1
|
Llorente García I, Marsh M. A biophysical perspective on receptor-mediated virus entry with a focus on HIV. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183158. [PMID: 31863725 PMCID: PMC7156917 DOI: 10.1016/j.bbamem.2019.183158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/14/2022]
Abstract
As part of their entry and infection strategy, viruses interact with specific receptor molecules expressed on the surface of target cells. The efficiency and kinetics of the virus-receptor interactions required for a virus to productively infect a cell is determined by the biophysical properties of the receptors, which are in turn influenced by the receptors' plasma membrane (PM) environments. Currently, little is known about the biophysical properties of these receptor molecules or their engagement during virus binding and entry. Here we review virus-receptor interactions focusing on the human immunodeficiency virus type 1 (HIV), the etiological agent of acquired immunodeficiency syndrome (AIDS), as a model system. HIV is one of the best characterised enveloped viruses, with the identity, roles and structure of the key molecules required for infection well established. We review current knowledge of receptor-mediated HIV entry, addressing the properties of the HIV cell-surface receptors, the techniques used to measure these properties, and the macromolecular interactions and events required for virus entry. We discuss some of the key biophysical principles underlying receptor-mediated virus entry and attempt to interpret the available data in the context of biophysical mechanisms. We also highlight crucial outstanding questions and consider how new tools might be applied to advance understanding of the biophysical properties of viral receptors and the dynamic events leading to virus entry.
Collapse
Affiliation(s)
| | - Mark Marsh
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
2
|
Glatzová D, Cebecauer M. Dual Role of CD4 in Peripheral T Lymphocytes. Front Immunol 2019; 10:618. [PMID: 31001252 PMCID: PMC6454155 DOI: 10.3389/fimmu.2019.00618] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/08/2019] [Indexed: 01/07/2023] Open
Abstract
The interaction of T-cell receptors (TCRs) with self- and non-self-peptides in the major histocompatibility complex (MHC) stimulates crucial signaling events, which in turn can activate T lymphocytes. A variety of accessory molecules further modulate T-cell signaling. Of these, the CD4 and CD8 coreceptors make the most critical contributions to T cell sensitivity in vivo. Whereas, CD4 function in T cell development is well-characterized, its role in peripheral T cells remains incompletely understood. It was originally suggested that CD4 stabilizes weak interactions between TCRs and peptides in the MHC and delivers Lck kinases to that complex. The results of numerous experiments support the latter role, indicating that the CD4-Lck complex accelerates TCR-triggered signaling and controls the availability of the kinase for TCR in the absence of the ligand. On the other hand, extremely low affinity of CD4 for MHC rules out its ability to stabilize the receptor-ligand complex. In this review, we summarize the current knowledge on CD4 in T cells, with a special emphasis on the spatio-temporal organization of early signaling events and the relevance for CD4 function. We further highlight the capacity of CD4 to interact with the MHC in the absence of TCR. It drives the adhesion of T cells to the cells that express the MHC. This process is facilitated by the CD4 accumulation in the tips of microvilli on the surface of unstimulated T cells. Based on these observations, we suggest an alternative model of CD4 role in T-cell activation.
Collapse
Affiliation(s)
- Daniela Glatzová
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czechia
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Marek Cebecauer
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
3
|
Nahabedian J, Sharma A, Kaczmarek ME, Wilkerson GK, Sawyer SL, Overbaugh J. Owl monkey CCR5 reveals synergism between CD4 and CCR5 in HIV-1 entry. Virology 2017; 512:180-186. [PMID: 28972927 DOI: 10.1016/j.virol.2017.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 01/22/2023]
Abstract
Studying HIV-1 replication in the presence of functionally related proteins from different species has helped define host determinants of HIV-1 infection. Humans and owl monkeys, but not macaques, encode a CD4 receptor that permits entry of transmissible HIV-1 variants due to a single residue difference. However, little is known about whether divergent CCR5 receptor proteins act as determinants of host-range. Here we show that both owl monkey (Aotus vociferans) CD4 and CCR5 receptors are functional for the entry of transmitted HIV-1 when paired with human versions of the other receptor. By contrast, the owl monkey CD4/CCR5 pair is generally a suboptimal receptor combination, although there is virus-specific variation in infection with owl monkey receptors. Introduction of the human residues 15Y and 16T within a sulfation motif into owl monkey CCR5 resulted in a gain of function. These findings suggest there is cross-talk between CD4 and CCR5 involving the sulfation motif.
Collapse
Affiliation(s)
- John Nahabedian
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States; Pathobiology, University of Washington, Seattle, WA, United States
| | - Amit Sharma
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Maryska E Kaczmarek
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States
| | - Greg K Wilkerson
- Department of Veterinary Sciences, Michale E. Keeling Center for Comparative Medicine and Research, University of Texas MD Anderson Cancer Center, Bastrop, TX, United States
| | - Sara L Sawyer
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States.
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States; Pathobiology, University of Washington, Seattle, WA, United States.
| |
Collapse
|
4
|
Mengistu M, Ray K, Lewis GK, DeVico AL. Antigenic properties of the human immunodeficiency virus envelope glycoprotein gp120 on virions bound to target cells. PLoS Pathog 2015; 11:e1004772. [PMID: 25807494 PMCID: PMC4373872 DOI: 10.1371/journal.ppat.1004772] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 03/02/2015] [Indexed: 12/17/2022] Open
Abstract
The HIV-1 envelope glycoprotein, gp120, undergoes multiple molecular interactions and structural rearrangements during the course of host cell attachment and viral entry, which are being increasingly defined at the atomic level using isolated proteins. In comparison, antigenic markers of these dynamic changes are essentially unknown for single HIV-1 particles bound to target cells. Such markers should indicate how neutralizing and/or non-neutralizing antibodies might interdict infection by either blocking infection or sensitizing host cells for elimination by Fc-mediated effector function. Here we address this deficit by imaging fluorescently labeled CCR5-tropic HIV-1 pseudoviruses using confocal and superresolution microscopy to track the exposure of neutralizing and non-neutralizing epitopes as they appear on single HIV-1 particles bound to target cells. Epitope exposure was followed under conditions permissive or non-permissive for viral entry to delimit changes associated with virion binding from those associated with post-attachment events. We find that a previously unexpected array of gp120 epitopes is exposed rapidly upon target cell binding. This array comprises both neutralizing and non-neutralizing epitopes, the latter being hidden on free virions yet capable of serving as potent targets for Fc-mediated effector function. Under non-permissive conditions for viral entry, both neutralizing and non-neutralizing epitope exposures were relatively static over time for the majority of bound virions. Under entry-permissive conditions, epitope exposure patterns changed over time on subsets of virions that exhibited concurrent variations in virion contents. These studies reveal that bound virions are distinguished by a broad array of both neutralizing and non-neutralizing gp120 epitopes that potentially sensitize a freshly engaged target cell for destruction by Fc-mediated effector function and/or for direct neutralization at a post-binding step. The elucidation of these epitope exposure patterns during viral entry will help clarify antibody-mediated inhibition of HIV-1 as it is measured in vitro and in vivo. A major strategy for blocking HIV-1 infection is to target antiviral antibodies or drugs to sites of vulnerability on the surface proteins of the virus. It is a relatively straightforward matter to explore these sites on the surfaces of free HIV-1 particles or on isolated viral envelope antigens. However, one difficulty presented by HIV-1 is that its surface proteins are flexible and change shape once the virus has attached to its host cell. To date, it has been difficult to predict how cell-bound HIV-1 exposes its sites of vulnerability. Yet the antiviral activities of certain antibodies indirectly suggest that there must be unique sites on cell-bound HIV-1 that are not found on free virus. Here, we use new techniques and tools to determine how HIV-1 exposes unique sites of vulnerability after attaching to host cells. We find that the virus exposes a remarkable array of these sites, including ones previously believed hidden. These exposure patterns explain the antiviral activities of various anti-HIV-1 antibodies and provide a new view of how HIV-1 might interact with the immune system. Our study also provides insights for how to target HIV-1 with antiviral antibodies, vaccines, or antiviral agents.
