1
|
Keep S, Foldes K, Dowgier G, Freimanis G, Tennakoon C, Chowdhury S, Rayment A, Kirk J, Bakshi T, Stevenson-Leggett P, Chen Y, Britton P, Bickerton E. Recombinant infectious bronchitis virus containing mutations in non-structural proteins 10, 14, 15, and 16 and within the macrodomain provides complete protection against homologous challenge. J Virol 2025; 99:e0166324. [PMID: 40013770 PMCID: PMC11998542 DOI: 10.1128/jvi.01663-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/26/2025] [Indexed: 02/28/2025] Open
Abstract
Infectious bronchitis virus (IBV) is the etiological agent of infectious bronchitis, an acute highly contagious economically important disease of chickens. Vaccination uses live attenuated vaccines (LAVs) that are generated via serial passage of a virulent field isolate through embryonated hens' eggs, typically 80-100 times. The molecular basis of attenuation is unknown and varies with each attenuation procedure. To investigate specifically targeted attenuation, we utilized reverse genetics to target the macrodomain 1 (Mac1) domain within non-structural protein 3 of the virulent M41 strain. Macrodomains are found in a variety of viruses, including coronaviruses, and have been associated with the modulation of the host's innate response. Two recombinant IBVs (rIBVs) were generated with specific single point mutations, either Asn42Ala (N42A) or Gly49Ser (G49S), within the Mac1 domain generating rIBVs M41K-N42A and M41K-G49S, respectively. Replication in vitro was unaffected, and the mutations were stably maintained during passaging in vitro and in ovo. While M41K-N42A exhibited an attenuated phenotype in vivo, M41K-G49S was only partially attenuated. The attenuated in vivo phenotypes observed do not appear to be linked to a reduction in viral replication and additionally M41K-N42A highlighted the N42A mutation as a method of rational attenuation. Vaccination of chickens with either rIBV M41K-N42A or a rIBV containing the Mac1 N42A mutation and our previously identified attenuating Nsp10 and 14 mutations, Pro85Leu and Val393Leu respectively, offered complete protection from homologous challenge. The presence of multiple attenuating mutations did not appear to negatively impact vaccine efficacy. IMPORTANCE Infection of chickens with the Gammacoronavirus infectious bronchitis virus (IBV) causes an acute respiratory disease, resulting in reduced weight gain and reductions in egg laying making it a global concern for poultry industries and food security. Vaccination against IBV uses live attenuated viruses (LAVs), generated by multiple passages of a virulent virus through embryonated hens' eggs. The molecular basis of attenuation is unknown and unpredictable requiring a fine balance between loss of virulence and vaccine efficacy. In this study, we targeted the macrodomain of IBV for rational attenuation demonstrating a single point mutation can result in loss of pathogenicity. An IBV vaccine candidate was subsequently generated containing three specific attenuating mutations, to reduce the risk of reversion, which completely protected chickens. The targets in this study are conserved among IBV strains and the coronavirus family offering a potential method of rational attenuation that can be universally applied for vaccine development.
Collapse
Affiliation(s)
- Sarah Keep
- The Pirbright Institute, Pirbright, United Kingdom
| | | | | | | | | | | | - Adam Rayment
- The Pirbright Institute, Pirbright, United Kingdom
| | - James Kirk
- The Pirbright Institute, Pirbright, United Kingdom
| | | | | | - Yana Chen
- The Pirbright Institute, Pirbright, United Kingdom
| | - Paul Britton
- The Pirbright Institute, Pirbright, United Kingdom
| | | |
Collapse
|
2
|
Lu Y, Zeng Y, Luo H, Chen N, Zhao L, Zhang H, Xia J, Ping J. Rapid development of attenuated IBV vaccine candidates through a versatile backbone applicable to variants. NPJ Vaccines 2025; 10:60. [PMID: 40155419 PMCID: PMC11953439 DOI: 10.1038/s41541-025-01114-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
The antigen variability of the infectious bronchitis virus (IBV) has hindered vaccine effectiveness and perpetuated its epidemic. We engineered a rapid attenuation method for IBV variants. The strategy involves creating the rH-CPDF7 backbone by recoding a segment of the H120 nonstructural protein (NSP) genome via codon pair deoptimization (CPD), facilitating S gene integration from IBV variants via transformation-associated recombination (TAR) cloning. These recombinant strains exhibited even lower pathogenicity, indicating the effectiveness of CPDF7 in reducing virulence. Importantly, the rH-CPDF7 backbone demonstrated versatility, being applicable to the development of attenuated strains for IBV variants, including the QX-type, TW-type, and GVI-type strains (different genotypes). In conclusion, our method allows for the rapid development of attenuated strains by integrating the S gene of IBV variants into the rH-CPDF7 backbone. These recombinant strains can elicit a strong immune response and provide effective protection against homologous challenges. This strategy is crucial for developing live-attenuated vaccines against emerging IBV strains.
Collapse
Affiliation(s)
- Yuanlu Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yiran Zeng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, 210095, Nanjing, China
| | - Haowei Luo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, 210095, Nanjing, China
| | - Na Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, 210095, Nanjing, China
| | - Lingcai Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, 210095, Nanjing, China
| | - Haitao Zhang
- Biotechnology Research Laboratory, Jiangsu Lihua Animal Husbandry Co., Ltd, 213168, Changzhou, China
| | - Jun Xia
- Xinjiang Academy of Animal Sciences Institute of Veterinary Medicine, Key Laboratory for Prevention and Control of Herbivorous Animal Diseases of the Ministry of Agriculture and Rural Affairs & Xinjiang Animal Disease Research Key Laboratory, 830000, Urumchi, China
| | - Jihui Ping
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, 210095, Nanjing, China.
| |
Collapse
|
3
|
Alhafufi AN, Kasem S, Almajhdi FN, Albaqshi HA, Alaql FA, Rihan EA, Abd-Allah EM, Alyousaf AA, Aljasem YK, Aljehani ND, Haridy MA, Alhimaidi AR, Abdel-Moneim AS. Full-length genome reveals genetic diversity and extensive recombination patterns of Saudi GI-1 and GI-23 genotypes of infectious bronchitis virus. Virol J 2025; 22:1. [PMID: 39755629 PMCID: PMC11700436 DOI: 10.1186/s12985-024-02614-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/17/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Despite numerous genetic studies on Infectious Bronchitis Virus (IBV), many strains from the Middle East remain misclassified or unclassified. Genotype 1 (GI-1) is found globally, while genotype 23 (GI-23) has emerged as the predominant genotype in the Middle East region, evolving continuously through inter- and intra-genotypic recombination. The GI-23 genotype is now enzootic in Europe and Asia. METHODS Over a 24-month period from May 2022 to June 2024, 360 samples were collected from 19 layer and 3 broiler poultry farms in central Saudi Arabia. The chickens exhibited reduced laying rates and symptoms such as weakness and respiratory distress, while broilers showed respiratory issues. Samples, including tracheal swabs and various tissue specimens, were pooled, homogenized, and stored at -20 °C prior to PCR analysis. The samples underwent virus isolation in embryonated chicken eggs, RNA extraction using automated systems, and detection of IBV through real-time RT-PCR targeting a conserved 5'-UTR fragment. Full-length genome sequencing was performed, and recombination analysis was conducted using RDP 4.6. RESULTS Saudi IBV strains were found to cluster into genotypes GI-1 and GI-23.1. The study identified critical amino acid substitutions in the hypervariable regions of the spike protein and detected recombination events in the ORF1ab, N, M, 3ab, and 5ab genes, with nsp3 of the ORF1ab showing the greatest number of recombination events. CONCLUSION The multiple inter- and intra-genotypic recombination events that were detected in different genes indicate that the circulating IBV strains do not share a single ancestor but have emerged through successive recombination events.
Collapse
Affiliation(s)
- Ali N Alhafufi
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Samy Kasem
- Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, El Geish Street, Kafrelsheikh, 33516, Egypt.
| | - Fahad N Almajhdi
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hassan A Albaqshi
- WEQAA Central Laboratory, National Centre for the Prevention & Control of Plant Pests & Animal Diseases (WEQAA), Riyadh, 11454, Saudi Arabia
| | - Fanan A Alaql
- WEQAA Central Laboratory, National Centre for the Prevention & Control of Plant Pests & Animal Diseases (WEQAA), Riyadh, 11454, Saudi Arabia
| | - Ehab A Rihan
- WEQAA Central Laboratory, National Centre for the Prevention & Control of Plant Pests & Animal Diseases (WEQAA), Riyadh, 11454, Saudi Arabia
- Animal Health Research Institute, Giza, 12618, Egypt
| | - Ehab M Abd-Allah
- WEQAA Central Laboratory, National Centre for the Prevention & Control of Plant Pests & Animal Diseases (WEQAA), Riyadh, 11454, Saudi Arabia
- Veterinary Hospital, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Ameen A Alyousaf
- WEQAA Central Laboratory, National Centre for the Prevention & Control of Plant Pests & Animal Diseases (WEQAA), Riyadh, 11454, Saudi Arabia
| | - Yahya K Aljasem
- WEQAA Central Laboratory, National Centre for the Prevention & Control of Plant Pests & Animal Diseases (WEQAA), Riyadh, 11454, Saudi Arabia
| | - Najwa D Aljehani
- WEQAA Central Laboratory, National Centre for the Prevention & Control of Plant Pests & Animal Diseases (WEQAA), Riyadh, 11454, Saudi Arabia
| | - Mohei A Haridy
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Ahmed R Alhimaidi
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ahmed S Abdel-Moneim
- Department of Microbiology, College of Medicine, Taif University, Taif, 21944, Saudi Arabia.
| |
Collapse
|
4
|
Molenaar RJ, Dijkman R, Jorna I, de Wit JJ. Extensive genetic and biological characterization of infectious bronchitis virus strain D2860 of genotype GVIII. Avian Pathol 2024; 53:380-389. [PMID: 38572655 DOI: 10.1080/03079457.2024.2338801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
Infectious bronchitis virus (IBV) strains of genotype GVIII have been emerging in Europe in the last decade, but no biological characterization has been reported so far. This paper reports the extensive genetic and biological characterization of IBV strain D2860 of genotype GVIII which was isolated from a Dutch layer flock that showed a drop in egg production. Whole genome sequencing showed that it has a high similarity (95%) to CK/DE/IB80/2016 (commonly known as IB80). Cross-neutralization tests with antigens and serotype-specific antisera of a panel of different non-GVIII genotypes consistently gave less than 2% antigenic cross-relationship with D2860. Five experiments using specified pathogen-free chickens of 0, 4, 29 and 63 weeks of age showed that D2860 was not able to cause clinical signs, drop in egg production, false layers or renal pathology. There was also a distinct lack of ciliostasis at both 5 and 8 days post-inoculation at any age, despite proof of infection by immunohistochemical (IHC) staining, RT-PCR and serology. IHC showed immunostaining between 5 and 8 days post inoculation in epithelial cells of sinuses and conchae, while only a few birds displayed immunostaining in the trachea. In vitro comparison of replication of D2860 and M41 in chicken embryo kidney cells at 37°C and at 41°C indicated that D2860 might have a degree of temperature sensitivity that might cause it to prefer the colder parts of the respiratory tract.
Collapse
Affiliation(s)
| | | | - I Jorna
- Royal GD, Deventer, the Netherlands
| | - J J de Wit
- Royal GD, Deventer, the Netherlands
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
5
|
Bilotti K, Keep S, Sikkema AP, Pryor JM, Kirk J, Foldes K, Doyle N, Wu G, Freimanis G, Dowgier G, Adeyemi O, Tabatabaei SK, Lohman GJS, Bickerton E. One-pot Golden Gate Assembly of an avian infectious bronchitis virus reverse genetics system. PLoS One 2024; 19:e0307655. [PMID: 39052682 PMCID: PMC11271894 DOI: 10.1371/journal.pone.0307655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Avian infectious bronchitis is an acute respiratory disease of poultry of particular concern for global food security. Investigation of infectious bronchitis virus (IBV), the causative agent of avian infectious bronchitis, via reverse genetics enables deeper understanding of virus biology and a rapid response to emerging variants. Classic methods of reverse genetics for IBV can be time consuming, rely on recombination for the introduction of mutations, and, depending on the system, can be subject to genome instability and unreliable success rates. In this study, we have applied data-optimized Golden Gate Assembly design to create a rapidly executable, flexible, and faithful reverse genetics system for IBV. The IBV genome was divided into 12 fragments at high-fidelity fusion site breakpoints. All fragments were synthetically produced and propagated in E. coli plasmids, amenable to standard molecular biology techniques for DNA manipulation. The assembly can be carried out in a single reaction, with the products used directly in subsequent viral rescue steps. We demonstrate the use of this system for generation of point mutants and gene replacements. This Golden Gate Assembly-based reverse genetics system will enable rapid response to emerging variants of IBV, particularly important to vaccine development for controlling spread within poultry populations.
