1
|
Khan MY, Shah AU, Duraisamy N, ElAlaoui RN, Cherkaoui M, Hemida MG. Leveraging Artificial Intelligence and Gene Expression Analysis to Identify Some Potential Bovine Coronavirus (BCoV) Receptors and Host Cell Enzymes Potentially Involved in the Viral Replication and Tissue Tropism. Int J Mol Sci 2025; 26:1328. [PMID: 39941096 PMCID: PMC11818245 DOI: 10.3390/ijms26031328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Bovine coronavirus (BCoV) exhibits dual tissue tropism, infecting both the respiratory and enteric tracts of cattle. Viral entry into host cells requires a coordinated interaction between viral and host proteins. However, the specific cellular receptors and co-receptors facilitating BCoV entry remain poorly understood. Similarly, the roles of host proteases such as Furin, TMPRSS2, and Cathepsin-L (CTS-L), known to assist in the replication of other coronaviruses, have not been extensively explored for BCoV. This study aims to identify novel BCoV receptors and host proteases that modulate viral replication and tissue tropism. Bovine cell lines were infected with BCoV isolates from enteric and respiratory origins, and the host cell gene expression profiles post-infection were analyzed using next-generation sequencing (NGS). Differentially expressed genes encoding potential receptors and proteases were further assessed using in-silico prediction and molecular docking analysis. These analyses focused on known coronavirus receptors, including ACE2, NRP1, DPP4, APN, AXL, and CEACAM1, to identify their potential roles in BCoV infection. Validation of these findings was performed using the qRT-PCR assays targeting individual genes. We confirmed the gene expression profiles of these receptors and enzymes in some BCoV (+/-) lung tissues. Results revealed high binding affinities of 9-O-acetylated sialic acid and NRP1 to BCoV spike (S) and hemagglutinin-esterase (HE) proteins compared to ACE2, DPP4, and CEACAM1. Additionally, Furin and TMPRSS2 were predicted to interact with the BCoV-S polybasic cleavage site (RRSRR|A), suggesting their roles in S glycoprotein activation. This is the first study to explore the interactions of BCoV with multiple host receptors and proteases. Functional studies are recommended to confirm their roles in BCoV infection and replication.
Collapse
Affiliation(s)
- Mohd Yasir Khan
- Department of Computer Science, College of Digital Engineering and Artificial Intelligence, Long Island University, Brooklyn, NY 11201, USA; (M.Y.K.); (N.D.); (R.N.E.); (M.C.)
| | - Abid Ullah Shah
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, 720 Northern Boulevard, Brookville, NY 11548, USA;
| | - Nithyadevi Duraisamy
- Department of Computer Science, College of Digital Engineering and Artificial Intelligence, Long Island University, Brooklyn, NY 11201, USA; (M.Y.K.); (N.D.); (R.N.E.); (M.C.)
| | - Reda Nacif ElAlaoui
- Department of Computer Science, College of Digital Engineering and Artificial Intelligence, Long Island University, Brooklyn, NY 11201, USA; (M.Y.K.); (N.D.); (R.N.E.); (M.C.)
| | - Mohammed Cherkaoui
- Department of Computer Science, College of Digital Engineering and Artificial Intelligence, Long Island University, Brooklyn, NY 11201, USA; (M.Y.K.); (N.D.); (R.N.E.); (M.C.)
| | - Maged Gomaa Hemida
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, 720 Northern Boulevard, Brookville, NY 11548, USA;
| |
Collapse
|
2
|
Kasle G, Das Sarma J. The Role of Coronavirus Spike Protein in Inducing Optic Neuritis in Mice: Parallels to the SARS-CoV-2 Virus. J Neuroophthalmol 2024; 44:319-329. [PMID: 39164897 DOI: 10.1097/wno.0000000000002234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
BACKGROUND Optic neuritis (ON), one of the clinical manifestations of the human neurological disease multiple sclerosis (MS), was also reported in patients with COVID-19 infection, highlighting one potential neurological manifestation of SARS-CoV-2. However, the mechanism of ON in these patients is poorly understood. EVIDENCE ACQUISITION Insight may be gained by studying the neurotropic mouse hepatitis virus (MHV-A59), a β-coronavirus that belongs to the same family as SARS-CoV-2. RESULTS Mouse hepatitis virus-A59, or its isogenic spike protein recombinant strains, inoculation in mice provides an important experimental model to understand underpinning mechanisms of neuroinflammatory demyelination in association with acute stage optic nerve inflammation and chronic stage optic nerve demyelination concurrent with axonal loss. Spike is a surface protein that mediates viral binding and entry into host cells, as well as cell-cell fusion and viral spread. Studies have implicated spike-mediated mechanisms of virus-induced neuroinflammatory demyelination by comparing naturally occurring demyelinating (DM) and nondemyelinating (NDM) MHV strains. CONCLUSIONS Here, we summarize findings in MHV-induced experimental ON and myelitis, using natural DM and NDM strains as well as engineered recombinant strains of MHV to understand the role of spike protein in inducing ON and demyelinating disease pathology. Potential parallels in human coronavirus-mediated ON and demyelination, and insight into potential therapeutic strategies, are discussed.
Collapse
Affiliation(s)
- Grishma Kasle
- Department of Biological Sciences (GK, JDS), Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India; and Department of Ophthalmology (JDS), University of Pennsylvania, Philadelphia, Pennsylvania
| | | |
Collapse
|
3
|
Kang G, Lee SH, Cho M, Kim JH, Cho H, Kang H. Evaluation of RNA Secondary Stem-Loop Structures in the UTRs of Mouse Hepatitis Virus as New Therapeutic Targets. Pathogens 2024; 13:518. [PMID: 38921815 PMCID: PMC11206603 DOI: 10.3390/pathogens13060518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
MHV-A59 is a beta-coronavirus that causes demyelinating encephalitis and hepatitis in mice. Recently, the mouse infection model of MHV-A59 has been used as an alternative animal infection model for SARS-CoV and SARS-CoV-2, aiding the development of new antiviral drugs. In this study, the MHV-A59 model was employed to investigate the potential of SARS-CoV-2 UTRs as new targets for antiviral drugs. Optimal targets within the MHV-A59 UTRs were identified using a shRNA and siRNA design tool, focusing on RNA secondary stem-loop (SL) structures in the UTRs. We then examined whether the designed RNAi constructs could inhibit MHV-A59 replication. In the 5'UTR, the stem-loop 1 (SL1) was identified as the most effective target, while in the 3'UTR, the minimal element for the initiation of negative-strand RNA synthesis (MIN) proved to be the most effective. Importantly, siRNAs targeting SL1 and MIN structures significantly reduced total RNA synthesis, negative-strand genomic RNA synthesis, subgenomic (sg) RNA synthesis, viral titer, and the plaque size of MHV-A59 compared to the control. Although not statistically significant, the combination of siSL1 and siMIN had a stronger effect on inhibiting MHV-A59 replication than either siRNA monotherapy. Interestingly, while the SL1 structure is present in both MHV and SARS-CoV-2, the MIN structure is unique to MHV. Thus, the SL1 of SARS-CoV-2 may represent a novel and promising target for RNAi-based antiviral drugs.
Collapse
Affiliation(s)
- Gyuhyun Kang
- Vessel-Organ Interaction Research Center, Research Institute of Pharmaceutical Science, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; (G.K.); (S.H.L.); (M.C.); (J.-h.K.)
| | - Sun Hee Lee
- Vessel-Organ Interaction Research Center, Research Institute of Pharmaceutical Science, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; (G.K.); (S.H.L.); (M.C.); (J.-h.K.)
| | - Miyeon Cho
- Vessel-Organ Interaction Research Center, Research Institute of Pharmaceutical Science, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; (G.K.); (S.H.L.); (M.C.); (J.-h.K.)
| | - Ji-hyeon Kim
- Vessel-Organ Interaction Research Center, Research Institute of Pharmaceutical Science, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; (G.K.); (S.H.L.); (M.C.); (J.-h.K.)
| | - Hyosun Cho
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul 01369, Republic of Korea
| | - Hyojeung Kang
- Vessel-Organ Interaction Research Center, Research Institute of Pharmaceutical Science, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; (G.K.); (S.H.L.); (M.C.); (J.-h.K.)
| |
Collapse
|
4
|
Zheng Y, Feng J, Ling M, Yu Y, Tao Y, Wang X. A comprehensive review on targeting cluster of differentiation: An attractive strategy for inhibiting viruses through host proteins. Int J Biol Macromol 2024; 269:132200. [PMID: 38723834 DOI: 10.1016/j.ijbiomac.2024.132200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/20/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Viral infections continue to pose a significant global public health threat. Targeting host proteins, such as cluster of differentiation (CD) macromolecules, may offer a promising alternative approach to developing antiviral treatments. CDs are cell-surface biological macromolecules mainly expressed on leukocytes that viruses can use to enter cells, thereby evading immune detection and promoting their replication. The manipulation of CDs by viruses may represent an effective and clever means of survival through the prolonged co-evolution of hosts and viruses. Targeting of CDs is anticipated to hinder the invasion of related viruses, modulate the body's immune system, and diminish the incidence of subsequent inflammation. They have become crucial for biomedical diagnosis, and some have been used as valuable tools for resisting viral infections. However, a summary of the structures and functions of CDs involved in viral infection is currently lacking. The development of drugs targeting these biological macromolecules is restricted both in terms of their availability and the number of compounds currently identified. This review provides a comprehensive analysis of the critical role of CD proteins in virus invasion and a list of relevant targeted antiviral agents, which will serve as a valuable reference for future research in this field.