Collapse
Affiliation(s)
- Meron Mengistu
- The Institute of Human Virology of the University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (MM); (ALD)
| | - Krishanu Ray
- Center for Fluorescence Spectroscopy of the University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - George K. Lewis
- The Institute of Human Virology of the University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Anthony L. DeVico
- The Institute of Human Virology of the University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (MM); (ALD)
| |
Collapse
|
5
|
Kondo N, Marin M, Kim JH, Desai TM, Melikyan GB. Distinct requirements for HIV-cell fusion and HIV-mediated cell-cell fusion. J Biol Chem 2015; 290:6558-73. [PMID: 25589785 DOI: 10.1074/jbc.m114.623181] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Whether HIV-1 enters cells by fusing with the plasma membrane or with endosomes is a subject of active debate. The ability of HIV-1 to mediate fusion between adjacent cells, a process referred to as "fusion-from-without" (FFWO), shows that this virus can fuse with the plasma membrane. To compare FFWO occurring at the cell surface with HIV-cell fusion through a conventional entry route, we designed an experimental approach that enabled the measurements of both processes in the same sample. The following key differences were observed. First, a very small fraction of viruses fusing with target cells participated in FFWO. Second, whereas HIV-1 fusion with adherent cells was insensitive to actin inhibitors, post-CD4/coreceptor binding steps during FFWO were abrogated. A partial dependence of HIV-cell fusion on actin remodeling was observed in CD4(+) T cells, but this effect appeared to be due to the actin dependence of virus uptake. Third, deletion of the cytoplasmic tail of HIV-1 gp41 dramatically enhanced the ability of the virus to promote FFWO, while having a modest effect on virus-cell fusion. Distinct efficiencies and actin dependences of FFWO versus HIV-cell fusion are consistent with the notion that, except for a minor fraction of particles that mediate fusion between the plasma membranes of adjacent cells, HIV-1 enters through an endocytic pathway. We surmise, however, that cell-cell contacts enabling HIV-1 fusion with the plasma membrane could be favored at the sites of high density of target cells, such as lymph nodes.
Collapse
Affiliation(s)
- Naoyuki Kondo
- From the Division of Pediatric Infectious Diseases, Emory University Children's Center, Atlanta and
| | - Mariana Marin
- From the Division of Pediatric Infectious Diseases, Emory University Children's Center, Atlanta and
| | - Jeong Hwa Kim
- From the Division of Pediatric Infectious Diseases, Emory University Children's Center, Atlanta and
| | - Tanay M Desai
- From the Division of Pediatric Infectious Diseases, Emory University Children's Center, Atlanta and
| | - Gregory B Melikyan
- From the Division of Pediatric Infectious Diseases, Emory University Children's Center, Atlanta and Children's Healthcare of Atlanta, Atlanta, Georgia 30322
| |
Collapse
|
6
|
Wang M, Misakian M, He HJ, Bajcsy P, Abbasi F, Davis JM, Cole KD, Turko IV, Wang L. Quantifying CD4 receptor protein in two human CD4+ lymphocyte preparations for quantitative flow cytometry. Clin Proteomics 2014; 11:43. [PMID: 25593565 PMCID: PMC4277840 DOI: 10.1186/1559-0275-11-43] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 11/05/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND In our previous study that characterized different human CD4+ lymphocyte preparations, it was found that both commercially available cryopreserved peripheral blood mononuclear cells (PBMC) and a commercially available lyophilized PBMC (Cyto-Trol™) preparation fulfilled a set of criteria for serving as biological calibrators for quantitative flow cytometry. However, the biomarker CD4 protein expression level measured for T helper cells from Cyto-Trol was about 16% lower than those for cryopreserved PBMC and fresh whole blood using flow cytometry and mass cytometry. A primary reason was hypothesized to be due to steric interference in anti- CD4 antibody binding to the smaller sized lyophilized control cells. METHOD Targeted multiple reaction monitoring (MRM) mass spectrometry (MS) is used to quantify the copy number of CD4 receptor protein per CD4+ lymphocyte. Scanning electron microscopy (SEM) is utilized to assist searching the underlying reasons for the observed difference in CD4 receptor copy number per cell determined by MRM MS and CD4 expression measured previously by flow cytometry. RESULTS The copy number of CD4 receptor proteins on the surface of the CD4+ lymphocyte in cryopreserved PBMCs and in lyophilized control cells is determined to be (1.45 ± 0.09) × 10(5) and (0.85 ± 0.11) × 10(5), respectively, averaged over four signature peptides using MRM MS. In comparison with cryopreserved PBMCs, there are more variations in the CD4 copy number in lyophilized control cells determined based on each signature peptide. SEM images of CD4+ lymphocytes from lyophilized control cells are very different when compared to the CD4+ T cells from whole blood and cryopreserved PBMC. CONCLUSION Because of the lyophilization process applied to Cyto-Trol control cells, a lower CD4 density value, defined as the copy number of CD4 receptors per CD4+ lymphocyte, averaged over three different production lots is most likely explained by the loss of the CD4 receptors on damaged and/or broken microvilli where CD4 receptors reside. Steric hindrance of antibody binding and the association of CD4 receptors with other biomolecules likely contribute significantly to the nearly 50% lower CD4 receptor density value for cryopreserved PBMC determined from flow cytometry compared to the value obtained from MRM MS.
Collapse
Affiliation(s)
- Meiyao Wang
- />Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD 20850 USA
- />Biomolecular Measurement Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899 USA
| | - Martin Misakian
- />Quantum Measurements Division, NIST, 100 Bureau Drive, Stop 8312, Gaithersburg, MD 20899 USA
| | - Hua-Jun He
- />Biosystems and Biomaterials Division, NIST, 100 Bureau Drive, Stop 8312, Gaithersburg, MD 20899 USA
| | - Peter Bajcsy
- />Software and Systems Division, NIST, 100 Bureau Drive, Stop 8312, Gaithersburg, MD 20899 USA
| | - Fatima Abbasi
- />Laboratory of Stem Cell Biology, Cellular and Tissue Therapy Branch, Division of Cell and Gene Therapies, CBER FDA, 8800 Rockville Pike, Bethesda, MD 20892 USA
| | - Jeffrey M Davis
- />Materials Measurement Science Division, NIST, 100 Bureau Drive, Stop 8312, Gaithersburg, MD 20899 USA
| | - Kenneth D Cole
- />Biosystems and Biomaterials Division, NIST, 100 Bureau Drive, Stop 8312, Gaithersburg, MD 20899 USA
| | - Illarion V Turko
- />Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD 20850 USA
- />Biomolecular Measurement Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899 USA
| | - Lili Wang
- />Biosystems and Biomaterials Division, NIST, 100 Bureau Drive, Stop 8312, Gaithersburg, MD 20899 USA
| |
Collapse
|
7
|
Guenzel CA, Hérate C, Benichou S. HIV-1 Vpr-a still "enigmatic multitasker". Front Microbiol 2014; 5:127. [PMID: 24744753 PMCID: PMC3978352 DOI: 10.3389/fmicb.2014.00127] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 03/12/2014] [Indexed: 11/13/2022] Open
Abstract
Like other HIV-1 auxiliary proteins, Vpr is conserved within all the human (HIV-1, HIV-2) and simian (SIV) immunodeficiency viruses. However, Vpr and homologous HIV-2, and SIV Vpx are the only viral auxiliary proteins specifically incorporated into virus particles through direct interaction with the Gag precursor, indicating that this presence in the core of the mature virions is mainly required for optimal establishment of the early steps of the virus life cycle in the newly infected cell. In spite of its small size, a plethora of effects and functions have been attributed to Vpr, including induction of cell cycle arrest and apoptosis, modulation of the fidelity of reverse transcription, nuclear import of viral DNA in macrophages and other non-dividing cells, and transcriptional modulation of viral and host cell genes. Even if some more recent studies identified a few cellular targets that HIV-1 Vpr may utilize in order to perform its different tasks, the real role and functions of Vpr during the course of natural infection are still enigmatic. In this review, we will summarize the main reported functions of HIV-1 Vpr and their significance in the context of the viral life cycle.