Collapse
Affiliation(s)
- Katharina Bilotti
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Sarah Keep
- The Pirbright Institute, Woking, United Kingdom
| | - Andrew P. Sikkema
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - John M. Pryor
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - James Kirk
- The Pirbright Institute, Woking, United Kingdom
| | | | | | - Ge Wu
- The Pirbright Institute, Woking, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
6
|
Patarca R, Haseltine WA. Potential Transcriptional Enhancers in Coronaviruses: From Infectious Bronchitis Virus to SARS-CoV-2. Int J Mol Sci 2024; 25:8012. [PMID: 39125583 PMCID: PMC11311688 DOI: 10.3390/ijms25158012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/13/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Coronaviruses constitute a global threat to human and animal health. It is essential to investigate the long-distance RNA-RNA interactions that approximate remote regulatory elements in strategies, including genome circularization, discontinuous transcription, and transcriptional enhancers, aimed at the rapid replication of their large genomes, pathogenicity, and immune evasion. Based on the primary sequences and modeled RNA-RNA interactions of two experimentally defined coronaviral enhancers, we detected via an in silico primary and secondary structural analysis potential enhancers in various coronaviruses, from the phylogenetically ancient avian infectious bronchitis virus (IBV) to the recently emerged SARS-CoV-2. These potential enhancers possess a core duplex-forming region that could transition between closed and open states, as molecular switches directed by viral or host factors. The duplex open state would pair with remote sequences in the viral genome and modulate the expression of downstream crucial genes involved in viral replication and host immune evasion. Consistently, variations in the predicted IBV enhancer region or its distant targets coincide with cases of viral attenuation, possibly driven by decreased open reading frame (ORF)3a immune evasion protein expression. If validated experimentally, the annotated enhancer sequences could inform structural prediction tools and antiviral interventions.
Collapse
Affiliation(s)
- Roberto Patarca
- ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA;
- Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY 11030, USA
| | - William A. Haseltine
- ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA;
- Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY 11030, USA
| |
Collapse
|
7
|
Wang M, Bo Z, Zhang C, Guo M, Wu Y, Zhang X. Deciphering the Genetic Variation: A Comparative Analysis of Parental and Attenuated Strains of the QXL87 Vaccine for Infectious Bronchitis. Animals (Basel) 2024; 14:1784. [PMID: 38929403 PMCID: PMC11200882 DOI: 10.3390/ani14121784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The QXL87 live attenuated vaccine strain for infectious bronchitis represents the first approved QX type (GI-19 lineage) vaccine in China. This strain was derived from the parental strain CK/CH/JS/2010/12 through continuous passage in SPF chicken embryos. To elucidate the molecular mechanism behind its attenuation, whole-genome sequencing was conducted on both the parental and attenuated strains. Analysis revealed 145 nucleotide mutations in the attenuated strain, leading to 48 amino acid mutations in various proteins, including Nsp2 (26), Nsp3 (14), Nsp4 (1), S (4), 3a (1), E (1), and N (1). Additionally, a frameshift mutation caused by a single base insertion in the ORFX resulted in a six-amino-acid extension. Subsequent comparison of post-translational modification sites, protein structure, and protein-protein binding sites between the parental and attenuated strains identified three potential virulence genes: Nsp2, Nsp3, and S. The amino acid mutations in these proteins not only altered their conformation but also affected the distribution of post-translational modification sites and protein-protein interaction sites. Furthermore, three potential functional mutation sites-P106S, A352T, and L472F, all located in the Nsp2 protein-were identified through PROVEAN, PolyPhen, and I-Mutant. Overall, our findings suggest that Nsp2, Nsp3, and S proteins may play a role in modulating IBV pathogenicity, with a particular focus on the significance of the Nsp2 protein. This study contributes to our understanding of the molecular mechanisms underlying IBV attenuation and holds promise for the development of safer live attenuated IBV vaccines using reverse genetic approaches.
Collapse
Affiliation(s)
- Mengmeng Wang
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (M.W.); (Z.B.); (C.Z.); (M.G.)
| | - Zongyi Bo
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (M.W.); (Z.B.); (C.Z.); (M.G.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Chengcheng Zhang
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (M.W.); (Z.B.); (C.Z.); (M.G.)
| | - Mengjiao Guo
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (M.W.); (Z.B.); (C.Z.); (M.G.)
| | - Yantao Wu
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (M.W.); (Z.B.); (C.Z.); (M.G.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xiaorong Zhang
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (M.W.); (Z.B.); (C.Z.); (M.G.)
| |
Collapse
|
8
|
Xu G, Deng Y, Li Y, Zuo Z, Li D, Ma S. S2 subunit plays a critical role in pathogenesis of TW-like avian coronavirus infectious bronchitis virus. Vet Microbiol 2024; 290:110010. [PMID: 38306768 DOI: 10.1016/j.vetmic.2024.110010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/17/2024] [Accepted: 01/20/2024] [Indexed: 02/04/2024]
Abstract
To investigate the critical role of the S gene in determining pathogenesis of TW-like avian infectious bronchitis virus (IBV), we generated two recombinant IBVs (rGDaGD-S1 and rGDaGD-S2) by replacing either the S1 or S2 region of GD strain with the corresponding regions from an attenuated vaccine candidate aGD strain. The virulence and pathogenicity of these recombinant viruses was assessed both in vitro and in vivo. Our results indicated the mutations in the S2 region led to decreased virulence, as evidenced by reduced virus replication in embryonated chicken eggs and chicken embryonic kidney cells as well as observed clinical symptoms, gross lesions, microscopic lesions, tracheal ciliary activity, and viral distribution in SPF chickens challenged with recombinant IBVs. These findings highlight that the S2 subunit is a key determinant of TW-like IBV pathogenicity. Our study established a foundation for future investigations into the molecular mechanisms underlying IBV virulence.
Collapse
Affiliation(s)
- Gang Xu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Yuping Deng
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Yang Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Zonghui Zuo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Daowen Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Shuhui Ma
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China.
| |
Collapse
|
9
|
Keep S, Stevenson-Leggett P, Webb I, Fones A, Kirk J, Britton P, Bickerton E. The spike protein of the apathogenic Beaudette strain of avian coronavirus can elicit a protective immune response against a virulent M41 challenge. PLoS One 2024; 19:e0297516. [PMID: 38265985 PMCID: PMC10807761 DOI: 10.1371/journal.pone.0297516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/07/2024] [Indexed: 01/26/2024] Open
Abstract
The avian Gammacoronavirus infectious bronchitis virus (IBV) causes major economic losses in the poultry industry as the aetiological agent of infectious bronchitis, a highly contagious respiratory disease in chickens. IBV causes major economic losses to poultry industries across the globe and is a concern for global food security. IBV vaccines are currently produced by serial passage, typically 80 to 100 times in chicken embryonated eggs (CEE) to achieve attenuation by unknown molecular mechanisms. Vaccines produced in this manner present a risk of reversion as often few consensus level changes are acquired. The process of serial passage is cumbersome, time consuming, solely dependent on the supply of CEE and does not allow for rapid vaccine development in response to newly emerging IBV strains. Both alternative rational attenuation and cell culture-based propagation methods would therefore be highly beneficial. The majority of IBV strains are however unable to be propagated in cell culture proving a significant barrier to the development of cell-based vaccines. In this study we demonstrate the incorporation of a heterologous Spike (S) gene derived from the apathogenic Beaudette strain of IBV into a pathogenic M41 genomic backbone generated a recombinant IBV denoted M41K-Beau(S) that exhibits Beaudette's unique ability to replicate in Vero cells, a cell line licenced for vaccine production. The rIBV M41K-Beau(S) additionally exhibited an attenuated in vivo phenotype which was not the consequence of the presence of a large heterologous gene demonstrating that the Beaudette S not only offers a method for virus propagation in cell culture but also a mechanism for rational attenuation. Although historical research suggested that Beaudette, and by extension the Beaudette S protein was poorly immunogenic, vaccination of chickens with M41K-Beau(S) induced a complete cross protective immune response in terms of clinical disease and tracheal ciliary activity against challenge with a virulent IBV, M41-CK, belonging to the same serogroup as Beaudette. This implies that the amino acid sequence differences between the Beaudette and M41 S proteins have not distorted important protective epitopes. The Beaudette S protein therefore offers a significant avenue for vaccine development, with the advantage of a propagation platform less reliant on CEE.
Collapse
Affiliation(s)
- Sarah Keep
- The Pirbright Institute, Surrey, United Kingdom
| | | | - Isobel Webb
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, The University of Bristol, Bristol, United Kingdom
| | | | - James Kirk
- The Pirbright Institute, Surrey, United Kingdom
| | | | | |
Collapse
|
10
|
Abozeid HH. Global Emergence of Infectious Bronchitis Virus Variants: Evolution, Immunity, and Vaccination Challenges. Transbound Emerg Dis 2023; 2023:1144924. [PMID: 40303661 PMCID: PMC12017171 DOI: 10.1155/2023/1144924] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/19/2023] [Accepted: 10/26/2023] [Indexed: 05/02/2025]
Abstract
Infectious bronchitis is an acute, extremely contagious viral disease affecting chickens of all ages, leading to devastating economic losses in the poultry industry worldwide. Affected chickens show respiratory distress and/or nephritis, in addition to decrease of egg production and quality in layers. The avian coronavirus, infectious bronchitis virus (IBV), is a rapidly evolving virus due to the high frequency of mutations and recombination events that are common in coronaviruses. This leads to the continual emergence of novel genotypes that show variable or poor crossprotection. The immune response against IBV is complex. Passive, innate and adaptive humoral and cellular immunity play distinct roles in protection against IBV. Despite intensive vaccination using the currently available live-attenuated and inactivated IBV vaccines, IBV continues to circulate, evolve, and trigger outbreaks worldwide, indicating the urgent need to update the current vaccines to control the emerging variants. Different approaches for preparation of IBV vaccines, including DNA, subunit, peptides, virus-like particles, vectored and recombinant vaccines, have been tested in many studies to combat the disease. This review focuses on several key aspects related to IBV, including its clinical significance, the functional structure of the virus, the factors that contribute to its evolution and diversity, the types of immune responses against IBV, and the characteristics of both current and emerging IBV vaccines. The goal is to provide a comprehensive understanding of IBV and explore the emergence of variants, their dissemination around the world, and the challenges to define the efficient vaccination strategies.
Collapse
Affiliation(s)
- Hassanein H. Abozeid
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
11
|
Sives S, Keep S, Bickerton E, Vervelde L. Revealing Novel-Strain-Specific and Shared Epitopes of Infectious Bronchitis Virus Spike Glycoprotein Using Chemical Linkage of Peptides onto Scaffolds Precision Epitope Mapping. Viruses 2023; 15:2279. [PMID: 38005955 PMCID: PMC10675791 DOI: 10.3390/v15112279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
The avian coronavirus, infectious bronchitis virus (IBV), is an economically important infectious disease affecting chickens, with a diverse range of serotypes found globally. The major surface protein, spike (S), has high diversity between serotypes, and amino acid differences in the S1 sub-unit are thought to be responsible for poor cross-protection afforded by vaccination. Here, we attempt to address this, by using epitope mapping technology to identify shared and serotype-specific immunogenic epitopes of the S glycoprotein of three major circulating strains of IBV, M41, QX, and 4/91, via CLIPS peptide arrays based on peptides from the S1 sub-units. The arrays were screened with sera from chickens immunised with recombinant IBV, based on Beau-R backbone expressing heterologous S, generated in two independent vaccination/challenge trials. The screening of sera from rIBV vaccination experiments led to the identification of 52 immunogenic epitopes on the S1 of M41, QX, and 4/91. The epitopes were assigned into six overlapping epitope binding regions. Based on accessibility and location in the hypervariable regions of S, three sequences, 25YVYYYQSAFRPPNGWHLQGGAYAVVNSTN54, 67TVGVIKDVYNQSVASI82, and 83AMTVPPAGMSWSVS96, were selected for further investigation, and synthetic peptide mimics were recognised by polyclonal sera. These epitopes may have the potential to contribute towards a broader cross-protective IBV vaccine.
Collapse
Affiliation(s)
- Samantha Sives
- Division of Immunology, The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK
| | - Sarah Keep
- The Pirbright Institute, Ash Road, Woking GU24 0NF, UK
| | | | - Lonneke Vervelde
- Division of Immunology, The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK
| |
Collapse
|
12
|
You R, Liu K, Huang M, Tang L, Zhang X, Huang Y, Zhao J, Zhao Y, Ye L, Zhang G. Identification and Comparison of the Sialic Acid-Binding Domain Characteristics of Avian Coronavirus Infectious Bronchitis Virus Spike Protein. J Virol 2023; 97:e0048923. [PMID: 37097156 PMCID: PMC10231253 DOI: 10.1128/jvi.00489-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/26/2023] Open
Abstract
Infectious bronchitis virus (IBV) infections are initiated by the transmembrane spike (S) glycoprotein, which binds to host factors and fuses the viral and cell membranes. The N-terminal domain of the S1 subunit of IBV S protein binds to sialic acids, but the precise location of the sialic acid binding domain (SABD) and the role of the SABD in IBV-infected chickens remain unclear. Here, we identify the S1 N-terminal amino acid (aa) residues 19 to 227 (209 aa total) of IBV strains SD (GI-19) and GD (GI-7), and the corresponding region of M41 (GI-1), as the minimal SABD using truncated protein histochemistry and neuraminidase assays. Both α-2,3- and α-2,6-linked sialic acids on the surfaces of CEK cells can be used as attachment receptors by IBV, leading to increased infection efficiency. However, 9-O acetylation of the sialic acid glycerol side chain inhibits IBV S1 and SABD protein binding. We further constructed recombinant strains in which the S1 gene or the SABD in the GD and SD genomes were replaced with the corresponding region from M41 by reverse genetics. Infecting chickens with these viruses revealed that the virulence and nephrotropism of rSDM41-S1, rSDM41-206, rGDM41-S1, and rGDM41-206 strains were decreased to various degrees compared to their parental strains. A positive sera cross-neutralization test showed that the serotypes were changed for the recombinant viruses. Our results provide insight into IBV infection of host cells that may aid vaccine design. IMPORTANCE To date, only α-2,3-linked sialic acid has been identified as a potential host binding receptor for IBV. Here, we show the minimum region constituting the sialic acid binding domain (SABD) and the binding characteristics of the S1 subunit of spike (S) protein of IBV strains SD (GI-19), GD (GI-7), and M41 (GI-1) to various sialic acids. The 9-O acetylation modification partially inhibits IBV from binding to sialic acid, while the virus can also bind to sialic acid molecules linked to host cells through an α-2,6 linkage, serving as another receptor determinant. Substitution of the putative SABD from strain M41 into strains SD and GD resulted in reduced virulence, nephrotropism, and a serotype switch. These findings suggest that sialic acid binding has diversified during the evolution of γ-coronaviruses, impacting the biological properties of IBV strains. Our results offer insight into the mechanisms by which IBV invades host cells.
