1
|
Tognarelli EI, Reyes A, Corrales N, Carreño LJ, Bueno SM, Kalergis AM, González PA. Modulation of Endosome Function, Vesicle Trafficking and Autophagy by Human Herpesviruses. Cells 2021; 10:cells10030542. [PMID: 33806291 PMCID: PMC7999576 DOI: 10.3390/cells10030542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/27/2022] Open
Abstract
Human herpesviruses are a ubiquitous family of viruses that infect individuals of all ages and are present at a high prevalence worldwide. Herpesviruses are responsible for a broad spectrum of diseases, ranging from skin and mucosal lesions to blindness and life-threatening encephalitis, and some of them, such as Kaposi’s sarcoma-associated herpesvirus (KSHV) and Epstein–Barr virus (EBV), are known to be oncogenic. Furthermore, recent studies suggest that some herpesviruses may be associated with developing neurodegenerative diseases. These viruses can establish lifelong infections in the host and remain in a latent state with periodic reactivations. To achieve infection and yield new infectious viral particles, these viruses require and interact with molecular host determinants for supporting their replication and spread. Important sets of cellular factors involved in the lifecycle of herpesviruses are those participating in intracellular membrane trafficking pathways, as well as autophagic-based organelle recycling processes. These cellular processes are required by these viruses for cell entry and exit steps. Here, we review and discuss recent findings related to how herpesviruses exploit vesicular trafficking and autophagy components by using both host and viral gene products to promote the import and export of infectious viral particles from and to the extracellular environment. Understanding how herpesviruses modulate autophagy, endolysosomal and secretory pathways, as well as other prominent trafficking vesicles within the cell, could enable the engineering of novel antiviral therapies to treat these viruses and counteract their negative health effects.
Collapse
Affiliation(s)
- Eduardo I. Tognarelli
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (A.R.); (N.C.); (L.J.C.); (S.M.B.); (A.M.K.)
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Antonia Reyes
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (A.R.); (N.C.); (L.J.C.); (S.M.B.); (A.M.K.)
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Nicolás Corrales
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (A.R.); (N.C.); (L.J.C.); (S.M.B.); (A.M.K.)
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (A.R.); (N.C.); (L.J.C.); (S.M.B.); (A.M.K.)
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (A.R.); (N.C.); (L.J.C.); (S.M.B.); (A.M.K.)
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (A.R.); (N.C.); (L.J.C.); (S.M.B.); (A.M.K.)
- Departamento de Endocrinología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (A.R.); (N.C.); (L.J.C.); (S.M.B.); (A.M.K.)
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Correspondence:
| |
Collapse
|
2
|
Li J, Zhan X. Mass spectrometry-based proteomics analyses of post-translational modifications and proteoforms in human pituitary adenomas. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140584. [PMID: 33321259 DOI: 10.1016/j.bbapap.2020.140584] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022]
Abstract
Pituitary adenoma (PA) is a common intracranial neoplasm, which affects the hypothalamus-pituitary-target organ axis systems, and is hazardous to human health. Post-translational modifications (PTMs), including phosphorylation, ubiquitination, nitration, and sumoylation, are vitally important in the PA pathogenesis. The large-scale analysis of PTMs could provide a global view of molecular mechanisms for PA. Proteoforms, which are used to define various protein structural and functional forms originated from the same gene, are the future direction of proteomics research. The global studies of different proteoforms and PTMs of hypophyseal hormones such as growth hormone (GH) and prolactin (PRL) and the proportion change of different GH proteoforms or PRL proteoforms in human pituitary tissue could provide new insights into the clinical value of pituitary hormones in PAs. Multiple quantitative proteomics methods, including mass spectrometry (MS)-based label-free and stable isotope-labeled strategies in combination with different PTM-peptide enrichment methods such as TiO2 enrichment of tryptic phosphopeptides and antibody enrichment of other PTM-peptides increase the feasibility for researchers to study PA proteomes. This article reviews the research status of PTMs and proteoforms in PAs, including the enrichment method, technical limitation, quantitative proteomics strategies, and the future perspectives, to achieve the goals of in-depth understanding its molecular pathogenesis, and discovering effective biomarkers and clinical therapeutic targets for predictive, preventive, and personalized treatment of PA patients.
Collapse
Affiliation(s)
- Jiajia Li
- University Creative Research Initiatives Center, Shandong First Medical University, 6699 Qingdao Road, Jinan, Shandong 250117, P. R. China; Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 P. R. China; State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China
| | - Xianquan Zhan
- University Creative Research Initiatives Center, Shandong First Medical University, 6699 Qingdao Road, Jinan, Shandong 250117, P. R. China; Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 P. R. China; State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China; Department of Oncology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China.
| |
Collapse
|
3
|
Vollmer B, Grünewald K. Herpesvirus membrane fusion - a team effort. Curr Opin Struct Biol 2020; 62:112-120. [PMID: 31935542 DOI: 10.1016/j.sbi.2019.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/18/2019] [Accepted: 12/02/2019] [Indexed: 12/01/2022]
Abstract
One of the essential steps in every viral 'life' cycle is entry into the host cell. Membrane-enveloped viruses carry dedicated proteins to catalyse the fusion of the viral and cellular membrane. Herpesviruses feature a set of essential, structurally diverse glycoproteins on the viral surface that form a multicomponent fusion machinery, necessary for the entry mechanism. For Herpes simplex virus 1, these essential glycoproteins are gD, gH, gL and gB. In this review we describe the functions of the individual components, the potential interactions between them as well as the influence of post-translational modifications on the fusion mechanism.
Collapse
Affiliation(s)
- Benjamin Vollmer
- Centre for Structural Systems Biology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, University of Hamburg, Hamburg, Germany; Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kay Grünewald
- Centre for Structural Systems Biology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, University of Hamburg, Hamburg, Germany; Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Vallbracht M, Backovic M, Klupp BG, Rey FA, Mettenleiter TC. Common characteristics and unique features: A comparison of the fusion machinery of the alphaherpesviruses Pseudorabies virus and Herpes simplex virus. Adv Virus Res 2019; 104:225-281. [PMID: 31439150 DOI: 10.1016/bs.aivir.2019.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Membrane fusion is a fundamental biological process that allows different cellular compartments delimited by a lipid membrane to release or exchange their respective contents. Similarly, enveloped viruses such as alphaherpesviruses exploit membrane fusion to enter and infect their host cells. For infectious entry the prototypic human Herpes simplex viruses 1 and 2 (HSV-1 and -2, collectively termed HSVs) and the porcine Pseudorabies virus (PrV) utilize four different essential envelope glycoproteins (g): the bona fide fusion protein gB and the regulatory heterodimeric gH/gL complex that constitute the "core fusion machinery" conserved in all members of the Herpesviridae; and the subfamily specific receptor binding protein gD. These four components mediate attachment and fusion of the virion envelope with the host cell plasma membrane through a tightly regulated sequential activation process. Although PrV and the HSVs are closely related and employ the same set of glycoproteins for entry, they show remarkable differences in the requirements for fusion. Whereas the HSVs strictly require all four components for membrane fusion, PrV can mediate cell-cell fusion without gD. Moreover, in contrast to the HSVs, PrV provides a unique opportunity for reversion analyses of gL-negative mutants by serial cell culture passaging, due to a limited cell-cell spread capacity of gL-negative PrV not observed in the HSVs. This allows a more direct analysis of the function of gH/gL during membrane fusion. Unraveling the molecular mechanism of herpesvirus fusion has been a goal of fundamental research for years, and yet important mechanistic details remain to be uncovered. Nevertheless, the elucidation of the crystal structures of all key players involved in PrV and HSV membrane fusion, coupled with a wealth of functional data, has shed some light on this complex puzzle. In this review, we summarize and discuss the contemporary knowledge on the molecular mechanism of entry and membrane fusion utilized by the alphaherpesvirus PrV, and highlight similarities but also remarkable differences in the requirements for fusion between PrV and the HSVs.