Collapse
Affiliation(s)
- Carolin A Guenzel
- Cochin Institute, INSERM U1016, Centre National de la Recherche Scientifique UMR8104, Université Paris-Descartes Paris, France
| | - Cécile Hérate
- Cochin Institute, INSERM U1016, Centre National de la Recherche Scientifique UMR8104, Université Paris-Descartes Paris, France
| | - Serge Benichou
- Cochin Institute, INSERM U1016, Centre National de la Recherche Scientifique UMR8104, Université Paris-Descartes Paris, France
| |
Collapse
|
8
|
Flanagan CA. Receptor Conformation and Constitutive Activity in CCR5 Chemokine Receptor Function and HIV Infection. ADVANCES IN PHARMACOLOGY 2014; 70:215-63. [DOI: 10.1016/b978-0-12-417197-8.00008-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Abstract
Recent advances in fluorescence microscopy provided tools for the investigation and the analysis of the viral replication steps in the cellular context. In the HIV field, the current visualization systems successfully achieve the fluorescent labeling of the viral envelope and proteins, but not the genome. Here, we developed a system able to visualize the proviral DNA of HIV-1 through immunofluorescence detection of repair foci for DNA double-strand breaks specifically induced in the viral genome by the heterologous expression of the I-SceI endonuclease. The system for Single-Cell Imaging of HIV-1 Provirus, named SCIP, provides the possibility to individually track integrated-viral DNA within the nuclei of infected cells. In particular, SCIP allowed us to perform a topological analysis of integrated viral DNA revealing that HIV-1 preferentially integrates in the chromatin localized at the periphery of the nuclei.
Collapse
|
10
|
Measles virus transmission from dendritic cells to T cells: formation of synapse-like interfaces concentrating viral and cellular components. J Virol 2012; 86:9773-81. [PMID: 22761368 DOI: 10.1128/jvi.00458-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Transmission of measles virus (MV) to T cells by its early CD150(+) target cells is considered to be crucial for viral dissemination within the hematopoietic compartment. Using cocultures involving monocyte-derived dendritic cells (DCs) and T cells, we now show that T cells acquire MV most efficiently from cis-infected DCs rather than DCs having trapped MV (trans-infection). Transmission involves interactions of the viral glycoprotein H with its receptor CD150 and is therefore more efficient to preactivated T cells. In addition to rare association with actin-rich filopodial structures, the formation of contact interfaces consistent with that of virological synapses (VS) was observed where viral proteins accumulated and CD150 was redistributed in an actin-dependent manner. In addition to these molecules, activated LFA-1, DC-SIGN, CD81, and phosphorylated ezrin-radixin-moesin proteins, which also mark the HIV VS, redistributed toward the MV VS. Most interestingly, moesin and substance P receptor, both implicated earlier in assisting MV entry or cell-to-cell transmission, also partitioned to the transmission structure. Altogether, the MV VS shares important similarities to the HIV VS in concentrating cellular components potentially regulating actin dynamics, conjugate stability, and membrane fusion as required for efficient entry of MV into target T cells.
Collapse
|
11
|
Bennett LD, Fox JM, Signoret N. Mechanisms regulating chemokine receptor activity. Immunology 2011; 134:246-56. [PMID: 21977995 PMCID: PMC3209565 DOI: 10.1111/j.1365-2567.2011.03485.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 07/04/2011] [Accepted: 07/12/2011] [Indexed: 12/21/2022] Open
Abstract
Co-ordinated movement and controlled positioning of leucocytes is key to the development, maintenance and proper functioning of the immune system. Chemokines and their receptors play an essential role in these events by mediating directed cell migration, often referred to as chemotaxis. The chemotactic property of these molecules is also thought to contribute to an array of pathologies where inappropriate recruitment of specific chemokine receptor-expressing leucocytes is observed, including cancer and inflammatory diseases. As a result, chemokine receptors have become major targets for therapeutic intervention, and during the past 15 years much research has been devoted to understanding the regulation of their biological activity. From these studies, processes which govern the availability of functional chemokine receptors at the cell surface have emerged as playing a central role. In this review, we summarize and discuss current knowledge on the molecular mechanisms contributing to the regulation of chemokine receptor surface expression, from gene transcription and protein degradation to post-translational modifications, multimerization, intracellular transport and cross-talk.
Collapse
Affiliation(s)
- Laura D Bennett
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York, UK
| | | | | |
Collapse
|
12
|
Multiple CCR5 conformations on the cell surface are used differentially by human immunodeficiency viruses resistant or sensitive to CCR5 inhibitors. J Virol 2011; 85:8227-40. [PMID: 21680525 DOI: 10.1128/jvi.00767-11] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Resistance to small-molecule CCR5 inhibitors arises when HIV-1 variants acquire the ability to use inhibitor-bound CCR5 while still recognizing free CCR5. Two isolates, CC101.19 and D1/85.16, became resistant via four substitutions in the gp120 V3 region and three in the gp41 fusion peptide (FP), respectively. The binding characteristics of a panel of monoclonal antibodies (MAbs) imply that several antigenic forms of CCR5 are expressed at different levels on the surfaces of U87-CD4-CCR5 cells and primary CD4(+) T cells, in a cell-type-dependent manner. CCR5 binding and HIV-1 infection inhibition experiments suggest that the two CCR5 inhibitor-resistant viruses altered their interactions with CCR5 in different ways. As a result, both mutants became generally more sensitive to inhibition by CCR5 MAbs, and the FP mutant is specifically sensitive to a MAb that stains discrete cell surface clusters of CCR5 that may correspond to lipid rafts. We conclude that some MAbs detect different antigenic forms of CCR5 and that inhibitor-sensitive and -resistant viruses can use these CCR5 forms differently for entry in the presence or absence of CCR5 inhibitors.
Collapse
|
13
|
Mulampaka SN, Dixit NM. Estimating the threshold surface density of Gp120-CCR5 complexes necessary for HIV-1 envelope-mediated cell-cell fusion. PLoS One 2011; 6:e19941. [PMID: 21647388 PMCID: PMC3103592 DOI: 10.1371/journal.pone.0019941] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 04/06/2011] [Indexed: 11/19/2022] Open
Abstract
Reduced expression of CCR5 on target CD4(+) cells lowers their susceptibility to infection by R5-tropic HIV-1, potentially preventing transmission of infection and delaying disease progression. Binding of the HIV-1 envelope (Env) protein gp120 with CCR5 is essential for the entry of R5 viruses into target cells. The threshold surface density of gp120-CCR5 complexes that enables HIV-1 entry remains poorly estimated. We constructed a mathematical model that mimics Env-mediated cell-cell fusion assays, where target CD4(+)CCR5(+) cells are exposed to effector cells expressing Env in the presence of a coreceptor antagonist and the fraction of target cells fused with effector cells is measured. Our model employs a reaction network-based approach to describe protein interactions that precede viral entry coupled with the ternary complex model to quantify the allosteric interactions of the coreceptor antagonist and predicts the fraction of target cells fused. By fitting model predictions to published data of cell-cell fusion in the presence of the CCR5 antagonist vicriviroc, we estimated the threshold surface density of gp120-CCR5 complexes for cell-cell fusion as ∼20 µm(-2). Model predictions with this threshold captured data from independent cell-cell fusion assays in the presence of vicriviroc and rapamycin, a drug that modulates CCR5 expression, as well as assays in the presence of maraviroc, another CCR5 antagonist, using sixteen different Env clones derived from transmitted or early founder viruses. Our estimate of the threshold surface density of gp120-CCR5 complexes necessary for HIV-1 entry thus appears robust and may have implications for optimizing treatment with coreceptor antagonists, understanding the non-pathogenic infection of non-human primates, and designing vaccines that suppress the availability of target CD4(+)CCR5(+) cells.
