1
|
Swaraj S, Tripathi S. Interference without interferon: interferon-independent induction of interferon-stimulated genes and its role in cellular innate immunity. mBio 2024; 15:e0258224. [PMID: 39302126 PMCID: PMC11481898 DOI: 10.1128/mbio.02582-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Interferons (IFNs) are multifaceted proteins that play pivotal roles in orchestrating robust antiviral immune responses and modulating the intricate landscape of host immunity. The major signaling pathway activated by IFNs is the JAK/STAT (Janus kinase/signal transducer and activator of transcription) pathway, which leads to the transcription of a battery of genes, collectively known as IFN-stimulated genes (ISGs). While the well-established role of IFNs in coordinating the innate immune response against viral infections is widely acknowledged, recent years have provided a more distinct comprehension of the functional significance attributed to non-canonical, IFN-independent induction of ISGs. In this review, we summarize the non-conventional signaling pathways of ISG induction. These alternative pathways offer new avenues for developing antiviral strategies or immunomodulation in various diseases.
Collapse
Affiliation(s)
- Shachee Swaraj
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
- Microbiology & Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India
| | - Shashank Tripathi
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
- Microbiology & Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
2
|
Penner I, Büscher N, Dejung M, Freiwald A, Butter F, Plachter B. Subviral Dense Bodies of Human Cytomegalovirus Induce an Antiviral Type I Interferon Response. Cells 2022; 11:cells11244028. [PMID: 36552792 PMCID: PMC9777239 DOI: 10.3390/cells11244028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
(1) Background: Cells infected with the human cytomegalovirus (HCMV) produce subviral particles, termed dense bodies (DBs), both in-vitro and in-vivo. They are released from cells, comparable to infectious virions, and are enclosed by a membrane that resembles the viral envelope and mediates the entry into cells. To date, little is known about how the DB uptake influences the gene expression in target cells. The purpose of this study was to investigate the impact of DBs on cells, in the absence of a viral infection. (2) Methods: Mass spectrometry, immunoblot analyses, siRNA knockdown, and a CRISPR-CAS9 knockout, were used to investigate the changes in cellular gene expression following a DB exposure; (3) Results: A number of interferon-regulated genes (IRGs) were upregulated after the fibroblasts and endothelial cells were exposed to DBs. This upregulation was dependent on the DB entry and mediated by the type I interferon signaling through the JAK-STAT pathway. The induction of IRGs was mediated by the sensing of the DB-introduced DNA by the pattern recognition receptor cGAS. (4) Conclusions: The induction of a strong type I IFN response by DBs is a unique feature of the HCMV infection. The release of DBs may serve as a danger signal and concomitantly contribute to the induction of a strong, antiviral immune response.
Collapse
Affiliation(s)
- Inessa Penner
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Nicole Büscher
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Mario Dejung
- Institute for Molecular Biology, 55128 Mainz, Germany
| | - Anja Freiwald
- Institute for Molecular Biology, 55128 Mainz, Germany
| | - Falk Butter
- Institute for Molecular Biology, 55128 Mainz, Germany
| | - Bodo Plachter
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
- Correspondence:
| |
Collapse
|
3
|
Effect of Cytomegalovirus on the Immune System: Implications for Aging and Mental Health. Curr Top Behav Neurosci 2022; 61:181-214. [PMID: 35871707 DOI: 10.1007/7854_2022_376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Human cytomegalovirus (HCMV) is a major modulator of the immune system leading to long-term changes in T-lymphocytes, macrophages, and natural killer (NK) cells among others. Perhaps because of this immunomodulatory capacity, HCMV infection has been linked with a host of deleterious effects including accelerated immune aging (premature mortality, increased expression of immunosenescence-linked markers, telomere shortening, speeding-up of epigenetic "clocks"), decreased vaccine immunogenicity, and greater vulnerability to infectious diseases (e.g., tuberculosis) or infectious disease-associated pathology (e.g., HIV). Perhaps not surprisingly given the long co-evolution between HCMV and humans, the virus has also been associated with beneficial effects, such as increased vaccine responsiveness, heterologous protection against infections, and protection against relapse in the context of leukemia. Here, we provide an overview of this literature. Ultimately, we focus on one other deleterious effect of HCMV, namely the emerging literature suggesting that HCMV plays a pathophysiological role in psychiatric illness, particularly depression and schizophrenia. We discuss this literature through the lens of psychological stress and inflammation, two well-established risk factors for psychiatric illness that are also known to predispose to reactivation of HCMV.
Collapse
|
4
|
Evasion of a Human Cytomegalovirus Entry Inhibitor with Potent Cysteine Reactivity Is Concomitant with the Utilization of a Heparan Sulfate Proteoglycan-Independent Route of Entry. J Virol 2020; 94:JVI.02012-19. [PMID: 31941787 PMCID: PMC7081914 DOI: 10.1128/jvi.02012-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 01/09/2020] [Indexed: 01/22/2023] Open
Abstract
The dependence of viruses on the host cell to complete their replicative cycle renders cellular functions potential targets for novel antivirals. We screened a panel of broadly acting cellular ion channel inhibitors for activity against human cytomegalovirus (HCMV) and identified the voltage-gated chloride ion channel inhibitor 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) as a potent inhibitor of HCMV replication. Time-of-addition studies demonstrated that DIDS inhibited entry via direct interaction with the virion that impeded binding to the plasma membrane. Synthesis and analysis of pharmacological variants of DIDS suggested that intrinsic cysteine, and not lysine, reactivity was important for activity against HCMV. Although sequencing of DIDS-resistant HCMV revealed enrichment of a mutation within UL100 (encoding glycoprotein M) and a specific truncation of glycoprotein RL13, these did not explain the DIDS resistance phenotype. Specifically, only the introduction of the RL13 mutant partially phenocopied the DIDS resistance phenotype. Serendipitously, the entry of DIDS-resistant HCMV also became independent of heparan sulfate proteoglycans (HSPGs), suggesting that evasion of DIDS lowered dependence on an initial interaction with HSPGs. Intriguingly, the DIDS-resistant virus demonstrated increased sensitivity to antibody neutralization, which mapped, in part, to the presence of the gM mutation. Taken together the data characterize the antiviral activity of a novel HCMV inhibitor that drives HCMV infection to occur independently of HSPGs and the generation of increased sensitivity to humoral immunity. The data also demonstrate that compounds with cysteine reactivity have the potential to act as antiviral compounds against HCMV via direct engagement of virions.IMPORTANCE Human cytomegalovirus (HCMV) is major pathogen of nonimmunocompetent individuals that remains in need of new therapeutic options. Here, we identify a potent antiviral compound (4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid [DIDS]), its mechanism of action, and the chemical properties required for its activity. In doing so, the data argue that cysteine-reactive compounds could have the capacity to be developed for anti-HCMV activity. Importantly, the data show that entry of DIDS-resistant virus became independent of heparan sulfate proteoglycans (HSPGs) but, concomitantly, became more sensitive to neutralizing antibody responses. This serendipitous observation suggests that retention of an interaction with HSPGs during the entry process in vivo may be evolutionarily advantageous through better evasion of humoral responses directed against HCMV virions.
Collapse
|
5
|
Abstract
The human betaherpesviruses, human cytomegalovirus (HCMV; species Human betaherpesvirus 5) and human herpesviruses 6A, 6B, and 7 (HHV-6A, -6B, and -7; species Human betaherpesviruses 6A, 6B, and 7) are highly prevalent and can cause severe disease in immune-compromised and immune-naive populations in well- and under-developed communities. Herpesvirus virion assembly is an intricate process that requires viral orchestration of host systems. In this review, we describe recent advances in some of the many cellular events relevant to assembly and egress of betaherpesvirus virions. These include modifications of host metabolic, immune, and autophagic/recycling systems. In addition, we discuss unique aspects of betaherpesvirus virion structure, virion assembly, and the cellular pathways employed during virion egress.
