1
|
McGinley J, Thwaites R, Brebner W, Greenan-Barrett L, Aerssens J, Öner D, Bont L, Wildenbeest J, Martinón-Torres F, Nair H, Pollard AJ, Openshaw P, Drysdale S. A Systematic Review and Meta-analysis of Animal Studies Investigating the Relationship Between Serum Antibody, T Lymphocytes, and Respiratory Syncytial Virus Disease. J Infect Dis 2021; 226:S117-S129. [PMID: 34522970 DOI: 10.1093/infdis/jiab370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) infections occur in human populations around the globe, causing disease of variable severity, disproportionately affecting infants and older adults (>65 years of age). Immune responses can be protective but also contribute to disease. Experimental studies in animals enable detailed investigation of immune responses, provide insights into clinical questions, and accelerate the development of passive and active vaccination. We aimed to review the role of antibody and T-cell responses in relation to RSV disease severity in animals. METHODS Systematic review and meta-analysis of animal studies examining the association between T-cell responses/phenotype or antibody titers and severity of RSV disease. The PubMed, Zoological Record, and Embase databases were screened from January 1980 to May 2018 to identify animal studies of RSV infection that assessed serum antibody titer or T lymphocytes with disease severity as an outcome. Sixty-three studies were included in the final review. RESULTS RSV-specific antibody appears to protect from disease in mice, but such an effect was less evident in bovine RSV. Strong T-cell, Th1, Th2, Th17, CD4/CD8 responses, and weak Treg responses accompany severe disease in mice. CONCLUSIONS Murine studies suggest that measures of T-lymphocyte activity (particularly CD4 and CD8 T cells) may be predictive biomarkers of severity. Further inquiry is merited to validate these results and assess relevance as biomarkers for human disease.
Collapse
Affiliation(s)
- Joseph McGinley
- Oxford Vaccine Group, Paediatrics, University of Oxford, Oxford, United Kingdom
| | | | - Will Brebner
- Oxford Vaccine Group, Paediatrics, University of Oxford, Oxford, United Kingdom
| | | | - Jeroen Aerssens
- Biomarkers Infectious Diseases, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Deniz Öner
- Biomarkers Infectious Diseases, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Louis Bont
- Department of Paediatric Infectious Diseases and Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Joanne Wildenbeest
- Department of Paediatric Infectious Diseases and Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | - Harish Nair
- University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew J Pollard
- Oxford Vaccine Group, Paediatrics, University of Oxford, Oxford, United Kingdom
| | | | - Simon Drysdale
- Oxford Vaccine Group, Paediatrics, University of Oxford, Oxford, United Kingdom.,Paediatric Infectious Diseases Unit, St George's University Hospitals NHS Foundation Trust, London, United Kingdom.,Paediatric Infectious Diseases Research Group, Institute for Infection and Immunity, St George's, University of London, London, United Kingdom
| | | |
Collapse
|
2
|
Stevens AD, Bullock TNJ. Therapeutic vaccination targeting CD40 and TLR3 controls melanoma growth through existing intratumoral CD8 T cells without new T cell infiltration. Cancer Immunol Immunother 2021; 70:2139-2150. [PMID: 33452626 DOI: 10.1007/s00262-020-02841-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022]
Abstract
Dendritic cells are potently activated by the synergistic action of CD40 stimulation in conjunction with signaling through toll like receptors, subsequently priming T cells. Cancer vaccines targeting the activation of dendritic cells in this manner show promise in murine models and are being developed for human patients. While the efficacy of vaccines based on CD40 and toll like receptor stimulation has been established, further investigation is needed to understand the mechanism of tumor control and how vaccination alters tumor infiltrating immune cells. In this study we vaccinated mice bearing established murine melanoma tumors with agonistic anti-CD40, polyI:C, and tumor antigen. Vaccination led to increased intratumoral T cell numbers and delayed tumor growth, yet did not require trafficking of T cells from the periphery. Pre-existing intratumoral T cells exhibited an acute burst in proliferation but became less functional in response to vaccination. However, the increased intratumoral T cell numbers yielded increased numbers of effector T cells per tumor. Together, our data indicate that the existing T cell response and intratumoral dendritic cells are critical for vaccination efficacy. It also suggests that circulating T cells responding to vaccination may not be an appropriate biomarker for vaccine efficacy.