Collapse
Affiliation(s)
- Renrong You
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Kangchengyin Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Min Huang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Lihua Tang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Xuehui Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yahui Huang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Jing Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Ye Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, People’s Republic of China
| | - Guozhong Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
13
|
Quinteros JA, Noormohammadi AH, Lee SW, Browning GF, Diaz‐Méndez A. Genomics and pathogenesis of the avian coronavirus infectious bronchitis virus. Aust Vet J 2022; 100:496-512. [PMID: 35978541 PMCID: PMC9804484 DOI: 10.1111/avj.13197] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 01/05/2023]
Abstract
Infectious bronchitis virus (IBV) is a member of the family Coronaviridae, together with viruses such as SARS-CoV, MERS-CoV and SARS-CoV-2 (the causative agent of the COVID-19 global pandemic). In this family of viruses, interspecies transmission has been reported, so understanding their pathobiology could lead to a better understanding of the emergence of new serotypes. IBV possesses a single-stranded, non-segmented RNA genome about 27.6 kb in length that encodes several non-structural and structural proteins. Most functions of these proteins have been confirmed in IBV, but some other proposed functions have been based on research conducted on other members of the family Coronaviridae. IBV has variable tissue tropism depending on the strain, and can affect the respiratory, reproductive, or urinary tracts; however, IBV can also replicate in other organs. Additionally, the pathogenicity of IBV is also variable, with some strains causing only mild clinical signs, while infection with others results in high mortality rates in chickens. This paper extensively and comprehensibly reviews general aspects of coronaviruses and, more specifically, IBV, with emphasis on protein functions and pathogenesis. The pathogenicity of the Australian strains of IBV is also reviewed, describing the variability between the different groups of strains, from the classical to the novel and recombinant strains. Reverse genetic systems, cloning and cell culture growth techniques applicable to IBV are also reviewed.
Collapse
Affiliation(s)
- JA Quinteros
- Asia‐Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural SciencesThe University of MelbourneParkvilleVictoriaAustralia
- Present address:
Escuela de Ciencias Agrícolas y VeterinariasUniversidad Viña del Mar, Agua Santa 7055 2572007Viña del MarChile
| | - AH Noormohammadi
- Asia‐Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural SciencesThe University of MelbourneWerribeeVictoriaAustralia
| | - SW Lee
- Asia‐Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural SciencesThe University of MelbourneParkvilleVictoriaAustralia
- College of Veterinary MedicineKonkuk UniversitySeoulRepublic of Korea
| | - GF Browning
- Asia‐Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural SciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - A Diaz‐Méndez
- Asia‐Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural SciencesThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
14
|
A Temperature-Sensitive Recombinant of Avian Coronavirus Infectious Bronchitis Virus Provides Complete Protection against Homologous Challenge. J Virol 2022; 96:e0110022. [PMID: 35972294 PMCID: PMC9472628 DOI: 10.1128/jvi.01100-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Avian coronavirus infectious bronchitis virus (IBV) is the etiological agent of infectious bronchitis, an acute highly contagious economically relevant respiratory disease of poultry. Vaccination is used to control IBV infections, with live-attenuated vaccines generated via serial passage of a virulent field isolate through embryonated hens' eggs. A fine balance must be achieved between attenuation and the retention of immunogenicity. The exact molecular mechanism of attenuation is unknown, and vaccines produced in this manner present a risk of reversion to virulence as few consensus level changes are acquired. Our previous research resulted in the generation of a recombinant IBV (rIBV) known as M41-R, based on a pathogenic strain M41-CK. M41-R was attenuated in vivo by two amino acid changes, Nsp10-Pro85Leu and Nsp14-Val393Leu; however, the mechanism of attenuation was not determined. Pro85 and Val393 were found to be conserved among not only IBV strains but members of the wider coronavirus family. This study demonstrates that the same changes are associated with a temperature-sensitive (ts) replication phenotype at 41°C in vitro, suggesting that the two phenotypes may be linked. Vaccination of specific-pathogen-free chickens with M41-R induced 100% protection against clinical disease, tracheal ciliary damage, and challenge virus replication following homologous challenge with virulent M41-CK. Temperature sensitivity has been used to rationally attenuate other viral pathogens, including influenza, and the identification of amino acid changes that impart both a ts and an attenuated phenotype may therefore offer an avenue for future coronavirus vaccine development. IMPORTANCE Infectious bronchitis virus is a pathogen of economic and welfare concern for the global poultry industry. Live-attenuated vaccines against are generated by serial passage of a virulent isolate in embryonated eggs until attenuation is achieved. The exact mechanisms of attenuation are unknown, and vaccines produced have a risk of reversion to virulence. Reverse genetics provides a method to generate vaccines that are rationally attenuated and are more stable with respect to back selection due to their clonal origin. Genetic populations resulting from molecular clones are more homogeneous and lack the presence of parental pathogenic viruses, which generation by multiple passage does not. In this study, we identified two amino acids that impart a temperature-sensitive replication phenotype. Immunogenicity is retained and vaccination results in 100% protection against homologous challenge. Temperature sensitivity, used for the development of vaccines against other viruses, presents a method for the development of coronavirus vaccines.
Collapse
|
15
|
The Genetic Stability, Replication Kinetics and Cytopathogenicity of Recombinant Avian Coronaviruses with a T16A or an A26F Mutation within the E Protein Is Cell-Type Dependent. Viruses 2022; 14:v14081784. [PMID: 36016406 PMCID: PMC9415719 DOI: 10.3390/v14081784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/25/2022] Open
Abstract
The envelope (E) protein of the avian coronavirus infectious bronchitis virus (IBV) is a small-membrane protein present in two forms during infection: a monomer and a pentameric ion channel. Each form has an independent role during replication; the monomer disrupts the secretory pathway, and the pentamer facilitates virion production. The presence of a T16A or A26F mutation within E exclusively generates the pentameric or monomeric form, respectively. We generated two recombinant IBVs (rIBVs) based on the apathogenic molecular clone Beau-R, containing either a T16A or A26F mutation, denoted as BeauR-T16A and BeauR-A26F. The replication and genetic stability of the rIBVs were assessed in several different cell types, including primary and continuous cells, ex vivo tracheal organ cultures (TOCs) and in ovo. Different replication profiles were observed between cell cultures of different origins. BeauR-A26F replicated to a lower level than Beau-R in Vero cells and in ovo but not in DF1, primary chicken kidney (CK) cells or TOCs. Genetic stability and cytopathic effects were found to differ depending on the cell system. The effect of the T16A and A26F mutations appear to be cell-type dependent, which, therefore, highlights the importance of cell type in the investigation of the IBV E protein.
Collapse
|
16
|
Engineering and Characterization of Avian Coronavirus Mutants Expressing Fluorescent Reporter Proteins from the Replicase Gene. J Virol 2022; 96:e0065322. [PMID: 35862676 PMCID: PMC9327687 DOI: 10.1128/jvi.00653-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Infectious bronchitis virus (IBV) is an avian coronavirus that causes infectious bronchitis, an acute and highly contagious respiratory disease of chickens. IBV evolution under the pressure of comprehensive and widespread vaccination requires surveillance for vaccine resistance, as well as periodic vaccine updates. Reverse genetics systems are very valuable tools in virology, as they facilitate rapid genetic manipulation of viral genomes, thereby advancing basic and applied research. We report here the construction of an infectious clone of IBV strain Beaudette as a bacterial artificial chromosome (BAC). The engineered full-length IBV clone allowed the rescue of an infectious virus that was phenotypically indistinguishable from the parental virus. We used the infectious IBV clone and examined whether an enhanced green fluorescent protein (EGFP) can be produced by the replicase gene ORF1 and autocatalytically released from the replicase polyprotein through cleavage by the main coronavirus protease. We show that IBV tolerates insertion of the EGFP ORF at the 3' end of the replicase gene, between the sequences encoding nsp13 and nsp16 (helicase, RNA exonuclease, RNA endonuclease, and RNA methyltransferase). We further show that EGFP is efficiently cleaved from the replicase polyprotein and can be localized in double-membrane vesicles along with viral RNA polymerase and double-stranded RNA, an intermediate of IBV genome replication. One of the engineered reporter EGFP viruses were genetically stable during passage in cultured cells. We demonstrate that the reporter EGFP viruses can be used to study virus replication in host cells and for antiviral drug discovery and development of diagnostic assays. IMPORTANCE Reverse genetics systems based on bacterial artificial chromosomes (BACs) are the most valuable systems in coronavirus research. Here, we describe the establishment of a reverse genetics system for the avian coronavirus strain Beaudette, the most intensively studied strain. We cloned a copy of the avian coronavirus genome into a BAC vector and recovered infectious virus in permissive cells. We used the new system to construct reporter viruses that produce enhanced green fluorescent protein (EGFP). The EGFP coding sequence was inserted into 11 known cleavage sites of the major coronavirus protease in the replicase gene ORF1. Avian coronavirus tolerated the insertion of the EGFP coding sequence at three sites. The engineered reporter viruses replicated with parental efficiency in cultured cells and were sufficiently genetically stable. The new system facilitates functional genomics of the avian coronavirus genome but can also be used for the development of novel vaccines and anticoronaviral drugs.
Collapse
|
17
|
Ting X, Xiang C, Liu DX, Chen R. Establishment and Cross-Protection Efficacy of a Recombinant Avian Gammacoronavirus Infectious Bronchitis Virus Harboring a Chimeric S1 Subunit. Front Microbiol 2022; 13:897560. [PMID: 35935229 PMCID: PMC9354458 DOI: 10.3389/fmicb.2022.897560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Infectious bronchitis virus (IBV) is a gammacoronavirus that causes a highly contagious disease in chickens and seriously endangers the poultry industry. A diversity of serotypes and genotypes of IBV have been identified worldwide, and the currently available vaccines do not cross-protect. In the present study, an efficient reverse genetics technology based on Beaudette-p65 has been used to construct a recombinant IBV, rIBV-Beaudette-KC(S1), by replacing the nucleotides 21,704–22,411 with the corresponding sequence from an isolate of QX-like genotype KC strain. Continuous passage of this recombinant virus in chicken embryos resulted in the accumulation of two point mutations (G21556C and C22077T) in the S1 region. Further studies showed that the T248S (G21556C) substitution may be essential for the adaptation of the recombinant virus to cell culture. Immunization of chicks with the recombinant IBV elicited strong antibody responses and showed high cross-protection against challenges with virulent M41 and a QX-like genotype IBV. This study reveals the potential of developing rIBV-Beau-KC(S1) as a cell-based vaccine with a broad protective immunity against two different genotypes of IBV.
Collapse
Affiliation(s)
- Xiong Ting
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Chengwei Xiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ding Xiang Liu
- Zhaoqing Branch of Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Ding Xiang Liu ;
| | - Ruiai Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch of Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
- *Correspondence: Ruiai Chen
| |
Collapse
|
18
|
Weng W, Liu Q, Xue W, Wang H, Fang S, Sun Y, Tan L, Song C, Qiu X, Liu W, Ding C, Liao Y. Characterization of the Protective Efficacy Against QX Strain of a Recombinant Infectious Bronchitis Virus With H120 Backbone and QX Spike Gene. Front Microbiol 2022; 13:883642. [PMID: 35783402 PMCID: PMC9247577 DOI: 10.3389/fmicb.2022.883642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/02/2022] [Indexed: 11/20/2022] Open
Abstract
Infectious bronchitis virus (IBV) has been prevalent in chicken farms for many years, and its control relies on extensive vaccine administration. The continuous emergence of new variants and the low cross-protection efficiency prompt the development of new vaccines. In this study, we develop a reverse genetics technique based on the classical vaccine strain H120 genome, via in vitro ligation method. Using the H120 genome as the backbone, we constructed the recombinant virus rH120-QX(S) by replacing the H120 S gene with the QX S gene, a prevalent strain in China. Biological characteristics of the rH120-QX(S) virus, such as 50% egg lethal dose (ELD50), 50% egg infectious dose (EID50), dwarf embryo, growth curve, and genetic stability, are measured, which are comparable to the parental virus H120. There are no clinical symptoms and tissue lesions in the trachea and kidney in the rH120-QX(S)-infected specific-pathogen-free (SPF) chickens, demonstrating that this recombinant virus does not confer pathogenicity. Furthermore, protection studies show that there is 100% homologous protection of rH120-QX(S) to the virulent QX strain, as shown by the absence of clinical signs and no lethality. Taken together, our results demonstrate that swapping the S gene onto the H120 genetic backbone is a precise and effective way to produce genetically defined IBV vaccine candidates.