Collapse
|
6
|
Galinato M, Shimoda K, Aguiar A, Hennig F, Boffelli D, McVoy MA, Hertel L. Single-Cell Transcriptome Analysis of CD34 + Stem Cell-Derived Myeloid Cells Infected With Human Cytomegalovirus. Front Microbiol 2019; 10:577. [PMID: 30949159 PMCID: PMC6437045 DOI: 10.3389/fmicb.2019.00577] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/06/2019] [Indexed: 12/18/2022] Open
Abstract
Myeloid cells are important sites of lytic and latent infection by human cytomegalovirus (CMV). We previously showed that only a small subset of myeloid cells differentiated from CD34+ hematopoietic stem cells is permissive to CMV replication, underscoring the heterogeneous nature of these populations. The exact identity of resistant and permissive cell types, and the cellular features characterizing the latter, however, could not be dissected using averaging transcriptional analysis tools such as microarrays and, hence, remained enigmatic. Here, we profile the transcriptomes of ∼7000 individual cells at day 1 post-infection using the 10× genomics platform. We show that viral transcripts are detectable in the majority of the cells, suggesting that virion entry is unlikely to be the main target of cellular restriction mechanisms. We further show that viral replication occurs in a small but specific sub-group of cells transcriptionally related to, and likely derived from, a cluster of cells expressing markers of Colony Forming Unit – Granulocyte, Erythrocyte, Monocyte, Megakaryocyte (CFU-GEMM) oligopotent progenitors. Compared to the remainder of the population, CFU-GEMM cells are enriched in transcripts with functions in mitochondrial energy production, cell proliferation, RNA processing and protein synthesis, and express similar or higher levels of interferon-related genes. While expression levels of the former are maintained in infected cells, the latter are strongly down-regulated. We thus propose that the preferential infection of CFU-GEMM cells may be due to the presence of a pre-established pro-viral environment, requiring minimal optimization efforts from viral effectors, rather than to the absence of specific restriction factors. Together, these findings identify a potentially new population of myeloid cells permissive to CMV replication, and provide a possible rationale for their preferential infection.
Collapse
Affiliation(s)
- Melissa Galinato
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | - Kristen Shimoda
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | - Alexis Aguiar
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | - Fiona Hennig
- Center for Genetics, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | - Dario Boffelli
- Center for Genetics, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | - Michael A McVoy
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA, United States
| | - Laura Hertel
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| |
Collapse
|
7
|
Marques M, Ferreira AR, Ribeiro D. The Interplay between Human Cytomegalovirus and Pathogen Recognition Receptor Signaling. Viruses 2018; 10:v10100514. [PMID: 30241345 PMCID: PMC6212889 DOI: 10.3390/v10100514] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/15/2018] [Accepted: 09/19/2018] [Indexed: 12/26/2022] Open
Abstract
The cellular antiviral innate immune response is triggered upon recognition of specific viral components by a set of the host’s cytoplasmic or membrane-bound receptors. This interaction induces specific signaling cascades that culminate with the production of interferons and the expression of interferon-stimulated genes and pro-inflammatory cytokines that act as antiviral factors, suppressing viral replication and restricting infection. Here, we review and discuss the different mechanisms by which each of these receptors is able to recognize and signal infection by the human cytomegalovirus (HCMV), an important human pathogen mainly associated with severe brain defects in newborns and disabilities in immunocompromised individuals. We further present and discuss the many sophisticated strategies developed by HCMV to evade these different signaling mechanisms and counteract the cellular antiviral response, in order to support cell viability and sustain its slow replication cycle.
Collapse
Affiliation(s)
- Mariana Marques
- Institute of Biomedicine-iBiMED-and Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ana Rita Ferreira
- Institute of Biomedicine-iBiMED-and Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Daniela Ribeiro
- Institute of Biomedicine-iBiMED-and Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
8
|
Strategy of Human Cytomegalovirus To Escape Interferon Beta-Induced APOBEC3G Editing Activity. J Virol 2018; 92:JVI.01224-18. [PMID: 30045985 DOI: 10.1128/jvi.01224-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 01/26/2023] Open
Abstract
The apolipoprotein B editing enzyme catalytic subunit 3 (APOBEC3) is a family of DNA cytosine deaminases that mutate and inactivate viral genomes by single-strand DNA editing, thus providing an innate immune response against a wide range of DNA and RNA viruses. In particular, APOBEC3A (A3A), a member of the APOBEC3 family, is induced by human cytomegalovirus (HCMV) in decidual tissues where it efficiently restricts HCMV replication, thereby acting as an intrinsic innate immune effector at the maternal-fetal interface. However, the widespread incidence of congenital HCMV infection implies that HCMV has evolved to counteract APOBEC3-induced mutagenesis through mechanisms that still remain to be fully established. Here, we have assessed gene expression and deaminase activity of various APOBEC3 gene family members in HCMV-infected primary human foreskin fibroblasts (HFFs). Specifically, we show that APOBEC3G (A3G) gene products and, to a lesser degree, those of A3F but not of A3A, are upregulated in HCMV-infected HFFs. We also show that HCMV-mediated induction of A3G expression is mediated by interferon beta (IFN-β), which is produced early during HCMV infection. However, knockout or overexpression of A3G does not affect HCMV replication, indicating that A3G is not a restriction factor for HCMV. Finally, through a bioinformatics approach, we show that HCMV has evolved mutational robustness against IFN-β by limiting the presence of A3G hot spots in essential open reading frames (ORFs) of its genome. Overall, our findings uncover a novel immune evasion strategy by HCMV with profound implications for HCMV infections.IMPORTANCE APOBEC3 family of proteins plays a pivotal role in intrinsic immunity defense mechanisms against multiple viral infections, including retroviruses, through the deamination activity. However, the currently available data on APOBEC3 editing mechanisms upon HCMV infection remain unclear. In the present study, we show that particularly the APOBEC3G (A3G) member of the deaminase family is strongly induced upon infection with HCMV in fibroblasts and that its upregulation is mediated by IFN-β. Furthermore, we were able to demonstrate that neither A3G knockout nor A3G overexpression appears to modulate HCMV replication, indicating that A3G does not inhibit HCMV replication. This may be explained by HCMV escape strategy from A3G activity through depletion of the preferred nucleotide motifs (hot spots) from its genome. The results may shed light on antiviral potential of APOBEC3 activity during HCMV infection, as well as the viral counteracting mechanisms under A3G-mediated selective pressure.
Collapse
|
9
|
Huang Y, Liu L, Ma D, Liao Y, Lu Y, Huang H, Qin W, Liu X, Fang F. Human cytomegalovirus triggers the assembly of AIM2 inflammasome in THP-1-derived macrophages. J Med Virol 2017; 89:2188-2195. [PMID: 28480966 DOI: 10.1002/jmv.24846] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/14/2017] [Indexed: 01/04/2023]
Abstract
Absent in melanoma 2 (AIM2) inflammasome is a multiprotein complex which plays a pivotal role in the host immune response to multiple pathogens. The role of AIM2 in human cytomegalovirus (HCMV) infection is poorly studied. Thus, using a small inference RNA (siRNA) approach and THP-1 derived macrophage cells infected with HCMV AD169 strain, we investigated the impact of HCMV infection on AIM2-mediated molecular events. Compared to wild-type cells, AIM2-defiecient macrophages showed a limited ability to activate caspase-1, process IL-1β, and induce cell death. In addition, AIM2-defiecient cells were unable to efficiently control HCMV infection, as the transcription of virus DNA polymerase gene UL54 and major tegument protein gene UL83 were higher compared to wild-type cells. In conclusion, HCMV infection induces an AIM2 inflammasome response, which negatively influences viral life cycle.