Collapse
Affiliation(s)
- Youle Zheng
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jin Feng
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Min Ling
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yixin Yu
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yanfei Tao
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
5
|
Ahn W, Burnett FN, Pandey A, Ghoshal P, Singla B, Simon AB, Derella CC, A. Addo S, Harris RA, Lucas R, Csányi G. SARS-CoV-2 Spike Protein Stimulates Macropinocytosis in Murine and Human Macrophages via PKC-NADPH Oxidase Signaling. Antioxidants (Basel) 2024; 13:175. [PMID: 38397773 PMCID: PMC10885885 DOI: 10.3390/antiox13020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While recent studies have demonstrated that SARS-CoV-2 may enter kidney and colon epithelial cells by inducing receptor-independent macropinocytosis, it remains unknown whether this process also occurs in cell types directly relevant to SARS-CoV-2-associated lung pneumonia, such as alveolar epithelial cells and macrophages. The goal of our study was to investigate the ability of SARS-CoV-2 spike protein subunits to stimulate macropinocytosis in human alveolar epithelial cells and primary human and murine macrophages. Flow cytometry analysis of fluid-phase marker internalization demonstrated that SARS-CoV-2 spike protein subunits S1, the receptor-binding domain (RBD) of S1, and S2 stimulate macropinocytosis in both human and murine macrophages in an angiotensin-converting enzyme 2 (ACE2)-independent manner. Pharmacological and genetic inhibition of macropinocytosis substantially decreased spike-protein-induced fluid-phase marker internalization in macrophages both in vitro and in vivo. High-resolution scanning electron microscopy (SEM) imaging confirmed that spike protein subunits promote the formation of membrane ruffles on the dorsal surface of macrophages. Mechanistic studies demonstrated that SARS-CoV-2 spike protein stimulated macropinocytosis via NADPH oxidase 2 (Nox2)-derived reactive oxygen species (ROS) generation. In addition, inhibition of protein kinase C (PKC) and phosphoinositide 3-kinase (PI3K) in macrophages blocked SARS-CoV-2 spike-protein-induced macropinocytosis. To our knowledge, these results demonstrate for the first time that SARS-CoV-2 spike protein subunits stimulate macropinocytosis in macrophages. These results may contribute to a better understanding of SARS-CoV-2 infection and COVID-19 pathogenesis.
Collapse
Affiliation(s)
- WonMo Ahn
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (W.A.); (F.N.B.); (A.P.); (B.S.); (S.A.A.); (R.L.)
| | - Faith N. Burnett
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (W.A.); (F.N.B.); (A.P.); (B.S.); (S.A.A.); (R.L.)
| | - Ajay Pandey
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (W.A.); (F.N.B.); (A.P.); (B.S.); (S.A.A.); (R.L.)
| | - Pushpankur Ghoshal
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (W.A.); (F.N.B.); (A.P.); (B.S.); (S.A.A.); (R.L.)
| | - Bhupesh Singla
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (W.A.); (F.N.B.); (A.P.); (B.S.); (S.A.A.); (R.L.)
| | - Abigayle B. Simon
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.B.S.); (C.C.D.); (R.A.H.)
| | - Cassandra C. Derella
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.B.S.); (C.C.D.); (R.A.H.)
| | - Stephen A. Addo
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (W.A.); (F.N.B.); (A.P.); (B.S.); (S.A.A.); (R.L.)
| | - Ryan A. Harris
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.B.S.); (C.C.D.); (R.A.H.)
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (W.A.); (F.N.B.); (A.P.); (B.S.); (S.A.A.); (R.L.)
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Gábor Csányi
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (W.A.); (F.N.B.); (A.P.); (B.S.); (S.A.A.); (R.L.)
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
6
|
Activation of CEACAM1 with an agonistic monoclonal antibody results in inhibition of melanoma cells. Cancer Gene Ther 2022; 29:1676-1685. [PMID: 35681020 DOI: 10.1038/s41417-022-00486-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/08/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023]
Abstract
Inhibitory receptors (IRs), such as the carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), are cell surface molecules expressed on both normal epithelial, endothelial, and hematopoietic cells and on neoplastic cells. IRs are usually used by cancer cells to inhibit immune cell functions. Thus, CEACAM1 positive tumor cells can interact homophilically with CEACAM1 expressed on T and NK cells to inhibit their antibody-dependent cell-mediated cytotoxicity (ADCC). In this study, we investigated the effect of agonistic/activating anti-CEACAM1 monoclonal antibody (mAb) on melanoma cell lines in vitro and in vivo, following our hypothesis that activation of CEACAM1 on melanoma cells by distinct mAbs may induce inhibition of cancer cell proliferation and/or their death. To address this, we established an activating anti-CEACAM1 mAb (CCM5.01) and characterized its binding to the CEACAM1 receptor. Using this mAb, we assessed the expression of CEACAM1 on four different human melanoma cell lines by western blot and flow cytometry and determined its effect on cell viability in vitro by MTT assay. Furthermore, we evaluated the mAb mechanism of action and found that binding of CEACAM1 with CCM5.01 induced SHP1 phosphorylation and p53 activation resulting in melanoma cell apoptosis. For in vivo studies, a xenograft model of melanoma was performed by injection of Mel-14 cells subcutaneously (s.c.) in SCID/Beige mice followed by intraperitoneal (i.p.) injection of CCM5.01 or of IgG1 isotype control every other day. CCM5.01 treated mice showed a slight but not significant decrease in tumor weight in comparison to the control group. Based on the obtained data, we suggest that activating CEACAM1 on melanoma cells might be a promising novel approach to fight cancers expressing this IR.
Collapse
|
7
|
Paris T, Yatime L. [CEACAMs as anchoring platforms for pathogens on mucosal epithelia]. Med Sci (Paris) 2022; 38:650-653. [PMID: 36094234 DOI: 10.1051/medsci/2022097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Théo Paris
- Laboratoire des interactions hôte-pathogène, UMR5235, Université de Montpellier, CNRS, Inserm, Montpellier, France
| | - Laure Yatime
- Laboratoire des interactions hôte-pathogène, UMR5235, Université de Montpellier, CNRS, Inserm, Montpellier, France
| |
Collapse
|
8
|
Akter R, Rahman MH, Bhattacharya T, Kaushik D, Mittal V, Parashar J, Kumar K, Kabir MT, Tagde P. Novel coronavirus pathogen in humans and animals: an overview on its social impact, economic impact, and potential treatments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:68071-68089. [PMID: 34664166 PMCID: PMC8523003 DOI: 10.1007/s11356-021-16809-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/25/2021] [Indexed: 04/15/2023]
Abstract
In the light of thousands of infections and deaths, the World Health Organization (WHO) has declared the outbreak of coronavirus disease (COVID-19) a worldwide pandemic. It has spread to about 22 million people worldwide, with a total of 0.45 million expiries, limiting the movement of most people worldwide in the last 6 months. However, COVID-19 became the foremost health, economic, and humanitarian challenge of the twenty-first century. Measures intended to curb the pandemic of COVID-19 included travel bans, lockdowns, and social distances through shelter orders, which will further stop human activities suddenly and eventually impact the world and the national economy. The viral disease is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). After SARS-CoV-2 virus and Middle East respiratory syndrome (MERS)-related CoV, COVID-19 is the third most significant lethal disease to humans. According to WHO, COVID-19 mortality exceeded that of SARS and MERS since COVID-19 was declared an international public health emergency. Genetic sequencing has recently established that COVID-19 is close to SARS-CoV and bat coronavirus which has not yet been recognized as the key cause of this pandemic outbreak, its transmission, and human pathogen mechanism. This review focuses on a brief introduction of novel coronavirus pathogens, including coronavirus in humans and animals, its taxonomic classification, symptoms, pathogenicity, social impact, economic impact, and potential treatment therapy for COVID-19.
Collapse
Affiliation(s)
- Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka-1100, Bangladesh
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka-1213, Bangladesh.
| | - Tanima Bhattacharya
- School of Chemistry & Chemical Engineering, Hubei University, Wuhan, People's Republic of China, 430062
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Jatin Parashar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Kuldeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Md Tanvir Kabir
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka, 1212, Bangladesh
| | - Priti Tagde
- Bhabha Pharmacy Research Institute, Bhabha University, Bhopal, M.P, India
| |
Collapse
|
9
|
Saadi F, Pal D, Sarma JD. Spike Glycoprotein Is Central to Coronavirus Pathogenesis-Parallel Between m-CoV and SARS-CoV-2. Ann Neurosci 2021; 28:201-218. [PMID: 35341224 PMCID: PMC8948335 DOI: 10.1177/09727531211023755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/24/2021] [Indexed: 01/04/2023] Open
Abstract
Coronaviruses (CoVs) are single-stranded, polyadenylated, enveloped RNA of positive polarity with a unique potential to alter host tropism. This has been exceptionally demonstrated by the emergence of deadly virus outbreaks of the past: Severe Acute Respiratory Syndrome (SARS-CoV) in 2003 and Middle East Respiratory Syndrome (MERS-CoV) in 2012. The 2019 outbreak by the new cross-species transmission of SARS-CoV-2 has put the world on alert. CoV infection is triggered by receptor recognition, membrane fusion, and successive viral entry mediated by the surface Spike (S) glycoprotein. S protein is one of the major antigenic determinants and the target for neutralizing antibodies. It is a valuable target in antiviral therapies because of its central role in cell-cell fusion, viral antigen spread, and host immune responses leading to immunopathogenesis. The receptor-binding domain of S protein has received greater attention as it initiates host attachment and contains major antigenic determinants. However, investigating the therapeutic potential of fusion peptide as a part of the fusion core complex assembled by the heptad repeats 1 and 2 (HR1 and HR2) is also warranted. Along with receptor attachment and entry, fusion mechanisms should also be explored for designing inhibitors as a therapeutic intervention. In this article, we review the S protein function and its role in mediating membrane fusion, spread, tropism, and its associated pathogenesis with notable therapeutic strategies focusing on results obtained from studies on a murine β-Coronavirus (m-CoV) and its associated disease process.
Collapse
Affiliation(s)
- Fareeha Saadi
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Kolkata, West Bengal, India
| | - Debnath Pal
- Department of Computational and Data Sciences, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Kolkata, West Bengal, India
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
A CRISPR/Cas9 genetically engineered organoid biobank reveals essential host factors for coronaviruses. Nat Commun 2021; 12:5498. [PMID: 34535662 PMCID: PMC8448725 DOI: 10.1038/s41467-021-25729-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/27/2021] [Indexed: 01/17/2023] Open
Abstract
Rapid identification of host genes essential for virus replication may expedite the generation of therapeutic interventions. Genetic screens are often performed in transformed cell lines that poorly represent viral target cells in vivo, leading to discoveries that may not be translated to the clinic. Intestinal organoids are increasingly used to model human disease and are amenable to genetic engineering. To discern which host factors are reliable anti-coronavirus therapeutic targets, we generate mutant clonal IOs for 19 host genes previously implicated in coronavirus biology. We verify ACE2 and DPP4 as entry receptors for SARS-CoV/SARS-CoV-2 and MERS-CoV respectively. SARS-CoV-2 replication in IOs does not require the endosomal Cathepsin B/L proteases, but specifically depends on the cell surface protease TMPRSS2. Other TMPRSS family members were not essential. The newly emerging coronavirus variant B.1.1.7, as well as SARS-CoV and MERS-CoV similarly depended on TMPRSS2. These findings underscore the relevance of non-transformed human models for coronavirus research, identify TMPRSS2 as an attractive pan-coronavirus therapeutic target, and demonstrate that an organoid knockout biobank is a valuable tool to investigate the biology of current and future emerging coronaviruses. Rapid identification of host genes essential for virus replication may expedite the generation of therapeutic interventions. Here the authors generate mutant clonal intestinal organoids for 19 host genes previously implicated in coronavirus biology and identify the cell surface protease TMPRSS2 as a potential therapeutic target.