Collapse
Affiliation(s)
- Wenlian Weng
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Qingyan Liu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- College of Agriculture, College of Animal Sciences, Yangtze University, Jingzhou, China
| | - Wenxiang Xue
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huan Wang
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Shouguo Fang
- College of Agriculture, College of Animal Sciences, Yangtze University, Jingzhou, China
| | - Yingjie Sun
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lei Tan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Cuiping Song
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xusheng Qiu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Weiwei Liu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Ying Liao
| |
Collapse
|
19
|
Identification of Amino Acids within Nonstructural Proteins 10 and 14 of the Avian Coronavirus Infectious Bronchitis Virus That Result in Attenuation In Vivo and In Ovo. J Virol 2022; 96:e0205921. [PMID: 35044208 PMCID: PMC8941869 DOI: 10.1128/jvi.02059-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Gammacoronavirus infectious bronchitis virus (IBV) is a highly contagious global pathogen prevalent in all types of poultry flocks. IBV is responsible for economic losses and welfare issues in domestic poultry, resulting in a significant risk to food security. IBV vaccines are currently generated by serial passage of virulent IBV field isolates through embryonated hens' eggs. The different patterns of genomic variation accumulated during this process means that the exact mechanism of attenuation is unknown and presents a risk of reversion to virulence. Additionally, the passaging process adapts the virus to replicate in chicken embryos, increasing embryo lethality. Vaccines produced in this manner are therefore unsuitable for in ovo application. We have developed a reverse genetics system, based on the pathogenic IBV strain M41, to identify genes which can be targeted for rational attenuation. During the development of this reverse genetics system, we identified four amino acids, located in nonstructural proteins (nsps) 10, 14, 15, and 16, which resulted in attenuation both in vivo and in ovo. Further investigation highlighted a role of amino acid changes, Pro85Leu in nsp 10 and Val393Leu in nsp 14, in the attenuated in vivo phenotype observed. This study provides evidence that mutations in nsps offer a promising mechanism for the development of rationally attenuated live vaccines against IBV, which have the potential for in ovo application. IMPORTANCE The Gammacoronavirus infectious bronchitis virus (IBV) is the etiological agent of infectious bronchitis, an acute, highly contagious, economically important disease of poultry. Vaccination is achieved using a mixture of live attenuated vaccines for young chicks and inactivated vaccines as boosters for laying hens. Live attenuated vaccines are generated through serial passage in embryonated hens' eggs, an empirical process which achieves attenuation but retains immunogenicity. However, these vaccines have a risk of reversion to virulence, and they are lethal to the embryo. In this study, we identified amino acids in the replicase gene which attenuated IBV strain M41, both in vivo and in ovo. Stability assays indicate that the attenuating amino acids are stable and unlikely to revert. The data in this study provide evidence that specific modifications in the replicase gene offer a promising direction for IBV live attenuated vaccine development, with the potential for in ovo application.
Collapse
|
20
|
Known Cellular and Receptor Interactions of Animal and Human Coronaviruses: A Review. Viruses 2022; 14:v14020351. [PMID: 35215937 PMCID: PMC8878323 DOI: 10.3390/v14020351] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 12/12/2022] Open
Abstract
This article aims to review all currently known interactions between animal and human coronaviruses and their cellular receptors. Over the past 20 years, three novel coronaviruses have emerged that have caused severe disease in humans, including SARS-CoV-2 (severe acute respiratory syndrome virus 2); therefore, a deeper understanding of coronavirus host-cell interactions is essential. Receptor-binding is the first stage in coronavirus entry prior to replication and can be altered by minor changes within the spike protein-the coronavirus surface glycoprotein responsible for the recognition of cell-surface receptors. The recognition of receptors by coronaviruses is also a major determinant in infection, tropism, and pathogenesis and acts as a key target for host-immune surveillance and other potential intervention strategies. We aim to highlight the need for a continued in-depth understanding of this subject area following on from the SARS-CoV-2 pandemic, with the possibility for more zoonotic transmission events. We also acknowledge the need for more targeted research towards glycan-coronavirus interactions as zoonotic spillover events from animals to humans, following an alteration in glycan-binding capability, have been well-documented for other viruses such as Influenza A.
Collapse
|
21
|
Abbas G, Zhang Y, Sun X, Chen H, Ren Y, Wang X, Ahmad MZ, Huang X, Li G. Molecular Characterization of Infectious Bronchitis Virus Strain HH06 Isolated in a Poultry Farm in Northeastern China. Front Vet Sci 2022; 8:794228. [PMID: 34977225 PMCID: PMC8716591 DOI: 10.3389/fvets.2021.794228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Spike (S) glycoprotein is an important virulent factor for coronaviruses (CoVs), and variants of CoVs have been characterized based on S gene analysis. We present phylogenetic relationship of an isolated infectious bronchitis virus (IBV) strain with reference to the available genome and protein sequences based on network, multiple sequence, selection pressure, and evolutionary fingerprinting analysis in People's Republic of China. One hundred and elven strains of CoVs i.e., Alphacoronaviruses (Alpha-CoVs; n = 12), Betacoronaviruses (Beta-CoVs; n = 37), Gammacoronaviruses (Gamma-CoVs; n = 46), and Deltacoronaviruses (Delta-CoVs; n = 16) were selected for this purpose. Phylogenetically, SARS-CoV-2 and SARS-CoVs clustered together with Bat-CoVs and MERS-CoV of Beta-CoVs (C). The IBV HH06 of Avian-CoVs was closely related to Duck-CoV and partridge S14, LDT3 (teal and chicken host). Beluga whale-CoV (SW1) and Bottlenose dolphin-CoVs of mammalian origin branched distantly from other animal origin viruses, however, making group with Avian-CoVs altogether into Gamma-CoVs. The motif analysis indicated well-conserved domains on S protein, which were similar within the same phylogenetic class and but variable at different domains of different origins. Recombination network tree indicated SARS-CoV-2, SARS-CoV, and Bat-CoVs, although branched differently, shared common clades. The MERS-CoVs of camel and human origin spread branched into a different clade, however, was closely associated closely with SARS-CoV-2, SARS-CoV, and Bat-CoVs. Whereas, HCoV-OC43 has human origin and branched together with bovine CoVs with but significant distant from other CoVs like SARS CoV-2 and SARS-CoV of human origin. These findings explain that CoVs' constant genetic recombination and evolutionary process that might maintain them as a potential veterinary and human epidemic threat.
Collapse
Affiliation(s)
- Ghulam Abbas
- Heilongjiang Key Laboratory for Animal and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yue Zhang
- Heilongjiang Key Laboratory for Animal and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaowei Sun
- Heilongjiang Key Laboratory for Animal and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Huijie Chen
- College of Pharmaceutical Engineering, Jilin Agriculture Science and Technology University, Jilin, China
| | - Yudong Ren
- Department of Computer Science and Technology, College of Electrical and Information Technology, Northeast Agricultural University, Harbin, China
| | - Xiurong Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Science, Harbin, China
| | - Muhammad Zulfiqar Ahmad
- Department of Plant Breeding and Genetics, Faculty of Agriculture, Gomal University, Dera Ismail Khan, Pakistan
| | - Xiaodan Huang
- Heilongjiang Key Laboratory for Animal and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Guangxing Li
- Heilongjiang Key Laboratory for Animal and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
22
|
Jackwood MW, Jordan BJ. Molecular Evolution of Infectious Bronchitis Virus and the Emergence of Variant Viruses Circulating in the United States. Avian Dis 2021; 65:631-636. [DOI: 10.1637/aviandiseases-d-21-00104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Mark W. Jackwood
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, Athens, GA 30602
| | - Brian J. Jordan
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, Athens, GA 30602
| |
Collapse
|
23
|
Stevenson-Leggett P, Armstrong S, Keep S, Britton P, Bickerton E. Analysis of the avian coronavirus spike protein reveals heterogeneity in the glycans present. J Gen Virol 2021; 102. [PMID: 34424155 PMCID: PMC8513636 DOI: 10.1099/jgv.0.001642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Infectious bronchitis virus (IBV) is an economically important coronavirus, causing damaging losses to the poultry industry worldwide as the causative agent of infectious bronchitis. The coronavirus spike (S) glycoprotein is a large type I membrane protein protruding from the surface of the virion, which facilitates attachment and entry into host cells. The IBV S protein is cleaved into two subunits, S1 and S2, the latter of which has been identified as a determinant of cellular tropism. Recent studies expressing coronavirus S proteins in mammalian and insect cells have identified a high level of glycosylation on the protein’s surface. Here we used IBV propagated in embryonated hens’ eggs to explore the glycan profile of viruses derived from infection in cells of the natural host, chickens. We identified multiple glycan types on the surface of the protein and found a strain-specific dependence on complex glycans for recognition of the S2 subunit by a monoclonal antibody in vitro, with no effect on viral replication following the chemical inhibition of complex glycosylation. Virus neutralization by monoclonal or polyclonal antibodies was not affected. Following analysis of predicted glycosylation sites for the S protein of four IBV strains, we confirmed glycosylation at 18 sites by mass spectrometry for the pathogenic laboratory strain M41-CK. Further characterization revealed heterogeneity among the glycans present at six of these sites, indicating a difference in the glycan profile of individual S proteins on the IBV virion. These results demonstrate a non-specific role for complex glycans in IBV replication, with an indication of an involvement in antibody recognition but not neutralisation.
Collapse
Affiliation(s)
| | - Stuart Armstrong
- Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, UK
| | - Sarah Keep
- The Pirbright Institute, Woking, Surrey GU24 0NF, UK
| | - Paul Britton
- The Pirbright Institute, Woking, Surrey GU24 0NF, UK
| | | |
Collapse
|
24
|
Replication and vaccine protection of multiple infectious bronchitis virus strains in pheasants (Phasianus colchicus). INFECTION GENETICS AND EVOLUTION 2021; 93:104980. [PMID: 34182190 DOI: 10.1016/j.meegid.2021.104980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/19/2021] [Accepted: 06/24/2021] [Indexed: 11/23/2022]
Abstract
This study demonstrates that infectious bronchitis virus (IBV) strain M41, which is pathogenic for chickens, is nonpathogenic for pheasants. However, M41 replicated in the respiratory tracts of most inoculated pheasants and the virus was shed from their respiratory tracts in the early stages of infection (4 and 8 dpc). Similarly, the attenuated IBV H120 vaccine strain also replicated and the virus was shed from their respiratory tracts of most inoculated pheasants, whereas the pheasant coronavirus (PhCoV) I0623/17 replicated in the respiratory tracts of all challenged pheasants, which then shed virus for a long period of time. Strain M41 also replicated in selected tissues of the inoculated pheasants, including the lung, kidney, proventriculus, and cecal tonsil, although the viral titers were very low. Therefore, it was important to establish whether the H120 vaccine, which has a limited replication capacity in pheasants, induces a protective immune response to both "homologous" M41 and "heterologous" I0623/17 challenge. Vaccination with H120 induced humoral responses, and the replication of M41 was reduced or restricted in the tissues of the H120-vaccinated pheasants compared with its replication in unvaccinated birds. This implies that partial protection was conferred on pheasants by vaccination with the H120 vaccine. Prolonged viral replication and a large number of birds shedding virus into the respiratory tract were also observed in the unvaccinated pheasants after inoculation with M41. However, only limited protection against challenge with PhCoV I0623/17 was conferred on pheasants vaccinated with H120, largely because the replication of H120 in pheasants was limited, thus, limiting the immune responses induced by it. The low amino acid identity of the S1 subunit of the S proteins of H120 and I0623/17 might also account, at least in part, for the poor cross-protective immunity induced by H120. These results suggest that further work is required to rationally design vaccines that confer effective protection against PhCoV infection in commercial pheasant stocks.
Collapse
|
25
|
An attenuated TW-like infectious bronchitis virus strain has potential to become a candidate vaccine and S gene is responsible for its attenuation. Vet Microbiol 2021; 254:109014. [PMID: 33636510 DOI: 10.1016/j.vetmic.2021.109014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/14/2021] [Indexed: 02/07/2023]
Abstract
TW-like infectious bronchitis virus (IBV) with high pathogenicity is becoming the predominant IBV type circulating in China. To develop vaccines against TW-like IBV strains and investigate the critical genes associated with their virulence, GD strain was attenuated by 140 serial passages in specific-pathogen-free embryonated eggs and the safety and efficacy of the attenuated GD strain (aGD) were examined. The genome sequences of GD and aGD were also compared and the effects of mutations in the S gene were observed. The results revealed that aGD strain showed no obvious pathogenicity with superior protective efficacy against TW-like and QX-like virulent IBV strains. The genomes of strains aGD and GD shared high similarity (99.87 %) and most of the mutations occurred in S gene. Recombinant IBV strain rGDaGD-S, in which the S gene was replaced with the corresponding regions from aGD, showed decreased pathogenicity compared with its parental strain. In conclusion, attenuated TW-like IBV strain aGD is a potential vaccine candidate and the S gene is responsible for its attenuation. Our research has laid the foundation for future exploration of the attenuating molecular mechanism of IBV.
