1
|
Yan H, Foo SS, Chen W, Yoo JS, Shin WJ, Wu C, Jung JU. Efficient Inhibition of Human Papillomavirus Infection by L2 Minor Capsid-Derived Lipopeptide. mBio 2019; 10:e01834-19. [PMID: 31387913 PMCID: PMC6686047 DOI: 10.1128/mbio.01834-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 01/05/2023] Open
Abstract
The amino (N)-terminal region of human papillomavirus (HPV) minor capsid protein (L2) is a highly conserved region which is essential for establishing viral infection. Despite its importance in viral infectivity, the role of the HPV N-terminal domain has yet to be fully characterized. Using fine mapping analysis, we identified a 36-amino-acid (aa) peptide sequence of the L2 N terminus, termed L2N, that is critical for HPV infection. Ectopic expression of L2N with the transmembrane sequence on the target cell surface conferred resistance to HPV infection. Additionally, L2N peptide with chemical or enzymatic lipidation at the carboxyl (C) terminus efficiently abrogated HPV infection in target cells. Among the synthetic L2N lipopeptides, a stearoylated lipopeptide spanning aa 13 to 46 (13-46st) exhibited the most potent anti-HPV activity, with a half-maximal inhibitory concentration (IC50) of ∼200 pM. Furthermore, we demonstrated that the 13-46st lipopeptide inhibited HPV entry by blocking trans-Golgi network retrograde trafficking of virion particles, leading to rapid degradation. Fundamentally, the inhibitory effect of L2N lipopeptides appeared to be evolutionarily conserved, as they showed cross-type inhibition among various papillomaviruses. In conclusion, our findings provide new insights into the critical role of the L2N sequence in the HPV entry mechanism and identify the therapeutic potential of L2N lipopeptide as an effective anti-HPV agent.IMPORTANCE HPV is a human oncogenic virus that causes a major public health problem worldwide, which is responsible for approximately 5% of total human cancers and almost all cases of cervical cancers. HPV capsid consists of two structure proteins, the major capsid L1 protein and the minor capsid L2 protein. While L2 plays critical roles during the viral life cycle, the molecular mechanism in viral entry remains elusive. Here, we performed fine mapping of the L2 N-terminal region and defined a short 36-amino-acid peptide, called L2N, which is critical for HPV infection. Specifically, L2N peptide with carboxyl-terminal lipidation acted as a potent and cross-type HPV inhibitor. Taken together, data from our study highlight the essential role of the L2N sequence at the early step of HPV entry and suggests the L2N lipopeptide as a new strategy to broadly prevent HPV infection.
Collapse
Affiliation(s)
- Huan Yan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Suan-Sin Foo
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Weiqiang Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ji-Seung Yoo
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Woo-Jin Shin
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Christine Wu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jae U Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
2
|
Breiner B, Preuss L, Roos N, Conrady M, Lilie H, Iftner T, Simon C. Refolding and in vitro characterization of human papillomavirus 16 minor capsid protein L2. Biol Chem 2019; 400:513-522. [PMID: 30375341 DOI: 10.1515/hsz-2018-0311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/25/2018] [Indexed: 01/31/2023]
Abstract
The minor capsid protein L2 of papillomaviruses exhibits multiple functions during viral entry including membrane interaction. Information on the protein is scarce, because of its high tendency of aggregation. We determined suitable conditions to produce a functional human papillomavirus (HPV) 16 L2 protein and thereby provide the opportunity for extensive in vitro analysis with respect to structural and biochemical information on L2 proteins and mechanistic details in viral entry. We produced the L2 protein of high-risk HPV 16 in Escherichia coli as inclusion bodies and purified the protein under denaturing conditions. A successive buffer screen resulted in suitable conditions for the biophysical characterization of 16L2. Analytical ultracentrifugation of the refolded protein showed a homogenous monomeric species. Furthermore, refolded 16L2 shows secondary structure elements. The N-terminal region including the proposed transmembrane region of 16L2 shows alpha-helical characteristics. However, overall 16L2 appears largely unstructured. Refolded 16L2 is capable of binding to DNA indicating that the putative DNA-binding regions are accessible in refolded 16L2. Further the refolded protein interacts with liposomal membranes presumably via the proposed transmembrane region at neutral pH without structural changes. This indicates that 16L2 can initially interact with membranes via pre-existing structural features.
Collapse
Affiliation(s)
- Bastian Breiner
- Institute of Medical Virology, University of Tübingen, Elfriede-Aulhorn-Str. 06, D-72076 Tuebingen, Germany
| | - Laura Preuss
- Institute of Medical Virology, University of Tübingen, Elfriede-Aulhorn-Str. 06, D-72076 Tuebingen, Germany
| | - Nora Roos
- Institute of Medical Virology, University of Tübingen, Elfriede-Aulhorn-Str. 06, D-72076 Tuebingen, Germany
| | - Marcel Conrady
- Institute of Medical Virology, University of Tübingen, Elfriede-Aulhorn-Str. 06, D-72076 Tuebingen, Germany
| | - Hauke Lilie
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 03, D-06120, Halle/Saale, Germany
| | - Thomas Iftner
- Institute of Medical Virology, University of Tübingen, Elfriede-Aulhorn-Str. 06, D-72076 Tuebingen, Germany
| | - Claudia Simon
- Institute of Medical Virology, University of Tübingen, Elfriede-Aulhorn-Str. 06, D-72076 Tuebingen, Germany
| |
Collapse
|
3
|
Kaliamurthi S, Selvaraj G, Chinnasamy S, Wang Q, Nangraj AS, Cho WC, Gu K, Wei DQ. Exploring the Papillomaviral Proteome to Identify Potential Candidates for a Chimeric Vaccine against Cervix Papilloma Using Immunomics and Computational Structural Vaccinology. Viruses 2019; 11:63. [PMID: 30650527 PMCID: PMC6357041 DOI: 10.3390/v11010063] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/03/2019] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
The human papillomavirus (HPV) 58 is considered to be the second most predominant genotype in cervical cancer incidents in China. HPV type-restriction, non-targeted delivery, and the highcost of existing vaccines necessitate continuing research on the HPV vaccine. We aimed to explore the papillomaviral proteome in order to identify potential candidates for a chimeric vaccine against cervix papilloma using computational immunology and structural vaccinology approaches. Two overlapped epitope segments (23⁻36) and (29⁻42) from the N-terminal region of the HPV58 minor capsid protein L2 are selected as capable of inducing both cellular and humoral immunity. In total, 318 amino acid lengths of the vaccine construct SGD58 contain adjuvants (Flagellin and RS09), two Th epitopes, and linkers. SGD58 is a stable protein that is soluble, antigenic, and non-allergenic. Homology modeling and the structural refinement of the best models of SGD58 and TLR5 found 96.8% and 93.9% favored regions in Rampage, respectively. The docking results demonstrated a HADDOCK score of -62.5 ± 7.6, the binding energy (-30 kcal/mol) and 44 interacting amino acid residues between SGD58-TLR5 complex. The docked complex are stable in 100 ns of simulation. The coding sequences of SGD58 also show elevated gene expression in Escherichia coli with 1.0 codon adaptation index and 59.92% glycine-cysteine content. We conclude that SGD58 may prompt the creation a vaccine against cervix papilloma.
