 DOI: 10.1530/eje-11-0999] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE The prevalence of obesity has increased dramatically over the past decade. Gene copy number variants (CNVs) have been recognized as a hereditable source of susceptibility in human complex diseases including obesity. Recent studies have shown that Abelson helper integration site 1 (Ahi1) gene has a significant contribution in the homeostasis regulation in mouse models of obesity. A study was therefore carried out to investigate whether CNVs in AHI1 gene contribute to human obesity. SUBJECTS AND METHODS We analyzed samples from 70 Chinese overweight adults and 74 healthy controls for DNA copy number change using the Affymetrix single-nucleotide polymorphism (SNP) 6.0 array. Validation of CNVs of AHI1 was achieved by real-time PCR using the ΔΔC(t) method. RESULTS Copy number gain analysis revealed significant gains (P=0.0017) of AHI1 gene copy number in 17 of 70 (24.3%) samples but only four of 74 (5.4%) controls overall. Then we studied the frequency distribution of CNVs in AHI1 gene according to body mass index (BMI) grade. Five out of 28 (18.5%) at-risk obese, six out of 26 (26.9%) moderate obese, and six out of 17 (29.4%) severe obese subjects studied showed increased AHI1 gene copy number. CONCLUSIONS The result suggested that there was a significant linear trend for increasing AHI1 gene copy number frequencies with increasing BMI.
Collapse
Affiliation(s)
- Liansha Huang
- Department of Science and Technology, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Chaoyang District, Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
27
|
Wang H, Huang Z, Huang L, Niu S, Rao X, Xu J, Kong H, Yang J, Yang C, Wu D, Li S, Li XJ, Liu T, Sheng G. Hypothalamic Ahi1 mediates feeding behavior through interaction with 5-HT2C receptor. J Biol Chem 2011; 287:2237-46. [PMID: 22123816 DOI: 10.1074/jbc.m111.277871] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It is indicated that there are important molecules interacting with brain nervous systems to regulate feeding and energy balance by influencing the signaling pathways of these systems, but relatively few of the critical players have been identified. In the present study, we provide the evidence for the role of Abelson helper integration site 1 (Ahi1) protein as a mediator of feeding behavior through interaction with serotonin receptor 2C (5-HT(2C)R), known for its critical role in feeding and appetite control. First, we demonstrated the co-localization and interaction between hypothalamic Ahi1 and 5-HT(2C)R. Ahi1 promoted the degradation of 5-HT(2C)R through the lysosomal pathway. Then, we investigated the effects of fasting on the expression of hypothalamic Ahi1 and 5-HT(2C)R. Fasting resulted in an increased Ahi1 expression and a concomitant decreased expression of 5-HT(2C)R. Knockdown of hypothalamic Ahi1 led to a concomitant increased expression of 5-HT(2C)R and a decrease of food intake and body weight. Last, we found that Ahi1 could regulate the expression of neuropeptide Y and proopiomelanocortin. Taken together, our results indicate that Ahi1 mediates feeding behavior by interacting with 5-HT(2C)R to modulate the serotonin signaling pathway.
Collapse
Affiliation(s)
- Hao Wang
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Insertional oncogenesis by non-acute retroviruses: implications for gene therapy. Viruses 2011; 3:398-422. [PMID: 21994739 PMCID: PMC3186009 DOI: 10.3390/v3040398] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 03/31/2011] [Indexed: 01/10/2023] Open
Abstract
Retroviruses cause cancers in a variety of animals and humans. Research on retroviruses has provided important insights into mechanisms of oncogenesis in humans, including the discovery of viral oncogenes and cellular proto-oncogenes. The subject of this review is the mechanisms by which retroviruses that do not carry oncogenes (non-acute retroviruses) cause cancers. The common theme is that these tumors result from insertional activation of cellular proto-oncogenes by integration of viral DNA. Early research on insertional activation of proto-oncogenes in virus-induced tumors is reviewed. Research on non-acute retroviruses has led to the discovery of new proto-oncogenes through searches for common insertion sites (CISs) in virus-induced tumors. Cooperation between different proto-oncogenes in development of tumors has been elucidated through the study of retrovirus-induced tumors, and retroviral infection of genetically susceptible mice (retroviral tagging) has been used to identify cellular proto-oncogenes active in specific oncogenic pathways. The pace of proto-oncogene discovery has been accelerated by technical advances including PCR cloning of viral integration sites, the availability of the mouse genome sequence, and high throughput DNA sequencing. Insertional activation has proven to be a significant risk in gene therapy trials to correct genetic defects with retroviral vectors. Studies on non-acute retroviral oncogenesis provide insight into the potential risks, and the mechanisms of oncogenesis.
Collapse
|
29
|
Neuronal Abelson helper integration site-1 (Ahi1) deficiency in mice alters TrkB signaling with a depressive phenotype. Proc Natl Acad Sci U S A 2010; 107:19126-31. [PMID: 20956301 DOI: 10.1073/pnas.1013032107] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent studies suggest that the human Abelson helper integration site-1 (AHI1) gene on chromosome 6 is associated with susceptibility to schizophrenia and autism, two common neuropsychological disorders with depression symptoms. Mouse Ahi1 protein is abundant in the hypothalamus and amygdala, which are important brain regions for controlling emotion. However, the neuronal function of Ahi1 remains unclear. With the Cre-loxP system, we created a mouse model that selectively reduces Ahi1 expression in neuronal cells. Mice with neuronal Ahi1 deficiency show reduced TrkB level in the brain and depressive phenotypes, which can be alleviated by antidepressant drugs or by overexpression of TrkB in the amygdala. Ahi1 deficiency promotes the degradation of endocytic TrkB and reduces TrkB signaling in neuronal cells. Our findings suggest that impaired endocytic sorting and increased degradation of TrkB can induce depression and that this impaired pathway may serve as a previously uncharacterized therapeutic target for depression.