Collapse
|
26
|
Noman A, Aqeel M, Khalid N, Hashem M, Alamari S, Zafar S, Qasim M, Irshad MK, Qari SH. Spike glycoproteins: Their significance for corona viruses and receptor binding activities for pathogenesis and viral survival. Microb Pathog 2020; 150:104719. [PMID: 33373693 PMCID: PMC7764473 DOI: 10.1016/j.micpath.2020.104719] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022]
Abstract
The recent outbreak of Covid-19 is posing a severe threat to public health globally. Coronaviruses (CoVs) are the largest known group of positive-sense RNA viruses surviving on an extensive number of natural hosts. CoVs are enveloped and non-segmented viruses with a size between 80 and 120 nm. CoV attachment to the surface receptor and its subsequent entrance into cells is mediated by Spike glycoprotein (S). For enhanced CoV entry and successful pathogenesis of CoV, proteolytic processing and receptor-binding act synergistically for induction of large-scale S conformational changes. The shape, size and orientation of receptor-binding domains in viral attachment proteins are well conserved among viruses of different classes that utilize the same receptor. Therefore, investigations unraveling the distribution of cellular receptors with respect to CoV entry, structural aspects of glycoproteins and related conformational changes are highly significant for understanding virus invasion and infection spread. We present the characteristic features of CoV S-Proteins, their significance for CoVs and related receptor binding activities for pathogenesis and viral survival. We are analyzing the novel role of S-protein of CoVs along with their interactive receptors for improving host immunity and decreasing infection spread. This is hoped that presented information will open new ways in tackling coronavirus, especially for the ongoing epidemic.
Collapse
Affiliation(s)
- Ali Noman
- Department of Botany, Government College University, Faisalabad, Pakistan.
| | - Muhammad Aqeel
- State Key Laboratory of Grassland Agroecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, PR China.
| | - Noreen Khalid
- Department of Botany, Government College Women University Sialkot, Sialkot, Pakistan
| | - Mohamed Hashem
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia; Assiut University, Faculty of Science, Botany and Microbiology Department, Assiut, 71516, Egypt
| | - Saad Alamari
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia; Prince Sultan Bin Abdulaziz Center for Environmental and Tourism Research and Studies, King Khalid University, Abha, Saudi Arabia
| | - Saad Zafar
- District Headquarters Hospital, Faisalabad Medical University, Faisalabad, Pakistan
| | - Muhammad Qasim
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture & Biotechnology, Ministry of Agricultural and Rural Affairs, Zhejiang University, Hangzhou, 310058, PR China
| | - Muhammad Kashif Irshad
- Department of Environmental Sciences, Government College University, Faisalabad, Pakistan
| | - Sameer H Qari
- Biology Department, Aljumum University College, Umm Al - Qura University, Makkah, Saudi Arabia.
| |
Collapse
|
27
|
Huang M, Liu Y, Zou C, Tan Y, Han Z, Xue C, Cao Y. A highly pathogenic recombinant infectious bronchitis virus with adaptability in cultured cells. Virus Res 2020; 292:198229. [PMID: 33207263 DOI: 10.1016/j.virusres.2020.198229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 10/25/2022]
Abstract
Infectious bronchitis virus (IBV) of GI-19 (QX), GI-7 (TW), GI-13 (4/91) and GI-1 (Mass) lineages have been frequently detected in China in recent years. Here, An IBV strain, referred as GD17/04, was isolated from the dead yellow feather chicken vaccinated with H52 and 4/91 vaccines, whose genome sequence was obtained through high-throughput sequencing. Then it has been confirmed by the RDP and SimPlot analysis that GD17/04 is a recombinant strain deriving from YX10, 4/91, TW 2575/98 and H52 strains. Therein S1 gene of GD17/04 consists of sequences of TW2575/98 and 4/91, the former for the region of 20,371 to 21,072 nt and 21,847 to 21,975 nt, the latter for the sandwiched region of 21,073 to 21,846 nt. Moreover, as a nephropathogenic variant which caused high morbidity of 100 % and mortality of 60 %, unlike most other IBV strains, GD17/04 can cause obvious cell lesion in primary CEK cell, and even in DF-1 cells, without the process of continuous passage. As the few IBV strain can infect avian passage cell line, GD17/04 provides a material basis for further study of the interaction mechanism between IBV and avian host. Collectively, the findings highlight the significance that biological characteristics of novel strain should be studied, in addition to constant epidemiologic and molecular surveillance for IBV.
Collapse
Affiliation(s)
- Mengjiao Huang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuan Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chuangchao Zou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yazhuo Tan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhenling Han
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
28
|
Stevenson-Leggett P, Keep S, Bickerton E. Treatment with Exogenous Trypsin Expands In Vitro Cellular Tropism of the Avian Coronavirus Infectious Bronchitis Virus. Viruses 2020; 12:E1102. [PMID: 33003350 PMCID: PMC7600076 DOI: 10.3390/v12101102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 12/27/2022] Open
Abstract
The Gammacoronavirus infectious bronchitis virus (IBV) causes a highly contagious and economically important respiratory disease in poultry. In the laboratory, most IBV strains are restricted to replication in ex vivo organ cultures or in ovo and do not replicate in cell culture, making the study of their basic virology difficult. Entry of IBV into cells is facilitated by the large glycoprotein on the surface of the virion, the spike (S) protein, comprised of S1 and S2 subunits. Previous research showed that the S2' cleavage site is responsible for the extended tropism of the IBV Beaudette strain. This study aims to investigate whether protease treatment can extend the tropism of other IBV strains. Here we demonstrate that the addition of exogenous trypsin during IBV propagation in cell culture results in significantly increased viral titres. Using a panel of IBV strains, exhibiting varied tropisms, the effects of spike cleavage on entry and replication were assessed by serial passage cell culture in the presence of trypsin. Replication could be maintained over serial passages, indicating that the addition of exogenous protease is sufficient to overcome the barrier to infection. Mutations were identified in both S1 and S2 subunits following serial passage in cell culture. This work provides a proof of concept that exogenous proteases can remove the barrier to IBV replication in otherwise non-permissive cells, providing a platform for further study of elusive field strains and enabling sustainable vaccine production in vitro.
Collapse
Affiliation(s)
| | | | - Erica Bickerton
- The Pirbright Institute, Ash Road, Woking, Surrey GU24 0NF, UK; (P.S.-L.); (S.K.)
| |
Collapse
|
29
|
M. Najimudeen S, H. Hassan MS, C. Cork S, Abdul-Careem MF. Infectious Bronchitis Coronavirus Infection in Chickens: Multiple System Disease with Immune Suppression. Pathogens 2020; 9:pathogens9100779. [PMID: 32987684 PMCID: PMC7598688 DOI: 10.3390/pathogens9100779] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
In the early 1930s, infectious bronchitis (IB) was first characterized as a respiratory disease in young chickens; later, the disease was also described in older chickens. The etiology of IB was confirmed later as being due to a coronavirus: the infectious bronchitis virus (IBV). Being a coronavirus, IBV is subject to constant genome change due to mutation and recombination, with the consequence of changing clinical and pathological manifestations. The potential use of live attenuated vaccines for the control of IBV infection was demonstrated in the early 1950s, but vaccine breaks occurred due to the emergence of new IBV serotypes. Over the years, various IBV genotypes associated with reproductive, renal, gastrointestinal, muscular and immunosuppressive manifestations have emerged. IBV causes considerable economic impacts on global poultry production due to its pathogenesis involving multiple body systems and immune suppression; hence, there is a need to better understand the pathogenesis of infection and the immune response in order to help developing better management strategies. The evolution of new strains of IBV during the last nine decades against vaccine-induced immune response and changing clinical and pathological manifestations emphasize the necessity of the rational development of intervention strategies based on a thorough understanding of IBV interaction with the host.
Collapse
|
30
|
Sheng J, Ren M, Han Z, Sun J, Zhao Y, Liu S. Genetic and antigenic heterogeneity of GI-1/Massachusetts lineage infectious bronchitis virus variants recently isolated in China. Poult Sci 2020; 99:5440-5451. [PMID: 33142461 PMCID: PMC7462518 DOI: 10.1016/j.psj.2020.08.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/15/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
Four GI-1/Massachusetts-type (GI-1/Mass-type) infectious bronchitis virus (IBV) strains were isolated and the complete genomes of these isolates, coupled with the Mass-type live-attenuated vaccine H120 and the Mass-type pathogenic M41 strains, were sequenced in the present study. Our results show that isolates LJL/140820 and I0306/17 may be derived from the Ma5 (another Mass-type live-attenuated vaccine strain) and H120 vaccine strains, respectively. The I1124/16 strain was found to be a M41 variant that likely resulted from nucleotide accumulated mutations in the genome. Consistently, the results of the virus neutralization test showed that isolate I1124/16 was antigenically related but slight different from the M41. Our results from the protection experiments pointed out that chickens immunized with H120 failed to eliminate viral shedding after infection with the isolate I1124/16, which was different from that of M41; this result was consistent to the field observation and further implicated that the variant IBV isolate I1124/16 was antigenic different from the M41 strain. Furthermore, the I1124/16 was found to have comparable but slightly lower pathogenicity with the M41 strain. More studies based on the reverse genetic techniques are needed to elucidate the amino acids in the S1 subunit of spike protein contributing to the altered antigenicity of the isolate I1124/16. In addition, an IBV isolate, LJL/130609, was found to be originated from recombination events between the I1124/16- and Connecticut-like strains. Our results from the virus neutralization test also showed that isolates LJL/130609 and I1124/16 were antigenic closely related. Hence, there are at least 3 different genetic evolution patterns for the circulation of the GI-1/Mass-type IBV field strains in China. The differences of vaccines used, the field conditions and genetic pressures between different flocks, likely account for the emergence, evolution patterns, and characteristics of the Mass-type IBV strains.
Collapse
Affiliation(s)
- Jie Sheng
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, the People's Republic of China
| | - Mengting Ren
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, the People's Republic of China
| | - Zongxi Han
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, the People's Republic of China
| | - Junfeng Sun
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, the People's Republic of China
| | - Yan Zhao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, the People's Republic of China
| | - Shengwang Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, the People's Republic of China.
| |
Collapse
|
31
|
Lv C, Shi T, Zhu P, Peng X, Cao S, Yan Y, Ojha NK, Liao M, Zhou J. Construction of an infectious bronchitis virus vaccine strain carrying chimeric S1 gene of a virulent isolate and its pathogenicity analysis. Appl Microbiol Biotechnol 2020; 104:8427-8437. [PMID: 32813067 PMCID: PMC7434845 DOI: 10.1007/s00253-020-10834-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 01/08/2023]
Abstract
Abstract Infectious bronchitis virus (IBV) is a member of genus gamma-coronavirus in the family Coronaviridae, causing serious economic losses to the poultry industry. Reverse genetics is a common technique to study the biological characteristics of viruses. So far, there is no BAC reverse genetic system available for rescue of IBV infectious clone. In the present study, a new strategy for the construction of IBV infectious cDNA clone was established. The full-length genomic cDNA of IBV vaccine strain H120 was constructed in pBAC vector from four IBV fragment subcloning vectors by homologous recombination, which contained the CMV promoter at the 5′ end and the hepatitis D virus ribozyme (HDVR) sequence and bovine growth hormone polyadenylation (BGH) sequence after the polyA tail at the 3′ end of the full-length cDNA. Subsequently, using the same technique, another plasmid pBAC-H120/SCS1 was also constructed, in which S1 gene from IBV H120 strain was replaced with that of a virulent SC021202 strain. Recombinant virus rH120 and rH120/SCS1 were rescued by transfecting the plasmids into BHK cells and passaged in embryonated chicken eggs. Finally, the pathogenicity of both the recombinant virus strains rH120 and rH120/SCS1 was evaluated in SPF chickens. The results showed that the chimeric rH120/SCS1 strain was not pathogenic compared with the wild-type IBV SC021202 strain and the chickens inoculated with rH120/SCS1 could resist challenge infection by IBV SC021202. Taken together, our results indicate that BAC reverse genetic system could be used to rescue IBV in vitro and IBV S1 protein alone might not be the key factor for IBV pathogenicity. Key points • BAC vector was used to construct IBV full-length cDNA by homologous recombination. • Based on four subcloning vectors, a recombinant chimeric IBV H120/SCS1 was constructed and rescued. • Pathogenicity of H120/SCS1 was similar to that of H120, but different to that of SC021202.
Collapse
Affiliation(s)
- Chenfei Lv
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Tingting Shi
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Pengpeng Zhu
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Xing Peng
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Shangshang Cao
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Yan Yan
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Nishant Kumar Ojha
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Min Liao
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China.
| | - Jiyong Zhou
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| |
Collapse
|
32
|
The Characterization of chIFITMs in Avian Coronavirus Infection In Vivo, Ex Vivo and In Vitro. Genes (Basel) 2020; 11:genes11080918. [PMID: 32785186 PMCID: PMC7464837 DOI: 10.3390/genes11080918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 01/11/2023] Open
Abstract
The coronaviruses are a large family of enveloped RNA viruses that commonly cause gastrointestinal or respiratory illnesses in the infected host. Avian coronavirus infectious bronchitis virus (IBV) is a highly contagious respiratory pathogen of chickens that can affect the kidneys and reproductive systems resulting in bird mortality and decreased reproductivity. The interferon-inducible transmembrane (IFITM) proteins are activated in response to viral infections and represent a class of cellular restriction factors that restrict the replication of many viral pathogens. Here, we characterize the relative mRNA expression of the chicken IFITM genes in response to IBV infection, in vivo, ex vivo and in vitro using the pathogenic M41-CK strain, the nephropathogenic QX strain and the nonpathogenic Beaudette strain. In vivo we demonstrate a significant upregulation of chIFITM1, 2, 3 and 5 in M41-CK- and QX-infected trachea two days post-infection. In vitro infection with Beaudette, M41-CK and QX results in a significant upregulation of chIFITM1, 2 and 3 at 24 h post-infection. We confirmed a differential innate response following infection with distinct IBV strains and believe that our data provide new insights into the possible role of chIFITMs in early IBV infection.