Collapse
Affiliation(s)
- Satyavani Kaliamurthi
- Center of Interdisciplinary Science-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
- College of Chemistry, Chemical Engineering and Environment, Henan University of Technology, Zhengzhou 450001, China.
| | - Gurudeeban Selvaraj
- Center of Interdisciplinary Science-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
- College of Chemistry, Chemical Engineering and Environment, Henan University of Technology, Zhengzhou 450001, China.
| | - Sathishkumar Chinnasamy
- The State Key Laboratory of Microbial Metabolism, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Qiankun Wang
- The State Key Laboratory of Microbial Metabolism, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Asma Sindhoo Nangraj
- The State Key Laboratory of Microbial Metabolism, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - William Cs Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong.
| | - Keren Gu
- Center of Interdisciplinary Science-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
- College of Chemistry, Chemical Engineering and Environment, Henan University of Technology, Zhengzhou 450001, China.
| | - Dong-Qing Wei
- Center of Interdisciplinary Science-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
- The State Key Laboratory of Microbial Metabolism, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
4
|
Vanmechelen B, Maes RK, Sledge DG, Lockwood SL, Schwartz SL, Maes P. Genomic characterization of Erethizon dorsatum papillomavirus 2, a new papillomavirus species marked by its exceptional genome size. J Gen Virol 2018; 99:1699-1704. [PMID: 30355398 DOI: 10.1099/jgv.0.001164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We report here the complete sequence and genome organization of a new papillomavirus, Erethizon dorsatum papillomavirus 2 (EdPV2), which was isolated from cutaneous lesions observed on the muzzle of a North American porcupine. The complete genome is 8809 nucleotides long and encodes five early (E6-E7-E1-E2-E4) and two late proteins (L2-L1). In addition to the upstream regulatory region, the EdPV2 genome contains an exceptionally large secondary non-coding region with no apparent functional relevance. EdPV2 is strongly divergent from the previously described porcupine papillomavirus EdPV1 and phylogenetic analysis shows EdPV2 clustering near members of the genus Pipapillomavirus, a group of rodent papillomaviruses. Pairwise sequence comparison based on the L1 open reading frame identifies Rattus norvegicus papillomavirus 1 as the closest related virus (59.97 % similarity). Based on its low sequence similarity to other known papillomaviruses, EdPV2 is thought to represent a new genus in the family Papillomaviridae.
Collapse
Affiliation(s)
- Bert Vanmechelen
- 1KU Leuven, Department of Microbiology and Immunology, Laboratory of Clinical Virology, Rega Institute for Medical Research, Herestraat 49/Box 1040, BE3000 Leuven, Belgium
| | - Roger K Maes
- 2College of Veterinary Medicine, Michigan State University Veterinary Diagnostic Laboratory, Lansing, Michigan 48910, USA
| | - Dodd G Sledge
- 2College of Veterinary Medicine, Michigan State University Veterinary Diagnostic Laboratory, Lansing, Michigan 48910, USA
| | | | | | - Piet Maes
- 1KU Leuven, Department of Microbiology and Immunology, Laboratory of Clinical Virology, Rega Institute for Medical Research, Herestraat 49/Box 1040, BE3000 Leuven, Belgium
| |
Collapse
|
5
|
Campos SK. Subcellular Trafficking of the Papillomavirus Genome during Initial Infection: The Remarkable Abilities of Minor Capsid Protein L2. Viruses 2017; 9:v9120370. [PMID: 29207511 PMCID: PMC5744145 DOI: 10.3390/v9120370] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/01/2017] [Accepted: 12/02/2017] [Indexed: 12/24/2022] Open
Abstract
Since 2012, our understanding of human papillomavirus (HPV) subcellular trafficking has undergone a drastic paradigm shift. Work from multiple laboratories has revealed that HPV has evolved a unique means to deliver its viral genome (vDNA) to the cell nucleus, relying on myriad host cell proteins and processes. The major breakthrough finding from these recent endeavors has been the realization of L2-dependent utilization of cellular sorting factors for the retrograde transport of vDNA away from degradative endo/lysosomal compartments to the Golgi, prior to mitosis-dependent nuclear accumulation of L2/vDNA. An overview of current models of HPV entry, subcellular trafficking, and the role of L2 during initial infection is provided below, highlighting unresolved questions and gaps in knowledge.
Collapse
Affiliation(s)
- Samuel K Campos
- The Department of Immunobiology, The University of Arizona, Tucson, AZ 85721-0240, USA.
- The Department of Molecular & Cellular Biology, The University of Arizona, Tucson, AZ 85721-0240, USA.
- The Cancer Biology Graduate Interdisciplinary Program, The University of Arizona, Tucson, AZ 85721-0240, USA.
- The BIO5 Institute, Tucson, AZ 85721-0240, USA.
| |
Collapse
|
6
|
A central region in the minor capsid protein of papillomaviruses facilitates viral genome tethering and membrane penetration for mitotic nuclear entry. PLoS Pathog 2017; 13:e1006308. [PMID: 28464022 PMCID: PMC5412989 DOI: 10.1371/journal.ppat.1006308] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/22/2017] [Indexed: 12/18/2022] Open
Abstract
Incoming papillomaviruses (PVs) depend on mitotic nuclear envelope breakdown to gain initial access to the nucleus for viral transcription and replication. In our previous work, we hypothesized that the minor capsid protein L2 of PVs tethers the incoming vDNA to mitotic chromosomes to direct them into the nascent nuclei. To re-evaluate how dynamic L2 recruitment to cellular chromosomes occurs specifically during prometaphase, we developed a quantitative, microscopy-based assay for measuring the degree of chromosome recruitment of L2-EGFP. Analyzing various HPV16 L2 truncation-mutants revealed a central chromosome-binding region (CBR) of 147 amino acids that confers binding to mitotic chromosomes. Specific mutations of conserved motifs (IVAL286AAAA, RR302/5AA, and RTR313EEE) within the CBR interfered with chromosomal binding. Moreover, assembly-competent HPV16 containing the chromosome-binding deficient L2(RTR313EEE) or L2(IVAL286AAAA) were inhibited for infection despite their ability to be transported to intracellular compartments. Since vDNA and L2 were not associated with mitotic chromosomes either, the infectivity was likely impaired by a defect in tethering of the vDNA to mitotic chromosomes. However, L2 mutations that abrogated chromatin association also compromised translocation of L2 across membranes of intracellular organelles. Thus, chromatin recruitment of L2 may in itself be a requirement for successful penetration of the limiting membrane thereby linking both processes mechanistically. Furthermore, we demonstrate that the association of L2 with mitotic chromosomes is conserved among the alpha, beta, gamma, and iota genera of Papillomaviridae. However, different binding patterns point to a certain variance amongst the different genera. Overall, our data suggest a common strategy among various PVs, in which a central region of L2 mediates tethering of vDNA to mitotic chromosomes during cell division thereby coordinating membrane translocation and delivery to daughter nuclei. Papillomaviruses can cause carcinogenic malignancies such as cervical cancer. Like most DNA viruses, papillomaviruses must deliver their genome to the cell nucleus during initial infection, where it is expressed and replicated. However, papillomaviruses make use of unconventional mechanisms for genome delivery. They reside on the cell surface for protracted, hour-long times, before they are taken up by a novel endocytic mechanism. Moreover, they are delivered to the trans-Golgi-network by non-canonical endosomal trafficking prior to nuclear delivery. For entry into the nucleus, papillomaviruses access the nuclear space after nuclear envelope breakdown during mitosis unlike most other intranuclear viruses. The detailed mechanism how the viral genome is directed to nascent nuclei during mitosis remains elusive. Our previous work suggested that the minor capsid protein L2 may tether the incoming viral genome to mitotic chromosomes to direct it to the nascent nuclei. This work identifies a conserved central region in L2 protein to be necessary and sufficient for tethering. Moreover, it demonstrates that this mechanism is conserved across different papillomavirus genera. Importantly, this report also provides evidence that the processes of nuclear import by tethering and membrane penetration are mechanistically linked.