Collapse
Affiliation(s)
| | - Narendra M. Dixit
- Department of Chemical Engineering, Indian
Institute of Science, Bangalore, India
- Bioinformatics Centre, Indian Institute of
Science, Bangalore, India
| |
Collapse
|
14
|
Abstract
Cellular life can be described as a dynamic equilibrium of a highly complex network of interacting molecules. For this reason, it is no longer sufficient to “only” know the identity of the participants in a cellular process, but questions such as where, when, and for how long also have to be addressed to understand the mechanism being investigated. Additionally, ensemble measurements may not sufficiently describe individual steps of molecular mobility, spatial-temporal resolution, kinetic parameters, and geographical mapping. It is vital to investigate where individual steps exactly occur to enhance our understanding of the living cell. The nucleus, home too many highly complex multi-order processes, such as replication, transcription, splicing, etc., provides a complicated, heterogeneous landscape. Its dynamics were studied to a new level of detail by fluorescence correlation spectroscopy (FCS). Single-molecule tracking, while still in its infancy in cell biology, is becoming a more and more attractive method to deduce key elements of this organelle. Here we discuss the potential of tracking single RNAs and proteins in the nucleus. Their dynamics, localization, and interaction rates will be vital to our understanding of cellular life. To demonstrate this, we provide a review of the HIV life cycle, which is an extremely elegant balance of nuclear and cytoplasmic functions and provides an opportunity to study mechanisms deeply integrated within the structure of the nucleus. In summary, we aim to present a specific, dynamic view of nuclear cellular life based on single molecule and FCS data and provide a prospective for the future.
Collapse
|
15
|
Gibbons MM, Chou T, D'Orsogna MR. Diffusion-dependent mechanisms of receptor engagement and viral entry. J Phys Chem B 2010; 114:15403-12. [PMID: 21038861 DOI: 10.1021/jp1080725] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enveloped viruses attach to host cells by binding to receptors on the cell surface. For many viruses, entry occurs via membrane fusion after a sufficient number of receptors have engaged ligand proteins on the virion. Under conditions where the cell surface receptor densities are low, recruitment of receptors may be limited by diffusion rather than by receptor-ligand interactions. We present a receptor-binding model that includes the effects of receptor availability at the viral binding site. The receptor binding and unbinding kinetics are coupled to receptor diffusion across the cell membrane. We find numerical solutions to our model and analyze the viral entry probabilities and the mean times to entry as functions of receptor concentration, receptor diffusivity, receptor binding stoichiometry, receptor detachment rates, and virus degradation/detachment rates. We also show how entry probabilities and times differ when receptors bind randomly or sequentially to the binding sites on the viral glycoprotein spikes. Our results provide general insight into the biophysical transport mechanisms that may arise in viral attachment and entry.
Collapse
Affiliation(s)
- Melissa M Gibbons
- Department of Biomathematics, University of California, Los Angeles, Los Angeles, California, USA
| | | | | |
Collapse
|
16
|
Gulzar N, Shroff A, Buberoglu B, Klonowska D, Kim JE, Copeland KFT. Properties of HTLV-I transformed CD8+ T-cells in response to HIV-1 infection. Virology 2010; 406:302-11. [PMID: 20708209 DOI: 10.1016/j.virol.2010.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 05/06/2010] [Accepted: 07/20/2010] [Indexed: 10/19/2022]
Abstract
HIV-1 infection studies of primary CD8(+) T-cells are hampered by difficulty in obtaining a significant number of targets for infection and low levels of productive infection. Further, there exists a paucity of CD8-expressing T-cell lines to address questions pertaining to the study of CD8(+) T-cells in the context of HIV-1 infection. In this study, a set of CD8(+) T-cell clones were originated through HTLV-I transformation in vitro, and the properties of these cells were examined. The clones were susceptible to T-cell tropic strains of the virus and exhibited HIV-1 production 20-fold greater than primary CD4(+) T-cells. Productive infection resulted in a decrease in expression of CD8 and CXCR4 molecules on the surface of the CD8(+) T-cell clones and antibodies to these molecules abrogated viral binding and replication. These transformed cells provide an important tool in the study of CD8(+) T-cells and may provide important insights into the mechanism(s) behind HIV-1 induced CD8(+) T-cell dysfunction.
Collapse
Affiliation(s)
- N Gulzar
- National HIV and Retrovirology Laboratories, Public Health Agency of Canada, Ottawa, Canada
| | | | | | | | | | | |
Collapse
|
17
|
CCR5: From Natural Resistance to a New Anti-HIV Strategy. Viruses 2010; 2:574-600. [PMID: 21994649 PMCID: PMC3185609 DOI: 10.3390/v2020574] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 12/22/2009] [Accepted: 02/04/2010] [Indexed: 02/08/2023] Open
Abstract
The C-C chemokine receptor type 5 (CCR5) is a key player in HIV infection due to its major involvement in the infection process. Investigations into the role of the CCR5 coreceptor first focused on its binding to the virus and the molecular mechanisms leading to the entry and spread of HIV. The identification of naturally occurring CCR5 mutations has allowed scientists to address the CCR5 molecule as a promising target to prevent or limit HIV infection in vivo. Naturally occurring CCR5-specific antibodies have been found in exposed but uninfected people, and in a subset of HIV seropositive people who show long-term control of the infection. This suggests that natural autoimmunity to the CCR5 coreceptor exists and may play a role in HIV control. Such natural immunity has prompted strategies aimed at achieving anti-HIV humoral responses through CCR5 targeting, which will be described here.
Collapse
|
18
|
|
19
|
Barrero-Villar M, Cabrero JR, Gordón-Alonso M, Barroso-González J, Alvarez-Losada S, Muñoz-Fernández MA, Sánchez-Madrid F, Valenzuela-Fernández A. Moesin is required for HIV-1-induced CD4-CXCR4 interaction, F-actin redistribution, membrane fusion and viral infection in lymphocytes. J Cell Sci 2008; 122:103-13. [PMID: 19066282 DOI: 10.1242/jcs.035873] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus 1 (HIV-1) envelope regulates the initial attachment of viral particles to target cells through its association with CD4 and either CXCR4 or CCR5. Although F-actin is required for CD4 and CXCR4 redistribution, little is known about the molecular mechanisms underlying this fundamental process in HIV infection. Using CD4(+) CXCR4(+) permissive human leukemic CEM T cells and primary lymphocytes, we have investigated whether HIV-1 Env might promote viral entry and infection by activating ERM (ezrin-radixin-moesin) proteins to regulate F-actin reorganization and CD4/CXCR4 co-clustering. The interaction of the X4-tropic protein HIV-1 gp120 with CD4 augments ezrin and moesin phosphorylation in human permissive T cells, thereby regulating ezrin-moesin activation. Moreover, the association and clustering of CD4-CXCR4 induced by HIV-1 gp120 requires moesin-mediated anchoring of actin in the plasma membrane. Suppression of moesin expression with dominant-negative N-moesin or specific moesin silencing impedes reorganization of F-actin and HIV-1 entry and infection mediated by the HIV-1 envelope protein complex. Therefore, we propose that activated moesin promotes F-actin redistribution and CD4-CXCR4 clustering and is also required for efficient X4-tropic HIV-1 infection in permissive lymphocytes.