Collapse
|
33
|
Keep S, Stevenson-Leggett P, Steyn A, Oade MS, Webb I, Stuart J, Vervelde L, Britton P, Maier HJ, Bickerton E. Temperature Sensitivity: A Potential Method for the Generation of Vaccines against the Avian Coronavirus Infectious Bronchitis Virus. Viruses 2020; 12:E754. [PMID: 32674326 PMCID: PMC7412246 DOI: 10.3390/v12070754] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/23/2022] Open
Abstract
The Gammacoronavirus infectious bronchitis virus (IBV) is a highly contagious economically important respiratory pathogen of domestic fowl. Reverse genetics allows for the molecular study of pathogenic determinants to enable rational vaccine design. The recombinant IBV (rIBV) Beau-R, a molecular clone of the apathogenic Beaudette strain, has previously been investigated as a vaccine platform. To determine tissues in which Beau-R could effectively deliver antigenic genes, an in vivo study in chickens, the natural host, was used to compare the pattern of viral dissemination of Beau-R to the pathogenic strain M41-CK. Replication of Beau-R was found to be restricted to soft tissue within the beak, whereas M41-CK was detected in beak tissue, trachea and eyelid up to seven days post infection. In vitro assays further identified that, unlike M41-CK, Beau-R could not replicate at 41 °C, the core body temperature of a chicken, but is able to replicate a 37 °C, a temperature relatable to the very upper respiratory tract. Using a panel of rIBVs with defined mutations in the structural and accessory genes, viral replication at permissive and non-permissive temperatures was investigated, identifying that the Beau-R replicase gene was a determinant of temperature sensitivity and that sub-genomic mRNA synthesis had been affected. The identification of temperature sensitive allelic lesions within the Beau-R replicase gene opens up the possibility of using this method of attenuation in other IBV strains for future vaccine development as well as a method to investigate the functions of the IBV replicase proteins.
Collapse
Affiliation(s)
- Sarah Keep
- The Pirbright Institute, Pirbright, Surrey GU24 0NF, UK; (S.K.); (P.S.-L.); (A.S.); (M.S.O.); (I.W.); (J.S.); (P.B.); (H.J.M.)
| | - Phoebe Stevenson-Leggett
- The Pirbright Institute, Pirbright, Surrey GU24 0NF, UK; (S.K.); (P.S.-L.); (A.S.); (M.S.O.); (I.W.); (J.S.); (P.B.); (H.J.M.)
| | - Angela Steyn
- The Pirbright Institute, Pirbright, Surrey GU24 0NF, UK; (S.K.); (P.S.-L.); (A.S.); (M.S.O.); (I.W.); (J.S.); (P.B.); (H.J.M.)
| | - Michael S. Oade
- The Pirbright Institute, Pirbright, Surrey GU24 0NF, UK; (S.K.); (P.S.-L.); (A.S.); (M.S.O.); (I.W.); (J.S.); (P.B.); (H.J.M.)
| | - Isobel Webb
- The Pirbright Institute, Pirbright, Surrey GU24 0NF, UK; (S.K.); (P.S.-L.); (A.S.); (M.S.O.); (I.W.); (J.S.); (P.B.); (H.J.M.)
| | - Jamie Stuart
- The Pirbright Institute, Pirbright, Surrey GU24 0NF, UK; (S.K.); (P.S.-L.); (A.S.); (M.S.O.); (I.W.); (J.S.); (P.B.); (H.J.M.)
| | - Lonneke Vervelde
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK;
| | - Paul Britton
- The Pirbright Institute, Pirbright, Surrey GU24 0NF, UK; (S.K.); (P.S.-L.); (A.S.); (M.S.O.); (I.W.); (J.S.); (P.B.); (H.J.M.)
| | - Helena J. Maier
- The Pirbright Institute, Pirbright, Surrey GU24 0NF, UK; (S.K.); (P.S.-L.); (A.S.); (M.S.O.); (I.W.); (J.S.); (P.B.); (H.J.M.)
| | - Erica Bickerton
- The Pirbright Institute, Pirbright, Surrey GU24 0NF, UK; (S.K.); (P.S.-L.); (A.S.); (M.S.O.); (I.W.); (J.S.); (P.B.); (H.J.M.)
| |
Collapse
|
34
|
Legnardi M, Tucciarone CM, Franzo G, Cecchinato M. Infectious Bronchitis Virus Evolution, Diagnosis and Control. Vet Sci 2020; 7:E79. [PMID: 32580381 PMCID: PMC7356646 DOI: 10.3390/vetsci7020079] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 01/09/2023] Open
Abstract
RNA viruses are characterized by high mutation and recombination rates, which allow a rapid adaptation to new environments. Most of the emerging diseases and host jumps are therefore sustained by these viruses. Rapid evolution may also hinder the understanding of molecular epidemiology, affect the sensitivity of diagnostic assays, limit the vaccine efficacy and favor episodes of immune escape, thus significantly complicating the control of even well-known pathogens. The history of infectious bronchitis virus (IBV) fits well with the above-mentioned scenario. Despite being known since the 1930s, it still represents one of the main causes of disease and economic losses for the poultry industry. A plethora of strategies have been developed and applied over time, with variable success, to limit its impact. However, they have rarely been evaluated objectively and on an adequate scale. Therefore, the actual advantages and disadvantages of IBV detection and control strategies, as well as their implementation, still largely depend on individual sensibility. The present manuscript aims to review the main features of IBV biology and evolution, focusing on their relevance and potential applications in terms of diagnosis and control.
Collapse
Affiliation(s)
| | - Claudia Maria Tucciarone
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell’Università, 16, 35020 Legnaro, Italy; (M.L.); (G.F.); (M.C.)
| | | | | |
Collapse
|
35
|
Keep S, Sives S, Stevenson-Leggett P, Britton P, Vervelde L, Bickerton E. Limited Cross-Protection against Infectious Bronchitis Provided by Recombinant Infectious Bronchitis Viruses Expressing Heterologous Spike Glycoproteins. Vaccines (Basel) 2020; 8:E330. [PMID: 32580371 PMCID: PMC7350270 DOI: 10.3390/vaccines8020330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 12/19/2022] Open
Abstract
Gammacoronavirus infectious bronchitis virus (IBV) causes an economically important respiratory disease of poultry. Protective immunity is associated with the major structural protein, spike (S) glycoprotein, which induces neutralising antibodies and defines the serotype. Cross-protective immunity between serotypes is limited and can be difficult to predict. In this study, the ability of two recombinant IBV vaccine candidates, BeauR-M41(S) and BeauR-4/91(S), to induce cross-protection against a third serotype, QX, was assessed. Both rIBVs are genetically based on the Beaudette genome with only the S gene derived from either M41 or 4/91, two unrelated serotypes. The use of these rIBVs allowed for the assessment of the potential of M41 and 4/91 S glycoproteins to induce cross-protective immunity against a heterologous QX challenge. The impact of the order of vaccination was also assessed. Homologous primary and secondary vaccination with BeauR-M41(S) or BeauR-4/91(S) resulted in a significant reduction of infectious QX load in the trachea at four days post-challenge, whereas heterologous primary and secondary vaccination with BeauR-M41(S) and BeauR-4/91(S) reduced viral RNA load in the conjunctiva-associated lymphoid tissue (CALT). Both homologous and heterologous vaccination regimes reduced clinical signs and birds recovered more rapidly as compared with an unvaccinated/challenge control group. Despite both rIBV BeauR-M41(S) and BeauR-4/91(S) displaying limited replication in vivo, serum titres in these vaccinated groups were higher as compared with the unvaccinated/challenge control group. This suggests that vaccination with rIBV primed the birds for a boosted humoral response to heterologous QX challenge. Collectively, vaccination with the rIBV elicited limited protection against challenge, with failure to protect against tracheal ciliostasis, clinical manifestations, and viral replication. The use of a less attenuated recombinant vector that replicates throughout the respiratory tract could be required to elicit a stronger and prolonged protective immune response.
Collapse
Affiliation(s)
- Sarah Keep
- The Pirbright Institute, Pirbright, Surrey GU24 0NF, UK; (S.K.); (P.S.-L.); (P.B.)
| | - Samantha Sives
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Easter Bush EH25 9RG, UK; (S.S.); (L.V.)
| | | | - Paul Britton
- The Pirbright Institute, Pirbright, Surrey GU24 0NF, UK; (S.K.); (P.S.-L.); (P.B.)
| | - Lonneke Vervelde
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Easter Bush EH25 9RG, UK; (S.S.); (L.V.)
| | - Erica Bickerton
- The Pirbright Institute, Pirbright, Surrey GU24 0NF, UK; (S.K.); (P.S.-L.); (P.B.)
| |
Collapse
|
36
|
Chen H, Feng R, Muhammad I, Abbas G, Zhang Y, Ren Y, Huang X, Zhang R, Diao L, Wang X, Li G. Protective effects of hypericin against infectious bronchitis virus induced apoptosis and reactive oxygen species in chicken embryo kidney cells. Poult Sci 2020; 98:6367-6377. [PMID: 31399732 PMCID: PMC7107269 DOI: 10.3382/ps/pez465] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/26/2019] [Indexed: 12/17/2022] Open
Abstract
Avian infectious bronchitis virus (IBV), a coronavirus, causes infectious bronchitis leading to enormous economic loss in the poultry industry worldwide. Hypericin (HY) is an excellent compound that has been investigated in antiviral, antineoplastic, and antidepressant. To investigate the inhibition effect of HY on IBV infection in chicken embryo kidney (CEK) cells, 3 different experimental designs: pre-treatment of cells prior to IBV infection, direct treatment of IBV-infected cells, and pre-treatment of IBV prior to cell infection were used. Quantitative real-time PCR (qRT-PCR), immunofluorescence assay (IFA), flow cytometry, and fluorescence microscopy were performed and virus titer was determined by TCID50. The results revealed that HY had a good anti-IBV effect when HY directly treated the IBV-infected cells, and virus infectivity decreased in a dose-dependent manner. Furthermore, HY inhibited IBV-induced apoptosis in CEK cells, and significantly reduced the mRNA expression levels of Fas, FasL, JNK, Bax, Caspase 3, and Caspase 8, and significantly increased Bcl-2 mRNA expression level in CEK cells. In addition, HY treatment could decrease IBV-induced reactive oxygen species (ROS) generation in CEK cells. These results suggested that HY showed potential antiviral activities against IBV infection involving the inhibition of apoptosis and ROS generation in CEK cells.
Collapse
Affiliation(s)
- Huijie Chen
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.,College of Biological and Pharmaceutical Engineering, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Rui Feng
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ishfaq Muhammad
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ghulam Abbas
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhang
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yudong Ren
- College of Electrical and Information, Northeast Agricultural University, Harbin 150030, China
| | - Xiaodan Huang
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ruili Zhang
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Lei Diao
- College of Biological and Pharmaceutical Engineering, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Xiurong Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Guangxing Li
- Key Laboratory for Laboratory Animals and Comparative Medicine of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
37
|
Genetic sequence changes related to the attenuation of avian infectious bronchitis virus strain TW2575/98. Virus Genes 2020; 56:369-379. [PMID: 32232712 PMCID: PMC7103903 DOI: 10.1007/s11262-020-01753-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/16/2020] [Indexed: 12/21/2022]
Abstract
The attenuated avian infectious bronchitis virus (IBV), derived from a wild strain (TW2575/98w) in chicken embryos after 75 passages, is designed as a commercial vaccine strain (TW2575/98vac) to control the disease in Taiwan. The differences in viral infectivity, replication efficiency, and genome sequences between TW2575/98w and TW2575/98vac were determined and compared. TW2575/98vac caused earlier death of chicken embryos and had higher viral replication efficiency. Thirty amino acid substitutions resulting from 44 mutated nucleotides in the viral genome were found in TW2575/98vac. All of the molecular variations lead to attenuation, found in TW2575/98, were not observed consistently in the other IBVs (TW2296/95, Ark/Ark-DPI/81, the Massachusetts strain, GA98/CWL0470/98, and CK/CH/LDL/97I) and vice versa. After further comparisons and evaluations from three aspects: (1) longitudinal analysis on the timing of variations appeared in specific homologous strain passages, (2) horizontal evaluations with the amino acid changes between wild and vaccine strains among the other 5 IBVs, and (3) inspection on alterations in the chemical characteristics of substituted amino acid residues in viral proteins, four amino acid substitutions [V342D in p87, S1493P and P2025S in HD1, as well as F2308Y in HD1(P41)] were selected as highly possible candidates for successful TW2575/98w attenuation. Our findings imply that molecular variations, which contribute to the successful attenuation of different IBVs, are diverse and not restricted to a fixed pattern or specific amino acid substitutions in viral proteins. In addition, four amino acid changes within the replicase gene-encoded proteins might be associated with TW2575/98 virus virulence.