Collapse
|
7
|
Abstract
Persistent infection with high-risk human papillomavirus (HPV) genotype is a major factor leading to many human cancers. Mechanisms of HPV entry into host cells and genome trafficking towards the nucleus are incompletely understood. Dopachrome tautomerase (DCT) was identified as a cellular gene required for HPV infection in HeLa cells on a siRNA screen study. Here, we confirm that DCT knockdown significantly decreases HPV infection in the human keratinocyte HaCaT cells as was observed in HeLas. We investigated the effects of DCT knockdown and found that DCT depletion caused increased reactive oxygen species (ROS) levels, DNA damage and altered cell cycle in HaCaT cells. We observed increased viral DNA localization at the endoplasmic reticulum but an overall decrease in infection in DCT knockdown cells. This observation suggests that viral DNA might be retained in the ER due to altered cell cycle, and viral particles are incapable of further movement towards the nucleus in DCT knockdown cells.
Collapse
Affiliation(s)
- Pınar Aksoy
- Department of Biological Sciences, Fordham University, Bronx, New York, United States of America
| | - Patricio I. Meneses
- Department of Biological Sciences, Fordham University, Bronx, New York, United States of America
| |
Collapse
|
8
|
Wang D, Li Z, Xiao J, Wang J, Zhang L, Liu Y, Fan F, Xin L, Wei M, Kong Z, Yu H, Gu Y, Zhang J, Li S, Xia N. Identification of Broad-Genotype HPV L2 Neutralization Site for Pan-HPV Vaccine Development by a Cross-Neutralizing Antibody. PLoS One 2015; 10:e0123944. [PMID: 25905781 PMCID: PMC4408011 DOI: 10.1371/journal.pone.0123944] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/09/2015] [Indexed: 02/01/2023] Open
Abstract
Human Papillomavirus (HPV), a non-enveloped, double-stranded DNA virus, is responsible for 5% of human cancers. The HPV capsid consists of major and minor structural proteins, L1 and L2. L1 proteins form an icosahedral shell with building blocks of the pentameric capsomere, and one L2 molecule extends outward from the central hole of the capsid. Thus, L2 is concealed within L1 and only becomes exposed when the capsid interacts with host cells. The low antigenic variation of L2 means that this protein could offer a target for the development of a pan-HPV vaccine. Toward this goal, here we describe an anti-L2 monoclonal antibody, 14H6, which broadly neutralizes at least 11 types of HPV, covering types 6, 11, 16, 18, 31, 33, 35, 45, 52, 58 and 59, in pseudovirion--based cell neutralization assay. The mAb 14H6 recognizes a minimal linear epitope located on amino acids 21 to 30 of the L2 protein. Alanine scanning mutagenesis and sequence alignment identified several conserved residues (Cys22, Lys23, Thr27, Cys28 and Pro29) that are involved in the 14H6 binding with L2. The epitope was grafted to several scaffolding proteins, including HPV16 L1 virus-like particles, HBV 149 core antigen and CRM197. The resultant chimeric constructs were expressed in Escherichia coli and purified with high efficiency. Immunization with these pan-HPV vaccine candidates elicited high titers of the L2-specific antibody in mice and conferred robust (3-log) titers of cross-genotype neutralization, including against HPV11, 16, 18, 45, 52, 58 and 59. These findings will help in the development of an L2-based, pan-HPV vaccine.
Collapse
Affiliation(s)
- Daning Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Zhihai Li
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Jieqiong Xiao
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Junqi Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Li Zhang
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Yajing Liu
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Fei Fan
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Lu Xin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Minxi Wei
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Zhibo Kong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361005, China
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361005, China
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361005, China
- * E-mail: (SL); (NX)
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361005, China
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen, 361005, China
- * E-mail: (SL); (NX)
| |
Collapse
|
9
|
Abstract
Human papillomaviruses (HPV) are the major factor in causing cervical cancer as well as being implicated in causing oral and anal cancers. The life cycle of HPV is tied to the epithelial differentiation system, as only native virus can be produced in stratified human skin. Initially, HPV research was only possible utilizing recombinant systems in monolayer culture. With new cell culture technology, systems using differentiated skin have allowed HPV to be studied in its native environment. Here, we describe current research studying native virions in differentiated skin including viral assembly, maturation, capsid protein interactions, and L2 cross-neutralizing epitopes. In doing so, we hope to show how differentiating skin systems have increased our knowledge of HPV biology and identify gaps in our knowledge about this important virus.
Collapse
|
10
|
Panatto D, Amicizia D, Bragazzi NL, Rizzitelli E, Tramalloni D, Valle I, Gasparini R. Human Papillomavirus Vaccine. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015:231-322. [DOI: 10.1016/bs.apcsb.2015.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Bilkova E, Forstova J, Abrahamyan L. Coat as a dagger: the use of capsid proteins to perforate membranes during non-enveloped DNA viruses trafficking. Viruses 2014; 6:2899-937. [PMID: 25055856 PMCID: PMC4113798 DOI: 10.3390/v6072899] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 07/09/2014] [Accepted: 07/14/2014] [Indexed: 01/24/2023] Open
Abstract
To get access to the replication site, small non-enveloped DNA viruses have to cross the cell membrane using a limited number of capsid proteins, which also protect the viral genome in the extracellular environment. Most of DNA viruses have to reach the nucleus to replicate. The capsid proteins involved in transmembrane penetration are exposed or released during endosomal trafficking of the virus. Subsequently, the conserved domains of capsid proteins interact with cellular membranes and ensure their efficient permeabilization. This review summarizes our current knowledge concerning the role of capsid proteins of small non-enveloped DNA viruses in intracellular membrane perturbation in the early stages of infection.