Collapse
Affiliation(s)
- Aaron D Stevens
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | | |
Collapse
|
3
|
Thakar J, Qian Y, Benoodt L, Roumanes D, Qiu X, Laniewski N, Chu C, Slaunwhite C, Wang L, Mandava A, Chang I, Falsey AR, Caserta MT, Mariani TJ, Scheuermann RH, Walsh EE, Topham DJ. Unbiased analysis of peripheral blood mononuclear cells reveals CD4 T cell response to RSV matrix protein. Vaccine X 2020; 5:100065. [PMID: 32529184 PMCID: PMC7280769 DOI: 10.1016/j.jvacx.2020.100065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/13/2020] [Accepted: 04/20/2020] [Indexed: 12/02/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the most important cause of respiratory tract illness especially in young infants that develop severe disease requiring hospitalization, and accounting for 74,000-126,000 admissions in the United States (Rezaee et al., 2017; Resch, 2017). Observations of neonatal and infant T cells suggest that they may express different immune markers compared to T-cells from older children. Flow cytometry analysis of cellular responses using "conventional" anti-viral markers (IL2, IFN-γ, TNF, IL10 and IL4) upon RSV-peptide stimulation detected an overall low RSV response in peripheral blood. Therefore we sought an unbiased approach to identify RSV-specific immune markers using RNA-sequencing upon stimulation of infant PBMCs with overlapping peptides representing RSV antigens. To understand the cellular response using transcriptional signatures, transcription factors and cell-type specific signatures were used to investigate breadth of response across peptides. Unexpected from the ICS data, M peptide induced a response equivalent to the F-peptide and was characterized by activation of GATA2, 3, STAT3 and IRF1. This along with upregulation of several unconventional T cell signatures was only observed upon M-peptide stimulation. Moreover, signatures of natural RSV infections were identified from the data available in the public domain to investigate similarities between transcriptional signatures from PBMCs and upon peptide stimulation. This analysis also suggested activation of T cell response upon M-peptide stimulation. Hence, based on transcriptional response, markers were chosen to validate the role of M-peptide in activation of T cells. Indeed, CD4+CXCL9+ cells were identified upon M-peptide stimulation by flow cytometry. Future work using additional markers identified in this study could reveal additional unconventional T cells responding to RSV infections in infants. In conclusion, T cell responses to RSV in infants may not follow the canonical Th1/Th2 patterns of effector responses but include additional functions that may be unique to the neonatal period and correlate with clinical outcomes.
Collapse
Affiliation(s)
- Juilee Thakar
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, United States
| | - Yu Qian
- J. Craig Venter Institute, La Jolla, CA, United States
| | - Lauren Benoodt
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
- Biophysics and Computational Biology Graduate Program, University of Rochester, Rochester, NY, United States
| | - David Roumanes
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, United States
| | - Xing Qiu
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, United States
| | - Nathan Laniewski
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, United States
| | - ChinYi Chu
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, United States
| | - Christopher Slaunwhite
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, United States
| | - Lu Wang
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, United States
| | | | - Ivan Chang
- J. Craig Venter Institute, La Jolla, CA, United States
| | - Ann R Falsey
- Department of Medicine, Division of Infectious Diseases, University of Rochester Medical Center, Rochester, NY, United States
| | - Mary T Caserta
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, United States
| | - Thomas J Mariani
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, United States
| | - Richard H Scheuermann
- J. Craig Venter Institute, La Jolla, CA, United States
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States
| | - Edward E Walsh
- Department of Medicine, Division of Infectious Diseases, University of Rochester Medical Center, Rochester, NY, United States