Collapse
Affiliation(s)
- Yuan Huang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingling Liu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Yi Liao
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Lu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heyu Huang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenqing Qin
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinglou Liu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Fang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Ashley CL, Glass MS, Abendroth A, McSharry BP, Slobedman B. Nuclear domain 10 components upregulated via interferon during human cytomegalovirus infection potently regulate viral infection. J Gen Virol 2017; 98:1795-1805. [PMID: 28745271 DOI: 10.1099/jgv.0.000858] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous betaherpesvirus that causes life-threatening disease in immunocompromised and immunonaïve individuals. Type I interferons (IFNs) are crucial molecules in the innate immune response to HCMV and are also known to upregulate several components of the interchromosomal multiprotein aggregates collectively referred to as nuclear domain 10 (ND10). In the context of herpesvirus infection, ND10 components are known to restrict gene expression. This raises the question as to whether key ND10 components (PML, Sp100 and hDaxx) act as anti-viral IFN-stimulated genes (ISGs) during HCMV infection. In this study, analysis of ND10 component transcription during HCMV infection demonstrated that PML and Sp100 were significantly upregulated whilst hDaxx expression remained unchanged. In cells engineered to block the production of, or response to, type I IFNs, upregulation of PML and Sp100 was not detected during HCMV infection. Furthermore, pre-treatment with an IFN-β neutralizing antibody inhibited upregulation of PML and Sp100 during both infection and treatment with HCMV-infected cell supernatant. The significance of ND10 components functioning as anti-viral ISGs during HCMV infection was determined through knockdown of PML, Sp100 and hDaxx. ND10 knockdown cells were significantly more permissive to HCMV infection, as previously described but, in contrast to control cells, could support HCMV plaque formation following IFN-β pre-treatment. This ability of HCMV to overcome the potently anti-viral effects of IFN-β in ND10 expression deficient cells provides evidence that ND10 component upregulation is a key mediator of the anti-viral activity of IFN-β.
Collapse
Affiliation(s)
- Caroline L Ashley
- Discipline of Infectious Diseases and Immunology, Sydney Medical School, Charles Perkins Centre, University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Mandy S Glass
- MRC University of Glasgow Centre for Virus Research, University of Glasgow, Garscube Campus, Glasgow, Scotland, UK
- Institute of Biomedical and Environmental Health Research, University of the West of Scotland, High Street, Paisley, Scotland, UK
| | - Allison Abendroth
- Discipline of Infectious Diseases and Immunology, Sydney Medical School, Charles Perkins Centre, University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Brian P McSharry
- Discipline of Infectious Diseases and Immunology, Sydney Medical School, Charles Perkins Centre, University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Barry Slobedman
- Discipline of Infectious Diseases and Immunology, Sydney Medical School, Charles Perkins Centre, University of Sydney, Camperdown, New South Wales 2050, Australia
| |
Collapse
|
11
|
Collins SE, Mossman KL. Danger, diversity and priming in innate antiviral immunity. Cytokine Growth Factor Rev 2014; 25:525-31. [PMID: 25081316 DOI: 10.1016/j.cytogfr.2014.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 07/03/2014] [Indexed: 12/24/2022]
Abstract
The prototypic response to viral infection involves the recognition of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs), leading to the activation of transcription factors such as IRF3 and NFkB and production of type 1 IFN. While this response can lead to the induction of hundreds of IFN-stimulated genes (ISGs) and recruitment and activation of immune cells, such a comprehensive response is likely inappropriate for routine low level virus exposure. Moreover, viruses have evolved a plethora of immune evasion strategies to subvert antiviral signalling. There is emerging evidence that cells have developed very sensitive methods of detecting not only specific viral PAMPS, but also more general danger or stress signals associated with viral entry and replication. Such stress-induced cellular responses likely serve to prime cells to respond to further PAMP stimulation or allow for a rapid and localized intracellular response independent of IFN production and its potential immune sequelae. This review discusses diversity in innate antiviral players and pathways, the role of "danger" sensing, and how alternative pathways, such as the IFN-independent pathway, may serve to prime cells for further pathogen attack.
Collapse
Affiliation(s)
- Susan E Collins
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, Institute for Infectious Disease Research, McMaster University, Hamilton, Canada L8S 4K1
| | - Karen L Mossman
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, Institute for Infectious Disease Research, McMaster University, Hamilton, Canada L8S 4K1.
| |
Collapse
|
12
|
Novel paradigms of innate immune sensing of viral infections. Cytokine 2013; 63:219-24. [DOI: 10.1016/j.cyto.2013.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/01/2013] [Indexed: 12/15/2022]
|
13
|
Membrane perturbation elicits an IRF3-dependent, interferon-independent antiviral response. J Virol 2011; 85:10926-31. [PMID: 21813605 DOI: 10.1128/jvi.00862-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We previously found that enveloped virus binding and penetration are necessary to initiate an interferon-independent, IRF3-mediated antiviral response. To investigate whether membrane perturbations that accompany membrane fusion-dependent enveloped-virus entry are necessary and sufficient for antiviral-state induction, we utilized a reovirus fusion-associated small transmembrane (FAST) protein. Membrane disturbances during FAST protein-mediated fusion, in the absence of additional innate immune response triggers, are sufficient to elicit interferon-stimulated gene induction and establishment of an antiviral state. Using sensors of membrane disruption to activate an IRF3-dependent, interferon-independent antiviral state may provide cells with a rapid, broad-spectrum innate immune response to enveloped-virus infections.
Collapse
|
14
|
McFarlane S, Nicholl MJ, Sutherland JS, Preston CM. Interaction of the human cytomegalovirus particle with the host cell induces hypoxia-inducible factor 1 alpha. Virology 2011; 414:83-90. [PMID: 21481907 DOI: 10.1016/j.virol.2011.03.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 01/19/2011] [Accepted: 03/09/2011] [Indexed: 01/06/2023]
Abstract
The cellular protein hypoxia-inducible factor 1 alpha (HIF-1α) was induced after infection of human fibroblasts with human cytomegalovirus (HCMV). HCMV irradiated with ultraviolet light (uv-HCMV) also elicited the effect, demonstrating that the response was provoked by interaction of the infecting virion with the cell and that viral gene expression was not required. Although induction of HIF-1α was initiated by an early event, accumulation of the protein was not detected until 9 hours post infection, with levels increasing thereafter. Infection with uv-HCMV resulted in increased abundance of HIF-1α-specific RNA, indicating stimulation of transcription. In addition, greater phosphorylation of the protein kinase Akt was observed, and the activity of this enzyme was required for induction of HIF-1α to occur. HIF-1α controls the expression of many cellular gene products; therefore the findings reveal new ways in which interaction of the HCMV particle with the host cell may cause significant alterations to cellular physiology.
Collapse
Affiliation(s)
- Steven McFarlane
- MRC-University of Glasgow Centre for Virus Research, 8 Church Street, Glasgow, G11 5JR, Scotland, United Kingdom
| | | | | | | |
Collapse
|
15
|
Knoblach T, Grandel B, Seiler J, Nevels M, Paulus C. Human cytomegalovirus IE1 protein elicits a type II interferon-like host cell response that depends on activated STAT1 but not interferon-γ. PLoS Pathog 2011; 7:e1002016. [PMID: 21533215 PMCID: PMC3077363 DOI: 10.1371/journal.ppat.1002016] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 02/02/2011] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (hCMV) is a highly prevalent pathogen that, upon primary infection, establishes life-long persistence in all infected individuals. Acute hCMV infections cause a variety of diseases in humans with developmental or acquired immune deficits. In addition, persistent hCMV infection may contribute to various chronic disease conditions even in immunologically normal people. The pathogenesis of hCMV disease has been frequently linked to inflammatory host immune responses triggered by virus-infected cells. Moreover, hCMV infection activates numerous host genes many of which encode pro-inflammatory proteins. However, little is known about the relative contributions of individual viral gene products to these changes in cellular transcription. We systematically analyzed the effects of the hCMV 72-kDa immediate-early 1 (IE1) protein, a major transcriptional activator and antagonist of type I interferon (IFN) signaling, on the human transcriptome. Following expression under conditions closely mimicking the situation during productive infection, IE1 elicits a global type II IFN-like host cell response. This response is dominated by the selective up-regulation of immune stimulatory genes normally controlled by IFN-γ and includes the synthesis and secretion of pro-inflammatory chemokines. IE1-mediated induction of IFN-stimulated genes strictly depends on tyrosine-phosphorylated signal transducer and activator of transcription 1 (STAT1) and correlates with the nuclear accumulation and sequence-specific binding of STAT1 to IFN-γ-responsive promoters. However, neither synthesis nor secretion of IFN-γ or other IFNs seems to be required for the IE1-dependent effects on cellular gene expression. Our results demonstrate that a single hCMV protein can trigger a pro-inflammatory host transcriptional response via an unexpected STAT1-dependent but IFN-independent mechanism and identify IE1 as a candidate determinant of hCMV pathogenicity.