Collapse
|
30
|
Quantitative proteomic analyses of influenza virus-infected cultured human lung cells. J Virol 2010; 84:10888-906. [PMID: 20702633 DOI: 10.1128/jvi.00431-10] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Because they are obligate intracellular parasites, all viruses are exclusively and intimately dependent upon host cells for replication. Viruses, in turn, induce profound changes within cells, including apoptosis, morphological changes, and activation of signaling pathways. Many of these alterations have been analyzed by gene arrays, which measure the cellular "transcriptome." Until recently, it has not been possible to extend comparable types of studies to globally examine all the host cellular proteins, which are the actual effector molecules. We have used stable isotope labeling by amino acids in cell culture (SILAC), combined with high-throughput two-dimensional (2-D) high-performance liquid chromatography (HPLC)/mass spectrometry, to determine quantitative differences in host proteins after infection of human lung A549 cells with human influenza virus A/PR/8/34 (H1N1) for 24 h. Of the 4,689 identified and measured cytosolic protein pairs, 127 were significantly upregulated at >95% confidence, 153 were significantly downregulated at >95% confidence, and a total of 87 proteins were upregulated or downregulated more than 5-fold at >99% confidence. Gene ontology and pathway analyses indicated differentially regulated proteins and included those involved in host cell immunity and antigen presentation, cell adhesion, metabolism, protein function, signal transduction, and transcription pathways.
Collapse
|
31
|
Prior MJ, Foletta VC, Jowett JB, Segal DH, Carless MA, Curran JE, Dyer TD, Moses EK, McAinch AJ, Konstantopoulos N, Bozaoglu K, Collier GR, Cameron-Smith D, Blangero J, Walder KR. The characterization of Abelson helper integration site-1 in skeletal muscle and its links to the metabolic syndrome. Metabolism 2010; 59:1057-64. [PMID: 20045148 PMCID: PMC3249385 DOI: 10.1016/j.metabol.2009.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 10/17/2009] [Accepted: 11/02/2009] [Indexed: 10/20/2022]
Abstract
The human Abelson helper integration site-1 (AHI1) gene is associated with both neurologic and hematologic disorders; however, it is also located in a chromosomal region linked to metabolic syndrome phenotypes and was identified as a type 2 diabetes mellitus susceptibility gene from a genomewide association study. To further define a possible role in type 2 diabetes mellitus development, AHI1 messenger RNA expression levels were investigated in a range of tissues and found to be highly expressed in skeletal muscle as well as displaying elevated levels in brain regions and gonad tissues. Further analysis in a rodent polygenic animal model of obesity and type 2 diabetes mellitus identified increased Ahi-1 messenger RNA levels in red gastrocnemius muscle from fasted impaired glucose-tolerant and diabetic rodents compared with healthy animals (P < .002). Moreover, elevated gene expression levels were confirmed in skeletal muscle from fasted obese and type 2 diabetes mellitus human subjects (P < .02). RNAi-mediated suppression of Ahi-1 resulted in increased glucose transport in rat L6 myotubes in both the basal and insulin-stimulated states (P < .01). Finally, single nucleotide polymorphism association studies identified 2 novel AHI1 genetic variants linked with fasting blood glucose levels in Mexican American subjects (P < .037). These findings indicate a novel role for AHI1 in skeletal muscle and identify additional genetic links with metabolic syndrome phenotypes suggesting an involvement of AHI1 in the maintenance of glucose homeostasis and type 2 diabetes mellitus progression.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Vesicular Transport
- Animals
- Blood Glucose/metabolism
- Blotting, Western
- Body Weight/physiology
- Cells, Cultured
- Cohort Studies
- Deoxyglucose/metabolism
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Genotype
- Glucose/metabolism
- Humans
- Insulin/blood
- Insulin Resistance/genetics
- Metabolic Syndrome/genetics
- Metabolic Syndrome/metabolism
- Mexican Americans
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/metabolism
- Myoblasts/drug effects
- Myoblasts/metabolism
- Obesity/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Rats
- Reverse Transcriptase Polymerase Chain Reaction
- Transfection
Collapse
Affiliation(s)
- Matthew J. Prior
- School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Victoria C. Foletta
- School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Jeremy B. Jowett
- The Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - David H. Segal
- School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | | | | | - Tom D. Dyer
- Southwest Foundation for Biomedical Research, San Antonio, USA
| | - Eric K. Moses
- Southwest Foundation for Biomedical Research, San Antonio, USA
| | - Andrew J. McAinch
- School of Biomedical and Health Sciences, Victoria University, Melbourne, 8001, Australia
| | | | - Kiymet Bozaoglu
- School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | | | - David Cameron-Smith
- School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - John Blangero
- Southwest Foundation for Biomedical Research, San Antonio, USA
| | - Ken R. Walder
- School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
- Verva Pharmaceuticals Ltd, Geelong, Australia
- Corresponding author. , Telephone: + 61-3-5227 2883, Facsimilie: + 61-3-5227 2170
| |
Collapse
|
32
|
Lymphoblast and brain expression of AHI1 and the novel primate-specific gene, C6orf217, in schizophrenia and bipolar disorder. Schizophr Res 2010; 120:159-66. [PMID: 20452750 DOI: 10.1016/j.schres.2010.03.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 03/26/2010] [Accepted: 03/30/2010] [Indexed: 11/22/2022]
Abstract