Collapse
|
38
|
Recombinant infectious bronchitis coronavirus H120 with the spike protein S1 gene of the nephropathogenic IBYZ strain remains attenuated but induces protective immunity. Vaccine 2020; 38:3157-3168. [PMID: 32057575 PMCID: PMC7115396 DOI: 10.1016/j.vaccine.2020.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 12/28/2019] [Accepted: 01/02/2020] [Indexed: 12/26/2022]
Abstract
Infectious bronchitis (IB) is a highly infectious viral disease responsible for major economic losses in the poultry industry. A reverse genetic vaccine is a safe, rapid, and effective method of achieving IB prevention and control. In this study, we constructed the recombinant strain, rH120-S1/YZ, using a reverse genetic system, based on the backbone of the H120 vaccine strain, with the S1 gene replaced with that of the QX-like nephropathogenic strain, ck/CH/IBYZ/2011, isolated in China. The results of dwarf chicken embryos, growth kinetics, and viral titration in the embryos demonstrated that the biological characteristics of the recombinant virus remained unchanged. Like the rH120-infected group and in contrast to the rIBYZ-infected group, no mortality, clinical signs, or lesions were observed in the lungs or kidneys of young chickens inoculated with rH120-S1/YZ. The viral loads in various tissues, cloacal, and oral swabs was lower in most types of samples, indicating that the rH120-S1/YZ strain was highly safe in chicks. Compared to rH120 vaccination group, when the efficacy of this strain was evaluated against the QX-like IBV strain, better protection, with 100% survival rate and no disease symptom or gross lesion was observed in the chickens vaccinated with rH120-S1/YZ. Increased levels of IBV-specific antibodies were detected in the serum of the rH120-S1/YZ-vaccinated animals 14 days post-vaccination. Collectively, our results suggest that the recombinant strain, rH120-S1/YZ, may represent a promising vaccine candidate against QX-like IBVs.
Collapse
|
39
|
Dowgier G, Bickerton E. The Preparation of Chicken Tracheal Organ Cultures and Their Application for Ciliostasis Test, Growth Kinetics Studies, and Virus Propagation. Methods Mol Biol 2020; 2203:97-106. [PMID: 32833207 DOI: 10.1007/978-1-0716-0900-2_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chicken tracheal organ cultures (TOCs) provide a simple ex vivo system that makes use of transverse section of tracheal rings extracted from embryos or adult birds to perform classical virological techniques for virus isolation, propagation and titrations, alongside with gene-expression analysis and virus-host interaction studies. Most IBV strains replicate well in TOCs, thus conveniently allowing growth kinetics analysis. Viral replication is revealed by observation of ciliostasis as marker of infection in tracheas extracted from birds ex vivo, as well as in vitro analysis providing a reliable infection model and a useful tool for titration.
Collapse
|
40
|
Zhao X, Jiang Y, Cheng X, Yu Y, Gao M, Zhou S. Pathogenicity of a QX-like strain of infectious bronchitis virus and effects of accessory proteins 3a and 3b in chickens. Vet Microbiol 2019; 239:108464. [PMID: 31767070 DOI: 10.1016/j.vetmic.2019.108464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/20/2019] [Accepted: 10/20/2019] [Indexed: 11/28/2022]
Abstract
QX-like genotype infectious bronchitis virus (IBV) has become prevalent in recent years. Few studies have reported the effects of accessory proteins 3a and 3b on pathogenicity in vivo. We developed a reverse genetics system to manipulate the genome of a QX-like IBV strain IBYZ. Recombinant viruses rIBYZ-ScAUG3a, rIBYZ-ScAUG3b and rIBYZ-ScAUG3ab were generated. These viruses do not express the accessory proteins 3a, 3b, or 3ab due to a mutation in the AUG start codons. In SPF embryonated eggs, the recombinant viruses grew to the same viral load as parental strain rIBYZ. The pathogenicity of rIBYZ and recombinant viruses was examined in 1-day-old SPF chickens. In SPF chickens, rIBYZ-ScAUG3a had a lower mortality than rIBYZ. The clinical signs, gross lesions and histopathological changes of rIBYZ-ScAUG3a group were comparable to those of rIBYZ group. However, viral distribution and viral shedding showed that the viral loads of rIBYZ-ScAUG3a were lower than those of rIBYZ in tissue samples and swab specimens. The rIBYZ-ScAUG3b and rIBYZ-ScAUG3ab strains showed attenuated pathogenicity compared to rIBYZ, as no chickens died and all the parameters tested were considerably low. This study indicates that the absence of accessory proteins 3a and 3b in IBV lead to attenuated pathogenicity in chickens. Protein 3b has a greater effect on pathogenicity than protein 3a. These findings may be used in vaccination trials for the development of a new live-attenuated vaccine.
Collapse
Affiliation(s)
- Xiumei Zhao
- Jiangsu Institute of Poultry Science, Yangzhou 225125, People's Republic of China
| | - Yi Jiang
- Jiangsu Institute of Poultry Science, Yangzhou 225125, People's Republic of China
| | - Xu Cheng
- Jiangsu Institute of Poultry Science, Yangzhou 225125, People's Republic of China
| | - Yan Yu
- Jiangsu Institute of Poultry Science, Yangzhou 225125, People's Republic of China
| | - Mingyan Gao
- Jiangsu Institute of Poultry Science, Yangzhou 225125, People's Republic of China
| | - Sheng Zhou
- Jiangsu Institute of Poultry Science, Yangzhou 225125, People's Republic of China.
| |
Collapse
|
41
|
Dinan AM, Keep S, Bickerton E, Britton P, Firth AE, Brierley I. Comparative Analysis of Gene Expression in Virulent and Attenuated Strains of Infectious Bronchitis Virus at Subcodon Resolution. J Virol 2019; 93:e00714-19. [PMID: 31243124 PMCID: PMC6714804 DOI: 10.1128/jvi.00714-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/17/2019] [Indexed: 12/27/2022] Open
Abstract
Like all coronaviruses, avian infectious bronchitis virus (IBV) possesses a long, single-stranded, positive-sense RNA genome (∼27 kb) and has a complex replication strategy that includes the production of a nested set of subgenomic mRNAs (sgmRNAs). Here, we used whole-transcriptome sequencing (RNASeq) and ribosome profiling (RiboSeq) to delineate gene expression in the IBV M41-CK and Beau-R strains at subcodon resolution. RNASeq facilitated a comparative analysis of viral RNA synthesis and revealed two novel transcription junction sites in the attenuated Beau-R strain, one of which would generate a sgmRNA encoding a ribosomally occupied open reading frame (dORF) located downstream of the nucleocapsid coding region. RiboSeq permitted quantification of the translational efficiency of virus gene expression and identified, for the first time, sites of ribosomal pausing on the genome. Quantification of reads flanking the programmed ribosomal frameshifting (PRF) signal at the genomic RNA ORF1a/ORF1b junction revealed that PRF in IBV is highly efficient (33 to 40%). Triplet phasing of RiboSeq data allowed precise determination of reading frames and revealed the translation of two ORFs (ORF4b and ORF4c on sgmRNA IR), which are widely conserved across IBV isolates. Analysis of differential gene expression in infected primary chick kidney cells indicated that the host cell response to IBV occurs primarily at the level of transcription, with global upregulation of immune-related mRNA transcripts following infection and comparatively modest changes in the translation efficiencies of host genes. Cellular genes and gene networks differentially expressed during virus infection were also identified, giving insights into the host cell response to IBV infection.IMPORTANCE IBV is a major avian pathogen and presents a substantial economic burden to the poultry industry. Improved vaccination strategies are urgently needed to curb the global spread of this virus, and the development of suitable vaccine candidates will be aided by an improved understanding of IBV molecular biology. Our high-resolution data have enabled a precise study of transcription and translation in cells infected with both pathogenic and attenuated forms of IBV and expand our understanding of gammacoronaviral gene expression. We demonstrate that gene expression shows considerable intraspecies variation, with single nucleotide polymorphisms being associated with altered production of sgmRNA transcripts, and our RiboSeq data sets enabled us to uncover novel ribosomally occupied ORFs in both strains. The numerous cellular genes and gene networks found to be differentially expressed during virus infection provide insights into the host cell response to IBV infection.
Collapse
Affiliation(s)
- Adam M Dinan
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Sarah Keep
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | | | - Paul Britton
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Ian Brierley
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
42
|
Wu Q, Lin Z, Qian K, Shao H, Ye J, Qin A. Peptides with 16R in S2 protein showed broad reactions with sera against different types of infectious bronchitis viruses. Vet Microbiol 2019; 236:108391. [PMID: 31500728 PMCID: PMC7117385 DOI: 10.1016/j.vetmic.2019.108391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 01/20/2023]
Abstract
We examined the specific amino acids contributing to S2 epitopes in IBVs. 16R in S2 protein was a key amino acid mediating the antigenicity of S2 protein. S2-derived peptides with 16R, but not those with 16 K, reacted with IBV-infected serum. Commercial ELISAs did not react with sera harboring all types of IBVs. S2-derived peptides with 16R could be novel antigens for anti-IBV vaccines.
Vaccination plays a vital role in controlling diseases caused by chicken infectious bronchitis virus (IBV). The continuously variant antigenicity of IBV limits the application of current vaccine strategies and serological diagnostic systems. S2 protein is an invariant that harbors broad neutralizing epitopes. However, little is known about the key amino acids that contribute to the broad-spectrum S2 epitopes. In this study, we aimed to elucidate the specific amino acids contributing to S2 epitopes. Site mutagenesis and peptide-based enzyme-linked immunosorbent assays (ELISAs) showed that 16R in S2 protein was a key amino acid mediating the antigenicity of S2 protein. S2-derived peptides with 16R, but not those with 16 K, could react with sera against different types of IBVs. Notably, a commercial ELISA kit for detection of antibodies against IBV did not react with sera against all types of IBVs. Taken together, these data demonstrated that S2-derived peptides with 16R could be used as novel marker-based antigens for developing both broad-spectrum vaccines and serological diagnostic kits to control IBV.
Collapse
Affiliation(s)
- Qi Wu
- Key Laboratory of Avian Preventive Medicine, Ministry of Education, Yangzhou University, China; The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, China.
| | - Zhixian Lin
- Key Laboratory of Avian Preventive Medicine, Ministry of Education, Yangzhou University, China; The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, China.
| | - Kun Qian
- Key Laboratory of Avian Preventive Medicine, Ministry of Education, Yangzhou University, China; The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, China; Jiangsu Key Laboratory of Preventive Veterinary Medicine, Yangzhou University, China.
| | - Hongxia Shao
- Key Laboratory of Avian Preventive Medicine, Ministry of Education, Yangzhou University, China; The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, China; Jiangsu Key Laboratory of Preventive Veterinary Medicine, Yangzhou University, China.
| | - Jianqiang Ye
- Key Laboratory of Avian Preventive Medicine, Ministry of Education, Yangzhou University, China; The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, China; Jiangsu Key Laboratory of Preventive Veterinary Medicine, Yangzhou University, China.
| | - Aijian Qin
- Key Laboratory of Avian Preventive Medicine, Ministry of Education, Yangzhou University, China; The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, China; Jiangsu Key Laboratory of Preventive Veterinary Medicine, Yangzhou University, China.
| |
Collapse
|
43
|
Zhao Y, Cheng J, Yan S, Jia W, Zhang K, Zhang G. S gene and 5a accessory gene are responsible for the attenuation of virulent infectious bronchitis coronavirus. Virology 2019; 533:12-20. [PMID: 31078931 PMCID: PMC7112010 DOI: 10.1016/j.virol.2019.04.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/27/2019] [Accepted: 04/29/2019] [Indexed: 11/01/2022]
Abstract
To explore the critical genes associated with infectious bronchitis virus (IBV) virulence, we compared the genome sequences of virulent YN strain and its attenuated strain aYN. Accumulation of mutations in the S gene and the accessory gene 5a were observed, suggesting a potential role in the loss of viral pathogenicity. Two recombinant IBVs (rIBVs) with replacement of the S gene or 5a with corresponding regions from aYN were rescued to verify this speculation. Embryo mortality time/rate showed that rYN-S-aYN and rYN-5a-aYN had an attenuated phenotype in ovo. Replication assay in ovo and in vitro demonstrated the rIBVs had similar replication patterns with wild-type rIBV. Both rIBVs showed reduced mortality, tissue lesions and tissue virus titers in chicken. In conclusion, S gene and 5a accessory gene are responsible for the attenuation of virulent IBV. Insight into the genes responsible for virus attenuation will facilitate the development of future vaccines against IBV.
Collapse
Affiliation(s)
- Ye Zhao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jinlong Cheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Shihong Yan
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Wenfeng Jia
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Keran Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Guozhong Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
44
|
Protection conferred by a vaccine derived from an inactivated Egyptian variant of infectious bronchitis virus: a challenge experiment. Trop Anim Health Prod 2019; 51:1997-2001. [PMID: 31020540 DOI: 10.1007/s11250-019-01898-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/11/2019] [Indexed: 12/14/2022]
Abstract
The current study investigated the protective efficacy of a formalin-inactivated infectious bronchitis virus (IBV) vaccine derived from the field strain KP729422, which exhibits low S1 spike protein sequence homology (77.1-79.8%) with the currently used vaccine strains in Egypt. Two-week-old, specific-pathogen-free chickens were subcutaneously inoculated with a single dose of the vaccine containing 106.7 50% embryo infective dose (EID50) of the inactivated virus. At 6 weeks of age, the chickens were challenged with 104 EID50 of the same virus strain via the oculonasal route. In comparison with the unvaccinated challenged group, the vaccinated chickens had significantly higher IBV-neutralizing antibody titers and exhibited efficient protection against challenge on the basis of tracheal ciliary activity. However, the challenge virus was recovered from the kidneys and tracheas of these chickens at rates of 40% and 60%, respectively. These findings suggest that a single application of the vaccine may provide sufficient clinical and respiratory protection, but may not ensure complete protection against infection by the challenge virus.