Collapse
Affiliation(s)
- Theresa Knoblach
- Institute for Medical Microbiology and Hygiene, University of Regensburg,
Regensburg, Germany
| | - Benedikt Grandel
- Institute for Medical Microbiology and Hygiene, University of Regensburg,
Regensburg, Germany
| | - Jana Seiler
- Institute for Medical Microbiology and Hygiene, University of Regensburg,
Regensburg, Germany
| | - Michael Nevels
- Institute for Medical Microbiology and Hygiene, University of Regensburg,
Regensburg, Germany
| | - Christina Paulus
- Institute for Medical Microbiology and Hygiene, University of Regensburg,
Regensburg, Germany
| |
Collapse
|
16
|
Activation of the interferon response by human cytomegalovirus occurs via cytoplasmic double-stranded DNA but not glycoprotein B. J Virol 2010; 84:8913-25. [PMID: 20573816 DOI: 10.1128/jvi.00169-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In vitro infection of cells with the betaherpesvirus human cytomegalovirus (HCMV) stimulates an innate immune response characterized by phosphorylation of the transcription factor interferon regulatory factor 3 (IRF3) and subsequent expression of IRF3-dependent genes. While previous work suggests that HCMV envelope glycoprotein B is responsible for initiating this reaction, the signaling pathways stimulated by virus infection that lead to IRF3 phosphorylation have largely been uncharacterized. Recently, we identified Z DNA binding protein 1 (ZBP1), a sensor of cytoplasmic DNA, as an essential protein for this response. We now describe a human fibroblast cell line exhibiting a recessive defect that results in the absence of activation of IRF3 following treatment with HCMV but not Sendai virus or double-stranded RNA. In addition, we show that while exposure of these cells to soluble HCMV glycoprotein B is capable of triggering IRF3-dependent gene transcription, transfection of the cells with double-stranded DNA is not. Furthermore, we show that overexpression of ZBP1 in these cells reestablishes their ability to secrete interferon in response to HCMV and that multiple ZBP1 transcriptional variants exist in both wild-type and mutant cells. These results have two major implications for the understanding of innate immune stimulation by HCMV. First, they demonstrate that HCMV glycoprotein B is not the essential molecular pattern that induces an IRF3-dependent innate immune response. Second, IRF3-terminal signaling triggered by HCMV particles closely resembles that which is activated by cytoplasmic double-stranded DNA.
Collapse
|
17
|
Recognition of virus infection and innate host responses to viral gene therapy vectors. Mol Ther 2010; 18:1422-9. [PMID: 20551916 DOI: 10.1038/mt.2010.124] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The innate immune and inflammatory response represents one of the key stumbling blocks limiting the efficacy of viral-based therapies. Numerous human diseases could be corrected or ameliorated if viruses were harnessed to safely and effectively deliver therapeutic genes to diseased cells and tissues in vivo. Recent studies have shown that host cells recognize viruses using an elaborate network of sensor proteins localized at the plasma membrane, in endosomes, or in the cytosol. Three classes of sensors have been implicated in sensing viruses in mammalian cells-Toll-like receptors (TLRs), retinoid acid-inducible gene (RIG)-I-like receptors (RLRs), and nucleotide oligomerization domain (NOD)-like receptors (NLRs). The interaction of virus-associated nucleic acids with these sensor molecules triggers a signaling cascade that activates the principal host defense program aimed to limit or eliminate virus infection and restore tissue homeostasis. In addition, recent data strongly suggest that host cells can mount innate immune responses to viruses without prior recognition of their nucleic acids. To deliver therapeutic genes into the nuclei of diseased cells, viral gene therapy vectors must be efficient at penetrating either the plasma or endosomal membrane. The therapeutic use of high numbers of virus particles disturbs cellular homeostasis, triggering cell damage and stress pathways, or "sensing of modified self". Accumulating data indicate that the sensing of modified self might represent a powerful framework explaining the innate immune response activation by viral gene therapy vectors.
Collapse
|
18
|
Marshall EE, Geballe AP. Multifaceted evasion of the interferon response by cytomegalovirus. J Interferon Cytokine Res 2010; 29:609-19. [PMID: 19708810 DOI: 10.1089/jir.2009.0064] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human cytomegalovirus (HCMV), which infects the majority of the population worldwide, causes few, if any, symptoms in otherwise healthy people but is responsible for considerable morbidity and mortality in immunocompromised patients and in congenitally infected newborns. The evolutionary success of HCMV depends in part on its ability to evade host defense systems. Here we review recent progress in elucidating the remarkable assortment of mechanisms employed by HCMV and the related beta-herpesviruses, murine cytomegaloviruses (MCMV) and rhesus cytomegaloviruses (RhCMV), for counteracting the host interferon (IFN) response. Very early after infection, cellular membrane sensors such as the lymphotoxin beta receptor initiate the production of antiviral cytokines including type I IFNs. However, virion factors, such as pp65 (ppUL83) and viral proteins made soon after infection including the immediate early gene 2 protein (pUL122), repress this response by interfering with steps in the activation of IFN regulatory factor 3 and NF-kappaB. CMVs then exert a multi-pronged attack on downstream IFN signaling. HCMV infection results in decreased accumulation and phosphorylation of the IFN signaling kinases Jak1 and Stat2, and the MCMV protein pM27 mediates Stat2 down-regulation, blocking both type I and type II IFN signaling. The HCMV immediate early gene 1 protein (pUL123) interacts with Stat2 and inhibits transcriptional activation of IFN-regulated genes. Infection also causes reduction in the abundance of p48/IRF9, a component of the ISGF3 transcription factor complex. Furthermore, CMVs have multiple genes involved in blocking the function of IFN-induced effectors. For example, viral double-stranded RNA-binding proteins are required to prevent the shutoff of protein synthesis by protein kinase R, further demonstrating the vital importance of evading the IFN response at multiple levels during infection.
Collapse
Affiliation(s)
- Emily E Marshall
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA
| | | |
Collapse
|
19
|
Human cytomegalovirus induces the interferon response via the DNA sensor ZBP1. J Virol 2010; 84:585-98. [PMID: 19846511 DOI: 10.1128/jvi.01748-09] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a member of the betaherpesvirus family that, unlike other herpesviruses, triggers a strong innate immune response in infected cells that includes transcription of the beta interferon gene via activation of interferon regulatory factor 3 (IRF3). IRF3 activation requires signaling from pattern recognition receptors that is initiated by their interaction with specific pathogen-associated molecules. However, while IRF3-activating pathways are increasingly well characterized, the cellular molecules involved in HCMV-mediated IRF3-dependent beta interferon transcription are virtually unknown. We undertook a systematic examination of new and established IRF3-terminal pathway components to identify those that are essential to HCMV-triggered IRF3 activation. We show here that IRF3 activation induced by HCMV infection involves the newly identified protein STING but, in contrast to infections with other herpesviruses, occurs independently of the adaptor molecule IPS-1. We also show that the protein DDX3 contributes to HCMV-triggered expression of beta interferon. Moreover, we identify Z-DNA binding protein 1 (ZBP1) as being essential for IRF3 activation and interferon beta expression triggered by HCMV, as well as being sufficient to enhance HCMV-stimulated beta interferon transcription and secretion. ZBP1 transcription was also found to be induced following exposure to HCMV in a JAK/STAT-dependent manner, thus perhaps also contributing to a positive feedback signal. Finally, we show that constitutive overexpression of ZBP1 inhibits HCMV replication. ZBP1 was recently identified as a cytosolic pattern recognition receptor of double-stranded DNA, and thus, we propose a model for HCMV-mediated IRF3 activation that involves HCMV-associated DNA as the principal innate immune-activating pathogen-associated molecular pattern.