Association with schizophrenia of the Abelson Helper Integration Site 1 (AHI1) gene on chromosome 6q23 and the adjacent primate-specific gene, C6orf217, was demonstrated in an inbred, Arab Israeli family sample and replicated in an Icelandic case control sample. Further support was provided by a second replication in a large European sample and a meta-analysis that supported association with schizophrenia of all seven alleles overtransmitted to affected subjects in the original study. We examined constitutive expression of AHI1 and C6orf217 in immortalized lymphoblasts of patients from the Arab Israeli family sample in which the association with schizophrenia was originally discovered and population-matched normal controls, and in post-mortem brain of patients with schizophrenia and bipolar (BP) disorder and control subjects from the Stanley Medical Research Institute Collection. We found a significant effect of diagnostic group in the lymphoblast sample (F=5.72; df=2,39; p=0.006). Patients with early age of onset had higher AHI1 expression than controls and later onset patients (p=0.002; 0.03 respectively). C6orf217 expression in lymphoblasts was too low to measure. We found no difference in brain expression of AHI1 in schizophrenia or BP patients compared to controls. However, there was a genotypic difference in AHI1 expression for SNP rs9321501, which was strongly associated with schizophrenia in the original study. Genotypes that included the undertransmitted C allele (CC/AC) showed lower expression than the homozygous AA genotype (F=4.73, df=2,83; p=0.028). There was no significant difference in brain expression of C6orf217 between patients and controls and no genotypic effect. This study provides further evidence for involvement of AHI1 in susceptibility to schizophrenia.
Collapse
|
33
|
Westfall JE, Hoyt C, Liu Q, Hsiao YC, Pierce EA, Page-McCaw PS, Ferland RJ. Retinal degeneration and failure of photoreceptor outer segment formation in mice with targeted deletion of the Joubert syndrome gene, Ahi1. J Neurosci 2010; 30:8759-68. [PMID: 20592197 PMCID: PMC2923804 DOI: 10.1523/jneurosci.5229-09.2010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 04/13/2010] [Accepted: 05/10/2010] [Indexed: 11/21/2022] Open
Abstract
Vertebrate photoreceptors have a modified cilium composed of a basal body, axoneme and outer segment. The outer segment includes stacked membrane discs, containing opsin and the signal transduction apparatus mediating phototransduction. In photoreceptors, two distinct classes of vesicles are trafficked. Synaptic vesicles are transported down the axon to the synapse, whereas opsin-containing vesicles are transported to the outer segment. The continuous replacement of the outer segments imposes a significant biosynthetic and trafficking burden on the photoreceptors. Here, we show that Ahi1, a gene that when mutated results in the neurodevelopmental disorder, Joubert syndrome (JBTS), is required for photoreceptor sensory cilia formation and the development of photoreceptor outer segments. In mice with a targeted deletion of Ahi1, photoreceptors undergo early degeneration. Whereas synaptic proteins are correctly trafficked, photoreceptor outer segment proteins fail to be transported appropriately or are significantly reduced in their expression levels (i.e., transducin and Rom1) in Ahi1(-/-) mice. We show that vesicular targeting defects in Ahi1(-/-) mice are cilium specific, and our evidence suggests that the defects are caused by a decrease in expression of the small GTPase Rab8a, a protein required for accurate polarized vesicular trafficking. Thus, our results suggest that Ahi1 plays a role in stabilizing the outer segment proteins, transducin and Rom1, and that Ahi1 is an important component of Rab8a-mediated vesicular trafficking in photoreceptors. The retinal degeneration observed in Ahi1(-/-) mice recapitulates aspects of the retinal phenotype observed in patients with JBTS and suggests the importance of Ahi1 in photoreceptor function.
Collapse
Affiliation(s)
- Jennifer E. Westfall
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Carlton Hoyt
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Qin Liu
- F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Yi-Chun Hsiao
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
- Center for Neuropharmacology and Neuroscience, Department of Neurology, The Albany Medical College, Albany, New York 12208
| | - Eric A. Pierce
- F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Patrick S. Page-McCaw
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
- New York Neural Stem Cell Institute, Rensselaer, New York 12144, and
| | - Russell J. Ferland
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
- Center for Neuropharmacology and Neuroscience, Department of Neurology, The Albany Medical College, Albany, New York 12208
| |
Collapse
|
34
|
Torri F, Akelai A, Lupoli S, Sironi M, Amann-Zalcenstein D, Fumagalli M, Dal Fiume C, Ben-Asher E, Kanyas K, Cagliani R, Cozzi P, Trombetti G, Strik Lievers L, Salvi E, Orro A, Beckmann JS, Lancet D, Kohn Y, Milanesi L, Ebstein RB, Lerer B, Macciardi F. Fine mapping of AHI1 as a schizophrenia susceptibility gene: from association to evolutionary evidence. FASEB J 2010; 24:3066-82. [PMID: 20371615 DOI: 10.1096/fj.09-152611] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In previous studies, we identified a locus for schizophrenia on 6q23.3 and proposed the Abelson helper integration site 1 (AHI1) as the candidate gene. AHI1 is expressed in the brain and plays a key role in neurodevelopment, is involved in Joubert syndrome, and has been recently associated with autism. The neurodevelopmental role of AHI1 fits with etiological hypotheses of schizophrenia. To definitively confirm our hypothesis, we searched for associations using a dense map of the region. Our strongest findings lay within the AHI1 gene: single-nucleotide polymorphisms rs11154801 and rs7759971 showed significant associations (P=6.23E-06; P=0.84E-06) and haplotypes gave P values in the 10E-8 to 10E-10 range. The second highest significant region maps close to AHI1 and includes the intergenic region between BC040979 and PDE7B (rs2038549 at P=9.70E-06 and rs1475069 at P=6.97E-06), and PDE7B and MAP7. Using a sample of Palestinian Arab families to confirm these findings, we found isolated signals. While these results did not retain their significance after correction for multiple testing, the joint analysis across the 2 samples supports the role of AHI1, despite the presence of heterogeneity. Given the hypothesis of positive selection of schizophrenia genes, we resequenced a 11 kb region within AHI1 in ethnically defined populations and found evidence for a selective sweep. Network analysis indicates 2 haplotype clades, with schizophrenia-susceptibility haplotypes clustering within the major clade. In conclusion, our data support the role of AHI1 as a susceptibility gene for schizophrenia and confirm it has been subjected to positive selection, also shedding light on new possible candidate genes, MAP7 and PDE7B.