Collapse
Affiliation(s)
- Eva Bilkova
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Vinicna 5, 12844, Prague 2, Czech Republic.
| | - Jitka Forstova
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Vinicna 5, 12844, Prague 2, Czech Republic.
| | - Levon Abrahamyan
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Vinicna 5, 12844, Prague 2, Czech Republic.
| |
Collapse
|
12
|
Wang JW, Roden RBS. Virus-like particles for the prevention of human papillomavirus-associated malignancies. Expert Rev Vaccines 2013; 12:129-41. [PMID: 23414405 DOI: 10.1586/erv.12.151] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
As compared with peptide- or protein-based vaccines, naked DNA vectors and even traditional attenuated or inactivated virus vaccines, virus-like particles (VLPs) are an attractive vaccine platform, as they offer a combination of safety, ease of production and both high-density B-cell epitope display and intracellular presentation of T-cell epitopes that induce potent humoral and cellular immune responses, respectively. Indeed, HPV vaccines based on VLP production by recombinant expression of major capsid antigen L1 in yeast (Gardasil(®), Merck & Co., NJ, USA) or insect cells (Cervarix(®), GlaxoSmithKline, London, UK) have been licensed for the prevention of cervical and anogenital infection and disease associated with the genotypes targeted by each vaccine. However, these HPV vaccines have not been demonstrated as effective to treat existing infections, and efforts to develop a therapeutic HPV vaccine continue. Furthermore, current HPV L1-VLP vaccines provide type-restricted protection, requiring highly multivalent formulations to broaden coverage to the dozen or more oncogenic HPV genotypes. This raises the complexity and cost of vaccine production. The lack of access to screening and high disease burden in developing countries has spurred efforts to develop second-generation HPV vaccines that are more affordable, induce wider protective coverage and offer therapeutic coverage against HPV-associated malignancies. Given the previous success with L1-VLP-based vaccines against HPV, VLPs have been also adopted as platforms for many second-generation HPV and non-HPV vaccine candidates with both prophylactic and therapeutic intent. In this article, the authors examine the progress and challenges of these efforts, with a focus on how they inform VLP vaccine design.
Collapse
Affiliation(s)
- Joshua W Wang
- Department of Pathology, The Johns Hopkins University, Baltimore, MD 21287-0014, USA
| | | |
Collapse
|
13
|
Wang JW, Roden RBS. L2, the minor capsid protein of papillomavirus. Virology 2013; 445:175-86. [PMID: 23689062 DOI: 10.1016/j.virol.2013.04.017] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/16/2013] [Accepted: 04/19/2013] [Indexed: 12/28/2022]
Abstract
The capsid protein L2 plays major roles in both papillomavirus assembly and the infectious process. While L1 forms the majority of the capsid and can self-assemble into empty virus-like particles (VLPs), L2 is a minor capsid component and lacks the capacity to form VLPs. However, L2 co-assembles with L1 into VLPs, enhancing their assembly. L2 also facilitates encapsidation of the ∼8 kbp circular and nucleosome-bound viral genome during assembly of the non-enveloped T=7d virions in the nucleus of terminally differentiated epithelial cells, although, like L1, L2 is not detectably expressed in infected basal cells. With respect to infection, L2 is not required for particles to bind to and enter cells. However L2 must be cleaved by furin for endosome escape. L2 then travels with the viral genome to the nucleus, wherein it accumulates at ND-10 domains. Here, we provide an overview of the biology of L2.
Collapse
Affiliation(s)
- Joshua W Wang
- Department of Pathology, The Johns Hopkins University, Baltimore, MD 21287, USA
| | | |
Collapse
|
14
|
A transmembrane domain and GxxxG motifs within L2 are essential for papillomavirus infection. J Virol 2012; 87:464-73. [PMID: 23097431 DOI: 10.1128/jvi.01539-12] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
During cellular invasion, human papillomavirus type 16 (HPV16) must transfer its viral genome (vDNA) across the endosomal membrane prior to its accumulation at nuclear PML bodies for the establishment of infection. After cellular uptake, the capsid likely undergoes pH-dependent disassembly within the endo-/lysosomal compartment, thereby exposing hidden domains in L2 that facilitate membrane penetration of L2/vDNA complexes. In an effort to identify regions of L2 that might physically interact with membranes, we have subjected the L2 sequence to multiple transmembrane (TM) domain prediction algorithms. Here, we describe a conserved TM domain within L2 (residues 45 to 67) and investigate its role in HPV16 infection. In vitro, the predicted TM domain adopts an alpha-helical structure in lipid environments and can function as a real TM domain, although not as efficiently as the bona fide TM domain of PDGFR. An L2 double point mutant renders the TM domain nonfunctional and blocks HPV16 infection by preventing endosomal translocation of vDNA. The TM domain contains three highly conserved GxxxG motifs. These motifs can facilitate homotypic and heterotypic interactions between TM helices, activities that may be important for vDNA translocation. Disruption of some of these GxxxG motifs resulted in noninfectious viruses, indicating a critical role in infection. Using a ToxR-based homo-oligomerization assay, we show a propensity for this TM domain to self-associate in a GxxxG-dependent manner. These data suggest an important role for the self-associating L2 TM domain and the conserved GxxxG motifs in the transfer of vDNA across the endo-/lysosomal membrane.
Collapse
|
15
|
Florin L, Sapp M, Spoden GA. Host-cell factors involved in papillomavirus entry. Med Microbiol Immunol 2012; 201:437-48. [PMID: 22972234 DOI: 10.1007/s00430-012-0270-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 08/27/2012] [Indexed: 12/21/2022]
Abstract
Papillomaviruses infect skin and mucosa where they induce warts and cancers. For entry to occur, they sequentially engage numerous host proteins, allowing them to deliver their genetic information into target cells. This multistep process starts with initial binding via its L1 major capsid protein, followed by structural changes of the capsid on the cell surface, engagement of different receptors, and endocytosis. The post-entry phase includes capsid disassembly, endosomal escape of a complex of the minor capsid protein L2 and the viral genome, its transport into the nucleus, and accumulation at nuclear substructures. This review summarizes the current knowledge of the papillomavirus entry pathway and the role of cellular proteins involved in this course of events.