Collapse
Affiliation(s)
- Marta Barrero-Villar
- Servicio de Inmunología, Hospital Universitario de La Princesa, 28006 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Live cell imaging of the HIV-1 life cycle. Trends Microbiol 2008; 16:580-7. [PMID: 18977142 DOI: 10.1016/j.tim.2008.09.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 09/09/2008] [Accepted: 09/23/2008] [Indexed: 10/21/2022]
Abstract
Technology developed in the past 10 years has dramatically increased the ability of researchers to directly visualize and measure various stages of the HIV type 1 (HIV-1) life cycle. In many cases, imaging-based approaches have filled critical gaps in our understanding of how certain aspects of viral replication occur in cells. Specifically, live cell imaging has allowed a better understanding of dynamic, transient events that occur during HIV-1 replication, including the steps involved in viral fusion, trafficking of the viral nucleoprotein complex in the cytoplasm and even the nucleus during infection and the formation of new virions from an infected cell. In this review, we discuss how researchers have exploited fluorescent microscopy methodologies to observe and quantify these events occurring during the replication of HIV-1 in living cells.
Collapse
|
21
|
Rawat SS, Zimmerman C, Johnson BT, Cho E, Lockett SJ, Blumenthal R, Puri A. Restricted lateral mobility of plasma membrane CD4 impairs HIV-1 envelope glycoprotein mediated fusion. Mol Membr Biol 2008; 25:83-94. [PMID: 18097956 DOI: 10.1080/09687680701613713] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We investigated the effect of receptor mobility on HIV-1 envelope glycoprotein (Env)-triggered fusion using B16 mouse melanoma cells that are engineered to express CD4 and CXCR4 or CCR5. These engineered cells are resistant to fusion mediated CD4-dependent HIV-1 envelope glycoprotein. Receptor mobility was measured by fluorescence recovery after photobleaching (FRAP) using either fluorescently-labeled antibodies or transient expression of GFP-tagged receptors in the cells. No significant differences between B16 and NIH3T3 (fusion-permissive) cells were seen in lateral mobility of CCR5 or lipid probes. By contrast CD4 mobility in B16 cells was about seven-fold reduced compared to its mobility in fusion-permissive NIH3T3 cells. However, a CD4 mutant (RA5) that localizes to non-raft membrane microdomains exhibited a three-fold increased mobility in B16 cells as compared with WT-CD4. Interestingly, the B16 cells expressing the RA5 mutant (but not the wild type CD4) and coreceptors supported HIV-1 Env-mediated fusion. Our data demonstrate that the lateral mobility of CD4 is an important determinant of HIV-1 fusion/entry.
Collapse
Affiliation(s)
- Satinder S Rawat
- CCRNP, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702-1201, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Kubo Y, Yoshii H, Kamiyama H, Tominaga C, Tanaka Y, Sato H, Yamamoto N. Ezrin, Radixin, and Moesin (ERM) proteins function as pleiotropic regulators of human immunodeficiency virus type 1 infection. Virology 2008; 375:130-40. [PMID: 18295815 DOI: 10.1016/j.virol.2008.01.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 11/21/2007] [Accepted: 01/30/2008] [Indexed: 11/24/2022]
Abstract
Ezrin, radixin, and moesin (ERM) proteins supply functional linkage between integral membrane proteins and cytoskeleton in mammalian cells to regulate membrane protein dynamisms and cytoskeleton rearrangement. To assess potential role of the ERM proteins in HIV-1 lifecycle, we examined if suppression of ERM function in human cells expressing HIV-1 infection receptors influences HIV-1 envelope (Env)-mediated HIV-1-vector transduction and cell-cell fusion. Expression of an ezrin dominant negative mutant or knockdown of ezrin, radixin, or moesin with siRNA uniformly decreased transduction titers of HIV-1 vectors having X4-tropic Env. In contrast, transduction titers of R5-tropic Env HIV-1 vectors were decreased only by radixin knockdown: ezrin knockdown had no detectable effects and moesin knockdown rather increased transduction titer. Each of the ERM suppressions had no detectable effects on cell surface expression of CD4, CCR5, and CXCR4 or VSV-Env-mediated HIV-1 vector transductions. Finally, the individual knockdown of ERM mRNAs uniformly decreased efficiency of cell-cell fusion mediated by X4- or R5-tropic Env and HIV-1 infection receptors. These results suggest that (i) the ERM proteins function as positive regulators of infection by X4-tropic HIV-1, (ii) moesin additionally functions as a negative regulator of R5-tropic HIV-1 virus infection at the early step(s) after the membrane fusion, and (iii) receptor protein dynamisms are regulated differently in R5- and X4-tropic HIV-1 infections.
Collapse
Affiliation(s)
- Yoshinao Kubo
- Department of AIDS Research, Institute of Tropical Medicine, Nagasaki University, Nagasaki, National Institute of Infectious Diseases, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
23
|
Sirois M, Robitaille L, Sasik R, Estaquier J, Fortin J, Corbeil J. R5 and X4 HIV viruses differentially modulate host gene expression in resting CD4+ T cells. AIDS Res Hum Retroviruses 2008; 24:485-93. [PMID: 18327980 DOI: 10.1089/aid.2007.0120] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
During HIV-1 infection, distinct biological phenotypes are observed between R5 and X4 HIV-1 strains with respect to pathogenicity and tropism. In this study, temporal changes of the expression levels of the complete human transcriptome, representing 47,000 well-characterized human transcripts, were monitored in the first 24 h during HIV-1 R5 and X4 exposition in resting primary CD4(+) T cells. We provide evidence that R5 viruses modulate, to a greater extent than X4 viruses, the level of mRNA of the resting CD4(+) T cells. Indeed, modulation of the TCR signaling and the actin organization involving the WAVE/ABI complex and the ARP2/3 complex appeared to be associated with R5 exposition. The data suggest that the ability of R5 viruses to modulate TCR-mediated actin polymerization and signaling creates a favorable environment for CD4(+) T cell activation after TCR stimulation and may partly explain why R5 is the primary strain observed early in the natural infection process.
Collapse
Affiliation(s)
- Mélissa Sirois
- Infectious Disease Research Center, CHUL Research Center and Laval University, Québec, Canada, G1V 4G2
| | - Lynda Robitaille
- Infectious Disease Research Center, CHUL Research Center and Laval University, Québec, Canada, G1V 4G2
| | - Roman Sasik
- Biogem Facility, University of California, San Diego (UCSD), La Jolla, California 92093
| | - Jérôme Estaquier
- Unité de Physiopathologie des Infections Lentivirales, Institut Pasteur, 75724 Paris cedex 15, France
| | - Jessyka Fortin
- Infectious Disease Research Center, CHUL Research Center and Laval University, Québec, Canada, G1V 4G2
| | - Jacques Corbeil
- Infectious Disease Research Center, CHUL Research Center and Laval University, Québec, Canada, G1V 4G2
| |
Collapse
|
24
|
Campbell EM, Perez O, Anderson JL, Hope TJ. Visualization of a proteasome-independent intermediate during restriction of HIV-1 by rhesus TRIM5alpha. ACTA ACUST UNITED AC 2008; 180:549-61. [PMID: 18250195 PMCID: PMC2234241 DOI: 10.1083/jcb.200706154] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
TRIM5 proteins constitute a class of restriction factors that prevent host cell infection by retroviruses from different species. TRIM5alpha restricts retroviral infection early after viral entry, before the generation of viral reverse transcription products. However, the underlying restriction mechanism remains unclear. In this study, we show that during rhesus macaque TRIM5alpha (rhTRIM5alpha)-mediated restriction of HIV-1 infection, cytoplasmic HIV-1 viral complexes can associate with concentrations of TRIM5alpha protein termed cytoplasmic bodies. We observe a dynamic interaction between rhTRIM5alpha and cytoplasmic HIV-1 viral complexes, including the de novo formation of rhTRIM5alpha cytoplasmic body-like structures around viral complexes. We observe that proteasome inhibition allows HIV-1 to remain stably sequestered into large rhTRIM5alpha cytoplasmic bodies, preventing the clearance of HIV-1 viral complexes from the cytoplasm and revealing an intermediate in the restriction process. Furthermore, we can measure no loss of capsid protein from viral complexes arrested at this intermediate step in restriction, suggesting that any rhTRIM5alpha-mediated loss of capsid protein requires proteasome activity.