Collapse
Affiliation(s)
- Federica Torri
- Genomics and Bioinformatics Unit, University of Milan-Fondazione Filarete, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ingason A, Giegling I, Cichon S, Hansen T, Rasmussen HB, Nielsen J, Jürgens G, Muglia P, Hartmann AM, Strengman E, Vasilescu C, Mühleisen TW, Djurovic S, Melle I, Lerer B, Möller HJ, Francks C, Pietiläinen OPH, Lonnqvist J, Suvisaari J, Tuulio-Henriksson A, Walshe M, Vassos E, Di Forti M, Murray R, Bonetto C, Tosato S, Cantor RM, Rietschel M, Craddock N, Owen MJ, Peltonen L, Andreassen OA, Nöthen MM, St Clair D, Ophoff RA, O'Donovan MC, Collier DA, Werge T, Rujescu D. A large replication study and meta-analysis in European samples provides further support for association of AHI1 markers with schizophrenia. Hum Mol Genet 2010; 19:1379-86. [PMID: 20071346 PMCID: PMC2838541 DOI: 10.1093/hmg/ddq009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 01/11/2010] [Indexed: 01/01/2023] Open
Abstract
The Abelson helper integration site 1 (AHI1) gene locus on chromosome 6q23 is among a group of candidate loci for schizophrenia susceptibility that were initially identified by linkage followed by linkage disequilibrium mapping, and subsequent replication of the association in an independent sample. Here, we present results of a replication study of AHI1 locus markers, previously implicated in schizophrenia, in a large European sample (in total 3907 affected and 7429 controls). Furthermore, we perform a meta-analysis of the implicated markers in 4496 affected and 18,920 controls. Both the replication study of new samples and the meta-analysis show evidence for significant overrepresentation of all tested alleles in patients compared with controls (meta-analysis; P = 8.2 x 10(-5)-1.7 x 10(-3), common OR = 1.09-1.11). The region contains two genes, AHI1 and C6orf217, and both genes-as well as the neighbouring phosphodiesterase 7B (PDE7B)-may be considered candidates for involvement in the genetic aetiology of schizophrenia.
Collapse
Affiliation(s)
- Andrés Ingason
- Research Institute of Biological Psychiatry, Copenhagen University Hospital, Roskilde, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Louie CM, Caridi G, Lopes VS, Brancati F, Kispert A, Lancaster MA, Schlossman AM, Otto EA, Leitges M, Gröne HJ, Lopez I, Gudiseva HV, O'Toole JF, Vallespin E, Ayyagari R, Ayuso C, Cremers FPM, den Hollander AI, Koenekoop RK, Dallapiccola B, Ghiggeri GM, Hildebrandt F, Valente EM, Williams DS, Gleeson JG. AHI1 is required for photoreceptor outer segment development and is a modifier for retinal degeneration in nephronophthisis. Nat Genet 2010; 42:175-80. [PMID: 20081859 PMCID: PMC2884967 DOI: 10.1038/ng.519] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 12/03/2009] [Indexed: 12/13/2022]
Abstract
Photoreceptor degeneration is a common feature of ciliopathies, owing to the importance of the highly specialized ciliary structure of these cells. Absence of AHI1, which encodes a cilium-localized protein, has been shown to cause a form of Joubert syndrome highly penetrant for retinal degeneration1,2. We show that Ahi1 knockout mice fail to form outer segments (OS), and show abnormal distribution of opsin throughout photoreceptors. Apoptotic cell death occurs rapidly between 2-4 weeks of age and is significantly delayed by reduced dosage of opsin. This phenotype also displays dosage-sensitive genetic interactions with Nphp1, another ciliopathy gene. Although not a primary cause of retinal blindness in humans, an allele of AHI1 modifies the relative risk of retinal degeneration greater than 7 fold within a nephronophthisis cohort. Our data support context-specific roles for AHI1 as a contributor to retinopathy and may explain a proportion of the variability of retinal phenotypes observed in nephronophthisis.