Collapse
Affiliation(s)
- Luise Florin
- Department of Medical Microbiology and Hygiene, University Medical Centre of the Johannes Gutenberg University, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany.
| | | | | |
Collapse
|
16
|
The Papillomavirus Virion: A Machine Built to Hide Molecular Achilles’ Heels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 726:403-22. [DOI: 10.1007/978-1-4614-0980-9_18] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Mamoor S, Onder Z, Karanam B, Kwak K, Bordeaux J, Crosby L, Roden RBS, Moroianu J. The high risk HPV16 L2 minor capsid protein has multiple transport signals that mediate its nucleocytoplasmic traffic. Virology 2011; 422:413-24. [PMID: 22154072 DOI: 10.1016/j.virol.2011.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/10/2011] [Accepted: 11/04/2011] [Indexed: 01/08/2023]
Abstract
In this study we examined the transport signals contributing to HPV16 L2 nucleocytoplasmic traffic using confocal microscopy analysis of enhanced green fluorescent protein-L2 (EGFP-L2) fusions expressed in HeLa cells. We confirmed that both nuclear localization signals (NLSs), the nNLS (1MRHKRSAKRTKR12) and cNLS (456RKRRKR461), previously characterized in vitro (Darshan et al., 2004), function independently in vivo. We discovered that a middle region rich in arginine residues (296SRRTGIRYSRIGNKQTLRTRS316) functions as a nuclear retention sequence (NRS), as mutagenesis of critical arginine residues within this NRS reduced the fraction of L2 in the nucleus despite the presence of both NLSs. Significantly, the infectivity of HPV16 pseudoviruses containing either RR297AA or RR297EE within the L2 NRS was strongly reduced both in HaCaT cells and in a murine challenge model. Experiments using Ratjadone A nuclear export inhibitor and mutation-localization analysis lead to the discovery of a leucine-rich nuclear export signal ((462)LPYFFSDVSL) mediating 16L2 nuclear export. These data indicate that HPV16 L2 nucleocytoplasmic traffic is dependent on multiple functional transport signals.
Collapse
Affiliation(s)
- Shahan Mamoor
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Dabydeen SA, Meneses PI. Smurf2 alters BPV1 trafficking and decreases infection. Arch Virol 2011; 156:827-38. [PMID: 21318310 DOI: 10.1007/s00705-011-0924-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 01/18/2011] [Indexed: 11/25/2022]
Abstract
Papillomavirus capsid proteins L1 and L2 mediate virion attachment, internalization and trafficking. In our studies of the capsid proteins, we identified an interaction of L2 with the E3 ligase Smad ubiquitin regulatory factor 2 (Smurf2). Smurf2 expression alters BPV1 virion trafficking and L2 protein levels. Using BPV1 pseudovirions (PSVs) containing a GFP or DSRed transgene encapsidated by L1 and L2 proteins, our data showed that although only BPV1 L2 interacts with Smurf2, both L1 and L2 levels decrease in a Smurf2- and ubiquitin-dependent manner. The decrease in L2 protein levels corresponded to a decrease in infection (i.e., loss of GFP or DSRed expression). We propose that Smurf2 regulates L2 protein cellular localization and therefore alters L2 protein levels. This change in trafficking and protein level decreases nuclear delivery and transcription of encapsidated pseudoviral transgenes and thus decreases BPV1 infection levels.
Collapse
Affiliation(s)
- Sarah A Dabydeen
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | | |
Collapse
|
19
|
Abstract
The mechanism by which papillomaviruses breach cellular membranes to deliver their genomic cargo to the nucleus is poorly understood. Here, we show that infection by a broad range of papillomavirus types requires the intramembrane protease γ secretase. The γ-secretase inhibitor (S,S)-2-[2-(3,5-difluorophenyl)-acetylamino]-N-(1-methyl-2-oxo-5-phenyl-2,3-dihydro-1H-benzo[e][1,4]diazepin-3-yl)-propionamide (compound XXI) inhibits infection in vitro by all types of papillomavirus pseudovirions tested, with a 50% inhibitory concentration (IC(50)) of 130 to 1,000 pM, regardless of reporter construct and without impacting cellular viability. Conversely, XXI does not inhibit in vitro infection by adenovirus or pseudovirions derived from the BK or Merkel cell polyomaviruses. Vaginal application of XXI prevents infection of the mouse genital tract by human papillomavirus type 16 (HPV16) pseudovirions. Nicastrin and presenilin-1 are essential components of the γ-secretase complex, and mouse embryo fibroblasts deficient in any one of these components were not infected by HPV16, whereas wild-type and β-secretase (BACE1)-deficient cells were susceptible. Neither the uptake of HPV16 into Lamp-1-positive perinuclear vesicles nor the disassembly of capsid to reveal both internal L1 and L2 epitopes and bromodeoxyuridine (BrdU)-labeled encapsidated DNA is dependent upon γ-secretase activity. However, blockade of γ-secretase activity by XXI prevents the BrdU-labeled DNA encapsidated by HPV16 from reaching the ND10 subnuclear domains. Since prior studies indicate that L2 is critical for endosomal escape and targeting of the viral DNA to ND10 and that γ secretase is located in endosomal membranes, our findings suggest that either L2 or an intracellular receptor are cleaved by γ secretase as papillomavirus escapes the endosome.
Collapse
|
20
|
Chen HS, Bromberg-White J, Conway MJ, Alam S, Meyers C. Study of infectious virus production from HPV18/16 capsid chimeras. Virology 2010; 405:289-99. [PMID: 20598725 DOI: 10.1016/j.virol.2010.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 05/13/2010] [Accepted: 05/17/2010] [Indexed: 01/25/2023]
Abstract
Using the HPV18 genome as the backbone, we exchanged the HPV18 L2 or L1 genes with those of HPV16. The intertypical exchange of HPV18 L1 with the HPV16 L1 produced genomes that efficiently replicated and produced infectious virus. Genomes containing an intertypical exchange of HPV18 L2 for the HPV16 L2 failed to produce infectious virus in multiple independently derived cell lines. Using chimeric constructs of individual capsid proteins, we identified a type-specific domain at the N-terminus of the HPV18L1 capsid protein, which interferes with its ability to cooperate with the HPV16 L2 protein to form infectious viral particles. Deletion of this domain allows for the cooperation of the HPV18 L1 protein and HPV16 L2 protein and production of infectious progeny. In addition, cooperation of this N-terminal HPV18 L1 deletion mutant protein with the wild-type HPV18 L2 protein efficiently replicates infectious virus but changes occur in the viral structure.
Collapse
Affiliation(s)
- Horng-Shen Chen
- Department of Microbiology and Immunology H107, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
21
|
Sapp M, Bienkowska-Haba M. Viral entry mechanisms: human papillomavirus and a long journey from extracellular matrix to the nucleus. FEBS J 2010; 276:7206-16. [PMID: 19878308 DOI: 10.1111/j.1742-4658.2009.07400.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Papillomaviruses are epitheliotropic non-enveloped double-stranded DNA viruses, whose replication is strictly dependent on the terminally differentiating tissue of the epidermis. They induce self-limiting benign tumors of skin and mucosa, which may progress to malignancy (e.g. cervical carcinoma). Prior to entry into basal cells, virions attach to heparan sulfate moieties of the basement membrane. This triggers conformational changes, which affect both capsid proteins, L1 and L2, and such changes are a prerequisite for interaction with the elusive uptake receptor. These processes are very slow, resulting in an uptake half-time of up to 14 h. This minireview summarizes recent advances in our understanding of cell surface events, internalization and the subsequent intracellular trafficking of papillomaviruses.