Collapse
Affiliation(s)
- Melina Vallbracht
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany.
| | - Marija Backovic
- Institut Pasteur, Unité de Virologie Structurale, UMR3569 (CNRS), Paris, France
| | - Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Felix A Rey
- Institut Pasteur, Unité de Virologie Structurale, UMR3569 (CNRS), Paris, France
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| |
Collapse
|
5
|
Zerboni L, Sung P, Sommer M, Arvin A. The C-terminus of varicella-zoster virus glycoprotein M contains trafficking motifs that mediate skin virulence in the SCID-human model of VZV pathogenesis. Virology 2018; 523:110-120. [PMID: 30119012 DOI: 10.1016/j.virol.2018.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/04/2018] [Accepted: 08/05/2018] [Indexed: 11/16/2022]
Abstract
Knowledge about the function of varicella-zoster virus glycoprotein M is limited; the requirement of gM for skin and neural tropism are unknown. VZV gM contains two predicted YXXΦ trafficking motifs and a dileucine motif in the carboxyl-terminus. We constructed a recombinant VZV with gM truncated from the first YXXΦ and five additional viruses with YXXΦ tyrosine substitutions, alone and in combination with dileucine substitution. All recombinant viruses grew to high titer but mutation of the membrane-proximal YXXΦ motif reduced plaque size in cultured cells and altered gM localization. C-terminus truncation had a pronounced effect on virion morphogenesis and plaque size, but not on overall replication kinetics in vitro. Mutation of gM trafficking motifs and truncation attenuated replication in human skin xenografts in vivo; gM truncation did not alter neurotropism. Our results demonstrate that the gM C-terminus is dispensable for virus replication in cultured cells but is important for skin pathogenesis.
Collapse
Affiliation(s)
- Leigh Zerboni
- Departments of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States.
| | - Phillip Sung
- Departments of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Marvin Sommer
- Departments of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Ann Arvin
- Departments of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States; Departments of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
6
|
Vallbracht M, Fuchs W, Klupp BG, Mettenleiter TC. Functional Relevance of the Transmembrane Domain and Cytoplasmic Tail of the Pseudorabies Virus Glycoprotein H for Membrane Fusion. J Virol 2018; 92:e00376-18. [PMID: 29618646 PMCID: PMC5974499 DOI: 10.1128/jvi.00376-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/29/2018] [Indexed: 12/18/2022] Open
Abstract
Herpesvirus membrane fusion depends on the core fusion machinery, comprised of glycoproteins B (gB) and gH/gL. Although gB structurally resembles autonomous class III fusion proteins, it strictly depends on gH/gL to drive membrane fusion. Whether the gH/gL complex needs to be membrane anchored to fulfill its function and which role the gH cytoplasmic (CD) and transmembrane domains (TMD) play in fusion is unclear. While the gH CD and TMD play an important role during infection, soluble gH/gL of herpes simplex virus 1 (HSV-1) seems to be sufficient to mediate cell-cell fusion in transient assays, arguing against an essential contribution of the CD and TMD. To shed more light on this apparent discrepancy, we investigated the role of the CD and TMD of the related alphaherpesvirus pseudorabies virus (PrV) gH. For this purpose, we expressed C-terminally truncated and soluble gH and replaced the TMD with a glycosylphosphatidylinositol (gpi) anchor. We also generated chimeras containing the TMD and/or CD of PrV gD or HSV-1 gH. Proteins were characterized in cell-based fusion assays and during virus infection. Although truncation of the CD resulted in decreased membrane fusion activity, the mutant proteins still supported replication of gH-negative PrV, indicating that the PrV gH CD is dispensable for viral replication. In contrast, PrV gH lacking the TMD, membrane-anchored via a lipid linker, or comprising the PrV gD TMD were nonfunctional, highlighting the essential role of the gH TMD for function. Interestingly, despite low sequence identity, the HSV-1 gH TMD could substitute for the PrV gH TMD, pointing to functional conservation.IMPORTANCE Enveloped viruses depend on membrane fusion for virus entry. While this process can be mediated by only one or two proteins, herpesviruses depend on the concerted action of at least three different glycoproteins. Although gB has features of bona fide fusion proteins, it depends on gH and its complex partner, gL, for fusion. Whether gH/gL prevents premature fusion or actively triggers gB-mediated fusion is unclear, and there are contradictory results on whether gH/gL function requires stable membrane anchorage or whether the ectodomains alone are sufficient. Our results show that in pseudorabies virus gH, the transmembrane anchor plays an essential role for gB-mediated fusion while the cytoplasmic tail is not strictly required.