Collapse
Affiliation(s)
- Carrie M Louie
- Howard Hughes Medical Institute, Department of Pediatrics, University of California, San Diego, La Jolla, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Han SB, Choi BI, Lee D, Kee SH, Kim HS, Sun W, Kim H. Regulation of AHI1 expression in adult rat brain: Implication in hypothalamic feeding control. Biochem Biophys Res Commun 2009; 390:535-40. [PMID: 19819228 DOI: 10.1016/j.bbrc.2009.09.133] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 09/30/2009] [Indexed: 11/17/2022]
Abstract
Recent studies revealed that Abelson helper integration site 1 (AHI1) plays a role in brain development. However, little is known about the role of AHI1 in adult brain. To directly assess the role of AHI1 in the adult brain, we cloned full-length cDNA of rat AHI1 and observed prominent expression of AHI1 in the hypothalamus, which contributes mainly to the control of energy homeostasis. Furthermore, we demonstrated that food deprivation caused induction of AHI1 in the hypothalamus and subsequent re-feeding down-regulated AHI1 expression, suggesting the involvement of AHI1 in feeding control. Moreover, the expression of AHI1 was increased in serum-depleted Neuro2A cells and restored by subsequent insulin treatment. Furthermore, treatment in food-deprived rat with intraperitoneal glucose also reduced the increased AHI1 expression. These results demonstrate that AHI1 expression can be regulated through diet and suggest the novel role of AHI1 in feeding behavior.
Collapse
Affiliation(s)
- Seung Baek Han
- Department of Anatomy, Division of Brain Korea 21 Biomedical Science, Korea University College of Medicine, Sungbuk-Gu, Seoul 136-705, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
38
|
Hsiao YC, Tong ZJ, Westfall JE, Ault JG, Page-McCaw PS, Ferland RJ. Ahi1, whose human ortholog is mutated in Joubert syndrome, is required for Rab8a localization, ciliogenesis and vesicle trafficking. Hum Mol Genet 2009; 18:3926-41. [PMID: 19625297 DOI: 10.1093/hmg/ddp335] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The primary non-motile cilium, a membrane-ensheathed, microtubule-bundled organelle, extends from virtually all cells and is important for development. Normal functioning of the cilium requires proper axoneme assembly, membrane biogenesis and ciliary protein localization, in tight coordination with the intraflagellar transport system and vesicular trafficking. Disruptions at any level can induce severe alterations in cell function, giving rise to a myriad of human genetic diseases known as ciliopathies. Here we show that the Abelson helper integration site 1 (Ahi1) gene, whose human ortholog is mutated in Joubert syndrome, regulates cilium formation via its interaction with Rab8a, a small GTPase critical for polarized membrane trafficking. We find that the Ahi1 protein localizes to a single centriole, the mother centriole, which becomes the basal body of the primary cilium. In order to determine whether Ahi1 functions in ciliogenesis, loss of function analysis of Ahi1 was performed in cell culture models of ciliogenesis. Knockdown of Ahi1 expression by shRNAi in cells or targeted deletion of Ahi1 (Ahi1 knockout mouse) leads to impairments in ciliogenesis. In Ahi1-knockdown cells, Rab8a is destabilized and does not properly localize to the basal body. Since Rab8a is implicated in vesicular trafficking, we next examined this process in Ahi1-knockdown cells. Defects in the trafficking of endocytic vesicles from the plasma membrane to the Golgi and back to the plasma membrane were observed in Ahi1-knockdown cells. Overall, our data indicate that the distribution and functioning of Rab8a is regulated by Ahi1, not only affecting cilium formation, but also vesicle transport.
Collapse
Affiliation(s)
- Yi-Chun Hsiao
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | | | | | |
Collapse
|
39
|
Identification of tyrosine kinase, HCK, and tumor suppressor, BIN1, as potential mediators of AHI-1 oncogene in primary and transformed CTCL cells. Blood 2009; 113:4646-55. [DOI: 10.1182/blood-2008-08-174037] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract
AHI-1 is an oncogene often targeted by provirus insertional mutagenesis in murine leukemias and lymphomas. Aberrant expression of human AHI-1 occurs in cutaneous T-cell lymphoma (CTCL) cells and in CD4+CD7− Sezary cells from patients with Sezary syndrome. Stable knockdown of AHI-1 using retroviral-mediated RNA interference in CTCL cells inhibits their transforming activity in vitro and in vivo. To identify genes involved in AHI-1–mediated transformation, microarray analysis was performed to identify differentially expressed genes in AHI-1–suppressed CTCL cells. Fifteen up-regulated and 6 down-regulated genes were identified and confirmed by quantitative reverse transcription-polymerase chain reaction. Seven were further confirmed in a microarray analysis of CD4+CD7− Sezary cells from Sezary syndrome patients. HCK and BIN1 emerged as new candidate cooperative genes, with differential protein expression, which correlates with observed transcript changes. Interestingly, changes in HCK phosphorylation and biologic response to its inhibitor, dasatinib, were observed in AHI-1–suppressed or –overexpressed cells. The tumor suppressor BIN1 physically interacts with MYC in CTCL cells, which also exhibit differential MYC protein expression. In addition, aberrant expression of alternative splicing forms of BIN1 was observed in primary and transformed CTCL cells. These findings indicate that HCK and BIN1 may play critical roles in AHI-1–mediated leukemic transformation of human CTCL cells.
Collapse
|
40
|
Shi Z, Liang N, Xu W, Li K, Sheng G, Liu J, Xu A, Li XJ, Wu D. Expression, purification, crystallization and preliminary X-ray crystallographic analysis of the SH3 domain of human AHI1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:361-3. [PMID: 19342780 PMCID: PMC2664760 DOI: 10.1107/s174430910900774x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 03/03/2009] [Indexed: 11/10/2022]
Abstract
The SH3 domain of human AHI1 was cloned and expressed in Escherichia coli. The protein was purified by affinity and size-exclusion chromatography and was crystallized using the sitting-drop vapour-diffusion method at 293 K. A complete data set was collected to 2.5 A resolution at 110 K. The crystal belonged to space group P4(1)2(1)2, with unit-cell parameters a = 67.377, b = 67.377, c = 98.549 A.