Collapse
|
20
|
Innate and adaptive immune responses to herpes simplex virus. Viruses 2009; 1:979-1002. [PMID: 21994578 PMCID: PMC3185534 DOI: 10.3390/v1030979] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 11/13/2009] [Accepted: 11/16/2009] [Indexed: 12/19/2022] Open
Abstract
Immune responses against HSV-1 and HSV-2 are complex and involve a delicate interplay between innate signaling pathways and adaptive immune responses. The innate response to HSV involves the induction of type I IFN, whose role in protection against disease is well characterized in vitro and in vivo. Cell types such as NK cells and pDCs contribute to innate anti-HSV responses in vivo. Finally, the adaptive response includes both humoral and cellular components that play important roles in antiviral control and latency. This review summarizes the innate and adaptive effectors that contribute to susceptibility, immune control and pathogenesis of HSV, and highlights the delicate interplay between these two important arms of immunity.
Collapse
|
21
|
Cell fusion-induced activation of interferon-stimulated genes is not required for restriction of a herpes simplex virus VP16/ICP0 mutant in heterokarya formed between permissive and restrictive cells. J Virol 2009; 83:8976-9. [PMID: 19535444 DOI: 10.1128/jvi.00142-09] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Herpes simplex virus VP16 and ICP0 mutants replicate efficiently in U2OS osteosarcoma cells but are restricted in other cell types. We previously showed that the restrictive phenotype is dominant in a transient cell fusion assay, suggesting that U2OS cells lack an antiviral mechanism present in other cells. Recent data indicate that unscheduled membrane fusion events can activate the expression of interferon-stimulated genes (ISGs) in fibroblasts, raising the possibility that our earlier results were due to a fusion-induced antiviral state. However, we show here that the permissive phenotype is also extinguished following fusion with Vero cells in the absence of ISG induction.
Collapse
|
22
|
Epstein-Barr virus BGLF4 kinase suppresses the interferon regulatory factor 3 signaling pathway. J Virol 2008; 83:1856-69. [PMID: 19052084 DOI: 10.1128/jvi.01099-08] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The BGLF4 protein kinase of Epstein-Barr virus (EBV) is a member of the conserved family of herpesvirus protein kinases which, to some extent, have a function similar to that of the cellular cyclin-dependent kinase in regulating multiple cellular and viral substrates. In a yeast two-hybrid screening assay, a splicing variant of interferon (IFN) regulatory factor 3 (IRF3) was found to interact with the BGLF4 protein. This interaction was defined further by coimmunoprecipitation in transfected cells and glutathione S-transferase (GST) pull-down in vitro. Using reporter assays, we show that BGLF4 effectively suppresses the activities of the poly(I:C)-stimulated IFN-beta promoter and IRF3-responsive element. Moreover, BGLF4 represses the poly(I:C)-stimulated expression of endogenous IFN-beta mRNA and the phosphorylation of STAT1 at Tyr701. In searching for a possible mechanism, BGLF4 was shown not to affect the dimerization, nuclear translocation, or CBP recruitment of IRF3 upon poly(I:C) treatment. Notably, BGLF4 reduces the amount of active IRF3 recruited to the IRF3-responsive element containing the IFN-beta promoter region in a chromatin immunoprecipitation assay. BGLF4 phosphorylates GST-IRF3 in vitro, but Ser339-Pro340 phosphorylation-dependent, Pin1-mediated downregulation is not responsible for the repression. Most importantly, we found that three proline-dependent phosphorylation sites at Ser123, Ser173, and Thr180, which cluster in a region between the DNA binding and IRF association domains of IRF3, contribute additively to the BGLF4-mediated repression of IRF3(5D) transactivation activity. IRF3 signaling is activated in reactivated EBV-positive NA cells, and the knockdown of BGLF4 further stimulates IRF3-responsive reporter activity. The data presented here thus suggest a novel mechanism by which herpesviral protein kinases suppress host innate immune responses and facilitate virus replication.
Collapse
|
23
|
Characterization of the interferon regulatory factor 3-mediated antiviral response in a cell line deficient for IFN production. Mol Immunol 2008; 46:393-9. [PMID: 19038458 DOI: 10.1016/j.molimm.2008.10.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Accepted: 10/14/2008] [Indexed: 12/24/2022]
Abstract
The innate cellular response to virus particle entry in non-immune cells requires the transcriptional activity of interferon regulatory factor 3 (IRF-3), but not production of type I interferon (IFN). Here, we characterize the IFN-independent innate cellular response to virus-derived stimuli in Vero cells, a monkey kidney epithelial cell line deficient for IFN production. We provide evidence that Vero cells are deficient in their ability to mount an IRF-3-dependent, IFN-independent antiviral response against either incoming virus particles or polyinosinic:polycytidylic acid (pIC), a dsRNA mimetic. We further demonstrate that abundance of IRF-3 protein is a determinant in the pIC-mediated antiviral signalling pathway. These observations further characterize the permissive nature of Vero cells to viral infection, and highlight the crucial involvement of IRF-3 in the innate antiviral response.
Collapse
|
24
|
Platelet-derived growth factor-alpha receptor activation is required for human cytomegalovirus infection. Nature 2008; 455:391-5. [PMID: 18701889 DOI: 10.1038/nature07209] [Citation(s) in RCA: 243] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 06/25/2008] [Indexed: 11/08/2022]
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous human herpesvirus that can cause life-threatening disease in the fetus and the immunocompromised host. Upon attachment to the cell, the virus induces robust inflammatory, interferon- and growth-factor-like signalling. The mechanisms facilitating viral entry and gene expression are not clearly understood. Here we show that platelet-derived growth factor-alpha receptor (PDGFR-alpha) is specifically phosphorylated by both laboratory and clinical isolates of HCMV in various human cell types, resulting in activation of the phosphoinositide-3-kinase (PI(3)K) signalling pathway. Upon stimulation by HCMV, tyrosine-phosphorylated PDGFR-alpha associated with the p85 regulatory subunit of PI(3)K and induced protein kinase B (also known as Akt) phosphorylation, similar to the genuine ligand, PDGF-AA. Cells in which PDGFR-alpha was genetically deleted or functionally blocked were non-permissive to HCMV entry, viral gene expression or infectious virus production. Re-introducing human PDGFRA gene into knockout cells restored susceptibility to viral entry and essential viral gene expression. Blockade of receptor function with a humanized PDGFR-alpha blocking antibody (IMC-3G3) or targeted inhibition of its kinase activity with a small molecule (Gleevec) completely inhibited HCMV viral internalization and gene expression in human epithelial, endothelial and fibroblast cells. Viral entry in cells harbouring endogenous PDGFR-alpha was competitively inhibited by pretreatment with PDGF-AA. We further demonstrate that HCMV glycoprotein B directly interacts with PDGFR-alpha, resulting in receptor tyrosine phosphorylation, and that glycoprotein B neutralizing antibodies inhibit HCMV-induced PDGFR-alpha phosphorylation. Taken together, these data indicate that PDGFR-alpha is a critical receptor required for HCMV infection, and thus a target for novel anti-viral therapies.
Collapse
|
25
|
Abstract
Human cytomegalovirus (HCMV) exhibits an exceptionally broad cellular tropism as it is capable of infecting most major organ systems and cell types. Definitive proof of an essential role for a cellular molecule that serves as an entry receptor has proven very challenging. It is widely hypothesized that receptor utilization, envelope glycoprotein requirements and entry pathways may all vary according to cell type, which is partially supported by the data. What has clearly emerged in recent years is that virus entry is not going undetected by the host. Robust and rapid induction of innate immune response is intimately associated with entry-related events. Here we review the state of knowledge on HCMV cellular entry mediators confronting the scientific challenges by accruing a definitive data set. We also review the roles of pattern recognition receptors such as Toll-like receptors in activation of specific innate immune response and discuss how entry events are tightly coordinated with innate immune initiation steps.