Collapse
|
11
|
Herrera N, Morano NC, Celikgil A, Georgiev GI, Malonis RJ, Lee JH, Tong K, Vergnolle O, Massimi AB, Yen LY, Noble AJ, Kopylov M, Bonanno JB, Garrett-Thomson SC, Hayes DB, Bortz RH, Wirchnianski AS, Florez C, Laudermilch E, Haslwanter D, Fels JM, Dieterle ME, Jangra RK, Barnhill J, Mengotto A, Kimmel D, Daily JP, Pirofski LA, Chandran K, Brenowitz M, Garforth SJ, Eng ET, Lai JR, Almo SC. Characterization of the SARS-CoV-2 S Protein: Biophysical, Biochemical, Structural, and Antigenic Analysis. ACS OMEGA 2021; 6:85-102. [PMID: 33458462 PMCID: PMC7771249 DOI: 10.1021/acsomega.0c03512] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/03/2020] [Indexed: 05/22/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a global health crisis caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and there is a critical need to produce large quantities of high-quality SARS-CoV-2 Spike (S) protein for use in both clinical and basic science settings. To address this need, we have evaluated the expression and purification of two previously reported S protein constructs in Expi293F and ExpiCHO-S cells, two different cell lines selected for increased protein expression. We show that ExpiCHO-S cells produce enhanced yields of both SARS-CoV-2 S proteins. Biochemical, biophysical, and structural (cryo-EM) characterizations of the SARS-CoV-2 S proteins produced in both cell lines demonstrate that the reported purification strategy yields high-quality S protein (nonaggregated, uniform material with appropriate biochemical and biophysical properties), and analysis of 20 deposited S protein cryo-EM structures reveals conformation plasticity in the region composed of amino acids 614-642 and 828-854. Importantly, we show that multiple preparations of these two recombinant S proteins from either cell line exhibit identical behavior in two different serology assays. We also evaluate the specificity of S protein-mediated host cell binding by examining interactions with proposed binding partners in the human secretome and report no novel binding partners and notably fail to validate the Spike:CD147 interaction. In addition, the antigenicity of these proteins is demonstrated by standard ELISAs and in a flexible protein microarray format. Collectively, we establish an array of metrics for ensuring the production of high-quality S protein to support clinical, biological, biochemical, structural, and mechanistic studies to combat the global pandemic caused by SARS-CoV-2.
Collapse
Affiliation(s)
- Natalia
G. Herrera
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| | - Nicholas C. Morano
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| | - Alev Celikgil
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| | - George I. Georgiev
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| | - Ryan J. Malonis
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| | - James H. Lee
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| | - Karen Tong
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| | - Olivia Vergnolle
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| | - Aldo B. Massimi
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| | - Laura Y. Yen
- National
Resource for Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave., New York, New York 10027, United States
| | - Alex J. Noble
- National
Resource for Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave., New York, New York 10027, United States
| | - Mykhailo Kopylov
- National
Resource for Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave., New York, New York 10027, United States
| | - Jeffrey B. Bonanno
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| | - Sarah C. Garrett-Thomson
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| | - David B. Hayes
- International
Solidarity of Scientists LLC, 9 Chuck Wagon Lane, Danbury, Connecticut 06810, United States
| | - Robert H. Bortz
- Department
of Microbiology and Immunology, Albert Einstein
College of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| | - Ariel S. Wirchnianski
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
- Department
of Microbiology and Immunology, Albert Einstein
College of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| | - Catalina Florez
- Department
of Microbiology and Immunology, Albert Einstein
College of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
- Department
of Chemistry and Life Science, United States
Military Academy at West Point, 646 Swift Road, West Point, New York 10996, United States
| | - Ethan Laudermilch
- Department
of Microbiology and Immunology, Albert Einstein
College of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| | - Denise Haslwanter
- Department
of Microbiology and Immunology, Albert Einstein
College of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| | - J. Maximilian Fels
- Department
of Microbiology and Immunology, Albert Einstein
College of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| | - M. Eugenia Dieterle
- Department
of Microbiology and Immunology, Albert Einstein
College of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| | - Rohit K. Jangra
- Department
of Microbiology and Immunology, Albert Einstein
College of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| | - Jason Barnhill
- Department
of Chemistry and Life Science, United States
Military Academy at West Point, 646 Swift Road, West Point, New York 10996, United States
| | - Amanda Mengotto
- Division
of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, New York, New York 10461, United States
| | - Duncan Kimmel
- Division
of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, New York, New York 10461, United States
| | - Johanna P. Daily
- Department
of Microbiology and Immunology, Albert Einstein
College of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
- Division
of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, New York, New York 10461, United States
| | - Liise-anne Pirofski
- Department
of Microbiology and Immunology, Albert Einstein
College of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
- Division
of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, New York, New York 10461, United States
| | - Kartik Chandran
- Department
of Microbiology and Immunology, Albert Einstein
College of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| | - Michael Brenowitz
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| | - Scott J. Garforth
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| | - Edward T. Eng
- National
Resource for Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave., New York, New York 10027, United States
| | - Jonathan R. Lai
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| | - Steven C. Almo
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| |
Collapse
|
12
|
Herrera NG, Morano NC, Celikgil A, Georgiev GI, Malonis RJ, Lee JH, Tong K, Vergnolle O, Massimi AB, Yen LY, Noble AJ, Kopylov M, Bonanno JB, Garrett-Thomson SC, Hayes DB, Bortz RH, Wirchnianski AS, Florez C, Laudermilch E, Haslwanter D, Fels JM, Dieterle ME, Jangra RK, Barnhill J, Mengotto A, Kimmel D, Daily JP, Pirofski LA, Chandran K, Brenowitz M, Garforth SJ, Eng ET, Lai JR, Almo SC. Characterization of the SARS-CoV-2 S Protein: Biophysical, Biochemical, Structural, and Antigenic Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.06.14.150607. [PMID: 32587972 PMCID: PMC7310628 DOI: 10.1101/2020.06.14.150607] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Coronavirus disease 2019 ( COVID-19 ) is a global health crisis caused by the novel severe acute respiratory syndrome coronavirus 2 ( SARS-CoV-2 ), and there is a critical need to produce large quantities of high-quality SARS-CoV-2 Spike ( S ) protein for use in both clinical and basic science settings. To address this need, we have evaluated the expression and purification of two previously reported S protein constructs in Expi293F ™ and ExpiCHO-S ™ cells, two different cell lines selected for increased expression of secreted glycoproteins. We show that ExpiCHO-S ™ cells produce enhanced yields of both SARS-CoV-2 S proteins. Biochemical, biophysical, and structural ( cryo-EM ) characterization of the SARS-CoV-2 S proteins produced in both cell lines demonstrate that the reported purification strategy yields high quality S protein (non-aggregated, uniform material with appropriate biochemical and biophysical properties). Importantly, we show that multiple preparations of these two recombinant S proteins from either cell line exhibit identical behavior in two different serology assays. We also evaluate the specificity of S protein-mediated host cell binding by examining interactions with proposed binding partners in the human secretome. In addition, the antigenicity of these proteins is demonstrated by standard ELISAs, and in a flexible protein microarray format. Collectively, we establish an array of metrics for ensuring the production of high-quality S protein to support clinical, biological, biochemical, structural and mechanistic studies to combat the global pandemic caused by SARS-CoV-2.
Collapse
Affiliation(s)
- Natalia G. Herrera
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, USA
| | - Nicholas C. Morano
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, USA
| | - Alev Celikgil
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, USA
| | - George I. Georgiev
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, USA
| | - Ryan J. Malonis
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, USA
| | - James H. Lee
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, USA
| | - Karen Tong
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, USA
| | - Olivia Vergnolle
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, USA
| | - Aldo B. Massimi
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, USA
| | - Laura Y. Yen
- National Resource for Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave, New York, NY, 10027, USA
| | - Alex J. Noble
- National Resource for Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave, New York, NY, 10027, USA
| | - Mykhailo Kopylov
- National Resource for Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave, New York, NY, 10027, USA
| | - Jeffrey B. Bonanno
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, USA
| | - Sarah C. Garrett-Thomson
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, USA
| | - David B. Hayes
- Intl Solidarity of Scientists LLC, 9 Chuck Wagon Ln, Danbury, CT 06810, USA
| | - Robert H. Bortz
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Ariel S. Wirchnianski
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Catalina Florez
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Chemistry and Life Science, United States Military Academy at West Point, West Point, NY 10996, USA
| | - Ethan Laudermilch
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Denise Haslwanter
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - J. Maximilian Fels
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - M. Eugenia Dieterle
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Rohit K. Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jason Barnhill
- Department of Chemistry and Life Science, United States Military Academy at West Point, West Point, NY 10996, USA
| | - Amanda Mengotto
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, New York, NY 10461, USA
| | - Duncan Kimmel
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, New York, NY 10461, USA
| | - Johanna P. Daily
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, New York, NY 10461, USA
| | - Liise-anne Pirofski
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, New York, NY 10461, USA
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Michael Brenowitz
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, USA
| | - Scott J. Garforth
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, USA
| | - Edward T. Eng
- National Resource for Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave, New York, NY, 10027, USA
| | - Jonathan R. Lai
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, USA
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, USA
| |
Collapse
|
13
|
Venkatakrishnan AJ, Puranik A, Anand A, Zemmour D, Yao X, Wu X, Chilaka R, Murakowski DK, Standish K, Raghunathan B, Wagner T, Garcia-Rivera E, Solomon H, Garg A, Barve R, Anyanwu-Ofili A, Khan N, Soundararajan V. Knowledge synthesis of 100 million biomedical documents augments the deep expression profiling of coronavirus receptors. eLife 2020; 9:58040. [PMID: 32463365 PMCID: PMC7371427 DOI: 10.7554/elife.58040] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic demands assimilation of all biomedical knowledge to decode mechanisms of pathogenesis. Despite the recent renaissance in neural networks, a platform for the real-time synthesis of the exponentially growing biomedical literature and deep omics insights is unavailable. Here, we present the nferX platform for dynamic inference from over 45 quadrillion possible conceptual associations from unstructured text, and triangulation with insights from single-cell RNA-sequencing, bulk RNA-seq and proteomics from diverse tissue types. A hypothesis-free profiling of ACE2 suggests tongue keratinocytes, olfactory epithelial cells, airway club cells and respiratory ciliated cells as potential reservoirs of the SARS-CoV-2 receptor. We find the gut as the putative hotspot of COVID-19, where a maturation correlated transcriptional signature is shared in small intestine enterocytes among coronavirus receptors (ACE2, DPP4, ANPEP). A holistic data science platform triangulating insights from structured and unstructured data holds potential for accelerating the generation of impactful biological insights and hypotheses.