Collapse
Affiliation(s)
- Melina Vallbracht
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Walter Fuchs
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
7
|
Dietz AN, Villinger C, Becker S, Frick M, von Einem J. A Tyrosine-Based Trafficking Motif of the Tegument Protein pUL71 Is Crucial for Human Cytomegalovirus Secondary Envelopment. J Virol 2018; 92:e00907-17. [PMID: 29046458 PMCID: PMC5730796 DOI: 10.1128/jvi.00907-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/03/2017] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) tegument protein pUL71 is required for efficient secondary envelopment and accumulates at the Golgi compartment-derived viral assembly complex (vAC) during infection. Analysis of various C-terminally truncated pUL71 proteins fused to enhanced green fluorescent protein (eGFP) identified amino acids 23 to 34 as important determinants for its Golgi complex localization. Sequence analysis and mutational verification revealed the presence of an N-terminal tyrosine-based trafficking motif (YXXΦ) in pUL71. This led us to hypothesize a requirement of the YXXΦ motif for the function of pUL71 in infection. Mutation of both the tyrosine residue and the entire YXXΦ motif resulted in an altered distribution of mutant pUL71 at the plasma membrane and in the cytoplasm during infection. Both YXXΦ mutant viruses exhibited similarly decreased focal growth and reduced virus yields in supernatants. Ultrastructurally, mutant-virus-infected cells exhibited impaired secondary envelopment manifested by accumulations of capsids undergoing an envelopment process. Additionally, clusters of capsid accumulations surrounding the vAC were observed, similar to the ultrastructural phenotype of a UL71-deficient mutant. The importance of endocytosis and thus the YXXΦ motif for targeting pUL71 to the Golgi complex was further demonstrated when clathrin-mediated endocytosis was inhibited either by coexpression of the C-terminal part of cellular AP180 (AP180-C) or by treatment with methyl-β-cyclodextrin. Both conditions resulted in a plasma membrane accumulation of pUL71. Altogether, these data reveal the presence of a functional N-terminal endocytosis motif that is an important determinant for intracellular localization of pUL71 and that is furthermore required for the function of pUL71 during secondary envelopment of HCMV capsids at the vAC.IMPORTANCE Human cytomegalovirus (HCMV) is the leading cause of birth defects among congenital virus infections and can lead to life-threatening infections in immunocompromised hosts. Current antiviral treatments target viral genome replication and are increasingly overcome by viral mutations. Therefore, identifying new targets for antiviral therapy is important for future development of novel treatment options. A detailed molecular understanding of the complex virus morphogenesis will identify potential viral as well as cellular targets for antiviral intervention. Secondary envelopment is an important viral process through which infectious virus particles are generated and which involves the action of several viral proteins, such as tegument protein pUL71. Targeting of pUL71 to the site of secondary envelopment appears to be crucial for its function during this process and is regulated by utilizing host trafficking mechanisms that are commonly exploited by viral glycoproteins. Thus, intracellular trafficking, if targeted, might present a novel target for antiviral therapy.
Collapse
Affiliation(s)
- Andrea N Dietz
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | - Clarissa Villinger
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
- Central Facility for Electron Microscopy, Ulm University, Ulm, Germany
| | - Stefan Becker
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Jens von Einem
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
8
|
Yang E, Arvin AM, Oliver SL. The cytoplasmic domain of varicella-zoster virus glycoprotein H regulates syncytia formation and skin pathogenesis. PLoS Pathog 2014; 10:e1004173. [PMID: 24874654 PMCID: PMC4038623 DOI: 10.1371/journal.ppat.1004173] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 04/23/2014] [Indexed: 01/23/2023] Open
Abstract
The conserved herpesvirus fusion complex consists of glycoproteins gB, gH, and gL which is critical for virion envelope fusion with the cell membrane during entry. For Varicella Zoster Virus (VZV), the complex is necessary for cell-cell fusion and presumed to mediate entry. VZV causes syncytia formation via cell-cell fusion in skin and in sensory ganglia during VZV reactivation, leading to neuronal damage, a potential contributory factor for the debilitating condition of postherpetic neuralgia. The gH cytoplasmic domain (gHcyt) is linked to the regulation of gB/gH-gL-mediated cell fusion as demonstrated by increased cell fusion in vitro by an eight amino acid (aa834-841) truncation of the gHcyt. The gHcyt regulation was identified to be dependent on the physical presence of the domain, and not of specific motifs or biochemical properties as substitution of aa834-841 with V5, cMyc, and hydrophobic or hydrophilic sequences did not affect fusion. The importance of the gHcyt length was corroborated by stepwise deletions of aa834-841 causing incremental increases in cell fusion, independent of gH surface expression and endocytosis. Consistent with the fusion assay, truncating the gHcyt in the viral genome caused exaggerated syncytia formation and significant reduction in viral titers. Importantly, infection of human skin xenografts in SCID mice was severely impaired by the truncation while maintaining the gHcyt length with the V5 substitution preserved typical replication in vitro and in skin. A role for the gHcyt in modulating the functions of the gB cytoplasmic domain (gBcyt) is proposed as the gHcyt truncation substantially enhanced cell fusion in the presence of the gB[Y881F] mutation. The significant reduction in skin infection caused by hyperfusogenic mutations in either the gHcyt or gBcyt demonstrates that both domains are critical for regulating syncytia formation and failure to control cell fusion, rather than enhancing viral spread, is severely detrimental to VZV pathogenesis. Varicella zoster virus (VZV) infects the human population globally, causing chickenpox in children and shingles in adults. While those afflicted with shingles experience severe pain that might last from weeks to months, the cause is not known. Biopsies of VZV infected skin and specimens of nerve ganglia collected at autopsy from patients with shingles at the time of death contain multi-nucleated cells, indicating that the virus is able to cause fusion between infected cells. Since the destruction of nerve cells that results from this process is likely to contribute to the pain associated with shingles, it is important to understand how the virus causes infected cells to fuse. We find that VZV cell-cell fusion is regulated by the intracellular facing domain of glycoprotein H (gH), a viral protein present on the surface of infected cells. This regulation was dependent upon the physical length of the domain, not a specific sequence. Loss of this regulation increased cell-cell fusion causing the formation of larger multi-nucleated cells that limited the ability of the virus to effectively spread in human skin. Our study provides new insight into how VZV manipulates host cells during infection and controls the spread of the virus in tissues.
Collapse
Affiliation(s)
- Edward Yang
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| | - Ann M. Arvin
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Stefan L. Oliver
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
9
|
Lee ST, Bracci P, Zhou M, Rice T, Wiencke J, Wrensch M, Wiemels J. Interaction of allergy history and antibodies to specific varicella-zoster virus proteins on glioma risk. Int J Cancer 2013; 134:2199-210. [PMID: 24127236 DOI: 10.1002/ijc.28535] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/05/2013] [Accepted: 09/30/2013] [Indexed: 12/26/2022]
Abstract
Glioma is the most common cancer of the central nervous system but with few confirmed risk factors. It has been inversely associated with chicken pox, shingles and seroreactivity to varicella virus (VZV), as well as to allergies and allergy-associated IgE. The role of antibody reactivity against individual VZV antigens has not been assessed. Ten VZV-related proteins, selected for high immunogenicity or known function, were synthesized and used as targets for antibody measurements in the sera of 143 glioma cases and 131 healthy controls selected from the San Francisco Bay Area Adult Glioma Study. Glioma cases exhibited significantly reduced seroreactivity compared to controls for six antigens, including proteins IE63 [odds ratio (OR) = 0.26, 95% confidence interval (CI): 0.12-0.58, comparing lowest quartile to highest) and the VZV-unique protein ORF2p (OR = 0.44, 95% CI: 0.21-0.96, lowest quartile to highest). When stratifying the study population into those with low and high self-reported allergy history, VZV protein seroreactivity was only associated inversely with glioma among individuals self-reporting more than two allergies. The data provide insight into both allergy and VZV effects on glioma: strong anti-VZV reactions in highly allergic individuals are associated with reduced occurrence of glioma. This result suggests a role for specificity in the anti-VZV immunity in brain tumor suppression for both individual VZV antigens and in the fine-tuning of the immune response by allergy. Anti-VZV reactions may also be a biomarker of effective CNS immunosurveillance owing to the tropism of the virus.