Collapse
Affiliation(s)
- Edward M Campbell
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
25
|
Campbell EM, Perez O, Melar M, Hope TJ. Labeling HIV-1 virions with two fluorescent proteins allows identification of virions that have productively entered the target cell. Virology 2007; 360:286-93. [PMID: 17123568 PMCID: PMC1885464 DOI: 10.1016/j.virol.2006.10.025] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 07/31/2006] [Accepted: 10/04/2006] [Indexed: 11/23/2022]
Abstract
GFP-Vpr labeled HIV-1 virions have provided a method to visually examine the interactions between the virus and target cell during infection. However, existing methods to discriminate between virions that have been non-specifically endocytosed from those that have productively entered the host cell cytoplasm have remained problematic. Therefore, we examined the ability of a series of membrane-targeted fluorescent fusion protein constructs to be incorporated into virions. We find that a fluorescent protein fusion targeted to the plasma membrane by the addition of the N-terminal 15 amino acid sequence of c-Src (S15) is efficiently packaged into HIV virions. Using fluorescent proteins fused to this sequence, we have generated virions dually labeled with S15-mCherry and GFP-Vpr. Importantly, we can detect the loss of this S15-mCherry membrane signal following fusion. After infection with VSV-g pseudotyped HIV virions, we find a measurable, specific loss of membrane label during infection. This loss of fluorescence is not observed when fusion is prevented using bafilomycin A. This increased ability to discriminate between non-productively endocytosed virions and those actively undergoing steps in the infectious process will facilitate efforts to examine early steps in infection microscopically.
Collapse
Affiliation(s)
- Edward M. Campbell
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Omar Perez
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, 60612, USA
| | - Marta Melar
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Thomas J. Hope
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
26
|
Melar M, Ott DE, Hope TJ. Physiological levels of virion-associated human immunodeficiency virus type 1 envelope induce coreceptor-dependent calcium flux. J Virol 2006; 81:1773-85. [PMID: 17121788 PMCID: PMC1797554 DOI: 10.1128/jvi.01316-06] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Human immunodeficiency virus (HIV) entry into target cells requires the engagement of receptor and coreceptor by envelope glycoprotein (Env). Coreceptors CCR5 and CXCR4 are chemokine receptors that generate signals manifested as calcium fluxes in response to binding of the appropriate ligand. It has previously been shown that engagement of the coreceptors by HIV Env can also generate Ca(2+) fluxing. Since the sensitivity and therefore the physiological consequence of signaling activation in target cells is not well understood, we addressed it by using a microscopy-based approach to measure Ca(2+) levels in individual CD4(+) T cells in response to low Env concentrations. Monomeric Env subunit gp120 and virion-bound Env were able to activate a signaling cascade that is qualitatively different from the one induced by chemokines. Env-mediated Ca(2+) fluxing was coreceptor mediated, coreceptor specific, and CD4 dependent. Comparison of the observed virion-mediated Ca(2+) fluxing with the exact number of viral particles revealed that the viral threshold necessary for coreceptor activation of signaling in CD4(+) T cells was quite low, as few as two virions. These results indicate that the physiological levels of virion binding can activate signaling in CD4(+) T cells in vivo and therefore might contribute to HIV-induced pathogenesis.
Collapse
Affiliation(s)
- Marta Melar
- Northwestern University, Department of Cell and Molecular Biology, Feinberg School of Medicine, Ward 8-140, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | | | | |
Collapse
|
27
|
Gaibelet G, Planchenault T, Mazères S, Dumas F, Arenzana-Seisdedos F, Lopez A, Lagane B, Bachelerie F. CD4 and CCR5 constitutively interact at the plasma membrane of living cells: a confocal fluorescence resonance energy transfer-based approach. J Biol Chem 2006; 281:37921-9. [PMID: 17035237 DOI: 10.1074/jbc.m607103200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus entry into target cells requires sequential interactions of the viral glycoprotein envelope gp120 with CD4 and chemokine receptors CCR5 or CXCR4. CD4 interaction with the chemokine receptor is suggested to play a critical role in this process but to what extent such a mechanism takes place at the surface of target cells remains elusive. To address this issue, we used a confocal microspectrofluorimetric approach to monitor fluorescence resonance energy transfer at the cell plasma membrane between enhanced blue and green fluorescent proteins fused to CD4 and CCR5 receptors. We developed an efficient fluorescence resonance energy transfer analysis from experiments carried out on individual cells, revealing that receptors constitutively interact at the plasma membrane. Binding of R5-tropic HIV gp120 stabilizes these associations thus highlighting that ternary complexes between CD4, gp120, and CCR5 occur before the fusion process starts. Furthermore, the ability of CD4 truncated mutants and CCR5 ligands to prevent association of CD4 with CCR5 reveals that this interaction notably engages extracellular parts of receptors. Finally, we provide evidence that this interaction takes place outside raft domains of the plasma membrane.
Collapse
Affiliation(s)
- Gérald Gaibelet
- IPBS/CNRS, 205 Route de Narbonne, 31062 Toulouse cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Warrilow D, Gardner J, Darnell GA, Suhrbier A, Harrich D. HIV type 1 inhibition by protein kinase C modulatory compounds. AIDS Res Hum Retroviruses 2006; 22:854-64. [PMID: 16989610 DOI: 10.1089/aid.2006.22.854] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The dichotomous effects of the protein kinase C (PKC) modulatory compounds 12-myristate 13-acetate (PMA), prostratin, and ingenol 3-angelate (I3A) on HIV-1 infection were investigated. PKC modulatory compounds were shown to be potent activators of cells latently infected with HIV-1 (I3A > prostratin). Conversely, PKC modulatory compounds inhibited infection of indicator cells (MAGI) with CXCR4-tropic HIV-1 (PMA > I3A > prostratin), and I3A also inhibited infection with CCR5-tropic virus (AD8-1). Pretreatment with the PKC inhibitors prior to treatment with either I3A or PMA resulted in increased infection, indicating inhibition is PKC mediated. Cell infections suggested that I3A rapidly inhibited the virus from infecting cells at an early point in infection. This observation was supported by the demonstration of inhibition at or before the synthesis of early reverse transcription products, and the inability of these compounds to block vesicular stomatitis virus (VSV) pseudotyped HIV-1 particles. As has already been shown with prostratin, treatment with I3A resulted in down-regulation of the CD4 receptor and CXCR4 coreceptor suggesting that this was a contributor to the infection inhibition. Intriguingly, 48 h pretreatment of unstimulated peripheral blood mononuclear cells (PBMC) prior to infection resulted in abrogation of virus production at concentrations where receptor/ coreceptor levels were not significantly reduced. This result hints at the possibility of inhibition by a PKC modulatory compound of an early pathway of viral entry in PBMC.
Collapse
Affiliation(s)
- David Warrilow
- Division of Immunology and Infectious Disease, Queensland Institute of Medical Research, Brisbane, Queensland 4006, Australia
| | | | | | | | | |
Collapse
|
29
|
Fackler OT, Kräusslich HG. Interactions of human retroviruses with the host cell cytoskeleton. Curr Opin Microbiol 2006; 9:409-15. [PMID: 16820319 DOI: 10.1016/j.mib.2006.06.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Accepted: 06/20/2006] [Indexed: 12/23/2022]
Abstract
As obligate cell parasites, viruses have evolved into professional manipulators of host cell functions. Accordingly, viruses often remodel the cytoskeleton of target cells in order to convert one of the cell's barriers to viral replication into a vehicle for the virus that facilitates the generation of infectious progeny. Surprisingly little is known about the mechanisms employed by two major human pathogens, HIV and human T-cell leukaemia virus (HTLV), to exploit host cell cytoskeletal dynamics. New studies have begun to unravel how these retroviruses remodel cytoskeletal structures to facilitate entry into, transport within and egress from target cells. Exciting progress has been made in understanding how HIV and HTLV polarize actin and also control microtubule organization to spread from donor to target cells in close cell-contacts termed virological synapses.