Collapse
Affiliation(s)
| | | | | | | | - Xiang Yao
- Janssen pharmaceutical companies of Johnson & Johnson (J&J), Spring House, United States
| | - Xiaoying Wu
- Janssen pharmaceutical companies of Johnson & Johnson (J&J), Spring House, United States
| | | | | | - Kristopher Standish
- Janssen pharmaceutical companies of Johnson & Johnson (J&J), Spring House, United States
| | | | | | | | | | | | | | - Anuli Anyanwu-Ofili
- Janssen pharmaceutical companies of Johnson & Johnson (J&J), Spring House, United States
| | - Najat Khan
- Janssen pharmaceutical companies of Johnson & Johnson (J&J), Spring House, United States
| | | |
Collapse
|
14
|
Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis. Sci Rep 2018; 8:15701. [PMID: 30356097 PMCID: PMC6200764 DOI: 10.1038/s41598-018-34171-7] [Citation(s) in RCA: 340] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/12/2018] [Indexed: 01/01/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002 as a highly transmissible pathogenic human betacoronavirus. The viral spike glycoprotein (S) utilizes angiotensin-converting enzyme 2 (ACE2) as a host protein receptor and mediates fusion of the viral and host membranes, making S essential to viral entry into host cells and host species tropism. As SARS-CoV enters host cells, the viral S is believed to undergo a number of conformational transitions as it is cleaved by host proteases and binds to host receptors. We recently developed stabilizing mutations for coronavirus spikes that prevent the transition from the pre-fusion to post-fusion states. Here, we present cryo-EM analyses of a stabilized trimeric SARS-CoV S, as well as the trypsin-cleaved, stabilized S, and its interactions with ACE2. Neither binding to ACE2 nor cleavage by trypsin at the S1/S2 cleavage site impart large conformational changes within stabilized SARS-CoV S or expose the secondary cleavage site, S2′.
Collapse
|
15
|
Peng G, Yang Y, Pasquarella JR, Xu L, Qian Z, Holmes KV, Li F. Structural and Molecular Evidence Suggesting Coronavirus-driven Evolution of Mouse Receptor. J Biol Chem 2016; 292:2174-2181. [PMID: 28035001 PMCID: PMC5313091 DOI: 10.1074/jbc.m116.764266] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/21/2016] [Indexed: 01/10/2023] Open
Abstract
Hosts and pathogens are locked in an evolutionary arms race. To infect mice, mouse hepatitis coronavirus (MHV) has evolved to recognize mouse CEACAM1a (mCEACAM1a) as its receptor. To elude MHV infections, mice may have evolved a variant allele from the Ceacam1a gene, called Ceacam1b, producing mCEACAM1b, which is a much poorer MHV receptor than mCEACAM1a. Previous studies showed that sequence differences between mCEACAM1a and mCEACAM1b in a critical MHV-binding CC′ loop partially account for the low receptor activity of mCEACAM1b, but detailed structural and molecular mechanisms for the differential MHV receptor activities of mCEACAM1a and mCEACAM1b remained elusive. Here we have determined the crystal structure of mCEACAM1b and identified the structural differences and additional residue differences between mCEACAM1a and mCEACAM1b that affect MHV binding and entry. These differences include conformational alterations of the CC′ loop as well as residue variations in other MHV-binding regions, including β-strands C′ and C′′ and loop C′C′′. Using pseudovirus entry and protein-protein binding assays, we show that substituting the structural and residue features from mCEACAM1b into mCEACAM1a reduced the viral receptor activity of mCEACAM1a, whereas substituting the reverse changes from mCEACAM1a into mCEACAM1b increased the viral receptor activity of mCEACAM1b. These results elucidate the detailed molecular mechanism for how mice may have kept pace in the evolutionary arms race with MHV by undergoing structural and residue changes in the MHV receptor, providing insight into this possible example of pathogen-driven evolution of a host receptor protein.
Collapse
Affiliation(s)
- Guiqing Peng
- From the Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455.,the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Yang
- From the Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Joseph R Pasquarella
- From the Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Liqing Xu
- From the Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455.,the Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaohui Qian
- the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China, and.,the Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Kathryn V Holmes
- the Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Fang Li
- From the Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455,
| |
Collapse
|
16
|
Identification and characterization of a proteolytically primed form of the murine coronavirus spike proteins after fusion with the target cell. J Virol 2014; 88:4943-52. [PMID: 24554652 DOI: 10.1128/jvi.03451-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Enveloped viruses carry highly specialized glycoproteins that catalyze membrane fusion under strict spatial and temporal control. To prevent premature activation after biosynthesis, viral class I fusion proteins adopt a locked conformation and require proteolytic cleavage to render them fusion-ready. This priming step may occur during virus exit from the infected cell, in the extracellular milieu or during entry at or in the next target cell. Proteolytic processing of coronavirus spike (S) fusion proteins during virus entry has been suggested but not yet formally demonstrated, while the nature and functionality of the resulting subunit is still unclear. We used a prototype coronavirus--mouse hepatitis virus (MHV)--to develop a conditional biotinylation assay that enables the specific identification and biochemical characterization of viral S proteins on virions that mediated membrane fusion with the target cell. We demonstrate that MHV S proteins are indeed cleaved upon virus endocytosis, and we identify a novel processing product S2* with characteristics of a fusion-active subunit. The precise cleavage site and the enzymes involved remain to be elucidated. IMPORTANCE Virus entry determines the tropism and is a crucial step in the virus life cycle. We developed an approach to characterize structural components of virus particles after entering new target cells. A prototype coronavirus was used to illustrate how the virus fusion machinery can be controlled.
Collapse
|
17
|
Heald-Sargent T, Gallagher T. Ready, set, fuse! The coronavirus spike protein and acquisition of fusion competence. Viruses 2012; 4:557-80. [PMID: 22590686 PMCID: PMC3347323 DOI: 10.3390/v4040557] [Citation(s) in RCA: 253] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 03/29/2012] [Accepted: 04/02/2012] [Indexed: 12/16/2022] Open
Abstract
Coronavirus-cell entry programs involve virus-cell membrane fusions mediated by viral spike (S) proteins. Coronavirus S proteins acquire membrane fusion competence by receptor interactions, proteolysis, and acidification in endosomes. This review describes our current understanding of the S proteins, their interactions with and their responses to these entry triggers. We focus on receptors and proteases in prompting entry and highlight the type II transmembrane serine proteases (TTSPs) known to activate several virus fusion proteins. These and other proteases are essential cofactors permitting coronavirus infection, conceivably being in proximity to cell-surface receptors and thus poised to split entering spike proteins into the fragments that refold to mediate membrane fusion. The review concludes by noting how understanding of coronavirus entry informs antiviral therapies.
Collapse
Affiliation(s)
| | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA;
| |
Collapse
|
18
|
Taguchi F, Hirai-Yuki A. Mouse Hepatitis Virus Receptor as a Determinant of the Mouse Susceptibility to MHV Infection. Front Microbiol 2012; 3:68. [PMID: 22375141 PMCID: PMC3285771 DOI: 10.3389/fmicb.2012.00068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 02/09/2012] [Indexed: 11/13/2022] Open
Abstract
In this review, we report that the receptor of mouse hepatitis virus (MHV), carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), is an important determinant of mouse susceptibility to MHV infection. This finding was revealed by using mouse strains with two different allelic forms of the MHV receptor, Ceacam1a and Ceacam1b. Although previous studies indicated that susceptibility is determined by a single gene, Ceacam1, our recent work in gene-replaced mice with chimeric Ceacam1 pointed toward the involvement of other host factors (genes) in the susceptibility. Studies on mouse susceptibility to MHV, as well as the factors involved in their susceptibility, are overviewed.
Collapse
Affiliation(s)
- Fumihiro Taguchi
- Laboratory of Virology and Viral Infections, Department of Veterinary Medicine, Nippon Veterinary and Life Science UniversityMusashino, Tokyo, Japan
| | - Asuka Hirai-Yuki
- Laboratory of Animal Care, National Institute of Infectious DiseaseMusashi-Murayama, Tokyo, Japan
| |
Collapse
|
19
|
Hirai A, Ohtsuka N, Ikeda T, Taniguchi R, Blau D, Nakagaki K, Miura HS, Ami Y, Yamada YK, Itohara S, Holmes KV, Taguchi F. Role of mouse hepatitis virus (MHV) receptor murine CEACAM1 in the resistance of mice to MHV infection: studies of mice with chimeric mCEACAM1a and mCEACAM1b. J Virol 2010; 84:6654-66. [PMID: 20410265 PMCID: PMC2903249 DOI: 10.1128/jvi.02680-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 04/07/2010] [Indexed: 01/10/2023] Open
Abstract
Although most inbred mouse strains are highly susceptible to mouse hepatitis virus (MHV) infection, the inbred SJL line of mice is highly resistant to its infection. The principal receptor for MHV is murine CEACAM1 (mCEACAM1). Susceptible strains of mice are homozygous for the 1a allele of mCeacam1, while SJL mice are homozygous for the 1b allele. mCEACAM1a (1a) has a 10- to 100-fold-higher receptor activity than does mCEACAM1b (1b). To explore the hypothesis that MHV susceptibility is due to the different MHV receptor activities of 1a and 1b, we established a chimeric C57BL/6 mouse (cB61ba) in which a part of the N-terminal immunoglobulin (Ig)-like domain of the mCeacam1a (1a) gene, which is responsible for MHV receptor function, is replaced by the corresponding region of mCeacam1b (1b). We compared the MHV susceptibility of these chimeric mice to that of SJL and B6 mice. B6 mice that are homozygous for 1a are highly susceptible to MHV-A59 infection, with a 50% lethal dose (LD(50)) of 10(2.5) PFU, while chimeric cB61ba mice and SJL mice homozygous for 1ba and 1b, respectively, survived following inoculation with 10(5) PFU. Unexpectedly, cB61ba mice were more resistant to MHV-A59 infection than SJL mice as measured by virus replication in target organs, including liver and brain. No infectious virus or viral RNA was detected in the organs of cB61ba mice, while viral RNA and infectious virus were detected in target organs of SJL mice. Furthermore, SJL mice produced antiviral antibodies after MHV-A59 inoculation with 10(5) PFU, but cB61ba mice did not. Thus, cB61ba mice are apparently completely resistant to MHV-A59 infection, while SJL mice permit low levels of MHV-A59 virus replication during self-limited, asymptomatic infection. When expressed on cultured BHK cells, the mCEACAM1b and mCEACAM1ba proteins had similar levels of MHV-A59 receptor activity. These results strongly support the hypothesis that although alleles of mCEACAM1 are the principal determinants of mouse susceptibility to MHV-A59, other as-yet-unidentified murine genes may also play a role in susceptibility to MHV.