Collapse
Affiliation(s)
- Seung-Tae Lee
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA; Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
10
|
Henaff D, Radtke K, Lippé R. Herpesviruses exploit several host compartments for envelopment. Traffic 2012; 13:1443-9. [PMID: 22805610 DOI: 10.1111/j.1600-0854.2012.01399.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/13/2012] [Accepted: 07/17/2012] [Indexed: 01/16/2023]
Abstract
Enveloped viruses acquire their host-derived membrane at a variety of intracellular locations. Herpesviruses are complex entities that undergo several budding and fusion events during an infection. All members of this large family are believed to share a similar life cycle. However, they seemingly differ in terms of acquisition of their mature envelope. Herpes simplex virus is often believed to bud into an existing intracellular compartment, while the related cytomegalovirus may acquire its final envelope from a novel virus-induced assembly compartment. This review focuses on recent advances in the characterization of cellular compartment(s) potentially contributing to herpes virion final envelopment. It also examines the common points between seemingly distinct envelopment pathways and highlights the dynamic nature of intracellular compartments in the context of herpesvirus infections.
Collapse
Affiliation(s)
- Daniel Henaff
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC, Canada
| | | | | |
Collapse
|
11
|
Optimal replication of human cytomegalovirus correlates with endocytosis of glycoprotein gpUL132. J Virol 2010; 84:7039-52. [PMID: 20444903 DOI: 10.1128/jvi.01644-09] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Envelopment of a herpesvirus particle is a complex process of which much is still to be learned. We previously identified the glycoprotein gpUL132 of human cytomegalovirus (HCMV) as an envelope component of the virion. In its carboxy-terminal portion, gpUL132 contains at least four motifs for sorting of transmembrane proteins to endosomes; among them are one dileucine-based signal and three tyrosine-based signals of the YXXØ and NPXY (where X stands for any amino acid, and Ø stands for any bulky hydrophobic amino acid) types. To investigate the role of each of these trafficking signals in intracellular localization and viral replication, we constructed a panel of expression plasmids and recombinant viruses in which the signals were rendered nonfunctional by mutagenesis. In transfected cells wild-type gpUL132 was mainly associated with the trans-Golgi network. Consecutive mutation of the trafficking signals resulted in increasing fractions of the protein localized at the cell surface, with gpUL132 mutated in all four trafficking motifs predominantly associated with the plasma membrane. Concomitant with increased surface expression, endocytosis of mutant gpUL132 was reduced, with a gpUL132 expressing all four motifs in mutated form being almost completely impaired in endocytosis. The replication of recombinant viruses harboring mutations in single trafficking motifs was comparable to replication of wild-type virus. In contrast, viruses containing mutations in three or four of the trafficking signals showed pronounced deficits in replication with a reduction of approximately 100-fold. Moreover, recombinant viruses expressing gpUL132 with three or four trafficking motifs mutated failed to incorporate the mutant protein into the virus particle. These results demonstrate a role of endocytosis of an HCMV envelope glycoprotein for incorporation into the virion and optimal virus replication.
Collapse
|
12
|
Anti-glycoprotein H antibody impairs the pathogenicity of varicella-zoster virus in skin xenografts in the SCID mouse model. J Virol 2010; 84:141-52. [PMID: 19828615 DOI: 10.1128/jvi.01338-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Varicella-zoster virus (VZV) infection is usually mild in healthy individuals but can cause severe disease in immunocompromised patients. Prophylaxis with varicella-zoster immunoglobulin can reduce the severity of VZV if given shortly after exposure. Glycoprotein H (gH) is a highly conserved herpesvirus protein with functions in virus entry and cell-cell spread and is a target of neutralizing antibodies. The anti-gH monoclonal antibody (MAb) 206 neutralizes VZV in vitro. To determine the requirement for gH in VZV pathogenesis in vivo, MAb 206 was administered to SCID mice with human skin xenografts inoculated with VZV. Anti-gH antibody given at 6 h postinfection significantly reduced the frequency of skin xenograft infection by 42%. Virus titers, genome copies, and lesion size were decreased in xenografts that became infected. In contrast, administering anti-gH antibody at 4 days postinfection suppressed VZV replication but did not reduce the frequency of infection. The neutralizing anti-gH MAb 206 blocked virus entry, cell fusion, or both in skin in vivo. In vitro, MAb 206 bound to plasma membranes and to surface virus particles. Antibody was internalized into vacuoles within infected cells, associated with intracellular virus particles, and colocalized with markers for early endosomes and multivesicular bodies but not the trans-Golgi network. MAb 206 blocked spread, altered intracellular trafficking of gH, and bound to surface VZV particles, which might facilitate their uptake and targeting for degradation. As a consequence, antibody interference with gH function would likely prevent or significantly reduce VZV replication in skin during primary or recurrent infection.
Collapse
|
13
|
Myelin-associated glycoprotein mediates membrane fusion and entry of neurotropic herpesviruses. Proc Natl Acad Sci U S A 2009; 107:866-71. [PMID: 20080767 DOI: 10.1073/pnas.0913351107] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Varicella-zoster virus (VZV) and herpes simplex virus (HSV) are prevalent neurotropic herpesviruses that cause various nervous system diseases. Similar to other enveloped viruses, membrane fusion is an essential process for viral entry. Therefore, identification of host molecules that mediate membrane fusion is important to understand the mechanism of viral infection. Here, we demonstrate that myelin-associated glycoprotein (MAG), mainly distributed in neural tissues, associates with VZV glycoprotein B (gB) and promotes cell-cell fusion when coexpressed with VZV gB and gH/gL. VZV preferentially infected MAG-transfected oligodendroglial cells. MAG also associated with HSV-1 gB and enhanced HSV-1 infection of promyelocytes. These findings suggested that MAG is involved in VZV and HSV infection of neural tissues.
Collapse
|
14
|
Characterization of neutralizing epitopes of varicella-zoster virus glycoprotein H. J Virol 2008; 83:2020-4. [PMID: 19073736 DOI: 10.1128/jvi.02097-08] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Varicella-zoster virus (VZV) glycoprotein H (gH) is the major neutralization target of VZV, and its neutralizing epitope is conformational. Ten neutralizing human monoclonal antibodies to gH were used to map the epitopes by immunohistochemical analysis and were categorized into seven epitope groups. The combinational neutralization efficacy of two epitope groups was not synergistic. Each epitope was partially or completely resistant to concanavalin A blocking of the glycomoiety of gH, and their antibodies inhibited the cell-to-cell spread of infection. The neutralization epitope comprised at least seven independent protein portions of gH that served as the target to inhibit cell-to-cell spread.