Collapse
Affiliation(s)
- Martin Sapp
- Department of Microbiology and Immunology, Feist Weiller-Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA.
| | | |
Collapse
|
22
|
Guanine Exchange Factor Vav2: A Novel Potential Target for the Development of Drugs Effective in the Prevention of Papillomavirus Infection and Disease. Am J Ther 2009; 16:496-507. [DOI: 10.1097/mjt.0b013e31819be0a5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
The role of NH4Cl and cysteine proteases in Human Papillomavirus type 16 infection. Virol J 2009; 6:109. [PMID: 19619315 PMCID: PMC2718874 DOI: 10.1186/1743-422x-6-109] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 07/20/2009] [Indexed: 12/13/2022] Open
Abstract
Background The infectious pathway of the non-enveloped Human Papillomavirus Type 16 (HPV16) includes binding to the cell surface, clathrin-mediated endocytosis, and penetration into an endosome. HPV16 infection was shown to decrease in the presence of the lysosomotrophic neutralizing agent ammonium chloride (NH4Cl). NH4Cl neutralizes acidic endo-lysosome compartments, thus suggesting that pH was responsible for PV capsid conformational changes leading endosome escape. Results However, our data suggested that NH4Cl blocked infection by preventing the movement of PV viral particles from the early endosome to the caveosome as was shown for JC virus [1,2]. We have confirmed that HPV 16 infection requires the trafficking of reporter-virions to the caveosome as is the case for BPV1 [3,4]. In this manuscript we propose that the observed decrease in infection of PV in the presence of NH4Cl was due to a loss of movement of reporter-virions to caveosomes. We also demonstrate that cysteine proteases are involved in the infectious process, and that cathepsin B treatment of viral particles was shown to overcome the block of infection observed in the presence of furin inhibition. We confirmed the need for cathepsin B in HPV16 infection using cathepsin B null mouse embryonic fibroblasts. Conclusion We present data that suggest HPV16 infection is in part mediated by cysteine proteases, and that NH4Cl blocks the intracellular trafficking of infectious viral particles. To our knowledge this is the first demonstration that cysteine proteases influence the infection of a non-enveloped virus.
Collapse
|
24
|
Abstract
Human papillomaviruses (HPVs) are small dsDNA tumor viruses, which are the etiologic agents of most cervical cancers and are associated with a growing percentage of oropharyngeal cancers. The HPV capsid is non-enveloped, having a T=7 icosahedral symmetry formed via the interaction among 72 pentamers of the major capsid protein, L1. The minor capsid protein L2 associates with L1 pentamers, although it is not known if each L1 pentamer contains a single L2 protein. The HPV life cycle strictly adheres to the host cell differentiation program, and as such, native HPV virions are only produced in vivo or in organotypic "raft" culture. Research producing synthetic papillomavirus particles--such as virus-like particles (VLPs), papillomavirus-based gene transfer vectors, known as pseudovirions (PsV), and papillomavirus genome-containing quasivirions (QV)--has bypassed the need for stratifying and differentiating host tissue in viral assembly and has allowed for the rapid analysis of HPV infectivity pathways, transmission, immunogenicity, and viral structure.
Collapse
Affiliation(s)
- M J Conway
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | |
Collapse
|
25
|
Establishment of human papillomavirus infection requires cell cycle progression. PLoS Pathog 2009; 5:e1000318. [PMID: 19247434 PMCID: PMC2642596 DOI: 10.1371/journal.ppat.1000318] [Citation(s) in RCA: 245] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 01/30/2009] [Indexed: 01/05/2023] Open
Abstract
Human papillomaviruses (HPVs) are DNA viruses associated with major human cancers. As such there is a strong interest in developing new means, such as vaccines and microbicides, to prevent HPV infections. Developing the latter requires a better understanding of the infectious life cycle of HPVs. The HPV infectious life cycle is closely linked to the differentiation state of the stratified epithelium it infects, with progeny virus only made in the terminally differentiating suprabasal compartment. It has long been recognized that HPV must first establish its infection within the basal layer of stratified epithelium, but why this is the case has not been understood. In part this restriction might reflect specificity of expression of entry receptors. However, this hypothesis could not fully explain the differentiation restriction of HPV infection, since many cell types can be infected with HPVs in monolayer cell culture. Here, we used chemical biology approaches to reveal that cell cycle progression through mitosis is critical for HPV infection. Using infectious HPV16 particles containing the intact viral genome, G1-synchronized human keratinocytes as hosts, and early viral gene expression as a readout for infection, we learned that the recipient cell must enter M phase (mitosis) for HPV infection to take place. Late M phase inhibitors had no effect on infection, whereas G1, S, G2, and early M phase cell cycle inhibitors efficiently prevented infection. We conclude that host cells need to pass through early prophase for successful onset of transcription of the HPV encapsidated genes. These findings provide one reason why HPVs initially establish infections in the basal compartment of stratified epithelia. Only this compartment of the epithelium contains cells progressing through the cell cycle, and therefore it is only in these cells that HPVs can establish their infection. By defining a major condition for cell susceptibility to HPV infection, these results also have potentially important implications for HPV control. Human papillomaviruses (HPV), which comprise more than 100 genotypes, are the most prevalent sexually transmitted infection and are associated with multiple human cancers including all cervical cancers, many other anogenital cancers, and 25% of head and neck cancers. The HPV life cycle is closely linked to epithelial differentiation of skin keratinocytes, with initial infection occurring only in the undifferentiated proliferating basal compartment of the epithelium and progeny virus production only in the terminally differentiated suprabasal compartment. So far, little is known about how host cells restrict the HPV life cycle to specific stages of skin cell development. Here, by identifying small molecule inhibitors of HPV infection, we discovered that cell cycle progression through mitosis is critical for the establishment of HPV infection. In addition, our further chemical genetic dissection of this process showed that early steps of mitosis are required for HPV infection and early gene expression. Our findings provide one reason why HPV only infects undifferentiated proliferating cells and provide new leads for the development of preventive and therapeutic strategies against HPV infection.
Collapse
|
26
|
Pereira R, Hitzeroth II, Rybicki EP. Insights into the role and function of L2, the minor capsid protein of papillomaviruses. Arch Virol 2009; 154:187-97. [PMID: 19169853 DOI: 10.1007/s00705-009-0310-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 12/13/2008] [Indexed: 02/02/2023]
Abstract
Human papillomaviruses (HPV) are responsible for the most common human sexually transmitted viral infections, and high-risk types are responsible for causing cervical and other cancers. The minor capsid protein L2 of HPV plays important roles in virus entry into cells, localisation of viral components to the nucleus, in DNA binding, capsid formation and stability. It also elicits antibodies that are more cross-reactive between HPV types than does the major capsid protein L1, making it an attractive potential target for new-generation, more broadly protective subunit vaccines against HPV infections. However, its low abundance in natural capsids--12-72 molecules per 360 copies of L1--limits its immunogenicity. This review will explore the biological roles of the protein, and prospects for its use in new vaccines.