Collapse
Affiliation(s)
- Asuka Hirai
- National Institute of Infectious Diseases, Murayama Branch, Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan, National Institute of Neuroscience, NCNP, Ogawahigashi, Kodaira, Tokyo 187-8502, Japan, RIKEN Brain Science Institute, Hirose, Wako, Saitama 351-0198, Japan, Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, Department of Virology and Viral Infections, Nippon Veterinary and Life Science University, Kyounan, Musashino, Tokyo 180-8602, Japan
| | - Nobuhisa Ohtsuka
- National Institute of Infectious Diseases, Murayama Branch, Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan, National Institute of Neuroscience, NCNP, Ogawahigashi, Kodaira, Tokyo 187-8502, Japan, RIKEN Brain Science Institute, Hirose, Wako, Saitama 351-0198, Japan, Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, Department of Virology and Viral Infections, Nippon Veterinary and Life Science University, Kyounan, Musashino, Tokyo 180-8602, Japan
| | - Toshio Ikeda
- National Institute of Infectious Diseases, Murayama Branch, Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan, National Institute of Neuroscience, NCNP, Ogawahigashi, Kodaira, Tokyo 187-8502, Japan, RIKEN Brain Science Institute, Hirose, Wako, Saitama 351-0198, Japan, Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, Department of Virology and Viral Infections, Nippon Veterinary and Life Science University, Kyounan, Musashino, Tokyo 180-8602, Japan
| | - Rie Taniguchi
- National Institute of Infectious Diseases, Murayama Branch, Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan, National Institute of Neuroscience, NCNP, Ogawahigashi, Kodaira, Tokyo 187-8502, Japan, RIKEN Brain Science Institute, Hirose, Wako, Saitama 351-0198, Japan, Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, Department of Virology and Viral Infections, Nippon Veterinary and Life Science University, Kyounan, Musashino, Tokyo 180-8602, Japan
| | - Dianna Blau
- National Institute of Infectious Diseases, Murayama Branch, Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan, National Institute of Neuroscience, NCNP, Ogawahigashi, Kodaira, Tokyo 187-8502, Japan, RIKEN Brain Science Institute, Hirose, Wako, Saitama 351-0198, Japan, Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, Department of Virology and Viral Infections, Nippon Veterinary and Life Science University, Kyounan, Musashino, Tokyo 180-8602, Japan
| | - Keiko Nakagaki
- National Institute of Infectious Diseases, Murayama Branch, Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan, National Institute of Neuroscience, NCNP, Ogawahigashi, Kodaira, Tokyo 187-8502, Japan, RIKEN Brain Science Institute, Hirose, Wako, Saitama 351-0198, Japan, Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, Department of Virology and Viral Infections, Nippon Veterinary and Life Science University, Kyounan, Musashino, Tokyo 180-8602, Japan
| | - Hideka S. Miura
- National Institute of Infectious Diseases, Murayama Branch, Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan, National Institute of Neuroscience, NCNP, Ogawahigashi, Kodaira, Tokyo 187-8502, Japan, RIKEN Brain Science Institute, Hirose, Wako, Saitama 351-0198, Japan, Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, Department of Virology and Viral Infections, Nippon Veterinary and Life Science University, Kyounan, Musashino, Tokyo 180-8602, Japan
| | - Yasushi Ami
- National Institute of Infectious Diseases, Murayama Branch, Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan, National Institute of Neuroscience, NCNP, Ogawahigashi, Kodaira, Tokyo 187-8502, Japan, RIKEN Brain Science Institute, Hirose, Wako, Saitama 351-0198, Japan, Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, Department of Virology and Viral Infections, Nippon Veterinary and Life Science University, Kyounan, Musashino, Tokyo 180-8602, Japan
| | - Yasuko K. Yamada
- National Institute of Infectious Diseases, Murayama Branch, Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan, National Institute of Neuroscience, NCNP, Ogawahigashi, Kodaira, Tokyo 187-8502, Japan, RIKEN Brain Science Institute, Hirose, Wako, Saitama 351-0198, Japan, Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, Department of Virology and Viral Infections, Nippon Veterinary and Life Science University, Kyounan, Musashino, Tokyo 180-8602, Japan
| | - Shigeyoshi Itohara
- National Institute of Infectious Diseases, Murayama Branch, Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan, National Institute of Neuroscience, NCNP, Ogawahigashi, Kodaira, Tokyo 187-8502, Japan, RIKEN Brain Science Institute, Hirose, Wako, Saitama 351-0198, Japan, Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, Department of Virology and Viral Infections, Nippon Veterinary and Life Science University, Kyounan, Musashino, Tokyo 180-8602, Japan
| | - Kathryn V. Holmes
- National Institute of Infectious Diseases, Murayama Branch, Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan, National Institute of Neuroscience, NCNP, Ogawahigashi, Kodaira, Tokyo 187-8502, Japan, RIKEN Brain Science Institute, Hirose, Wako, Saitama 351-0198, Japan, Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, Department of Virology and Viral Infections, Nippon Veterinary and Life Science University, Kyounan, Musashino, Tokyo 180-8602, Japan
| | - Fumihiro Taguchi
- National Institute of Infectious Diseases, Murayama Branch, Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan, National Institute of Neuroscience, NCNP, Ogawahigashi, Kodaira, Tokyo 187-8502, Japan, RIKEN Brain Science Institute, Hirose, Wako, Saitama 351-0198, Japan, Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, Department of Virology and Viral Infections, Nippon Veterinary and Life Science University, Kyounan, Musashino, Tokyo 180-8602, Japan
| |
Collapse
|
20
|
Abstract
Enveloped viruses enter into cells via fusion of their envelope and cellular membrane. Spike (S) protein of coronavirus (CoV) is responsible for entry events. We studied the cell entry mechanisms of two different CoVs, murine coronavirus mouse hepatitis virus (MHV) and severe acute respiratory syndrome coronavirus (SARS-CoV). MHV-JHM that induces syncytia in infected cells entered directly from cell surface, i.e., fusion of envelope and plasma membrane, whereas SARS-CoV and MHV-2 that fail to induce syncytia entered via endosome in a protease-dependent fashion, i.e., fusion of envelope and endosomal membrane. The latter viruses entered directly from cell surface, when receptor-bound viruses were treated with proteases that activate fusion activity of their S proteins. The entry pathway of SARS-CoV could influence the severity of the disease. It was also reveled that a highly neurovirulent JHM spread in a receptor-independent fashion, which could result in a high neuropathogenicity of the virus.
Collapse
Affiliation(s)
- Fumihiro Taguchi
- Laboratory of Virology and Viral Diseases, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University.
| | | |
Collapse
|
21
|
Two-step conformational changes in a coronavirus envelope glycoprotein mediated by receptor binding and proteolysis. J Virol 2009; 83:11133-41. [PMID: 19706706 DOI: 10.1128/jvi.00959-09] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The coronaviruses mouse hepatitis virus type 2 (MHV-2) and severe acute respiratory syndrome coronavirus (SARS-CoV) utilize proteases to enter host cells. Upon receptor binding, the spike (S) proteins of both viruses are activated for membrane fusion by proteases, such as trypsin, present in the environment, facilitating virus entry from the cell surface. In contrast, in the absence of extracellular proteases, these viruses can enter cells via an endosomal pathway and utilize endosomal cathepsins for S protein activation. We demonstrate that the MHV-2 S protein uses multistep conformational changes for membrane fusion. After interaction with a soluble form of the MHV receptor (CEACAM1a), the metastable form of S protein is converted to a stable trimer, as revealed by mildly denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Liposome-binding assays indicate that the receptor-bound virions are associated with the target membrane through hydrophobic interactions. The exposure of receptor-bound S protein to trypsin or cathepsin L (CPL) induces the formation of six-helix bundles (6HB), the final conformation. This trypsin- or CPL-mediated conversion to 6HB can be blocked by a heptad repeat peptide known to block the formation of 6HB. Although trypsin treatment enabled receptor-bound MHV-2 to enter from the cell surface, CPL failed to do so. Interestingly, consecutive treatment with CPL and then chlorpromazine enabled a portion of the virus to enter from cell surface. These results suggest that trypsin suffices for the induction of membrane fusion of receptor-primed S protein, but an additional unidentified cellular factor is required to trigger membrane fusion by CPL.
Collapse
|
22
|
Yamada Y, Liu XB, Fang SG, Tay FPL, Liu DX. Acquisition of cell-cell fusion activity by amino acid substitutions in spike protein determines the infectivity of a coronavirus in cultured cells. PLoS One 2009; 4:e6130. [PMID: 19572016 PMCID: PMC2700284 DOI: 10.1371/journal.pone.0006130] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 06/03/2009] [Indexed: 12/30/2022] Open
Abstract
Coronavirus host and cell specificities are determined by specific interactions between the viral spike (S) protein and host cell receptor(s). Avian coronavirus infectious bronchitis (IBV) has been adapted to embryonated chicken eggs, primary chicken kidney (CK) cells, monkey kidney cell line Vero, and other human and animal cells. Here we report that acquisition of the cell–cell fusion activity by amino acid mutations in the S protein determines the infectivity of IBV in cultured cells. Expression of S protein derived from Vero- and CK-adapted strains showed efficient induction of membrane fusion. However, expression of S protein cloned from the third passage of IBV in chicken embryo (EP3) did not show apparent syncytia formation. By construction of chimeric S constructs and site-directed mutagenesis, a point mutation (L857-F) at amino acid position 857 in the heptad repeat 1 region of S protein was shown to be responsible for its acquisition of the cell–cell fusion activity. Furthermore, a G405-D point mutation in the S1 domain, which was acquired during further propagation of Vero-adapted IBV in Vero cells, could enhance the cell–cell fusion activity of the protein. Re-introduction of L857 back to the S gene of Vero-adapted IBV allowed recovery of variants that contain the introduced L857. However, compensatory mutations in S1 and some distant regions of S2 were required for restoration of the cell–cell fusion activity of S protein carrying L857 and for the infectivity of the recovered variants in cultured cells. This study demonstrates that acquisition of the cell–cell fusion activity in S protein determines the selection and/or adaptation of a coronavirus from chicken embryo to cultured cells of human and animal origins.