Collapse
Affiliation(s)
- Oliver T Fackler
- Department of Virology, University of Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
30
|
Henderson HI, Hope TJ. The temperature arrested intermediate of virus-cell fusion is a functional step in HIV infection. Virol J 2006; 3:36. [PMID: 16725045 PMCID: PMC1482684 DOI: 10.1186/1743-422x-3-36] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2006] [Accepted: 05/25/2006] [Indexed: 11/10/2022] Open
Abstract
HIV entry occurs via membrane-mediated fusion of virus and target cells. Interactions between gp120 and cellular co-receptors lead to both the formation of fusion pores and release of the HIV genome into target cells. Studies using cell-cell fusion assays have demonstrated that a temperature-arrested state (TAS) can generate a stable intermediate in fusion related events. Other studies with MLV pseudotyped with HIV envelope also found that a temperature sensitive intermediate could be generated as revealed by the loss of a fluorescently labeled membrane. However, such an intermediate has never been analyzed in the context of virus infection. Therefore, we used virus-cell infection with replication competent HIV to gain insights into virus-cell fusion. We find that the TAS is an intermediate in the process culminating in the HIV infection of a target cell. In the virion-cell TAS, CD4 has been engaged, the heptad repeats of gp41 are exposed and the complex is kinetically predisposed to interact with coreceptor to complete the fusion event leading to infection.
Collapse
Affiliation(s)
- Hamani I Henderson
- University of Illinois @ Chicago, Department of Microbiology and Immunology, Chicago, IL 60612, USA
| | - Thomas J Hope
- Northwestern University Department of Cell and Molecular Biology, Chicago, IL 60611, USA
| |
Collapse
|
31
|
Chang MI, Panorchan P, Dobrowsky TM, Tseng Y, Wirtz D. Single-molecule analysis of human immunodeficiency virus type 1 gp120-receptor interactions in living cells. J Virol 2006; 79:14748-55. [PMID: 16282475 PMCID: PMC1287567 DOI: 10.1128/jvi.79.23.14748-14755.2005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A quantitative description of the binding interactions between human immunodeficiency virus (HIV) type 1 envelope glycoproteins and their host cell surface receptors remains incomplete. Here, we introduce a single-molecule analysis that directly probes the binding interactions between an individual viral subunit gp120 and a single receptor CD4 and/or chemokine coreceptor CCR5 in living cells. This analysis differentiates single-molecule binding from multimolecule avidity and shows that, while the presence of CD4 is required for gp120 binding to CCR5, the force required to rupture a single gp120-coreceptor bond is significantly higher and its lifetime is much longer than those of a single gp120-receptor bond. The lifetimes of these bonds are themselves shorter than those of the P-selectin/PSGL-1 bond involved in leukocyte attachment to the endothelium bonds during an inflammation response. These results suggest an amended model of HIV entry in which, immediately after the association of gp120 to its receptor, gp120 seeks its coreceptor to rapidly form a new bond. This "bond transfer" occurs only if CCR5 is in close proximity to CD4 and CD4 is still attached to gp120. The analysis presented here may serve as a general framework to study mechanisms of receptor-mediated interactions between viral envelope proteins and host cell receptors at the single-molecule level in living cells.
Collapse
Affiliation(s)
- Melissa I Chang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | | | | | | | | |
Collapse
|
32
|
Abstract
The life cycle of HIV-1 involves a series of steps necessary for the successful infection of human target cells. First the RNA genome enters the cytoplasm after the fusion of the viral membrane and that of the target cell. The RNA genome is then converted to DNA form through the process of reverse transcription. The DNA genome is then integrated into the host cell DNA. Next, viral proteins and more copies of the viral genome are produced. These components assemble to form new virions that are then able to propagate. The cellular proteins involved in HIV-1 entry have been known for more than a decade now and the study of the cellular and viral components involved in HIV-1 entry has led to the development of many therapeutic strategies and drugs designed to block viral replication. Recently, there have been significant advances in the understanding of HIV-1 assembly as a consequence of the identification of the cellular factors that mediate this process. This review will provide a basic outline of the current understanding of HIV-1 entry and exit.
Collapse
Affiliation(s)
- Candace Gomez
- University of Illinois at Chicago, College of Medicine, 60612, USA
| | | |
Collapse
|
33
|
Schweneker M, Bachmann AS, Moelling K. The HIV-1 co-receptor CCR5 binds to alpha-catenin, a component of the cellular cytoskeleton. Biochem Biophys Res Commun 2005; 325:751-7. [PMID: 15541354 DOI: 10.1016/j.bbrc.2004.10.096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Indexed: 11/28/2022]
Abstract
The chemokine receptors CCR5 and CXCR4 belong to the family of seven transmembrane-spanning G protein-coupled receptors, which have diverse functions in host cell defense and are associated with numerous diseases. CCR5 and CXCR4 are known as co-receptors for entry of HIV-1. In this study the intracellular carboxy-terminus of CCR5, which is deleted in HIV-infected long-term non-progressors, was shown to interact with the carboxy-terminus of alpha-catenin, a component of the cytoskeleton, in a yeast two-hybrid screen. This interaction was verified in mammalian cells. Furthermore, the interaction of alpha-catenin with CCR5 and CXCR4 at endogenous protein levels was demonstrated in PM1 T-lymphocytes, a host cell line of HIV-1. Our results suggest that alpha-catenin links CCR5 and CXCR4 to the cytoskeleton and is involved in the organization of these receptors at the membrane, thereby possibly affecting HIV-1 infection.
Collapse
Affiliation(s)
- Marc Schweneker
- Institute of Medical Virology, University of Zurich, 8028 Zurich, Switzerland; Institute of Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | | | | |
Collapse
|
34
|
Vidricaire G, Imbeault M, Tremblay MJ. Endocytic host cell machinery plays a dominant role in intracellular trafficking of incoming human immunodeficiency virus type 1 in human placental trophoblasts. J Virol 2004; 78:11904-15. [PMID: 15479831 PMCID: PMC523271 DOI: 10.1128/jvi.78.21.11904-11915.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vertical transmission of human immunodeficiency virus type 1 (HIV-1) is the primary cause of infection by this retrovirus in infants. In this study, we report for the first time that there is a correlation between endocytic uptake of HIV-1 and virus gene expression in polarized trophoblasts. To shed light on the relationship between endocytosis and the fate of HIV-1 in polarized trophoblasts, the step-by-step movements of HIV-1 within the endocytic compartments were tracked by confocal imaging. Incoming virions were initially located in early endosomes. As time progressed, virions accumulated in late endosomes. HIV-1 was also found in apical recycling endosomes and at the basolateral pole. Experiments performed with indicator cells revealed that HIV-1 is recycled and transcytosed. These data indicate that the intracellular trafficking of HIV-1 upon entry into polarized human trophoblasts is a complex process which requires the active participation of the endocytic host cell machinery.
Collapse
Affiliation(s)
- Gaël Vidricaire
- Research Center in Infectious Diseases, RC709, CHUL Research Center, Faculty of Medicine, Laval University, Quebec, Canada
| | | | | |
Collapse
|
35
|
del Real G, Jiménez-Baranda S, Mira E, Lacalle RA, Lucas P, Gómez-Moutón C, Alegret M, Peña JM, Rodríguez-Zapata M, Alvarez-Mon M, Martínez-A C, Mañes S. Statins inhibit HIV-1 infection by down-regulating Rho activity. ACTA ACUST UNITED AC 2004; 200:541-7. [PMID: 15314078 PMCID: PMC2211926 DOI: 10.1084/jem.20040061] [Citation(s) in RCA: 218] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human immunodeficiency virus (HIV)-1 infectivity requires actin-dependent clustering of host lipid raft–associated receptors, a process that might be linked to Rho guanosine triphosphatase (GTPase) activation. Rho GTPase activity can be negatively regulated by statins, a family of drugs used to treat hypercholesterolemia in man. Statins mediate inhibition of Rho GTPases by impeding prenylation of small G proteins through blockade of 3-hydroxy-3-methylglutaryl coenzyme A reductase. We show that statins decreased viral load and increased CD4+ cell counts in acute infection models and in chronically HIV-1–infected patients. Viral entry and exit was reduced in statin-treated cells, and inhibition was blocked by the addition of l-mevalonate or of geranylgeranylpyrophosphate, but not by cholesterol. Cell treatment with a geranylgeranyl transferase inhibitor, but not a farnesyl transferase inhibitor, specifically inhibited entry of HIV-1–pseudotyped viruses. Statins blocked Rho-A activation induced by HIV-1 binding to target cells, and expression of the dominant negative mutant RhoN19 inhibited HIV-1 envelope fusion with target cell membranes, reducing cell infection rates. We suggest that statins have direct anti–HIV-1 effects by targeting Rho.