Collapse
Affiliation(s)
- Ramon Pereira
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | | | | |
Collapse
|
27
|
Sapp M, Day PM. Structure, attachment and entry of polyoma- and papillomaviruses. Virology 2009; 384:400-9. [PMID: 19157477 DOI: 10.1016/j.virol.2008.12.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 12/08/2008] [Indexed: 12/14/2022]
Abstract
Polyoma- (PY) and Papillomavirus (PV) virions have remarkable structural equivalence although no discernable sequence similarities among the capsid proteins can be detected. Their similarities include the overall surface organization, the presence of 72 capsomeres composed of five molecules of the major capsid proteins, VP1 and L1, respectively, the structure of the core segment of capsomeres with classical antiparallel "jelly roll" beta strands as the major feature, and the linkage of neighboring capsomeres by invading C-terminal arms. Differences include the size of surface exposed loops that contain the dominant neutralizing epitopes, the details of the intercapsomeric interactions, and the presence of 2 or 1 minor capsid proteins, respectively. These differences may affect the dramatic differences observed in receptor binding and internalization pathways utilized by these viruses, but as detailed later even structural differences cannot completely explain receptor and pathway usage. In recent years, technical advances aiding the study of entry processes have allowed the identification of novel endocytic compartments and an appreciation of the links between endocytic pathways that were previously thought to be completely separable. This review is intended to highlight recent advances in our understanding of virus receptor interactions and their consequences for endocytosis and intracellular trafficking.
Collapse
Affiliation(s)
- Martin Sapp
- Department of Microbiology and Immunology, Feist Weiller-Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, 71130-3932, USA.
| | | |
Collapse
|
28
|
Nasir L, Campo MS. Bovine papillomaviruses: their role in the aetiology of cutaneous tumours of bovids and equids. Vet Dermatol 2008; 19:243-54. [PMID: 18927950 DOI: 10.1111/j.1365-3164.2008.00683.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bovine papillomavirus (BPV) is perhaps the most extensively studied animal papillomavirus. In cattle BPVs induce benign tumours of cutaneous or mucosal epithelia, called papillomas or warts. Cattle papillomas are benign tumours and generally regress without eliciting any serious clinical problems in the host, but occasionally persist and provide the focus for malignant transformation to squamous cell carcinoma, as in the case of cancer of the urinary bladder and cancer of the upper alimentary canal. BPV is the only papillomavirus that jumps species: the virus also infects equids, and gives rise to fibroblastic tumours called sarcoids. Sarcoids very rarely regress, more often they persist and can be locally aggressive. These tumours are the most common dermatological tumour of equids worldwide. The purpose of this review is to discuss the biology of BPV, the biology of bovine tumours and equine sarcoids, and present the current understanding of BPV in tumour pathogenesis in its natural host, cattle, and in its heterologous host, equids. Finally, the use of anti-BPV vaccines as a therapy for equine sarcoids will be discussed. Only limited information on the clinical or pathological aspects of either bovine or equine tumours will be provided as this subject has been extensively addressed previously.
Collapse
Affiliation(s)
- Lubna Nasir
- Division of Pathological Sciences, Institute of Comparative Medicine, University of Glasgow, Garscube Estate, Glasgow G61 1QH.
| | | |
Collapse
|
29
|
Laniosz V, Nguyen KC, Meneses PI. Bovine papillomavirus type 1 infection is mediated by SNARE syntaxin 18. J Virol 2007; 81:7435-48. [PMID: 17475643 PMCID: PMC1933340 DOI: 10.1128/jvi.00571-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Events that lead to viral infections include the binding of the virus to the target cells, internalization of the virus into the cells, and the ability of the viral genome to be expressed. These steps are mediated by cellular and viral proteins and are temporally regulated. The papillomavirus capsid consists of two virally encoded capsid proteins, L1 and L2. Much is known about the role of the major capsid protein L1 compared to what is known of the role of the L2 protein. We identified the interaction of the L2 protein with SNARE protein syntaxin 18, which mediates the trafficking of vesicles and their cargo between the endoplasmic reticulum, the cis-Golgi compartment, and possibly the plasma membrane. Mutations of L2 residues 41 to 44 prevented the interaction of L2 protein with syntaxin 18 in cotransfection experiments and resulted in noninfectious pseudovirions. In this paper, we describe that syntaxin 18 colocalizes with infectious bovine papillomavirus type 1 (BPV1) pseudovirions during infection but does not colocalize with the noninfectious BPV1 pseudovirions made with an L2 mutant at residues 41 to 44. We show that an antibody against BPV1 L2 residues 36 to 49 (alpha L2 36-49) binds to in vitro-generated BPV1 pseudoviral capsids and does not coimmunoprecipitate syntaxin 18- and BPV1 L2-transfected proteins. alpha L2 36-49 was able to partially or completely neutralize infection of BPV1 pseudovirions and genuine virions. These results support the dependence of syntaxin 18 during BPV1 infection and the ability to interfere with infection by targeting the L2-syntaxin 18 interaction and further define the infectious route of BPV1 mediated by the L2 protein.
Collapse
Affiliation(s)
- Valerie Laniosz
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | | | | |
Collapse
|
30
|
Bordeaux J, Forte S, Harding E, Darshan MS, Klucevsek K, Moroianu J. The l2 minor capsid protein of low-risk human papillomavirus type 11 interacts with host nuclear import receptors and viral DNA. J Virol 2006; 80:8259-62. [PMID: 16873281 PMCID: PMC1563822 DOI: 10.1128/jvi.00776-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Analysis of the interactions of low-risk human papillomavirus type 11 (HPV11) L2 with karyopherin beta (Kap beta) nuclear import receptors revealed that L2 interacted with Kap beta 1, Kap beta 2, and Kap beta 3 and formed a complex with the Kap alpha 2 beta 1 heterodimer. HPV11 L2 contains two nuclear localization signals (NLSs)-in the N terminus and the C terminus-that could mediate its nuclear import via a classical pathway. Each NLS was functional in vivo, and deletion of both of them abolished L2 nuclear localization. Both NLSs interacted with the viral DNA. Thus, HPV11 L2 can interact with several karyopherins and the viral DNA and may enter the nucleus via multiple pathways.
Collapse
Affiliation(s)
- J Bordeaux
- Biology Department,Boston College, Higgins Hall, Room 578, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
HPVs (human papillomaviruses) infect epithelial cells and cause a variety of lesions ranging from common warts/verrucas to cervical neoplasia and cancer. Over 100 different HPV types have been identified so far, with a subset of these being classified as high risk. High-risk HPV DNA is found in almost all cervical cancers (>99.7%), with HPV16 being the most prevalent type in both low-grade disease and cervical neoplasia. Productive infection by high-risk HPV types is manifest as cervical flat warts or condyloma that shed infectious virions from their surface. Viral genomes are maintained as episomes in the basal layer, with viral gene expression being tightly controlled as the infected cells move towards the epithelial surface. The pattern of viral gene expression in low-grade cervical lesions resembles that seen in productive warts caused by other HPV types. High-grade neoplasia represents an abortive infection in which viral gene expression becomes deregulated, and the normal life cycle of the virus cannot be completed. Most cervical cancers arise within the cervical transformation zone at the squamous/columnar junction, and it has been suggested that this is a site where productive infection may be inefficiently supported. The high-risk E6 and E7 proteins drive cell proliferation through their association with PDZ domain proteins and Rb (retinoblastoma), and contribute to neoplastic progression, whereas E6-mediated p53 degradation prevents the normal repair of chance mutations in the cellular genome. Cancers usually arise in individuals who fail to resolve their infection and who retain oncogene expression for years or decades. In most individuals, immune regression eventually leads to clearance of the virus, or to its maintenance in a latent or asymptomatic state in the basal cells.