Collapse
|
15
|
Critical role for endocytosis in the regulation of signaling by the Kaposi's sarcoma-associated herpesvirus K1 protein. J Virol 2008; 82:6514-23. [PMID: 18434405 DOI: 10.1128/jvi.02637-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a member of the gammaherpesvirus family. KSHV is the etiologic agent of Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. The first open reading frame of the KSHV genome encodes a type 1 transmembrane glycoprotein named K1. K1 is structurally similar to the B-cell receptor (BCR), and its cytoplasmic tail contains an immunoreceptor tyrosine-based activation motif that can activate Syk kinase and the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Recent evidence suggests that receptor signaling occurs not only at the cell membrane, but from intracellular compartments as well. We have found that K1 is internalized in a clathrin-dependent manner, and efficient internalization is coupled to its signaling function. Once internalized, K1 traffics from the early endosome to the recycling endosome. Interestingly, blocking K1's activation of Syk and PI3K prevents K1 from internalizing. We have also found that blocking clathrin-mediated endocytosis prevents downstream signaling by K1. These results strongly suggest that internalization of K1 is intimately associated with normal signaling. When K1 internalization was examined in B lymphocytes, we found that K1 cointernalized with the BCR. Altogether, these results suggest that K1's signaling function is tightly coupled to its internalization.
Collapse
|
16
|
Beitia Ortiz de Zarate I, Cantero-Aguilar L, Longo M, Berlioz-Torrent C, Rozenberg F. Contribution of endocytic motifs in the cytoplasmic tail of herpes simplex virus type 1 glycoprotein B to virus replication and cell-cell fusion. J Virol 2007; 81:13889-903. [PMID: 17913800 PMCID: PMC2168835 DOI: 10.1128/jvi.01231-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The use of endocytic pathways by viral glycoproteins is thought to play various functions during viral infection. We previously showed in transfection assays that herpes simplex virus type 1 (HSV-1) glycoprotein B (gB) is transported from the cell surface back to the trans-Golgi network (TGN) and that two motifs of gB cytoplasmic tail, YTQV and LL, function distinctly in this process. To investigate the role of each of these gB trafficking signals in HSV-1 infection, we constructed recombinant viruses in which each motif was rendered nonfunctional by alanine mutagenesis. In infected cells, wild-type gB was internalized from the cell surface and concentrated in the TGN. Disruption of YTQV abolished internalization of gB during infection, whereas disruption of LL induced accumulation of internalized gB in early recycling endosomes and impaired its return to the TGN. The growth of both recombinants was moderately diminished. Moreover, the fusion phenotype of cells infected with the gB recombinants differed from that of cells infected with the wild-type virus. Cells infected with the YTQV-mutated virus displayed reduced cell-cell fusion, whereas giant syncytia were observed in cells infected with the LL-mutated virus. Furthermore, blocking gB internalization or impairing gB recycling to the cell surface, using drugs or a transdominant negative form of Rab11, significantly reduced cell-cell fusion. These results favor a role for endocytosis in virus replication and suggest that gB intracellular trafficking is involved in the regulation of cell-cell fusion.
Collapse
|
17
|
Li H, Liu S, Kong X. Characterization of the genes encoding UL24, TK and gH proteins from duck enteritis virus (DEV): a proof for the classification of DEV. Virus Genes 2006; 33:221-7. [PMID: 16972038 DOI: 10.1007/s11262-005-0060-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 11/28/2005] [Indexed: 10/24/2022]
Abstract
Duck enteritis virus (DEV) is classified to the family Herpesviridae, but has not been grouped into any genus so far. Four overlapped fragments were amplified from the DEV genome with polymerase chain reaction (PCR). The assembled length of the four fragments was 6,202 bp, which contained the genes encoding unique long (UL) 24, thymidine kinase (TK) and glycoprotein H (gH) proteins. The UL24 overlapped with TK by 64 nucleotides (nt), in a head-to-head transcription orientation, and the TK and gH had the same transcription orientation. The comparison of amino acid sequences of these 3 deduced DEV proteins with other 12 alphaherpesviruses displayed 5 highly conserved sites in the UL24, as well as another 5 consensus regions in the TK and 4 consensus regions in the gH. The RNA polymerase II transcriptional control elements were identified in all the UL24, TK and gH of DEV. These elements included core promoters, TATA motifs and polyadenylation sites. Phylogenetic analysis for the genetic classification of DEV in the Alphaherpesvirinae subfamily with other 12 alphaherpesviruses was computed. The result showed that DEV was more closely related to avian herpesviruses, except infectious laryngotracheitis virus (ILTV), than to other alphaherpesviruses. Conclusively, according to the phylogenesis-based analysis and the homology comparison of functional domains of UL24, TK and gH, DEV should be classified to a separate genus of the Alphaherpesvirinae subfamily in the family Herpesviridae.
Collapse
Affiliation(s)
- Huixin Li
- Division of Avian Infectious Diseases, National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Science, Harbin 150001, People's Republic of China
| | | | | |
Collapse
|
18
|
Hall SL, Govero JL, Heineman TC. Intracellular transport and stability of varicella-zoster virus glycoprotein K. Virology 2006; 358:283-90. [PMID: 17010406 DOI: 10.1016/j.virol.2006.08.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Revised: 07/07/2006] [Accepted: 08/15/2006] [Indexed: 11/21/2022]
Abstract
VZV gK, an essential glycoprotein that is conserved among the alphaherpesviruses, is believed to participate in membrane fusion and cytoplasmic virion morphogenesis based on analogy to its HSV-1 homolog. However, the production of VZV gK-specific antibodies has proven difficult presumably due to its highly hydrophobic nature and, therefore, VZV gK has received limited study. To overcome this obstacle, we inserted a FLAG epitope into gK near its amino terminus and produced VZV recombinants expressing epitope-tagged gK (VZV gK-F). These recombinants grew indistinguishably from native VZV, and FLAG-tagged gK could be readily detected in VZV gK-F-infected cells. FACS analysis established that gK is transported to the plasma membrane of infected cells, while indirect immunofluorescence demonstrated that gK accumulates predominately in the Golgi. Using VZV gK-F-infected cells we demonstrated that VZV gK, like several other herpesvirus glycoproteins, is efficiently endocytosed from the plasma membrane. However, pulse-labeling experiments revealed that the half-life of gK is considerably shorter than that of other VZV glycoproteins including gB, gE and gH. This finding suggests that gK may be required in lower abundance than other viral glycoproteins during virion morphogenesis or viral entry.