Collapse
|
26
|
Juckem LK, Boehme KW, Feire AL, Compton T. Differential initiation of innate immune responses induced by human cytomegalovirus entry into fibroblast cells. THE JOURNAL OF IMMUNOLOGY 2008; 180:4965-77. [PMID: 18354222 DOI: 10.4049/jimmunol.180.7.4965] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Infection of permissive fibroblasts with human CMV (HCMV, AD169) is accompanied by a robust activation of innate immune defense. In this study, we show that inflammatory cytokine (IC) secretion and activation of the type I IFN pathway (alphabeta IFN) are initiated through distinct mechanisms. HCMV is recognized by TLR2 leading to the NF-kappaB activation and IC secretion. However, the IFN response to HCMV is not a TLR2-dependent process, as a dominant negative TLR2 does not affect the antiviral response to infection. Additionally, bafilomycin, an endosomal acidification inhibitor, has no effect on HCMV-induced IFN responses suggesting that IFN signaling is independent of endosomal resident TLRs. By contrast, disruption of lipid rafts by depletion of cellular cholesterol inhibits both HCMV entry as well as IFN responses. Cholesterol depletion had no effect on the induction of ICs by HCMV, illustrating a biological distinction at the cellular level with the initiation of innate immune pathways. Furthermore, HCMV entry inhibitors block IFN responses but not IC signaling. In particular, blocking the interaction of HCMV with beta(1) integrin diminished IFN signaling, suggesting that this virus-cell interaction or subsequent downstream steps in the entry pathway are critical for downstream signal transduction events. These data show that HCMV entry and IFN signaling are coordinated processes that require cholesterol-rich microdomains, whereas IC signaling is activated through outright sensing via TLR2. These findings further highlight the complexity and sophistication of innate immune responses at the earliest points in HCMV infection.
Collapse
Affiliation(s)
- Laura K Juckem
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison Medical School, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
27
|
Randall RE, Goodbourn S. Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol 2008; 89:1-47. [PMID: 18089727 DOI: 10.1099/vir.0.83391-0] [Citation(s) in RCA: 1233] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The interferon (IFN) system is an extremely powerful antiviral response that is capable of controlling most, if not all, virus infections in the absence of adaptive immunity. However, viruses can still replicate and cause disease in vivo, because they have some strategy for at least partially circumventing the IFN response. We reviewed this topic in 2000 [Goodbourn, S., Didcock, L. & Randall, R. E. (2000). J Gen Virol 81, 2341-2364] but, since then, a great deal has been discovered about the molecular mechanisms of the IFN response and how different viruses circumvent it. This information is of fundamental interest, but may also have practical application in the design and manufacture of attenuated virus vaccines and the development of novel antiviral drugs. In the first part of this review, we describe how viruses activate the IFN system, how IFNs induce transcription of their target genes and the mechanism of action of IFN-induced proteins with antiviral action. In the second part, we describe how viruses circumvent the IFN response. Here, we reflect upon possible consequences for both the virus and host of the different strategies that viruses have evolved and discuss whether certain viruses have exploited the IFN response to modulate their life cycle (e.g. to establish and maintain persistent/latent infections), whether perturbation of the IFN response by persistent infections can lead to chronic disease, and the importance of the IFN system as a species barrier to virus infections. Lastly, we briefly describe applied aspects that arise from an increase in our knowledge in this area, including vaccine design and manufacture, the development of novel antiviral drugs and the use of IFN-sensitive oncolytic viruses in the treatment of cancer.
Collapse
Affiliation(s)
- Richard E Randall
- School of Biology, University of St Andrews, The North Haugh, St Andrews KY16 9ST, UK
| | - Stephen Goodbourn
- Division of Basic Medical Sciences, St George's, University of London, London SW17 0RE, UK
| |
Collapse
|
28
|
DeFilippis VR. Induction and evasion of the type I interferon response by cytomegaloviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 598:309-24. [PMID: 17892221 DOI: 10.1007/978-0-387-71767-8_22] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cytomegaloviruses represent supreme pathogens in that they are capable of occupying healthy mammalian hosts for life in the face of constant antiviral immune reactions. The inability of the host to eliminate the virus likely results from numerous counteractive strategies employed to disrupt the immune response. The role of type I interferon in the antiviral response has been well documented although only recently have the pathways of induction of this powerful cytokine been described. Cytomegaloviruses have been shown to both induce and be sensitive to the effects of type I interferon. Yet these viruses also possess numerous and varied phenotypes capable of inhibiting not only interferon induction but also interferon signaling and interferon-induced antiviral processes. The balance between induction and evasion of type I interferon responses by cytomegaloviruses is discussed in this review.
Collapse
Affiliation(s)
- Victor R DeFilippis
- Oregon Health and Science University, Vaccine and Gene Therapy Institute, USA.
| |
Collapse
|
29
|
Krzyzaniak M, Mach M, Britt WJ. The cytoplasmic tail of glycoprotein M (gpUL100) expresses trafficking signals required for human cytomegalovirus assembly and replication. J Virol 2007; 81:10316-28. [PMID: 17626081 PMCID: PMC2045486 DOI: 10.1128/jvi.00375-07] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The virion envelope of human cytomegalovirus (HCMV) is complex and consists of an incompletely defined number of glycoproteins. The gM/gN protein complex is the most abundant protein component of the envelope. Studies have indicated that deletion of the viral gene encoding either gM or gN is a lethal mutation. Analysis of the amino acid sequence of gM disclosed a C-terminal acidic cluster of amino acids and a tyrosine-containing trafficking motif, both of which are well-described trafficking/sorting signals in the cellular secretory pathway. To investigate the roles of these signals in the trafficking of the gM/gN complex during virus assembly, we made a series of gM (UL100 open reading frame) mutants in the AD169 strain of HCMV. Mutant viruses that lacked the entire C-terminal cytoplasmic tail of gM were not viable, suggesting that the cytoplasmic tail of gM is essential for virus replication. In addition, the gM mutant protein lacking the cytoplasmic domain exhibited decreased protein stability. Mutant viruses with a deletion of the acidic cluster or alanine substitutions in tyrosine-based motifs were viable but exhibited a replication-impaired phenotype suggestive of a defect in virion assembly. Analysis of these mutant gMs using static immunofluorescence and fluorescence recovery after photobleaching demonstrated delayed kinetics of intracellular localization of the gM/gN protein to the virus assembly compartment compared to the wild-type protein. These data suggest an important role of the glycoprotein gM during virus assembly, particularly in the dynamics of gM trafficking during viral-particle assembly.
Collapse
Affiliation(s)
- Magdalena Krzyzaniak
- Department of Microbiology, University of Alabama School of Medicine, and Department of Pediatrics, Room 107, Harbor Bldg. Childrens Hospital, 1600 7th Ave. South, Birmingham, AL 35233, USA
| | | | | |
Collapse
|
30
|
Noyce RS, Collins SE, Mossman KL. Identification of a novel pathway essential for the immediate-early, interferon-independent antiviral response to enveloped virions. J Virol 2007; 80:226-35. [PMID: 16352547 PMCID: PMC1317555 DOI: 10.1128/jvi.80.1.226-235.2006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral infection elicits the activation of numerous cellular signal transduction pathways, leading to the induction of both innate and adaptive immunity. Previously we showed that entry of virion particles from a diverse array of enveloped virus families was capable of eliciting an interferon regulatory factor 3 (IRF-3)-mediated antiviral state in human fibroblasts in the absence of interferon production. Here we show that extracellular regulated kinase 1/2, p38 mitogen-activated protein kinase, and Jun N-terminal kinase/stress-activated protein kinase activities are not required for antiviral state induction. In contrast, treatment of cells with LY294002, an inhibitor of the phosphoinositide 3-kinase (PI3 kinase) family, prevents the induction of interferon-stimulated gene 56 (ISG56) and an antiviral response upon entry of virus particles. However, the prototypic class I p85/p110 PI3 kinase and its downstream effector Akt/PKB are dispensable for ISG and antiviral state induction. Furthermore, DNA-PK and PAK1, LY294002-sensitive members of the PI3 kinase family shown previously to be involved in IRF-3 activation, are also dispensable for ISG and antiviral state induction. The LY294002 inhibitor fails to prevent IRF-3 homodimerization or nuclear translocation upon virus particle entry. Together, these data suggest that virus entry triggers an innate antiviral response that requires the activity of a novel PI3 kinase family member.