Collapse
|
45
|
Ali A, Kilany WH, Zain El-Abideen MA, Sayed ME, Elkady M. Safety and efficacy of attenuated classic and variant 2 infectious bronchitis virus candidate vaccines. Poult Sci 2018; 97:4238-4244. [PMID: 30085298 PMCID: PMC7107197 DOI: 10.3382/ps/pey312] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 06/27/2018] [Indexed: 12/24/2022] Open
Abstract
Vaccination programs against infectious bronchitis virus (IBV) in Egypt depend on both classical and/or imported variant IBV strain vaccines. However, many IBV outbreaks associated with respiratory distress, nephropathy, and high mortalities were attributed to the circulation of both classical and new nephropathogenic IBV variant 2 strains. In the present study, we report the development of attenuated IBV candidate vaccines using the classic IBV strains (IBM41 and IB2) and a nephropathogenic strain (IBvar2). The wild-type (WT) viruses were attenuated through serial passages in embryonated specific pathogen free (SPF) chicken eggs. Virulence of the attenuated viruses was then tested via the ocular route inoculation and the in vivo back passage in day-old SPF chickens. Efficacy against homologous challenge was investigated also in day-old SPF chickens. Results showed that the viruses were successfully adapted to the embryo by the 100th (IBM41 and IB2) and 110th passages (IBvar2). The attenuated viruses were safe and showed no change of virulence in day-old SPF chickens up to the 10th back passages. The efficacy experiment showed that the attenuated vaccines showed 90 to 100% protection against the homologous challenge based on ciliostasis score and protection percent. The att-IBM41 and att-IB2 vaccines were able to reduce the shedding of the challenge at 3 days post-infection (DPI) and no virus shedding was detected in both vaccinated groups by 5 DPI. In the att-IBvar2 vaccinated birds, only 20% of vaccinated birds shed the challenge virus with low titers (102.10±0.3 EID50/mL) at 3 DPI. In conclusion, the attenuated strains IBM41, IB2, and IBvar2 are efficient vaccine candidates against currently circulating classic and variant IB viruses, respectively. Further studies to evaluate the field efficacy and combining these attenuated IBV strains to induce a wider protection against heterologous IBV challenge are suggested.
Collapse
Affiliation(s)
- Ahmed Ali
- Poultry Diseases Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 65211, Egypt
| | - Walid H Kilany
- Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute, P.O. Box 264, Dokki, Giza 12618, Egypt
| | - Mohamed A Zain El-Abideen
- Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute, P.O. Box 264, Dokki, Giza 12618, Egypt
| | - Magdy El Sayed
- Department of Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
- Middle East for Veterinary Vaccine Company, Second Industrial Area, El-Salhya El-Gededa, El-Sharkia 44671, Egypt
| | - Magdy Elkady
- Poultry Diseases Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 65211, Egypt
| |
Collapse
|
46
|
Bickerton E, Dowgier G, Britton P. Recombinant infectious bronchitis viruses expressing heterologous S1 subunits: potential for a new generation of vaccines that replicate in Vero cells. J Gen Virol 2018; 99:1681-1685. [PMID: 30355423 DOI: 10.1099/jgv.0.001167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The spike glycoprotein (S) of infectious bronchitis virus (IBV) comprises two subunits, S1 and S2. We have previously demonstrated that the S2 subunit of the avirulent Beau-R strain is responsible for its extended cellular tropism for Vero cells. Two recombinant infectious bronchitis viruses (rIBVs) have been generated; the immunogenic S1 subunit is derived from the IBV vaccine strain, H120, or the virulent field strain, QX, within the genetic background of Beau-R. The rIBVs BeauR-H120(S1) and BeauR-QX(S1) are capable of replicating in primary chicken kidney cell cultures and in Vero cells. These results demonstrate that rIBVs are able to express S1 subunits from genetically diverse strains of IBV, which will enable the rational design of a future generation of IBV vaccines that may be grown in Vero cells.
Collapse
Affiliation(s)
- Erica Bickerton
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
| | - Giulia Dowgier
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
| | - Paul Britton
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
| |
Collapse
|
47
|
Ellis S, Keep S, Britton P, de Wit S, Bickerton E, Vervelde L. Recombinant Infectious Bronchitis Viruses Expressing Chimeric Spike Glycoproteins Induce Partial Protective Immunity against Homologous Challenge despite Limited Replication In Vivo. J Virol 2018; 92:e01473-18. [PMID: 30209177 PMCID: PMC6232476 DOI: 10.1128/jvi.01473-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/03/2018] [Indexed: 12/19/2022] Open
Abstract
Vaccination regimes against Infectious bronchitis virus (IBV), which are based on a single virus serotype, often induce insufficient levels of cross-protection against serotypes and two or more antigenically diverse vaccines are used in attempt to provide broader protection. Amino acid differences in the surface protein, spike (S), in particular the S1 subunit, are associated with poor cross-protection. Here, homologous vaccination trials with recombinant IBVs (rIBVs), based on the apathogenic strain, BeauR, were conducted to elucidate the role of S1 in protection. A single vaccination of specific-pathogen-free chickens with rIBV expressing S1 of virulent strains M41 or QX, BeauR-M41(S1) and BeauR-QX(S1), gave incomplete protection against homologous challenge, based on ciliary activity and clinical signs. There could be conformational issues with the spike if heterologous S1 and S2 are linked, suggesting a homologous S2 might be essential. To address this, a homologous vaccination-challenge trial incorporating rIBVs expressing full spike from M41, BeauR-M41(S), and S2 subunit from M41, BeauR-M41(S2) was conducted. All chimeric viruses grew to similar titers in vitro, induced virus-specific partial protective immunity, evident by cellular infiltrations, reductions in viral RNA load in the trachea and conjunctiva and higher serum anti-IBV titers. Collectively, these findings show that vaccination with rIBVs primed the birds for challenge but the viruses were cleared rapidly from the mucosal tissues in the head. Chimeric S1 and S2 viruses did not protect as effectively as BeauR-M41(S) based on ciliary activity and clinical signs. Booster vaccinations and an rIBV with improved in vivo replication may improve the levels of protection.IMPORTANCE Infectious bronchitis virus causes an acute, highly contagious respiratory disease, responsible for significant economic losses to the poultry industry. Amino acid differences in the surface protein, spike (S), in particular the S1 subunit, have been associated with poor cross-protection. Available vaccines give poor cross-protection and rationally designed live attenuated vaccines, based on apathogenic BeauR, could address these. Here, to determine the role of S1 in protection, a series of homologous vaccination trials with rIBVs were conducted. Single vaccinations with chimeric rIBVs induced virus-specific partial protective immunity, characterized by reduction in viral load and serum antibody titers. However, BeauR-M41(S) was the only vaccination to improve the level of protection against clinical signs and the loss of tracheal ciliary activity. Growth characteristics show that all of the rIBVs replicated in vitro to similar levels. Booster vaccinations and an rIBV with improved in vivo replication may improve the levels of protection.
Collapse
Affiliation(s)
- Samantha Ellis
- Infection and Immunity, The Roslin Institute, University of Edinburgh, Penicuik, Midlothian, United Kingdom
| | - Sarah Keep
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Paul Britton
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | | | | | - Lonneke Vervelde
- Infection and Immunity, The Roslin Institute, University of Edinburgh, Penicuik, Midlothian, United Kingdom
| |
Collapse
|
48
|
Feng KY, Chen T, Zhang X, Shao GM, Cao Y, Chen DK, Lin WC, Chen F, Xie QM. Molecular characteristic and pathogenicity analysis of a virulent recombinant avain infectious bronchitis virus isolated in China. Poult Sci 2018; 97:3519-3531. [PMID: 29917155 PMCID: PMC7107092 DOI: 10.3382/ps/pey237] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/24/2018] [Indexed: 12/05/2022] Open
Abstract
A virulent infectious bronchitis virus (IBV), designated as CK/CH/GD/QY16 (referred as QY16), was isolated from a diseased chicken farm in Guangdong province, China, in 2016. The complete genome of the strain was sequenced and analyzed. The results show that the genome of QY16 consists of 27,670 nucleotides, excluding poly (A) tail, and that its genome organization is 5’ UTR-1a-1b-S-3a-3b-E-M-4b-4c-5a-5b-N-6b-3’ UTR-poly (A) tail. Sequence comparison among QY16 and other IBV strains was conducted and its results demonstrate that the S1 gene of QY16 has the highest nucleotide sequence identity with that of 4/91, and the other part of its genome is highly similar to that of YX10. The results of the phylogenic analysis show that the entire genome of QY16 and most of the QY16 genes are located in the same cluster as those of YX10, except for the S1 gene which is located in the same cluster with that of 4/91. It has been further confirmed by the RDP and SimPlot analysis that QY16 is a recombinant strain deriving from YX10 (as the major parental sequence) and 4/91 (as the minor parental sequence), and that the recombination occurs in a region which includes the 3’-terminal 1b sequence (85 nt) and the 5’-terminal S1 protein gene sequence (1,466 nt). The results of the vaccination-challenge test suggest that QY16 is a nephropathogenic strain of IBV and that the vaccine strains–H120 and 4/91—cannot provide effective protection against it. These results indicate that the continuing evolution of IBV strains by genetic drift and genetic recombination may lead to IBV outbreaks even among the vaccinated chickens in China.
Collapse
Affiliation(s)
- K Y Feng
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, P. R. China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, PR China.,Guangdong Animal Virus Vector Vaccine Engineering Research Center, Guangzhou 510642, PR China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510640, PR China
| | - T Chen
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, P. R. China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, PR China
| | - X Zhang
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, P. R. China
| | - G M Shao
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, P. R. China
| | - Y Cao
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, P. R. China
| | - D K Chen
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, P. R. China
| | - W C Lin
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, P. R. China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, PR China.,Guangdong Animal Virus Vector Vaccine Engineering Research Center, Guangzhou 510642, PR China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510640, PR China
| | - F Chen
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, P. R. China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, PR China
| | - Q M Xie
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, P. R. China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, PR China.,Guangdong Animal Virus Vector Vaccine Engineering Research Center, Guangzhou 510642, PR China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510640, PR China
| |
Collapse
|
49
|
Bickerton E, Maier HJ, Stevenson-Leggett P, Armesto M, Britton P. The S2 Subunit of Infectious Bronchitis Virus Beaudette Is a Determinant of Cellular Tropism. J Virol 2018; 92:e01044-18. [PMID: 30021894 PMCID: PMC6146808 DOI: 10.1128/jvi.01044-18] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/10/2018] [Indexed: 12/17/2022] Open
Abstract
The spike (S) glycoprotein of the avian gammacoronavirus infectious bronchitis virus (IBV) is comprised of two subunits (S1 and S2), has a role in virulence in vivo, and is responsible for cellular tropism in vitro We have previously demonstrated that replacement of the S glycoprotein ectodomain from the avirulent Beaudette strain of IBV with the corresponding region from the virulent M41-CK strain resulted in a recombinant virus, BeauR-M41(S), with the in vitro cell tropism of M41-CK. The IBV Beaudette strain is able to replicate in both primary chick kidney cells and Vero cells, whereas the IBV M41-CK strain replicates in primary cells only. In order to investigate the region of the IBV S responsible for growth in Vero cells, we generated a series of recombinant IBVs expressing chimeric S glycoproteins, consisting of regions from the Beaudette and M41-CK S gene sequences, within the genomic background of Beaudette. The S2, but not the S1, subunit of the Beaudette S was found to confer the ability to grow in Vero cells. Various combinations of Beaudette-specific amino acids were introduced into the S2 subunit of M41 to determine the minimum requirement to confer tropism for growth in Vero cells. The ability of IBV to grow and produce infectious progeny virus in Vero cells was subsequently narrowed down to just 3 amino acids surrounding the S2' cleavage site. Conversely, swapping of the 3 Beaudette-associated amino acids with the corresponding ones from M41 was sufficient to abolish Beaudette growth in Vero cells.IMPORTANCE Infectious bronchitis remains a major problem in the global poultry industry, despite the existence of many different vaccines. IBV vaccines, both live attenuated and inactivated, are currently grown on embryonated hen's eggs, a cumbersome and expensive process due to the fact that most IBV strains do not grow in cultured cells. The reverse genetics system for IBV creates the opportunity for generating rationally designed and more effective vaccines. The observation that IBV Beaudette has the additional tropism for growth on Vero cells also invokes the possibility of generating IBV vaccines produced from cultured cells rather than by the use of embryonated eggs. The regions of the IBV Beaudette S glycoprotein involved in the determination of extended cellular tropism were identified in this study. This information will enable the rational design of a future generation of IBV vaccines that may be grown on Vero cells.
Collapse
|
50
|
Keep S, Bickerton E, Armesto M, Britton P. The ADRP domain from a virulent strain of infectious bronchitis virus is not sufficient to confer a pathogenic phenotype to the attenuated Beaudette strain. J Gen Virol 2018; 99:1097-1102. [PMID: 29893665 PMCID: PMC6171709 DOI: 10.1099/jgv.0.001098] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The replicase gene of the coronavirus infectious bronchitis virus (IBV) encodes 15 non-structural proteins (nsps). Nsp 3 is a multi-functional protein containing a conserved ADP-ribose-1″-phosphatase (ADRP) domain. The crystal structures of the domain from two strains of IBV, M41 (virulent) and Beaudette (avirulent), identified a key difference; M41 contains a conserved triple-glycine motif, whilst Beaudette contains a glycine-to-serine mutation that is predicted to abolish ADRP activity. Although ADRP activity has not been formally demonstrated for IBV nsp 3, Beaudette fails to bind ADP-ribose. The role of ADRP in virulence was investigated by generating rIBVs, based on Beaudette, containing either a restored triple-glycine motif or the complete M41 ADRP domain. Replication in vitro was unaffected by the ADRP modifications and the in vivo phenotype of the rIBVs was found to be apathogenic, indicating that restoration of the triple-glycine motif is not sufficient to restore virulence to the apathogenic Beaudette strain.
Collapse
|