Collapse
Affiliation(s)
- Yoshiyuki Yamada
- Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
| | - Xiao Bo Liu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Shou Guo Fang
- Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
| | - Felicia P. L. Tay
- Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
| | - Ding Xiang Liu
- Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail:
| |
Collapse
|
23
|
Abstract
Human coronavirus 229E, classified as a group I coronavirus, utilizes human aminopeptidase N (APN) as a receptor; however, its entry mechanism has not yet been fully elucidated. We found that HeLa cells infected with 229E via APN formed syncytia when treated with trypsin or other proteases but not in a low-pH environment, a finding consistent with syncytium formation by severe acute respiratory syndrome coronavirus (SARS-CoV). In addition, trypsin induced cleavage of the 229E S protein. By using infectious viruses and pseudotyped viruses bearing the 229E S protein, we found that its infection was profoundly blocked by lysosomotropic agents as well as by protease inhibitors that also prevented infection with SARS-CoV but not that caused by murine coronavirus mouse hepatitis virus strain JHMV, which enters cells directly from the cell surface. We found that cathepsin L (CPL) inhibitors blocked 229E infection the most remarkably among a variety of protease inhibitors tested. Furthermore, 229E infection was inhibited in CPL knockdown cells by small interfering RNA, compared with what was seen for a normal counterpart producing CPL. However, its inhibition was not so remarkable as that found with SARS-CoV infection, which seems to indicate that while CPL is involved in the fusogenic activation of 229E S protein in endosomal infection, not-yet-identified proteases could also play a part in that activity. We also found 229E virion S protein to be cleaved by CPL. Furthermore, as with SARS-CoV, 229E entered cells directly from the cell surface when cell-attached viruses were treated with trypsin. These findings suggest that 229E takes an endosomal pathway for cell entry and that proteases like CPL are involved in this mode of entry.
Collapse
|
24
|
Watanabe R, Sawicki SG, Taguchi F. Heparan sulfate is a binding molecule but not a receptor for CEACAM1-independent infection of murine coronavirus. Virology 2007; 366:16-22. [PMID: 17692355 PMCID: PMC7103320 DOI: 10.1016/j.virol.2007.06.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2007] [Revised: 06/07/2007] [Accepted: 06/30/2007] [Indexed: 02/05/2023]
Abstract
A highly neurovirulent mouse hepatitis virus (MHV) JHMV strain (wt) with receptor (MHVR)-independent infection activity and its low-virulent mutant srr7 without such activity were found to attach to MHVR-negative, non-permissive BHK cells. To identify the molecule that interacts with JHMV, we focused on heparan sulfate (HS) since it works as a receptor of a mutant MHV-rec1 that infects in an MHVR-independent fashion. The present study indicates that HS interacts with both wt JHMV and srr7 but it does not function as an entry receptor as it apparently does for MHV-rec1. Furthermore, HS failed to serve as an entry receptor in the MHVR-independent infection of wt JHMV, indicating that HS is not a host factor that wt JHMV utilizes in an MHVR-independent infection.
Collapse
Affiliation(s)
- Rie Watanabe
- Division of Viral Respiratory Diseases and SARS, Department of Virology III, National Institute of Infectious Diseases, Murayama Branch, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | | | | |
Collapse
|
25
|
Eifart P, Ludwig K, Böttcher C, de Haan CAM, Rottier PJM, Korte T, Herrmann A. Role of endocytosis and low pH in murine hepatitis virus strain A59 cell entry. J Virol 2007; 81:10758-68. [PMID: 17626088 PMCID: PMC2045462 DOI: 10.1128/jvi.00725-07] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection by the coronavirus mouse hepatitis virus strain A59 (MHV-A59) requires the release of the viral genome by fusion with the respective target membrane of the host cell. Fusion is mediated by the viral S protein. Here, the entry pathway of MHV-A59 into murine fibroblast cells was studied by independent approaches. Infection of cells assessed by plaque reduction assay was strongly inhibited by lysosomotropic compounds and substances that interfere with clathrin-dependent endocytosis, suggesting that MHV-A59 is taken up via endocytosis and delivered to acidic endosomal compartments. Infection was only slightly reduced in the presence of substances inhibiting proteases of endosomal compartments, precluding that the endocytic uptake is required to activate the fusion potential of the S protein by its cleavage. Fluorescence confocal microscopy of labeled MHV-A59 confirmed that virus is taken up via endocytosis. Bright labeling of intracellular compartments suggests their fusion with the viral envelope. No fusion with the plasma membrane was observed at neutral pH conditions. However, when virus was bound to cells and the pH was lowered to 5.0, we observed a strong labeling of the plasma membrane. Electron microscopy revealed low pH triggered conformational alterations of the S ectodomain. Very likely, these alterations are irreversible because low-pH treatment of viruses in the absence of target membranes caused an irreversible loss of the fusion activity. The results imply that endocytosis plays a major role in MHV-A59 infection and the acidic pH of the endosomal compartment triggers a conformational change of the S protein mediating fusion.
Collapse
Affiliation(s)
- Patricia Eifart
- Institut für Biologie/Biophysik, Humboldt-Universität zu Berlin, Invalidenstr. 42, D-10115 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Taguchi F. [Cell entry mechanism of coronaviruses: implication in their pathogenesis]. Uirusu 2007; 56:165-71. [PMID: 17446665 DOI: 10.2222/jsv.56.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Coronaviruses infect many species of animals, including humans. Among them, murine coronavirus, mouse hepatitis virus (MHV) has been well studied as a model of human diseases, such as hepatitis and demyelinating disease. An agent causing severe acute respiratory disease (SARS), SARS coronavirus (SARS-CoV), is a newcomer in this genus, however, it is now one of the most studied coronaviruses due to its medical impact. The receptors of those two viruses have been identified and their cell entry mechanism has been actively investigated. Recently, SARS-CoV cell entry mechanism is shown to be different from that of other enveloped viruses, including MHV. In this review, cell entry mechanism of those two viruses is described, stressing on the difference and similarity found between those two viruses.
Collapse
Affiliation(s)
- Fumihiro Taguchi
- Division of Viral Respiratory Diseases and SARS, National Institute of Infectious Diseasses.
| |
Collapse
|
27
|
Abstract
Coronaviruses are large, enveloped RNA viruses of both medical and veterinary importance. Interest in this viral family has intensified in the past few years as a result of the identification of a newly emerged coronavirus as the causative agent of severe acute respiratory syndrome (SARS). At the molecular level, coronaviruses employ a variety of unusual strategies to accomplish a complex program of gene expression. Coronavirus replication entails ribosome frameshifting during genome translation, the synthesis of both genomic and multiple subgenomic RNA species, and the assembly of progeny virions by a pathway that is unique among enveloped RNA viruses. Progress in the investigation of these processes has been enhanced by the development of reverse genetic systems, an advance that was heretofore obstructed by the enormous size of the coronavirus genome. This review summarizes both classical and contemporary discoveries in the study of the molecular biology of these infectious agents, with particular emphasis on the nature and recognition of viral receptors, viral RNA synthesis, and the molecular interactions governing virion assembly.
Collapse
Affiliation(s)
- Paul S Masters
- Wadsworth Center, New York State Department of Health, Albany, 12201, USA
| |
Collapse
|
28
|
Wei DQ, Zhang R, Du QS, Gao WN, Li Y, Gao H, Wang SQ, Zhang X, Li AX, Sirois S, Chou KC. Anti-SARS drug screening by molecular docking. Amino Acids 2006; 31:73-80. [PMID: 16715412 PMCID: PMC7087968 DOI: 10.1007/s00726-006-0361-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Accepted: 02/01/2006] [Indexed: 10/27/2022]
Abstract
Starting from a collection of 1386 druggable compounds obtained from the 3D pharmacophore search, we performed a similarity search to narrow down the scope of docking studies. The template molecule is KZ7088 (Chou et al., 2003, Biochem Biophys Res Commun 308: 148-151). The MDL MACCS keys were used to fingerprint the molecules. The Tanimoto coefficient is taken as the metric to compare fingerprints. If the similarity threshold was 0.8, a set of 50 unique hits and 103 conformers were retrieved as a result of similarity search. The AutoDock 3.011 was used to carry out molecular docking of 50 ligands to their macromolecular protein receptors. Three compounds, i.e., C(28)H(34)O(4)N(7)Cl, C(21)H(36)O(5)N(6), and C(21)H(36)O(5)N(6), were found that may be promising candidates for further investigation. The main feature shared by these three potential inhibitors as well as the information of the involved side chains of SARS Cov Mpro may provide useful insights for the development of potent inhibitors against SARS enzyme.
Collapse
Affiliation(s)
- D-Q Wei
- College of Life Science and Technology, Shanghai Jiaotong University, Shanghai, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Watanabe R, Matsuyama S, Taguchi F. Receptor-independent infection of murine coronavirus: analysis by spinoculation. J Virol 2006; 80:4901-8. [PMID: 16641281 PMCID: PMC1472070 DOI: 10.1128/jvi.80.10.4901-4908.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A highly neurovirulent murine coronavirus JHMV (wild-type [wt] JHMV) is known to spread from cells infected via the murine coronavirus mouse hepatitis virus receptor (MHVR) to cells without MHVR (MHVR-independent infection), whereas a mutant virus isolated from wt JHMV, srr7, spread only in an MHVR-dependent fashion. These observations were obtained by the overlay of JHMV-infected cells onto receptor-negative cells that are otherwise resistant to wt JHMV infection. MHVR-independent infection is hypothetically thought to be attributed to a naturally occurring fusion activation of the wt JHMV S protein, which did not occur in the case of srr7. Attachment of S protein on cells without MHVR during the S-protein activation process seems to be a key condition. Thus, in the present study, we tried to see whether wt JHMV virions that are attached on MHVR-negative cells are able to infect those cells. In order to make virions attach to the cell surface without MHVR, we have used spinoculation, namely, the centrifugation of cells together with inoculated virus at 3,000 rpm for 2 h. This procedure forces viruses to attach to the cell surface, as revealed by quantitative estimation of attached virions by real-time PCR and also facilitated wt JHMV infection to MHVR-negative cells, but failed to do so for srr7. Virions of both wt and srr7 attached on MHVR-negative cells by spinoculation were facilitated for infection in the presence of a soluble form of MHVR that induces conformational changes of both wt and srr7. It was further revealed that wt JHMV S1, but not srr7, was released from the cell surface when S protein was expressed on cells. These observations support the hypothesis that attachment of the virion to MHVR-negative cells is a critical step and that a unique feature of wt JHMV S1 to be released from S2 in a naturally occurring event is involved in an MHVR-independent infection.