Collapse
Affiliation(s)
- Ryan S Noyce
- Department of Biochemistry and Biomedical Sciences, Centre for Gene Therapeutics, Michael DeGroote Centre for Learning and Discovery, Room 5026, 1200 Main Street West, Hamilton, Ontario, Canada L8N 3Z5
| | | | | |
Collapse
|
31
|
Paladino P, Cummings DT, Noyce RS, Mossman KL. The IFN-independent response to virus particle entry provides a first line of antiviral defense that is independent of TLRs and retinoic acid-inducible gene I. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 177:8008-16. [PMID: 17114474 DOI: 10.4049/jimmunol.177.11.8008] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The innate immune system responds to pathogen infection by eliciting a nonspecific immune response following the recognition of various pathogen-associated molecular patterns. TLRs and the RNA helicases retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 recognize foreign nucleic acid within endosomal and cytoplasmic compartments, respectively, initiating a signaling cascade that involves the induction of type I IFN through the transcription factors IFN regulatory factor (IRF) 3 and NF-kappaB. However, a recent paradigm has emerged in which bacterial DNA and double-stranded B-form DNA trigger type I IFN production through an uncharacterized TLR- and RIG-I-independent pathway. We have previously described a response in primary fibroblasts wherein the entry of diverse RNA- and DNA-enveloped virus particles is sufficient to induce a subset of IFN-stimulated genes and a complete antiviral response in an IRF3-dependent, IFN-independent manner. In this study, we show that the innate immune response to virus particle entry is independent of both TLR and RIG-I pathways, confirming the existence of novel innate immune mechanisms that result in the activation of IRF3. Furthermore, we propose a model of innate antiviral immunity in which exposure to increasing numbers of virus particles elevates the complexity of the cellular response from an intracellular, IFN-independent response to one involving secretion of cytokines and activation of infiltrating immune cells.
Collapse
Affiliation(s)
- Patrick Paladino
- Department of Pathology and Molecular Medicine, Center for Gene Therapeutics, McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
32
|
DeFilippis VR, Robinson B, Keck TM, Hansen SG, Nelson JA, Früh KJ. Interferon regulatory factor 3 is necessary for induction of antiviral genes during human cytomegalovirus infection. J Virol 2006; 80:1032-7. [PMID: 16379004 PMCID: PMC1346858 DOI: 10.1128/jvi.80.2.1032-1037.2006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Viral infection activates interferon regulatory factor 3 (IRF3), a cofactor for the induction of interferon-stimulated genes (ISGs). The role of IRF3 in the activation of ISGs by human cytomegalovirus (HCMV) is controversial despite the fact that HCMV has consistently been shown to induce ISGs during infection of fibroblasts. To address the function of IRF3 in HCMV-mediated ISG induction, we monitored ISG expression and global gene expression in HCMV-infected cells in which IRF3 function had been depleted by small interfering RNA or blocked by dominant negative IRF3. A specific reduction of ISG induction was observed, whereas other transcripts were unaffected. We therefore conclude that IRF3 specifically regulates ISG induction during the initial phase of HCMV infection.
Collapse
Affiliation(s)
- Victor R DeFilippis
- Oregon Health and Science University, West Campus, Vaccine and Gene Therapy Institute, 505 NW 185th Ave., Beaverton, OR 97006, USA
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Herpesvirus infection leads to the rapid induction of an innate immune response. A central aspect of this host response is the production and secretion of type I interferon. The current model of virus-mediated interferon production includes three stages: sensitization, induction, and amplification. A key mediator of all three stages is the cellular transcription factor interferon regulatory factor 3 (IRF3). Although the precise details of IRF3 activation and interferon production in response to herpesvirus infection are still being elucidated, viral proteins that block components of the interferon pathway, particularly IRF3, have been identified and characterized. In vivo studies have shown that in addition to type I interferon, interleukin-15 (IL-15) and natural killer (NK) cells also play an important role in mediating resistance to herpesvirus infection. Recent investigations have demonstrated a strong association between IRF3, interferon, IL-15, and NK cells. This review will focus on herpesvirus-mediated induction of innate immunity, the central role of the type I interferon response and mechanisms used by herpesviruses to block host antiviral immunity.
Collapse
Affiliation(s)
- Karen L Mossman
- Department of Pathology and Molecular Medicine, Centre for Gene Therapeutics, McMaster University, Hamilton, Ontario, Canada.
| | | |
Collapse
|
34
|
Hahn AM, Huye LE, Ning S, Webster-Cyriaque J, Pagano JS. Interferon regulatory factor 7 is negatively regulated by the Epstein-Barr virus immediate-early gene, BZLF-1. J Virol 2005; 79:10040-52. [PMID: 16014964 PMCID: PMC1181586 DOI: 10.1128/jvi.79.15.10040-10052.2005] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virus infection stimulates potent antiviral responses; specifically, Epstein-Barr virus (EBV) infection induces and activates interferon regulatory factor 7 (IRF-7), which is essential for production of alpha/beta interferons (IFN-alpha/beta) and upregulates expression of Tap-2. Here we present evidence that during cytolytic viral replication the immediate-early EBV protein BZLF-1 counteracts effects of IRF-7 that are central to host antiviral responses. We initiated these studies by examining IRF-7 protein expression in vivo in lesions of hairy leukoplakia (HLP) in which there is abundant EBV replication but the expected inflammatory infiltrate is absent. This absence might predict that factors involved in the antiviral response are absent or inactive. First, we detected significant levels of IRF-7 in the nucleus, as well as in the cytoplasm, of cells in HLP lesions. IRF-7 activity in cell lines during cytolytic viral replication was examined by assay of the IRF-7-responsive promoters, IFN-alpha4, IFN-beta, and Tap-2, as well as of an IFN-stimulated response element (ISRE)-containing reporter construct. These reporter constructs showed consistent reduction of activity during lytic replication. Both endogenous and transiently expressed IRF-7 and EBV BZLF-1 proteins physically associate in cell culture, although BZLF-1 had no effect on the nuclear localization of IRF-7. However, IRF-7-dependent activity of the IFN-alpha4, IFN-beta, and Tap-2 promoters, as well as an ISRE promoter construct, was inhibited by BZLF-1. This inhibition occurred in the absence of other EBV proteins and was independent of IFN signaling. Expression of BZLF-1 also inhibited activation of IRF-7 by double-stranded RNA, as well as the activity of a constitutively active mutant form of IRF-7. Negative regulation of IRF-7 by BZLF-1 required the activation domain but not the DNA-binding domain of BZLF-1. Thus, EBV may subvert cellular antiviral responses and immune detection by blocking the activation of IFN-alpha4, IFN-beta, and Tap-2 by IRF-7 through the medium of BZLF-1 as a negative regulator.
Collapse
Affiliation(s)
- Angela M Hahn
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, 27599, USA
| | | | | | | | | |
Collapse
|
35
|
Hidmark AS, McInerney GM, Nordström EKL, Douagi I, Werner KM, Liljeström P, Karlsson Hedestam GB. Early alpha/beta interferon production by myeloid dendritic cells in response to UV-inactivated virus requires viral entry and interferon regulatory factor 3 but not MyD88. J Virol 2005; 79:10376-85. [PMID: 16051830 PMCID: PMC1182635 DOI: 10.1128/jvi.79.16.10376-10385.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Accepted: 05/05/2005] [Indexed: 01/19/2023] Open
Abstract
Alpha/beta interferons (IFN-alpha/beta) are key mediators of innate immunity and important modulators of adaptive immunity. The mechanisms by which IFN-alpha/beta are induced are becoming increasingly well understood. Recent studies showed that Toll-like receptors 7 and 8 expressed by plasmacytoid dendritic cells (pDCs) mediate the endosomal recognition of incoming viral RNA genomes, a process which requires myeloid differentiation factor 88 (MyD88). Here we investigate the requirements for virus-induced IFN-alpha/beta production in cultures of bone marrow-derived murine myeloid DCs (mDCs). Using recombinant Semliki Forest virus blocked at different steps in the viral life cycle, we show that replication-defective virus induced IFN-alpha/beta in mDCs while fusion-defective virus did not induce IFN-alpha/beta. The response to replication-defective virus was largely intact in MyD88-/- mDC cultures but was severely reduced in mDC cultures from mice lacking IFN regulatory factor 3. Our observations suggest that mDCs respond to incoming virus via a pathway that differs from the fusion-independent, MyD88-mediated endosomal pathway described for the induction of IFN-alpha/beta in pDCs. We propose that events during or downstream of viral fusion, but prior to replication, can activate IFN-alpha/beta in mDCs. Thus, mDCs may contribute to the antiviral response activated by the immune system at early time points after infection.