Collapse
Affiliation(s)
- Zhuliang Shi
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, People’s Republic of China
- Department of Life Sciences, University of Science and Technology of China, People’s Republic of China
| | - Ning Liang
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, People’s Republic of China
- Department of Life Sciences, University of Science and Technology of China, People’s Republic of China
| | - Wei Xu
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, People’s Republic of China
| | - Kuai Li
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, People’s Republic of China
- Department of Life Sciences, University of Science and Technology of China, People’s Republic of China
| | - Guoqing Sheng
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, People’s Republic of China
| | - Jinsong Liu
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, People’s Republic of China
| | - Aimin Xu
- Department of Medicine, The University of Hong Kong, Hong Kong
| | - Xiao-Jiang Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Donghai Wu
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, People’s Republic of China
- Department of Life Sciences, University of Science and Technology of China, People’s Republic of China
| |
Collapse
|
41
|
Meng XF, Luo Y, Xiao W, Li M, Shi J. Cloning and Characterization of the Promoter of the Human AHI1 Gene. Biochem Genet 2009; 47:427-38. [DOI: 10.1007/s10528-009-9232-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 09/08/2008] [Indexed: 11/27/2022]
|
42
|
Abstract
Huntington disease (HD) is caused by a polyglutamine expansion in the protein huntingtin (Htt). Several studies suggest that Htt and huntingtin associated protein 1 (HAP1) participate in intracellular trafficking and that polyglutamine expansion affects vesicular transport. Understanding the function of HAP1 and its related proteins could help elucidate the pathogenesis of HD. The present review focuses on HAP1, which has proved to be involved in intracellular trafficking. Unlike huntingtin, which is expressed ubiquitously throughout the brain and body, HAP1 is enriched in neurons, suggesting that its dysfunction could contribute to the selective neuropathology in HD. We discuss recent evidence for the involvement of HAP1 and its binding proteins in potential functions.
Collapse
Affiliation(s)
- Linda Lin-yan Wu
- Department of Human Physiology, Flinders University, Adelaide, South Australia, Australia
| | | |
Collapse
|
43
|
Doering JE, Kane K, Hsiao YC, Yao C, Shi B, Slowik AD, Dhagat B, Scott DD, Ault JG, Page-McCaw PS, Ferland RJ. Species differences in the expression of Ahi1, a protein implicated in the neurodevelopmental disorder Joubert syndrome, with preferential accumulation to stigmoid bodies. J Comp Neurol 2008; 511:238-56. [PMID: 18785627 PMCID: PMC2600576 DOI: 10.1002/cne.21824] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Joubert syndrome (JBTS) is an autosomal recessive disorder characterized by cerebellum and brainstem malformations. Individuals with JBTS have abnormal breathing and eye movements, ataxia, hypotonia, and cognitive difficulty, and they display mirror movements. Mutations in the Abelson-helper integration site-1 gene (AHI1) cause JBTS in humans, suggesting that AHI1 is required for hindbrain development; however AHI1 may also be required for neuronal function. Support for this idea comes from studies demonstrating that the AHI1 locus is associated with schizophrenia. To gain further insight into the function of AHI1 in both the developing and mature central nervous system, we determined the spatial and temporal expression patterns of the gene products of AHI1 orthologs throughout development, in human, mouse, and zebrafish. Murine Ahi1 was distributed throughout the cytoplasm, dendrites, and axons of neurons, but was absent in glial cells. Ahi1 expression in the mouse brain was observed as early as embryonic day 10.5 and persisted into adulthood, with peak expression during the first postnatal week. Murine Ahi1 was observed in neurons of the hindbrain, midbrain, and ventral forebrain. Generally, the AHI1/Ahi1/ahi1 orthologs had a conserved distribution pattern in human, mouse, and zebrafish, but mouse Ahi1 was not present in the developing and mature cerebellum. Ahi1 was also observed consistently in the stigmoid body, a poorly characterized cytoplasmic organelle found in neurons. Overall, these results suggest roles for AHI1 in neurodevelopmental processes that underlie most of the neuroanatomical defects in JBTS, and perhaps in neuronal functions that contribute to schizophrenia.
Collapse
Affiliation(s)
- Jennifer E Doering
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhou LL, Zhao Y, Ringrose A, DeGeer D, Kennah E, Lin AEJ, Sheng G, Li XJ, Turhan A, Jiang X. AHI-1 interacts with BCR-ABL and modulates BCR-ABL transforming activity and imatinib response of CML stem/progenitor cells. ACTA ACUST UNITED AC 2008; 205:2657-71. [PMID: 18936234 PMCID: PMC2571939 DOI: 10.1084/jem.20072316] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chronic myeloid leukemia (CML) represents the first human malignancy successfully treated with a tyrosine kinase inhibitor (TKI; imatinib). However, early relapses and the emergence of imatinib-resistant disease are problematic. Evidence suggests that imatinib and other inhibitors may not effectively eradicate leukemic stem/progenitor cells, and that combination therapy directed to complimentary targets may improve treatment. Abelson helper integration site 1 (Ahi-1)/AHI-1 is a novel oncogene that is highly deregulated in CML stem/progenitor cells where levels of BCR-ABL transcripts are also elevated. Here, we demonstrate that overexpression of Ahi-1/AHI-1 in murine and human hematopoietic cells confer growth advantages in vitro and induce leukemia in vivo, enhancing effects of BCR-ABL. Conversely, RNAi-mediated suppression of AHI-1 in BCR-ABL–transduced lin−CD34+ human cord blood cells and primary CML stem/progenitor cells reduces their growth autonomy in vitro. Interestingly, coexpression of Ahi-1 in BCR-ABL–inducible cells reverses growth deficiencies exhibited by BCR-ABL down-regulation and is associated with sustained phosphorylation of BCR-ABL and enhanced activation of JAK2–STAT5. Moreover, we identified an AHI-1–BCR-ABL–JAK2 interaction complex and found that modulation of AHI-1 expression regulates phosphorylation of BCR-ABL and JAK2–STAT5 in CML cells. Importantly, this complex mediates TKI response/resistance of CML stem/progenitor cells. These studies implicate AHI-1 as a potential therapeutic target downstream of BCR-ABL in CML.