Collapse
Affiliation(s)
- Gustavo del Real
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, UAM Campus de Cantoblanco, E-28049 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Steffens CM, Hope TJ. Mobility of the human immunodeficiency virus (HIV) receptor CD4 and coreceptor CCR5 in living cells: implications for HIV fusion and entry events. J Virol 2004; 78:9573-8. [PMID: 15308751 PMCID: PMC506925 DOI: 10.1128/jvi.78.17.9573-9578.2004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sequence of events leading to human immunodeficiency virus fusion and entry likely involves the recruitment of multiple receptor and coreceptor proteins to a specific complex by the viral envelope. Using fluorescence recovery after photobleaching technology, we find that both CD4 and CCR5 are mobile in the cell membrane. Interestingly, our findings also suggest that the seven-span transmembrane coreceptor is significantly more mobile than CD4 and requires membrane cholesterol for mobility.
Collapse
Affiliation(s)
- Carolyn M Steffens
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
37
|
Rawat SS, Gallo SA, Eaton J, Martin TD, Ablan S, KewalRamani VN, Wang JM, Blumenthal R, Puri A. Elevated expression of GM3 in receptor-bearing targets confers resistance to human immunodeficiency virus type 1 fusion. J Virol 2004; 78:7360-8. [PMID: 15220409 PMCID: PMC434090 DOI: 10.1128/jvi.78.14.7360-7368.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GM3, a major ganglioside of T lymphocytes, promotes human immunodeficiency virus type 1 (HIV-1) entry via interactions with HIV-1 receptors and the viral envelope glycoprotein (Env). Increased GM3 levels in T lymphocytes and the appearance of anti-GM3 antibodies in AIDS patients have been reported earlier. In this study, we investigated the effect of GM3 regulation on HIV-1 entry by utilizing a mouse cell line (B16F10), which expresses exceptionally high levels of GM3. Strikingly, B16 cells bearing CD4, CXCR4, and/or CCR5 were highly resistant to CD4-dependent HIV-1 Env-mediated membrane fusion. In contrast, these targets supported membrane fusion mediated by CD4-requiring HIV-2, SIV, and CD4-independent HIV-1 Envs. Coreceptor function was not impaired by GM3 overexpression as indicated by Ca(2+) fluxes mediated by the CXCR4 ligand SDF-1alpha and the CCR5 ligand MIP-1beta. Reduction in GM3 levels of B16 target cells resulted in a significant recovery of CD4-dependent HIV-1 Env-mediated fusion. We propose that GM3 in the plasma membrane blocks HIV-1 Env-mediated fusion by interfering with the lateral association of HIV-1 receptors. Our findings offer a novel mechanism of interplay between membrane lipids and receptors by which host cells may escape viral infections.
Collapse
Affiliation(s)
- Satinder S Rawat
- Laboratory of Experimental and Computational Biology, Center for Cancer Research NCI-Frederick, NIH, Frederick, MD 21702-1201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Tardif MR, Tremblay MJ. Presence of host ICAM-1 in human immunodeficiency virus type 1 virions increases productive infection of CD4+ T lymphocytes by favoring cytosolic delivery of viral material. J Virol 2003; 77:12299-309. [PMID: 14581566 PMCID: PMC254246 DOI: 10.1128/jvi.77.22.12299-12309.2003] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although there is now convincing evidence that the infectivity of human immunodeficiency virus type 1 (HIV-1) is increased by incorporation of host intercellular adhesion molecule 1 (ICAM-1) in budding virions, the exact mechanism(s) through which ICAM-1 can so significantly affect HIV-1 biology remains obscure. To address this question, we focused our attention on the most proximal events in the virus life cycle. We made comparative analyses to estimate attachment and internalization of isogenic HIV-1 particles either lacking or bearing host-derived ICAM-1. Using attachment-and-entry assays and confocal fluorescence microscopy, we found that virus binding and uptake were both markedly enhanced by insertion of ICAM-1 within the virus envelope when PM1 lymphoid cells and primary human cells (i.e., peripheral blood lymphocytes and purified CD4(+) T cells) were used as targets. Moreover, ICAM-1-bearing virions entered cells with faster uptake kinetics than viruses devoid of ICAM-1. Experiments conducted with fully competent viruses further confirmed the positive effect of virion-anchored host ICAM-1 on HIV-1 replication. Interestingly, subcellular-fractionation assays revealed that ICAM-1 incorporation modifies the HIV-1 entry route by increasing the level of viral material released in the cytosol, a process of internalization known to be mediated mainly by pH-independent membrane fusion and to result in productive infection. A virion-based fusion assay confirmed that the acquisition of ICAM-1 increases the efficiency of productive HIV-1 entry in primary CD4(+) T lymphocytes. These observations provide new insights into how interactions other than those with gp120 and CD4-coreceptor complex can modulate the process of productive HIV-1 infection in CD4(+) T lymphocytes, a cell target highly relevant to HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Mélanie R Tardif
- Research Center in Infectious Diseases, CHUL Research Center, Quebec, Canada
| | | |
Collapse
|
39
|
Popik W, Alce TM. CD4 receptor localized to non-raft membrane microdomains supports HIV-1 entry. Identification of a novel raft localization marker in CD4. J Biol Chem 2003; 279:704-12. [PMID: 14570906 DOI: 10.1074/jbc.m306380200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite the preferential localization of CD4 to lipid rafts, the significance and role of these microdomains in HIV-1 entry is still controversial. The possibility that CD4, when localized to non-raft domains, might be able to support virus entry cannot be excluded. Because disintegration of rafts by extraction of cellular cholesterol with methyl-beta-cyclodextrin suffers from various adverse effects, we investigated molecular determinants controlling raft localization of the CD4 receptor. Extensive mutagenesis of the receptor showed that a raft-localizing marker, consisting of a short sequence of positively charged amino acid residues, RHRRR, was present in the membrane-proximal cytoplasmic domain of CD4. Substitution of the RHRRR sequence with alanine residues abolished raft localization of the CD4 mutant, RA5, as determined biochemically using solubilization in nonionic detergents and by confocal microscopy. The possible inhibitory effect of the introduced mutations on the adjacent CVRC palmitoylation site was ruled out because wild type (wt) CD4 and RA5, but not a palmitoylation-deficient mutant, were efficiently palmitoylated. Nonetheless, the RA5 mutant supported productive virus entry to levels equivalent to that of wild type (wt) CD4. Sucrose gradient analysis of Triton X-100 virus lysates showed that Gag and envelope gp120 proteins accumulated in low buoyant, high-density fractions. This pattern was changed after virus incubation with cells. Whereas Gag proteins localized to lipid rafts in cells expressing wt CD4 and RA5, gp120 accumulated in rafts in cells expressing wt CD4 but not RA5. We propose that raft localization of CD4 is not required for virus entry, however, post-binding fusion/entry steps may require lipid raft assembly.
Collapse
Affiliation(s)
- Waldemar Popik
- Oncology Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA.
| | | |
Collapse
|