Collapse
Affiliation(s)
- Susan L Hall
- Division of Infectious Diseases and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri 63110-0250, USA
| | | | | |
Collapse
|
19
|
Abstract
VZV is a highly cell-associated member of the Herpesviridae family and one of the eight herpesviruses to infect humans. The virus is ubiquitous in most populations worldwide, primary infection with which causes varicella, more commonly known as chickenpox. Characteristic of members of the alphaherpesvirus sub-family, VZV is neurotropic and establishes latency in sensory neurones. Reactivation from latency, usually during periods of impaired cellular immunity, causes herpes zoster (shingles). Despite being one of the most genetically stable human herpesviruses, nucleotide alterations in the virus genome have been used to classify VZV strains from different geographical regions into distinct clades. Such studies have also provided evidence that, despite pre-existing immunity to VZV, subclinical reinfection and reactivation of reinfecting strains to cause zoster is also occurring. During both primary infection and reactivation, VZV infects several PBMC and skin cell lineages. Difficulties in studying the pathogenesis of VZV because of its high cell association and narrow host range have been overcome through the development of the VZV severe combined immunodeficient mouse model carrying human tissue implants. This model has provided a valuable tool for studying the importance of individual viral proteins during both the complex intracellular replication and assembly of new virions and for understanding the underlying mechanism of attenuation of the live varicella vaccine. In addition, a rat model has been developed and successfully used to uncover which viral proteins are important for both the establishment and maintenance of latent VZV infection.
Collapse
Affiliation(s)
- Mark Quinlivan
- Centre for Infectious Diseases, Institute for Cell and Molecular Science, 4 Newark Street, Whitechapel, London, E1 2AT, UK.
| | | |
Collapse
|
20
|
Favoreel HW. The why's of Y-based motifs in alphaherpesvirus envelope proteins. Virus Res 2006; 117:202-8. [PMID: 16417939 DOI: 10.1016/j.virusres.2005.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 11/08/2005] [Accepted: 11/08/2005] [Indexed: 10/25/2022]
Abstract
The Alphaherpesvirinae are large DNA viruses and represent the largest subfamily of the Herpesviridae with closely related members of man and animal, including herpes simplex virus, varicella-zoster virus, pseudorabies virus, bovine herpesvirus 1, and many others. The viral envelope proteins of alphaherpesviruses are remarkably diverse and are incorporated in the ER, Golgi, and plasma membrane of infected cells. The cytoplasmic domain of many of these envelope proteins contain specific tyrosine-based amino acids. During recent years, accumulating evidence indicates that these tyrosine-based motifs serve different important functions during the virus life cycle, and are implicated in endocytosis processes, intracellular trafficking, basolateral and axonal sorting, and signal transduction events. The current minireview will discuss the functions associated with these tyrosine-based motifs in alphaherpesvirus envelope proteins.
Collapse
Affiliation(s)
- Herman W Favoreel
- Laboratory of Virology and Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| |
Collapse
|
21
|
Favoreel HW, Van Minnebruggen G, Van de Walle GR, Ficinska J, Nauwynck HJ. Herpesvirus interference with virus-specific antibodies: bridging antibodies, internalizing antibodies, and hiding from antibodies. Vet Microbiol 2005; 113:257-63. [PMID: 16326036 DOI: 10.1016/j.vetmic.2005.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herpesviruses have developed different tools to thwart efficient antibody-dependent neutralisation and lysis of virions and elimination of infected cells. This overview will briefly summarize different of these tools, including (i) viral Fc receptors and the resulting process of antibody bridging, (ii) internalization of individual viral proteins and clustered antibody-antigen complexes from the plasma membrane of infected cells, and (iii) directed egress of virus particles to sites of intimate cell-cell contact that are difficult to access for antibodies.
Collapse
Affiliation(s)
- Herman W Favoreel
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | | | | | | | | |
Collapse
|
22
|
Abstract
Many viruses express membrane proteins. For enveloped viruses in particular, membrane proteins are frequently structural components of the virus that mediate the essential tasks of receptor recognition and membrane fusion. The functional activities of these proteins require that they are sorted correctly in infected cells. These sorting events often depend on the ability of the virus to mimic cellular protein trafficking signals and to interact with the cellular trafficking machinery. Importantly, loss or modification of these signals can influence virus infectivity and pathogenesis.
Collapse
Affiliation(s)
- R Byland
- MRC-LMCB and Department of Biochemistry and Molecular Biology, University College London, London, WC1E 6BT, UK
| | | |
Collapse
|
23
|
Turcotte S, Letellier J, Lippé R. Herpes simplex virus type 1 capsids transit by the trans-Golgi network, where viral glycoproteins accumulate independently of capsid egress. J Virol 2005; 79:8847-60. [PMID: 15994778 PMCID: PMC1168770 DOI: 10.1128/jvi.79.14.8847-8860.2005] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Egress of herpes capsids from the nucleus to the plasma membrane is a complex multistep transport event that is poorly understood. The current model proposes an initial envelopment at the inner nuclear membrane of capsids newly assembled in the nucleus. The capsids are then released in cytosol by fusion with the outer nuclear membrane. They are finally reenveloped at a downstream organelle before traveling to the plasma membrane for their extracellular release. Although the trans-Golgi network (TGN) is often cited as a potential site of reenvelopment, other organelles have also been proposed, including the Golgi, endoplasmic reticulum-Golgi intermediate compartment, aggresomes, tegusomes, and early or late endosomes. To clarify this important issue, we followed herpes simplex virus type 1 egress by immunofluorescence under conditions that slowed intracellular transport and promoted the accumulation of the otherwise transient reenvelopment intermediate. The data show that the capsids transit by the TGN and point to this compartment as the main reenvelopment site, although a contribution by endosomes cannot formally be excluded. Given that viral glycoproteins are expected to accumulate where capsids acquire their envelope, we examined this prediction and found that all tested could indeed be detected at the TGN. Moreover, this accumulation occurred independently of capsid egress. Surprisingly, capsids were often found immediately adjacent to the viral glycoproteins at the TGN.
Collapse
Affiliation(s)
- Sophie Turcotte
- Department of Pathology and Cell Biology, University of Montreal, P.O. Box 6128, Succursale Centre-Ville Montreal, Quebec, Canada H3C 3J7
| | | | | |
Collapse
|
24
|
Ficinska J, Van Minnebruggen G, Nauwynck HJ, Bienkowska-Szewczyk K, Favoreel HW. Pseudorabies virus glycoprotein gD contains a functional endocytosis motif that acts in concert with an endocytosis motif in gB to drive internalization of antibody-antigen complexes from the surface of infected monocytes. J Virol 2005; 79:7248-54. [PMID: 15890963 PMCID: PMC1112093 DOI: 10.1128/jvi.79.11.7248-7254.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Viral glycoproteins gB and gD of the swine alphaherpesvirus pseudorabies virus (PRV), which is closely related to human herpes simplex virus and varicella-zoster virus, are able to drive internalization of antibody-antigen complexes that may form at the cell surface of infected monocytes, thereby protecting these cells from efficient antibody-mediated lysis. We found earlier that gB relies on an endocytosis motif in its cytoplasmic domain for its function during this internalization process. Here, we report that the PRV gD protein also contains a functional endocytosis motif (YRLL) in its cytoplasmic domain that drives spontaneous endocytosis of gD from the cell surface early in infection and that acts in concert with the endocytosis motif in gB to contribute to efficient internalization of antibody-antigen complexes in PRV-infected monocytes.