Collapse
Affiliation(s)
- Liang L Zhou
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver V5Z 1L3, BC, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sheng G, Xu X, Lin YF, Wang CE, Rong J, Cheng D, Peng J, Jiang X, Li SH, Li XJ. Huntingtin-associated protein 1 interacts with Ahi1 to regulate cerebellar and brainstem development in mice. J Clin Invest 2008; 118:2785-95. [PMID: 18636121 DOI: 10.1172/jci35339] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 05/28/2008] [Indexed: 01/10/2023] Open
Abstract
Joubert syndrome is an autosomal recessive disorder characterized by congenital malformation of the cerebellum and brainstem, with abnormal decussation in the brain. Mutations in the Abelson helper integration site 1 gene, which encodes the protein AHI1, have been shown to cause Joubert syndrome. In this study, we found that mouse Ahi1 formed a stable complex with huntingtin-associated protein 1 (Hap1), which is critical for neonatal development and involved in intracellular trafficking. Hap1-knockout mice showed significantly reduced Ahi1 levels, defective cerebellar development, and abnormal axonal decussation. Suppression of Ahi1 also decreased the level of Hap1; and truncated Ahi1, which corresponds to the mutations in Joubert syndrome, inhibited neurite outgrowth in neuronal culture. Reducing Hap1 expression suppressed the level and internalization of TrkB, a neurotrophic factor receptor that mediates neurogenesis and neuronal differentiation, which led to decreased TrkB signaling. These findings provide insight into the pathogenesis of Joubert syndrome and demonstrate the critical role of the Ahi1-Hap1 complex in early brain development.
Collapse
Affiliation(s)
- Guoqing Sheng
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Alvarez Retuerto AI, Cantor RM, Gleeson JG, Ustaszewska A, Schackwitz WS, Pennacchio LA, Geschwind DH. Association of common variants in the Joubert syndrome gene (AHI1) with autism. Hum Mol Genet 2008; 17:3887-96. [PMID: 18782849 DOI: 10.1093/hmg/ddn291] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
It has been suggested that autism, like other complex genetic disorders, may benefit from the study of rare or Mendelian variants associated with syndromic or non-syndromic forms of the disease. However, there are few examples in which common variation in genes causing a Mendelian neuropsychiatric disorder has been shown to contribute to disease susceptibility in an allied common condition. Joubert syndrome (JS) is a rare recessively inherited disorder, with mutations reported at several loci including the gene Abelson's Helper Integration 1 (AHI1). A significant proportion of patients with JS, in some studies up to 40%, have been diagnosed with autism spectrum disorder (ASD) and several linkage studies in ASD have nominally implicated the region on 6q where AHI1 resides. To evaluate AHI1 in ASD, we performed a three-stage analysis of AHI1 as an a priori candidate gene for autism. Re-sequencing was first used to screen AHI1, followed by two subsequent association studies, one limited and one covering the gene more completely, in Autism Genetic Resource Exchange (AGRE) families. In stage 3, we found evidence of an associated haplotype in AHI1 with ASD after correction for multiple comparisons, in a region of the gene that had been previously associated with schizophrenia. These data suggest a role for AHI1 in common disorders affecting human cognition and behavior.
Collapse
Affiliation(s)
- Ana I Alvarez Retuerto
- Center for Autism Research and Treatment Semel Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Clappier E, Cuccuini W, Kalota A, Crinquette A, Cayuela JM, Dik WA, Langerak AW, Montpellier B, Nadel B, Walrafen P, Delattre O, Aurias A, Leblanc T, Dombret H, Gewirtz AM, Baruchel A, Sigaux F, Soulier J. The C-MYB locus is involved in chromosomal translocation and genomic duplications in human T-cell acute leukemia (T-ALL), the translocation defining a new T-ALL subtype in very young children. Blood 2007; 110:1251-61. [PMID: 17452517 DOI: 10.1182/blood-2006-12-064683] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The C-Myb transcription factor is essential for hematopoiesis, including in the T-cell lineage. The C-Myb locus is a common site of retroviral insertional mutagenesis, however no recurrent genomic involvement has been reported in human malignancies. Here, we identified 2 types of genomic alterations involving the C-MYB locus at 6q23 in human T-cell acute leukemia (T-ALL). First, we found a reciprocal translocation, t(6;7)(q23;q34), that juxtaposed the TCRB and C-MYB loci (n = 6 cases). Second, a genome-wide copy-number analysis by array-based comparative genomic hybridization (array-CGH) identified short somatic duplications that include C-MYB (MYB(dup), n = 13 cases of 84 T-ALL, 15%). Expression analysis, including allele-specific approaches, showed stronger C-MYB expression in the MYB-rearranged cases compared with other T-ALLs, and a dramatically skewed C-MYB allele expression in the TCRB-MYB cases, which suggests that a translocation-driven deregulated expression may overcome a cellular attempt to down-regulate C-MYB. Strikingly, profiling of the T-ALLs by clinical, genomic, and large-scale gene expression analyses shows that the TCRB-MYB translocation defines a new T-ALL subtype associated with a very young age for T-cell leukemia (median, 2.2 years) and with a proliferation/mitosis expression signature. By contrast, the MYB(dup) alteration was associated with the previously defined T-ALL subtypes.