Collapse
Affiliation(s)
- John Doorbar
- Division of Virology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
32
|
Klucevsek K, Daley J, Darshan MS, Bordeaux J, Moroianu J. Nuclear import strategies of high-risk HPV18 L2 minor capsid protein. Virology 2006; 352:200-8. [PMID: 16733063 DOI: 10.1016/j.virol.2006.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 03/21/2006] [Accepted: 04/06/2006] [Indexed: 11/21/2022]
Abstract
We have investigated the nuclear import strategies of high-risk HPV18 L2 minor capsid protein. HPV18 L2 interacts with Kap alpha2 adapter, and Kap beta2 and Kap beta3 nuclear import receptors. Moreover, binding of RanGTP to either Kap beta2 or Kap beta3 inhibits their interaction with L2, suggesting that these Kap beta/L2 complexes are import competent. Mapping studies show that HPV18 L2 contains two NLSs: in the N-terminus (nNLS) and in the C-terminus (cNLS), both of which can independently mediate nuclear import. Both nNLS and cNLS form a complex with Kap alpha2beta1 heterodimer and mediate nuclear import via a classical pathway. The nNLS is also essential for the interaction of HPV18 L2 with Kap beta2 and Kap beta3. Interestingly, both nNLS and cNLS interact with the viral DNA and this DNA binding occurs without nucleotide sequence specificity. Together, the data suggest that HPV18 L2 can interact via its NLSs with several Kaps and the viral DNA and may enter the nucleus via multiple import pathways mediated by Kap alpha2beta1 heterodimers, Kap beta2 and Kap beta3.
Collapse
Affiliation(s)
- K Klucevsek
- Biology Department, Boston College, Higgins Hall, Room 578, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | | | | | | | | |
Collapse
|
33
|
Kieback E, Müller M. Factors influencing subcellular localization of the human papillomavirus L2 minor structural protein. Virology 2006; 345:199-208. [PMID: 16257028 DOI: 10.1016/j.virol.2005.09.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 09/08/2005] [Accepted: 09/19/2005] [Indexed: 12/12/2022]
Abstract
Two structural proteins form the capsids of papillomaviruses. The major structural protein L1 is the structural determinant of the capsids and is present in 360 copies arranged in 72 pentamers. The minor structural protein L2 is estimated to be present in twelve copies per capsid. Possible roles for L2 in interaction with cell surface receptors and in virion uptake have been suggested. As previously reported, L2 localizes in subnuclear domains identified as nuclear domain 10 (ND10). As it was demonstrated that L2 is able to recruit viral and cellular proteins to ND10, a possible role for L2 as a mediator in viral assembly has been proposed. In this study, we determined factors influencing the localization of L2 at ND10. Under conditions of moderate L2 expression level and in the absence of heterologous viral components, we observed that, in contrast to previous reports, L2 is mainly distributed homogeneously throughout the nucleus. L2, however, is recruited to ND10 at a higher expression level or in the presence of viral components derived from vaccinia virus or from Semliki Forest virus. We observed that translocation of L2 to ND10 is not a concentration-dependent accumulation but rather seems to be triggered by yet unidentified cellular factors. In contrast to HPV 11 and 16 L2, the HPV 18 L2 protein seems to require L1 for efficient nuclear accumulation.
Collapse
Affiliation(s)
- Elisa Kieback
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | |
Collapse
|
34
|
Bossis I, Roden RBS, Gambhira R, Yang R, Tagaya M, Howley PM, Meneses PI. Interaction of tSNARE syntaxin 18 with the papillomavirus minor capsid protein mediates infection. J Virol 2005; 79:6723-31. [PMID: 15890910 PMCID: PMC1112158 DOI: 10.1128/jvi.79.11.6723-6731.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The papillomavirus capsid mediates binding to the cell surface and passage of the virion to the perinuclear region during infection. To better understand how the virus traffics across the cell, we sought to identify cellular proteins that bind to the minor capsid protein L2. We have identified syntaxin 18 as a protein that interacts with bovine papillomavirus type 1 (BPV1) L2. Syntaxin 18 is a target membrane-associated soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (tSNARE) that resides in the endoplasmic reticulum (ER). The ectopic expression of FLAG-tagged syntaxin 18, which disrupts ER trafficking, blocked BPV1 pseudovirion infection. Furthermore, the expression of FLAG-syntaxin 18 prevented the passage of BPV1 pseudovirions to the perinuclear region that is consistent with the ER. Genetic studies identified a highly conserved L2 domain, DKILK, comprising residues 40 to 44 that mediated BPV1 trafficking through the ER during infection via an interaction with the tSNARE syntaxin 18. Mutations within the DKILK motif of L2 that did not significantly impact virion morphogenesis or binding at the cell surface prevented the L2 interaction with syntaxin 18 and disrupted BPV1 infection.
Collapse
Affiliation(s)
- Ioannis Bossis
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Darshan MS, Lucchi J, Harding E, Moroianu J. The l2 minor capsid protein of human papillomavirus type 16 interacts with a network of nuclear import receptors. J Virol 2004; 78:12179-88. [PMID: 15507604 PMCID: PMC525100 DOI: 10.1128/jvi.78.22.12179-12188.2004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The L2 minor capsid proteins enter the nucleus twice during viral infection: in the initial phase after virion disassembly and in the productive phase when, together with the L1 major capsid proteins, they assemble the replicated viral DNA into virions. In this study we investigated the interactions between the L2 protein of high-risk human papillomavirus type 16 (HPV16) and nuclear import receptors. We discovered that HPV16 L2 interacts directly with both Kapbeta(2) and Kapbeta(3). Moreover, binding of Ran-GTP to either Kapbeta(2) or Kapbeta(3) inhibits its interaction with L2, suggesting that the Kapbeta/L2 complex is import competent. In addition, we found that L2 forms a complex with the Kapalpha(2)beta(1) heterodimer via interaction with the Kapalpha(2) adapter. In agreement with the binding data, nuclear import of L2 in digitonin-permeabilized cells could be mediated by either Kapalpha(2)beta(1) heterodimers, Kapbeta(2), or Kapbeta(3). Mapping studies revealed that HPV16 L2 contains two nuclear localization signals (NLSs), in the N terminus (nNLS) and C terminus (cNLS), that could mediate its nuclear import. Together the data suggest that HPV16 L2 interacts via its NLSs with a network of karyopherins and can enter the nucleus via several import pathways mediated by Kapalpha(2)beta(1) heterodimers, Kapbeta(2), and Kapbeta(3).
Collapse
Affiliation(s)
- Medha S Darshan
- Biology Department, Boston College, Higgins Hall Room 578, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | | | | | | |
Collapse
|