Collapse
Affiliation(s)
- Rie Watanabe
- Division of Respiratory Viral Diseases and SARS, Department of Virology III, National Institute of Infectious Diseases, Murayama, Tokyo 208-0011, Japan
| | | | | |
Collapse
|
30
|
Würdinger T, Verheije MH, Broen K, Bosch BJ, Haijema BJ, de Haan CAM, van Beusechem VW, Gerritsen WR, Rottier PJM. Soluble receptor-mediated targeting of mouse hepatitis coronavirus to the human epidermal growth factor receptor. J Virol 2006; 79:15314-22. [PMID: 16306602 PMCID: PMC1316040 DOI: 10.1128/jvi.79.24.15314-15322.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The mouse hepatitis coronavirus (MHV) infects murine cells by binding of its spike (S) protein to murine CEACAM1a. The N-terminal part of this cellular receptor (soR) is sufficient for S binding and for subsequent induction of the conformational changes required for virus-cell membrane fusion. Here we analyzed whether these characteristics can be used to redirect MHV to human cancer cells. To this end, the soR domain was coupled to single-chain monoclonal antibody 425, which is directed against the human epidermal growth factor receptor (EGFR), resulting in a bispecific adapter protein (soR-425). The soR and soR-425 proteins, both produced with the vaccinia virus system, were able to neutralize MHV infection of murine LR7 cells. However, only soR-425 was able to target MHV to human EGFR-expressing cancer cells. Interestingly, the targeted infections induced syncytium formation. Furthermore, the soR-425-mediated infections were blocked by heptad repeat-mimicking peptides, indicating that virus entry requires the regular S protein fusion process. We conclude that the specific spike-binding property of the CEACAM1a N-terminal fragment can be exploited to direct the virus to selected cells by linking it to a moiety able to bind a receptor on those cells. This approach might be useful in the development of tumor-targeted coronaviruses.
Collapse
Affiliation(s)
- T Würdinger
- Virology Division, Department of Infectious Diseases & Immunology, Utrecht University, 3584 CL Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Verheije MH, Würdinger T, van Beusechem VW, de Haan CAM, Gerritsen WR, Rottier PJM. Redirecting coronavirus to a nonnative receptor through a virus-encoded targeting adapter. J Virol 2006; 80:1250-60. [PMID: 16415002 PMCID: PMC1346946 DOI: 10.1128/jvi.80.3.1250-1260.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Murine hepatitis coronavirus (MHV)-A59 infection depends on the interaction of its spike (S) protein with the cellular receptor mCEACAM1a present on murine cells. Human cells lack this receptor and are therefore not susceptible to MHV. Specific alleviation of the tropism barrier by redirecting MHV to a tumor-specific receptor could lead to a virus with appealing properties for tumor therapy. To demonstrate that MHV can be retargeted to a nonnative receptor on human cells, we produced bispecific adapter proteins composed of the N-terminal D1 domain of mCEACAM1a linked to a short targeting peptide, the six-amino-acid His tag. Preincubation of MHV with the adapter proteins and subsequent inoculation of human cells expressing an artificial His receptor resulted in infection of these otherwise nonsusceptible cells and led to subsequent production of progeny virus. To generate a self-targeted virus able to establish multiround infection of the target cells, we subsequently incorporated the gene encoding the bispecific adapter protein as an additional expression cassette into the MHV genome through targeted RNA recombination. When inoculated onto murine LR7 cells, the resulting recombinant virus indeed expressed the adapter protein. Furthermore, inoculation of human target cells with the virus resulted in a His receptor-specific infection that was multiround. Extensive cell-cell fusion and rapid cell killing of infected target cells was observed. Our results show that MHV can be genetically redirected via adapters composed of the S protein binding part of mCEACAM1a and a targeting peptide recognizing a nonnative receptor expressed on human cells, consequently leading to rapid cell death. The results provide interesting leads for further investigations of the use of coronaviruses as antitumor agents.
Collapse
Affiliation(s)
- M H Verheije
- Virology Division, Department of Infectious Diseases and Immunology, Utrecht University, 3584 CL Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
32
|
Du Q, Wang S, Wei D, Sirois S, Chou KC. Molecular modeling and chemical modification for finding peptide inhibitor against severe acute respiratory syndrome coronavirus main proteinase. Anal Biochem 2005; 337:262-70. [PMID: 15691506 PMCID: PMC7094278 DOI: 10.1016/j.ab.2004.10.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2004] [Indexed: 11/28/2022]
Abstract
Severe acute respiratory syndrome (SARS) is a respiratory disease caused by a newly found virus, called SARS coronavirus. In this study, the cleavage mechanism of the SARS coronavirus main proteinase (Mpro or 3CLpro) on the octapeptide NH2-AVLQ ↓ SGFR-COOH was investigated using molecular mechanics and quantum mechanics simulations based on the experimental structure of the proteinase. It has been observed that the catalytic dyad (His-41/Cys-145) site between domains I and II attracts the π electron density from the peptide bond Gln–Ser, increasing the positive charge on C(CO) of Gln and the negative charge on N(NH) of Ser, so as to weaken the Gln–Ser peptide bond. The catalytic functional group is the imidazole group of His-41 and the S in Cys-145. Nδ1 on the imidazole ring plays the acid–base catalytic role. Based on the “distorted key theory” [K.C. Chou, Anal. Biochem. 233 (1996) 1–14], the possibility to convert the octapeptide to a competent inhibitor has been studied. It has been found that the chemical bond between Gln and Ser will become much stronger and no longer cleavable by the SARS enzyme after either changing the carbonyl group CO of Gln to CH2 or CF2 or changing the NH of Ser to CH2 or CF2. The octapeptide thus modified might become an effective inhibitor or a potential drug candidate against SARS.
Collapse
Affiliation(s)
- Qishi Du
- Tianjin Institute of Bioinformatics and Drug Discovery, Tianjin Normal University, Tianjin 300074, China.
| | | | | | | | | |
Collapse
|
33
|
Fukushi S, Mizutani T, Saijo M, Matsuyama S, Miyajima N, Taguchi F, Itamura S, Kurane I, Morikawa S. Vesicular stomatitis virus pseudotyped with severe acute respiratory syndrome coronavirus spike protein. J Gen Virol 2005; 86:2269-2274. [PMID: 16033974 DOI: 10.1099/vir.0.80955-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) contains a single spike (S) protein, which binds to its receptor, angiotensin-converting enzyme 2 (ACE2), induces membrane fusion and serves as a neutralizing antigen. A SARS-CoV-S protein-bearing vesicular stomatitis virus (VSV) pseudotype using the VSVDeltaG* system was generated. Partial deletion of the SARS-CoV-S protein cytoplasmic domain allowed efficient incorporation into VSV particles and led to the generation of a pseudotype (VSV-SARS-St19) at high titre. Green fluorescent protein expression was demonstrated as early as 7 h after infection of Vero E6 cells with VSV-SARS-St19. VSV-SARS-St19 was neutralized by anti-SARS-CoV antibody and soluble ACE2, and its infection was blocked by treatment of Vero E6 cells with anti-ACE2 antibody. These results indicated that VSV-SARS-St19 infection is mediated by SARS-CoV-S protein in an ACE2-dependent manner. VSV-SARS-St19 will be useful for analysing the function of SARS-CoV-S protein and for developing rapid methods of detecting neutralizing antibodies specific for SARS-CoV infection.
Collapse
Affiliation(s)
- Shuetsu Fukushi
- Special Pathogens Laboratory, Department of Virology I, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo 208-0011, Japan
| | - Tetsuya Mizutani
- Special Pathogens Laboratory, Department of Virology I, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo 208-0011, Japan
| | - Masayuki Saijo
- Special Pathogens Laboratory, Department of Virology I, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo 208-0011, Japan
| | - Shutoku Matsuyama
- Laboratory of Respiratory Viral Diseases and SARS, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo 208-0011, Japan
| | - Naoko Miyajima
- Laboratory of Respiratory Viral Diseases and SARS, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo 208-0011, Japan
| | - Fumihiro Taguchi
- Laboratory of Respiratory Viral Diseases and SARS, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo 208-0011, Japan
| | - Shigeyuki Itamura
- Laboratory of Influenza Virus, Department of Virology III, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo 208-0011, Japan
| | - Ichiro Kurane
- Special Pathogens Laboratory, Department of Virology I, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo 208-0011, Japan
| | - Shigeru Morikawa
- Special Pathogens Laboratory, Department of Virology I, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo 208-0011, Japan
| |
Collapse
|
34
|
Nakagaki K, Nakagaki K, Taguchi F. Receptor-independent spread of a highly neurotropic murine coronavirus JHMV strain from initially infected microglial cells in mixed neural cultures. J Virol 2005; 79:6102-10. [PMID: 15857995 PMCID: PMC1091713 DOI: 10.1128/jvi.79.10.6102-6110.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Although neurovirulent mouse hepatitis virus (MHV) strain JHMV multiplies in a variety of brain cells, expression of its receptor carcinoembryonic antigen cell adhesion molecule 1 (CEACAM 1) (MHVR) is restricted only in microglia. The present study was undertaken to clarify the mechanism of an extensive JHMV infection in the brain by using neural cells isolated from mouse brain. In contrast to wild-type (wt) JHMV, a soluble-receptor-resistant mutant (srr7) infects and spreads solely in an MHVR-dependent fashion (F. Taguchi and S. Matsuyama, J. Virol. 76:950-958, 2002). In mixed neural cell cultures, srr7 infected a limited number of cells and infection did not spread, although wt JHMV induced syncytia in most of the cells. srr7-infected cells were positive for GS-lectin, a microglia marker. Fluorescence-activated cell sorter analysis showed that about 80% of the brain cells stained with anti-MHVR antibody (CC1) were also positive for GS-lectin. Pretreatment of those cells with CC1 prevented virus attachment to the cell surface and also blocked virus infection. These results show that microglia express functional MHVR that mediates JHMV infection. As expected, in microglial cell-enriched cultures, both srr7and wt JHMV produced syncytia in a majority of cells. Treatment with CC1 of mixed neural cell cultures and microglia cultures previously infected with wt virus failed to block the spread of infection, indicating that wt infection spreads in an MHVR-independent fashion. Thus, the present study indicates that microglial cells are the major population of the initial target for MHV infection and that the wt spreads from initially infected microglia to a variety of cells in an MHVR-independent fashion.