Collapse
Affiliation(s)
- Jolanta Ficinska
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | | | | | | | | |
Collapse
|
25
|
Abstract
Nipah virus (NiV), a highly pathogenic member of the family Paramyxoviridae, encodes the surface glycoproteins F and G. Since internalization of the NiV envelope proteins from the cell surface might be of functional importance for viral pathogenesis either by regulating cytopathogenicity or by modulating recognition of infected cells by the immune system, we analyzed the endocytosis of the NiV F and G proteins. Interestingly, we found both glycoproteins to be internalized in infected and transfected cells. As endocytosis is normally mediated by tyrosine- or dileucine-dependent signals in the cytoplasmic tails of transmembrane proteins, all potential internalization signals in the NiV glycoproteins were mutated. Whereas the G protein appeared to be constitutively internalized with the bulk flow during membrane turnover, uptake of the F protein was found to be signal mediated. F endocytosis clearly depended on a membrane-proximal YXXPhi motif and was found to be of functional importance for the biological activity of the protein.
Collapse
Affiliation(s)
- Carola Vogt
- Institut für Virologie, Philipps University of Marburg, Germany
| | | | | | | | | |
Collapse
|
26
|
Maresova L, Pasieka TJ, Homan E, Gerday E, Grose C. Incorporation of three endocytosed varicella-zoster virus glycoproteins, gE, gH, and gB, into the virion envelope. J Virol 2005; 79:997-1007. [PMID: 15613328 PMCID: PMC538533 DOI: 10.1128/jvi.79.2.997-1007.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytoplasmic tails of all three major varicella-zoster virus (VZV) glycoproteins, gE, gH, and gB, harbor functional tyrosine-based endocytosis motifs that mediate internalization. The aim of the present study was to examine whether endocytosis from the plasma membrane is a cellular route by which VZV glycoproteins are delivered to the final envelopment compartment. In this study, we demonstrated that internalization of the glycoproteins occurred in the first 24 h postinfection but was reduced later in infection. Using surface biotinylation of VZV-infected cells followed by a glutathione cleavage assay, we showed that endocytosis was independent of antibody binding to gE, gH, and gB. Subsequently, with this assay, we demonstrated that biotinylated gE, gH, and gB retrieved from the cell surface were incorporated into nascent virus particles isolated after density gradient sedimentation. To confirm and extend this finding, we repeated the above sedimentation step and specifically detected envelopes decorated with Streptavidin-conjugated gold beads on a majority of complete virions through examination by transmission electron microscopy. In addition, a gE-gI complex and a gE-gH complex were found on the virions. Therefore, the above studies established that VZV subsumed a postendocytosis trafficking pathway as one mechanism by which to deliver viral glycoproteins to the site of virion assembly in the cytoplasm. Furthermore, since a recombinant VZV genome lacking only endocytosis-competent gE cannot replicate, these results supported the conclusion that the endocytosis-envelopment pathway is an essential component of the VZV life cycle.
Collapse
Affiliation(s)
- Lucie Maresova
- University of Iowa Hospital/2501 JCP, 200 Hawkins Dr., Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
27
|
Van Minnebruggen G, Favoreel HW, Nauwynck HJ. Internalization of pseudorabies virus glycoprotein B is mediated by an interaction between the YQRL motif in its cytoplasmic domain and the clathrin-associated AP-2 adaptor complex. J Virol 2004; 78:8852-9. [PMID: 15280493 PMCID: PMC479101 DOI: 10.1128/jvi.78.16.8852-8859.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytoplasmic domain of pseudorabies virus (PRV) glycoprotein B (gB) contains three putative internalization motifs. Previously, we demonstrated that the tyrosine-based YQRL motif at positions 902 to 905, but not the YMSI motif at positions 864 to 867 or the LL doublet at positions 887 and 888, is required for correct functioning of gB during antibody-mediated internalization of PRV cell surface-bound glycoproteins. In the present study, we demonstrate that the YQRL motif is also crucial to allow spontaneous internalization of PRV gB, and thus, that spontaneous and antibody-mediated internalizations of PRV gB occur through closely related mechanisms. Furthermore, we found that PRV gB colocalizes with the cellular clathrin-associated AP-2 adaptor complex and that this colocalization depends on the YQRL motif. In addition, by coimmunoprecipitation assays, we found that during both spontaneous and antibody-dependent internalization, PRV gB physically interacts with AP-2, and that efficient interaction between gB and AP-2 required an intact YQRL motif. Collectively, these findings demonstrate for the first time that during internalization of an alphaherpesvirus envelope protein, i.e., PRV gB, a specific amino acid sequence in the cytoplasmic tail of the protein interacts with AP-2 and may constitute a common AP-2-mediated mechanism of internalization of alphaherpesvirus envelope proteins.
Collapse
Affiliation(s)
- Geert Van Minnebruggen
- Laboratories of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | | | | |
Collapse
|
28
|
Avitabile E, Lombardi G, Gianni T, Capri M, Campadelli-Fiume G. Coexpression of UL20p and gK inhibits cell-cell fusion mediated by herpes simplex virus glycoproteins gD, gH-gL, and wild-type gB or an endocytosis-defective gB mutant and downmodulates their cell surface expression. J Virol 2004; 78:8015-25. [PMID: 15254173 PMCID: PMC446093 DOI: 10.1128/jvi.78.15.8015-8025.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Syncytium formation in cells that express herpes simplex virus glycoprotein B (gB), gD, gH, and gL is blocked by gK (E. Avitabile, G. Lombardi, and G. Campadelli-Fiume, J. Virol. 77:6836-6844, 2003). Here, we report the results of two series of experiments. First, UL20 protein (UL20p) expression weakly inhibited cell-cell fusion. Coexpression of UL20p and gK drastically reduced fusion in a cell-line-dependent manner, with the highest inhibition in BHK cells. Singly expressed UL20p and gK localized at the endoplasmic reticulum and nuclear membranes. When they were coexpressed, both proteins relocalized to the Golgi apparatus. Remarkably, in cells that coexpressed UL20p and gK, the antifusion activity correlated with a downmodulation of gD, gB, gH, and gL cell surface expression. Second, gB(Delta867) has a partial deletion in the cytoplasmic tail that removed endocytosis motifs. Whereas wild-type (wt) gB was internalized in vesicles lined with the endosomal marker Rab5, gB(delta867) was not internalized, exhibited enhanced cell surface expression, and was more efficient in mediating cell-cell fusion than wt gB. The antifusion activity of UL20p and gK was also exerted when gB(delta867) replaced wt gB in the cell fusion assay. These studies show that the gB C tail carries a functional endocytosis motif(s) and that the removal of the motif correlated with increased gB surface expression and increased fusion activity. We conclude that cell-cell fusion in wt-virus-infected cells is negatively controlled by at least two mechanisms. The novel mechanism described here involves the concerted action of UL20p and gK and correlates with a moderate but consistent reduction in the cell surface expression of the fusion glycoproteins. This mechanism is independent of the one exerted through endocytosis-mediated downmodulation of gB from the plasma membrane.