Collapse
Affiliation(s)
- Emmanuelle Clappier
- Genome Rearrangements and Cancer Group, Institut National de la Santé et de la Recherche Médicale U728 and Institut Universitaire d'Hématologie, Paris 7 University, Hôpital Saint-Louis, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Zhou W, Song P. Molecular cloning of a novel gene ZAhi-1 and its expression analysis during zebrafish gametogenesis. Mol Biol Rep 2007; 33:111-6. [PMID: 16817020 DOI: 10.1007/s11033-006-0005-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2005] [Indexed: 10/24/2022]
Abstract
Proto-oncogen Ahi-1 is closely related to a lot of human and mouse diseases. Ahi-1 mutation will lead to leukemia in mice and Joubert syndrome in human beings. We have cloned the full cDNA sequence of Ahi-1 homologous in zebrafish, and RT-PCR results of ZAhi-1 in different tissues reveal that ZAhi-1 expressed highest in the mature gonad. In situ hybridization results of zebrafish gonad show that ZAhi-1 only expressed in the early stages' gamete cells. RT-PCR analyses of mouse Ahi-1 in different stages of spermatogenesis have been done according to the published Ahi-1 sequence, and the findings reveal that Ahi-1 is expressed in gamete of pachytene stage. It can then be safely concluded that Ahi-1 might take place in the spermatocyte from the early pachytene stage to the late pachytene stage.
Collapse
Affiliation(s)
- Wei Zhou
- Laboratory of Molecular Genetics and Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | |
Collapse
|
49
|
Jin G, Yamazaki Y, Takuwa M, Takahara T, Kaneko K, Kuwata T, Miyata S, Nakamura T. Trib1 and Evi1 cooperate with Hoxa and Meis1 in myeloid leukemogenesis. Blood 2007; 109:3998-4005. [PMID: 17227832 DOI: 10.1182/blood-2006-08-041202] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cooperative activation of Meis1 and Hoxa9 perturbs myeloid differentiation and eventually leads myeloid progenitors to leukemia, yet it remains to be clarified what kinds of subsequent molecular processes are required for development of overt leukemia. To understand the molecular pathway in Hoxa9/Meis1-induced leukemogenesis, retroviral insertional mutagenesis was applied using retrovirus-mediated gene transfer. The mice that received Hoxa9/Meis1-transduced bone marrow cells developed acute myeloid leukemia (AML), and Trib1, Evi1, Ahi1, Raralpha, Pitpnb, and AK039950 were identified as candidate cooperative genes located near common retroviral integration sites. Trib1 and Evi1 were up-regulated due to retroviral insertions, and coexpression of these genes significantly accelerated the onset of Hoxa9/Meis1-induced AML, suggesting that Trib1 and Evi1 are the key collaborators. Furthermore, Trib1 by itself is a novel myeloid oncogene, enhancing phosphorylation of ERK, resulting in inhibition of apoptosis. These results demonstrate the importance of specific oncogene interaction in myeloid leukemogenesis.
Collapse
Affiliation(s)
- Guang Jin
- Department of Carcinogenesis, The Cancer Institute, Genome Center, Japanese Foundation for Cancer Research, 3-10-6 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Ringrose A, Zhou Y, Pang E, Zhou L, Lin AEJ, Sheng G, Li XJ, Weng A, Su MW, Pittelkow MR, Jiang X. Evidence for an oncogenic role of AHI-1 in Sezary syndrome, a leukemic variant of human cutaneous T-cell lymphomas. Leukemia 2006; 20:1593-601. [PMID: 16838023 DOI: 10.1038/sj.leu.2404321] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ahi-1 (Abelson helper integration site 1) is a novel gene frequently activated by provirus insertional mutagenesis in murine leukemias and lymphomas. Its involvement in human leukemogenesis is demonstrated by gross perturbations in its expression in human leukemia cells, particularly in cutaneous T-cell lymphoma cell lines where increases in AHI-1 transcripts of 40-fold are seen. To test directly whether deregulated expression of AHI-1 contributes to their transformed properties, knockdown of AHI-1 expression in Hut78 cells, a cell line derived from a patient with Sezary syndrome (SS), was performed using retroviral-mediated RNA interference. Retroviral-mediated suppression specifically inhibited expression of AHI-1 and its isoforms in transduced cells by 80% and also reduced autocrine production of interleukin (IL)-2, IL-4 and tumor necrosis factor-alpha (TNFalpha) by up to 85%. It further significantly reduced their growth factor independence in vitro and the ability to produce tumors in immunodeficient mice. Interestingly, aberrant expression of AHI-1, particularly truncated isoforms, was present in CD4+CD7- Sezary cells from some patients with SS. Elevated expression of IL-2 and TNFalpha was also found in these cells. These findings provide strong evidence of the oncogenic activity of AHI-1 in human leukemogenesis and demonstrate that its deregulation may contribute to the development of SS.
Collapse
Affiliation(s)
- A Ringrose
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|