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, United States
| | - David J Topham
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, United States
| |
Collapse
|
4
|
A Loss-of-Function Mutation in the Integrin Alpha L ( Itgal) Gene Contributes to Susceptibility to Salmonella enterica Serovar Typhimurium Infection in Collaborative Cross Strain CC042. Infect Immun 2019; 88:IAI.00656-19. [PMID: 31636138 DOI: 10.1128/iai.00656-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/05/2019] [Indexed: 12/18/2022] Open
Abstract
Salmonella is an intracellular bacterium found in the gastrointestinal tract of mammalian, avian, and reptilian hosts. Mouse models have been extensively used to model in vivo distinct aspects of human Salmonella infections and have led to the identification of several host susceptibility genes. We have investigated the susceptibility of Collaborative Cross strains to intravenous infection with Salmonella enterica serovar Typhimurium as a model of human systemic invasive infection. In this model, strain CC042/GeniUnc (CC042) mice displayed extreme susceptibility with very high bacterial loads and mortality. CC042 mice showed lower spleen weights and decreased splenocyte numbers before and after infection, affecting mostly CD8+ T cells, B cells, and all myeloid cell populations, compared with control C57BL/6J mice. CC042 mice also had lower thymus weights with a reduced total number of thymocytes and double-negative and double-positive (CD4+, CD8+) thymocytes compared to C57BL/6J mice. Analysis of bone marrow-resident hematopoietic progenitors showed a strong bias against lymphoid-primed multipotent progenitors. An F2 cross between CC042 and C57BL/6N mice identified two loci on chromosome 7 (Stsl6 and Stsl7) associated with differences in bacterial loads. In the Stsl7 region, CC042 carried a loss-of-function variant, unique to this strain, in the integrin alpha L (Itgal) gene, the causative role of which was confirmed by a quantitative complementation test. Notably, Itgal loss of function increased the susceptibility to S. Typhimurium in a (C57BL/6J × CC042)F1 mouse background but not in a C57BL/6J mouse inbred background. These results further emphasize the utility of the Collaborative Cross to identify new host genetic variants controlling susceptibility to infections and improve our understanding of the function of the Itgal gene.
Collapse
|
5
|
Iida S, Miyairi S, Su CA, Abe T, Abe R, Tanabe K, Dvorina N, Baldwin WM, Fairchild RL. Peritransplant VLA-4 blockade inhibits endogenous memory CD8 T cell infiltration into high-risk cardiac allografts and CTLA-4Ig resistant rejection. Am J Transplant 2019; 19:998-1010. [PMID: 30372587 PMCID: PMC6433496 DOI: 10.1111/ajt.15147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/05/2018] [Accepted: 10/16/2018] [Indexed: 01/25/2023]
Abstract
Recipient endogenous memory CD8 T cells expressing reactivity to donor class I MHC infiltrate MHC-mismatched cardiac allografts within 24 hours after reperfusion and express effector functions mediating graft injury. The current study tested the efficacy of Very Late Antigen-4 (VLA-4) blockade to inhibit endogenous memory CD8 T cell infiltration into cardiac allografts and attenuate early posttransplant inflammation. Peritransplant anti-VLA-4 mAb given to C57BL6 (H-2b ) recipients of AJ (H-2a ) heart allografts completely inhibited endogenous memory CD4 and CD8 T cell infiltration with significant decrease in macrophage, but not neutrophil, infiltration into allografts subjected to either minimal or prolonged cold ischemic storage (CIS) prior to transplant, reduced intra-allograft IFN-γ-induced gene expression and prolonged survival of allografts subjected to prolonged CIS in CTLA-4Ig treated recipients. Anti-VLA-4 mAb also inhibited priming of donor-specific T cells producing IFN-γ until at least day 7 posttransplant. Peritransplant anti-VLA plus anti-CD154 mAb treatment similarly prolonged survival of allografts subjected to minimal or increased CIS prior to transplant. Overall, these data indicate that peritransplant anti-VLA-4 mAb inhibits early infiltration memory CD8 T cell infiltration into allografts with a marked reduction in early graft inflammation suggesting an effective strategy to attenuate negative effects of heterologous alloimmunity in recipients of higher risk grafts.