Collapse
Affiliation(s)
- Asa S Hidmark
- Microbiology and Tumor Biology Center, Karolinska Institutet, Box 280, S-171 77 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
36
|
DeFilippis V, Früh K. Rhesus cytomegalovirus particles prevent activation of interferon regulatory factor 3. J Virol 2005; 79:6419-31. [PMID: 15858025 PMCID: PMC1091669 DOI: 10.1128/jvi.79.10.6419-6431.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
One of the most important innate host defense mechanisms against viral infection is the induction of interferon (IFN)-stimulated genes (ISGs). Immediately upon entry, viruses activate interferon-regulatory factor 3 (IRF3), as well as nuclear factor kappaB (NF-kappaB), which transactivate a subset of ISGs, proinflammatory genes, as well as IFN genes. Most large DNA viruses exhibit countermeasures against induction of this response. However, whereas human cytomegalovirus (HCMV) inhibits IFN-dependent induction of ISGs, IFN-independent induction of ISGs is observed both in the presence and, even moreso, in the absence of viral gene expression. Rhesus CMV (RhCMV) is an emerging animal model for HCMV sharing important similarities in primary structure, epidemiology, and pathogenesis. To determine whether RhCMV would similarly induce ISGs, we performed DNA microarray and quantitative PCR analysis of ISG expression in rhesus fibroblasts infected with RhCMV or HCMV. In contrast to HCMV, however, RhCMV did not induce expression of ISGs or proinflammatory genes at any time after infection. Moreover, dimerization and nuclear accumulation of IRF3, readily observed in HCMV-infected cells, was absent from RhCMV-infected cells, whereas neither virus seemed to activate NFkappaB. RhCMV also blocked IRF3 activation by live or UV-inactivated HCMV, suggesting that RhCMV inhibits viral IRF3 activation and the resultant ISG induction with extraordinary efficiency. Since infection during inhibition of protein expression by cycloheximide or inactivation of viral gene expression by UV treatment did not trigger IRF3 activation or ISG expression by RhCMV, we conclude that RhCMV virions contain a novel inhibitor of IFN-independent viral induction of ISG expression by IRF3.
Collapse
Affiliation(s)
- Victor DeFilippis
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, 505 NW 185th Ave., Beaverton, OR 97006, USA
| | | |
Collapse
|
37
|
Yang S, Netterwald J, Wang W, Zhu H. Characterization of the elements and proteins responsible for interferon-stimulated gene induction by human cytomegalovirus. J Virol 2005; 79:5027-34. [PMID: 15795288 PMCID: PMC1069545 DOI: 10.1128/jvi.79.8.5027-5034.2005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection of human fibroblast cells activates a large number of interferon-stimulated genes (ISGs) in a viral envelope-cell membrane fusion-dependent mechanism. In this study, we identified two interferon response elements, the interferon-stimulated response element (ISRE) and the gamma interferon-activated site (GAS), which act as HCMV response sites (VRS). Gel mobility shift assays showed that cellular proteins form specific and identical complexes with ISRE and GAS elements, and the binding of these complexes to ISRE and GAS is stimulated by HCMV infection. Point mutations in the consensus sequences of ISRE and GAS completely abolished their activities in response to HCMV-mediated transactivation, as well as their abilities to interact with HCMV-activated VRS-binding proteins. Interferon regulatory factor 3 does not appear to be present in the VRS-binding complexes or to be involved directly in HCMV-mediated ISG activation. Using ProteinChip technology, four potential proteins were identified, ranging from 20 to 42 kDa, in the VRS-binding complexes. The data suggest that HCMV infection activates VRS-binding proteins, which then bind to the VRS and stimulate ISG expression.
Collapse
Affiliation(s)
- Shaojun Yang
- Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, 225 Warren St., Newark, NJ 07101-1709, USA
| | | | | | | |
Collapse
|
38
|
Netterwald J, Yang S, Wang W, Ghanny S, Cody M, Soteropoulos P, Tian B, Dunn W, Liu F, Zhu H. Two gamma interferon-activated site-like elements in the human cytomegalovirus major immediate-early promoter/enhancer are important for viral replication. J Virol 2005; 79:5035-46. [PMID: 15795289 PMCID: PMC1069560 DOI: 10.1128/jvi.79.8.5035-5046.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection directly initiates a signal transduction pathway that leads to activation of a large number of cellular interferon-stimulated genes (ISGs). Our previous studies demonstrated that two interferon response elements, the interferon-stimulated response element and gamma interferon-activated site (GAS), in the ISG promoters serve as HCMV response sites (VRS). Interestingly, two GAS-like VRS elements (VRS1) were also present in the HCMV major immediate-early promoter-enhancer (MIEP/E). In this study, the importance of these VRS elements in viral replication was investigated. We demonstrate that the expression of the major IE genes, IE1 and IE2, is interferon inducible. To understand the biological significance of this signal transduction pathway in HCMV major IE expression, the two VRS1 in the MIEP/E were mutated. Mutant HCMVs in which the VRS elements were deleted or that contained point mutations grew dramatically more slowly than wild-type virus at a low multiplicity of infection (MOI). Insertion of wild-type VRS1 into the mutant viral genome rescued the slow growth phenotype. Furthermore, the expression levels of major IE RNAs and proteins were greatly reduced during infection with the VRS mutants at a low MOI. HCMV microarray analysis indicated that infection of host cells with the VRS mutant virus resulted in a global reduction in the expression of viral genes. Collectively, these data demonstrate that the two VRS elements in the MIEP/E are necessary for efficient viral gene expression and replication. This study suggests that although the HCMV-initiated signal transduction pathway results in induction of cellular antiviral genes, it also functions to stimulate viral major IE gene expression. This might be a new viral strategy in which the pathway is used to regulate gene expression and play a role in reactivation.
Collapse
Affiliation(s)
- James Netterwald
- Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, 225 Warren St., Newark, NJ 07101-1709, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Britt WJ, Jarvis MA, Drummond DD, Mach M. Antigenic domain 1 is required for oligomerization of human cytomegalovirus glycoprotein B. J Virol 2005; 79:4066-79. [PMID: 15767408 PMCID: PMC1061566 DOI: 10.1128/jvi.79.7.4066-4079.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human cytomegalovirus (HCMV) glycoprotein B (gB) is an abundant virion envelope protein that has been shown to be essential for the infectivity of HCMV. HCMV gB is also one of the most immunogenic virus-encoded proteins, and a significant fraction of virus neutralizing antibodies are directed at gB. A linear domain of gB designated AD-1 (antigenic domain 1) represents a dominant antibody binding site on this protein. AD-1 from clinical isolates of HCMV exhibits little sequence variation, suggesting that AD-1 plays an essential role in gB structure or function. We investigated this possibility by examining the role of AD-1 in early steps of gB synthesis. Our results from studies using eukaryotic cells indicated that amino acid (aa) 635 of the gB sequence represented the carboxyl-terminal limit of this domain and that deletion of aa 560 to 640 of the gB sequence resulted in loss of AD-1 expression. AD-1 was shown to be required for oligomerization of gB. Mutation of cysteine at either position 573 or 610 in AD-1 resulted in loss of its reactivity with AD-1-specific monoclonal antibodies and gB oligomerization. Infectious virus could not be recovered from HCMV bacterial artificial chromosomes following introduction of these mutations into the HCMV genome, suggesting that AD-1 was an essential structural domain required for gB function in the replicative cycle of HCMV. Sequence alignment of AD-1 with homologous regions of gBs from other herpesviruses demonstrated significant relatedness, raising the possibility that this domain may contribute to multimerization of gBs in other herpesviruses.
Collapse
Affiliation(s)
- William J Britt
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, AL 35294, USA.
| | | | | | | |
Collapse
|