Collapse
Affiliation(s)
- Keiko Nakagaki
- Lab. of Respiratory Viral Diseases and SARS, Department of Virology III, National Institute of Infectious Diseases, Murayama Branch, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011 Japan.
| | | | | |
Collapse
|
35
|
Abstract
Over the last few years, dramatic increases in our knowledge about diffusely adhering Escherichia coli (DAEC) pathogenesis have taken place. The typical class of DAEC includes E. coli strains harboring AfaE-I, AfaE-II, AfaE-III, AfaE-V, Dr, Dr-II, F1845, and NFA-I adhesins (Afa/Dr DAEC); these strains (i) have an identical genetic organization and (ii) allow binding to human decay-accelerating factor (DAF) (Afa/Dr(DAF) subclass) or carcinoembryonic antigen (CEA) (Afa/Dr(CEA) subclass). The atypical class of DAEC includes two subclasses of strains; the atypical subclass 1 includes E. coli strains that express AfaE-VII, AfaE-VIII, AAF-I, AAF-II, and AAF-III adhesins, which (i) have an identical genetic organization and (ii) do not bind to human DAF, and the atypical subclass 2 includes E. coli strains that harbor Afa/Dr adhesins or others adhesins promoting diffuse adhesion, together with pathogenicity islands such as the LEE pathogenicity island (DA-EPEC). In this review, the focus is on Afa/Dr DAEC strains that have been found to be associated with urinary tract infections and with enteric infection. The review aims to provide a broad overview and update of the virulence aspects of these intriguing pathogens. Epidemiological studies, diagnostic techniques, characteristic molecular features of Afa/Dr operons, and the respective role of Afa/Dr adhesins and invasins in pathogenesis are described. Following the recognition of membrane-bound receptors, including type IV collagen, DAF, CEACAM1, CEA, and CEACAM6, by Afa/Dr adhesins, activation of signal transduction pathways leads to structural and functional injuries at brush border and junctional domains and to proinflammatory responses in polarized intestinal cells. In addition, uropathogenic Afa/Dr DAEC strains, following recognition of beta(1) integrin as a receptor, enter epithelial cells by a zipper-like, raft- and microtubule-dependent mechanism. Finally, the presence of other, unknown virulence factors and the way that an Afa/Dr DAEC strain emerges from the human intestinal microbiota as a "silent pathogen" are discussed.
Collapse
Affiliation(s)
- Alain L Servin
- Institut National de la Santé et de la Recherche Médicale, Unité 510, Faculté de Pharmacie Paris XI, Châtenay-Malabry, France.
| |
Collapse
|
36
|
Thackray LB, Turner BC, Holmes KV. Substitutions of conserved amino acids in the receptor-binding domain of the spike glycoprotein affect utilization of murine CEACAM1a by the murine coronavirus MHV-A59. Virology 2005; 334:98-110. [PMID: 15749126 PMCID: PMC7111733 DOI: 10.1016/j.virol.2005.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Revised: 11/15/2004] [Accepted: 01/12/2005] [Indexed: 01/17/2023]
Abstract
The host range of the murine coronavirus (MHV) is limited to susceptible mice and murine cell lines by interactions of the spike glycoprotein (S) with its receptor, mCEACAM1a. We identified five residues in S (S33, L79, T82, Y162 and K183) that are conserved in the receptor-binding domain of MHV strains, but not in related coronaviruses. We used targeted RNA recombination to generate isogenic viruses that differ from MHV-A59 by amino acid substitutions in S. Viruses with S33R and K183R substitutions had wild type growth, while L79A/T82A viruses formed small plaques. Viruses with S33G, L79M/T82M or K183G substitutions could only be recovered from cells that over-expressed a mutant mCEACAM1a. Viruses with Y162H or Y162Q substitutions were never recovered, while Y162A viruses formed minute plaques. However, viruses with Y162F substitutions had wild type growth, suggesting that Y162 may comprise part of a hydrophobic domain that contacts the MHV-binding site of mCEACAM1a.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation/genetics
- Antigens, Differentiation/metabolism
- Base Sequence
- Binding Sites/genetics
- Carcinoembryonic Antigen
- Cell Adhesion Molecules
- Cell Line
- Conserved Sequence
- Coronavirus/genetics
- Coronavirus/growth & development
- Coronavirus/metabolism
- Coronavirus/pathogenicity
- Cricetinae
- DNA, Complementary/genetics
- DNA, Viral/genetics
- Green Fluorescent Proteins/genetics
- Humans
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Protein Structure, Tertiary
- Rats
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Recombination, Genetic
- Species Specificity
- Spike Glycoprotein, Coronavirus
- Viral Envelope Proteins/chemistry
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/metabolism
Collapse
|
37
|
Coronaviridae: a review of coronaviruses and toroviruses. CORONAVIRUSES WITH SPECIAL EMPHASIS ON FIRST INSIGHTS CONCERNING SARS 2005. [PMCID: PMC7123520 DOI: 10.1007/3-7643-7339-3_1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
|
38
|
Abstract
This chapter describes the interactions between the different structural components of the viruses and discusses their relevance for the process of virion formation. Two key factors determine the efficiency of the assembly process: intracellular transport and molecular interactions. Many viruses have evolved elaborate strategies to ensure the swift and accurate delivery of the virion components to the cellular compartment(s) where they must meet and form (sub) structures. Assembly of viruses starts in the nucleus by the encapsidation of viral DNA, using cytoplasmically synthesized capsid proteins; nucleocapsids then migrate to the cytosol, by budding at the inner nuclear membrane followed by deenvelopment, to pick up the tegument proteins.
Collapse
Affiliation(s)
- Cornelis A M de Haan
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | | |
Collapse
|
39
|
Du QS, Wang SQ, Zhu Y, Wei DQ, Guo H, Sirois S, Chou KC. Polyprotein cleavage mechanism of SARS CoV Mpro and chemical modification of the octapeptide. Peptides 2004; 25:1857-64. [PMID: 15501516 PMCID: PMC7115412 DOI: 10.1016/j.peptides.2004.06.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2004] [Revised: 06/18/2004] [Accepted: 06/22/2004] [Indexed: 11/26/2022]
Abstract
The cleavage mechanism of severe acute respiratory syndrome (SARS) coronavirus main proteinase (M(pro) or 3CL(pro)) for the octapeptide AVLQSGFR is studied using molecular mechanics (MM) and quantum mechanics (QM). The catalytic dyad His-41 and Cys-145 in the active pocket between domain I and II seem to polarize the pi-electron density of the peptide bond between Gln and Ser in the octapeptide, leading to an increase of positive charge on C(CO) of Gln and negative charge on N(NH) of Ser. The possibility of enhancing the chemical bond between Gln and Ser based on the "distorted key" theory [Anal. Biochem. 233 (1996) 1] is examined. The scissile peptide bond between Gln and Ser is found to be solidified through "hybrid peptide bond" by changing the carbonyl group CO of Gln to CH(2) or CF(2). This leads to a break of the pi-bond system for the peptide bond, making the octapeptide (AVLQSGFR) a "distorted key" and a potential starting system for the design of anti SARS drugs.
Collapse
Affiliation(s)
- Qi-Shi Du
- Tianjin Normal University and Tianjin Institute of Bioinformatics and Drug Discovery (TIBDD), Tianjin 300074, China
- Institut Technologique de Montreal, Suite 168, 5253 Boul. Decarie, Montreal, Que., Canada H3W 3C3
| | - Shu-Qing Wang
- Tianjin Normal University and Tianjin Institute of Bioinformatics and Drug Discovery (TIBDD), Tianjin 300074, China
| | - Yu Zhu
- Tianjin Normal University and Tianjin Institute of Bioinformatics and Drug Discovery (TIBDD), Tianjin 300074, China
| | - Dong-Qing Wei
- Tianjin Normal University and Tianjin Institute of Bioinformatics and Drug Discovery (TIBDD), Tianjin 300074, China
- Institut Technologique de Montreal, Suite 168, 5253 Boul. Decarie, Montreal, Que., Canada H3W 3C3
- Center For Research in Molecular Modeling (CERMM), Concordia University, Montreal, Canada
| | - Hong Guo
- University of Tennessee, Department of Biochemistry, Cell and Molecular Biology, Knoxville, TN 37996-0840, USA
| | - Suzanne Sirois
- Institut Technologique de Montreal, Suite 168, 5253 Boul. Decarie, Montreal, Que., Canada H3W 3C3
| | - Kuo-Chen Chou
- Tianjin Normal University and Tianjin Institute of Bioinformatics and Drug Discovery (TIBDD), Tianjin 300074, China
- Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, Shanghai 200030, China
- Gordon Life Science Institute, San Diego, CA 92130, USA
- Corresponding author.
| |
Collapse
|
40
|
Thackray LB, Holmes KV. Amino acid substitutions and an insertion in the spike glycoprotein extend the host range of the murine coronavirus MHV-A59. Virology 2004; 324:510-24. [PMID: 15207636 PMCID: PMC7127820 DOI: 10.1016/j.virol.2004.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Revised: 02/02/2004] [Accepted: 04/03/2004] [Indexed: 12/14/2022]
Abstract
The murine coronavirus [murine hepatitis virus (MHV)] is limited to infection of susceptible mice and murine cell lines by the specificity of the spike glycoprotein (S) for its receptor, murine carcinoembryonic antigen cell adhesion molecule 1a (mCEACAM1a). We have recently shown that 21 aa substitutions and a 7-aa insert in the N-terminal region of S are associated with the extended host range of a virus variant derived from murine cells persistently infected with the A59 strain of MHV (MHV-A59). We used targeted RNA recombination (TRR) to generate isogenic viruses that differ from MHV-A59 by the 21 aa substitutions or the 7-aa insert in S. Only viruses with both the 21 aa substitutions and the 7-aa insert in S infected hamster, feline, and monkey cells. These viruses also infected murine cells in the presence of blocking anti-mCEACAM1a antibodies. Thus, relatively few changes in the N-terminal region of S1 are sufficient to permit MHV-A59 to interact with alternative receptors on murine and non-murine cells.
Collapse
Affiliation(s)
| | - Kathryn V Holmes
- Corresponding author. Department of Microbiology, University of Colorado Health Sciences Center, Campus Box B-175, 4200 East 9th Avenue, Denver, CO 80262. Fax: +1-303-315-6785.
| |
Collapse
|