Collapse
Affiliation(s)
- Elisa Avitabile
- Department of Experimental Pathology, University of Bologna, Bologna, Italy
| | | | | | | | | |
Collapse
|
29
|
Pasieka TJ, Maresova L, Shiraki K, Grose C. Regulation of varicella-zoster virus-induced cell-to-cell fusion by the endocytosis-competent glycoproteins gH and gE. J Virol 2004; 78:2884-96. [PMID: 14990707 PMCID: PMC353742 DOI: 10.1128/jvi.78.6.2884-2896.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gH glycoprotein of varicella-zoster virus (VZV) is a major fusogen. The realigned short cytoplasmic tail of gH (18 amino acids) harbors a functional endocytosis motif (YNKI) that mediates internalization in both VZV-infected and transfected cells (T. J. Pasieka, L. Maresova, and C. Grose, J. Virol. 77: 4194-4202, 2003). During subsequent confocal microscopy studies of endocytosis-deficient gH mutants, we observed that cells transfected with the gH tail mutants exhibited marked fusion. Therefore, we postulated that VZV gH endocytosis served to regulate cell-to-cell fusion. Subsequent analyses of gH+gL transfection fusion assays by the Kolmogorov-Smirnov statistical test demonstrated that expression of the endocytosis-deficient gH mutants resulted in a statistically significant enhancement of cell-to-cell fusion (P < 0.0001) compared to wild-type gH. On the other hand, coexpression of VZV gE, another endocytosis-competent VZV glycoprotein, was able to temper the fusogenicity of the gH endocytosis mutants by facilitating internalization of the mutant gH protein from the cell surface. When the latter results were similarly analyzed, there was no longer any enhanced fusion by the endocytosis-deficient gH mutant protein. In summary, these studies support a role for gH endocytosis in regulating the cell surface expression of gH and thereby regulating gH-mediated fusion. The data also confirm and extend prior observations of a gE-gH interaction during viral glycoprotein trafficking in a VZV transfection system.
Collapse
Affiliation(s)
- Tracy Jo Pasieka
- Department of Pediatrics, University of Iowa College of Medicine, Iowa City, Iowa, USA
| | | | | | | |
Collapse
|
30
|
Beitia Ortiz de Zarate I, Kaelin K, Rozenberg F. Effects of mutations in the cytoplasmic domain of herpes simplex virus type 1 glycoprotein B on intracellular transport and infectivity. J Virol 2004; 78:1540-51. [PMID: 14722308 PMCID: PMC321396 DOI: 10.1128/jvi.78.3.1540-1551.2004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2003] [Accepted: 10/15/2003] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a human pathogen of the alphaherpesvirus family which infects and spreads in the nervous system. Glycoproteins play a key role in the process of assembly and maturation of herpesviruses, which is essential for neuroinvasion and transneuronal spread. Glycoprotein B (gB) is a main component of the HSV-1 envelope and is necessary for the production of infectious particles. The cytoplasmic domain of gB, the longest one among HSV-1 glycoproteins, contains several highly conserved peptide sequences homologous to motifs involved in intracellular sorting. To determine the specific roles of these motifs in processing, subcellular localization, and the capacity of HSV-1 gB to complement a gB-null virus, we generated truncated or point mutated forms of a green fluorescent protein (GFP)-tagged gB. GFP-gB with a deletion in the acidic cluster DGDADEDDL (amino acids [aa] 896 to 904) behaved the same as the parental form. Deletion or disruption of the YTQV motif (aa 889 to 892) abolished internalization and reduced complementation by 60%. Disruption of the LL motif (aa 871 to 872) impaired the return of the protein to the trans-Golgi network (TGN) while enhancing its recycling to the plasma membrane. Truncations from residue E 857 abolished transport and processing of the truncated proteins, which had null complementation activity, through the Golgi complex. Altogether, our results favor a model in which HSV-1 gets its final envelope in the TGN, and they suggest that endocytosis, albeit not necessary, might play a role in infectivity.
Collapse
Affiliation(s)
- Igor Beitia Ortiz de Zarate
- UPRES EA 3622, Faculté Cochin, Université Paris V, and INSERM U 567, CNRS UMR 8104, IFR 116, 75014 Paris, France
| | | | | |
Collapse
|
31
|
Sprague ER, Martin WL, Bjorkman PJ. pH dependence and stoichiometry of binding to the Fc region of IgG by the herpes simplex virus Fc receptor gE-gI. J Biol Chem 2004; 279:14184-93. [PMID: 14734541 DOI: 10.1074/jbc.m313281200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Herpes simplex virus type 1 encodes two glycoproteins, gE and gI, that form a heterodimer on the surface of virions and infected cells. The gE-gI heterodimer has been implicated in cell-to-cell spread of virus and is a receptor for the Fc fragment of IgG. Previous studies localized the gE-gI-binding site on human IgG to a region near the interface between the C(H)2 and C(H)3 domains of Fc, which also serves as the binding site for bacterial and mammalian Fc receptors. Although there are two potential gE-gI-binding sites per Fc homodimer, only one gE-gI heterodimer binds per IgG in gel filtration experiments. Here we report production of recombinant human Fc molecules that contain zero, one, or two potential gE-gI-binding sites and use them in analytical ultracentrifugation experiments to show that two gE-gI heterodimers can bind to each Fc. Further characterization of the gE-gI interaction with Fc reveals a sharp pH dependence of binding, with K(D) values of approximately 340 and approximately 930 nm for the first and second binding events, respectively, at the slightly basic pH of the cell surface (pH 7.4), but undetectable binding at pH 6.0. This strongly pH-dependent interaction suggests a physiological role for gE-gI dissociation from IgG within acidic intracellular compartments, consistent with a mechanism whereby herpes simplex virus promotes intracellular degradation of anti-viral antibodies.
Collapse
Affiliation(s)
- Elizabeth R Sprague
- Division of Biology, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|