Collapse
Affiliation(s)
- Shoichi Iida
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Tokyo Women’s Medical University, Tokyo, Japan
| | - Satoshi Miyairi
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Charles A. Su
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Toyofumi Abe
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Urology, Osaka University School of Medicine, Osaka, Japan
| | - Ryo Abe
- Tokyo Women’s Medical University, Tokyo, Japan
| | | | - Nina Dvorina
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Robert L. Fairchild
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
6
|
González-Parra G, Dobrovolny HM. A quantitative assessment of dynamical differences of RSV infections in vitro and in vivo. Virology 2018; 523:129-139. [PMID: 30144786 DOI: 10.1016/j.virol.2018.07.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 10/28/2022]
Abstract
Experimental results in vitro and in animal models are used to guide researchers in testing vaccines or treatment in humans. However, viral kinetics are different in vitro, in animals, and in humans, so it is sometimes difficult to translate results from one system to another. In this study, we use a mathematical model to fit experimental data from multiple cycle respiratory syncytial virus (RSV) infections in vitro, in african green monkey (AGM), and in humans in order to quantitatively compare viral kinetics in the different systems. We find that there are differences in viral clearance rate, productively infectious cell lifespan, and eclipse phase duration between in vitro and in vivo systems and among different in vivo systems. We show that these differences in viral kinetics lead to different estimates of drug effectiveness of fusion inhibitors in vitro and in AGM than in humans.
Collapse
Affiliation(s)
| | - Hana M Dobrovolny
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, United States.
| |
Collapse
|
7
|
Hu W, Wang J, He X, Zhang H, Yu F, Jiang L, Chen D, Chen J, Dou J. Human umbilical blood mononuclear cell-derived mesenchymal stem cells serve as interleukin-21 gene delivery vehicles for epithelial ovarian cancer therapy in nude mice. Biotechnol Appl Biochem 2011; 58:397-404. [PMID: 22172102 DOI: 10.1002/bab.63] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 10/07/2011] [Indexed: 12/27/2022]
Abstract
Ovarian cancer causes more deaths than any other cancer of the female reproductive system, and its overall cure rate remains low. The present study investigated human umbilical blood mononuclear cell (UBMC)-derived mesenchymal stem cells (UBMC-MSCs) as interleukin-21 (IL-21) gene delivery vehicles for ovarian cancer therapy in nude mice. MSCs were isolated from UBMCs and the expanded cells were phenotyped by flow cytometry. Cultured UBMCs were differentiated into osteocytes and adipocytes using appropriate media and then the UBMC-MSCs were transfected with recombinant pIRES2-IL-21-enhancement green fluorescent protein. UBMC-MSCs expressing IL-21 were named as UBMC-MSC-IL-21. Mice with A2780 ovarian cancer were treated with UBMC-MSC-IL-21 intravenously, and the therapeutic efficacy was evaluated by the tumor volume and mouse survival. To address the mechanism of UBMC-MSC-IL-21 against ovarian cancer, the expression of IL-21, natural killer glucoprotein 2 domain and major histocompatibility complex class I chain-related molecules A/B were detected in UBMC-MSC-IL-21 and in the tumor sites. Interferon-γ-secreting splenocyte numbers and natural killer cytotoxicity were significantly increased in the UBMC-MSC-IL-21-treated mice as compared with the UBMC-MSCs or the UBMC-MSC-mock plasmid-treated mice. Most notably, tumor growth was delayed and survival was prolonged in ovarian-cancer-bearing mice treated with UBMC-MSC-IL-21. Our data provide important evidence that UBMC-MSCs can serve as vehicles for IL-21 gene delivery and inhibit the established tumor.
Collapse
Affiliation(s)
- Weihua Hu
- Department of Pathogenic Biology and Immunology, Medical School, Zhongda Hospital, Southeast University, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Bera MM, Lu B, Martin TR, Cui S, Rhein LM, Gerard C, Gerard NP. Th17 cytokines are critical for respiratory syncytial virus-associated airway hyperreponsiveness through regulation by complement C3a and tachykinins. THE JOURNAL OF IMMUNOLOGY 2011; 187:4245-55. [PMID: 21918196 DOI: 10.4049/jimmunol.1101789] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Respiratory syncytial virus (RSV) infection is associated with serious lung disease in infants and immunocompromised individuals and is linked to development of asthma. In mice, acute RSV infection causes airway hyperresponsiveness (AHR), inflammation, and mucus hypersecretion. Infected cells induce complement activation, producing the anaphylatoxin C3a. In this paper, we show RSV-infected wild-type mice produce Th17 cytokines, a response not previously associated with viral infections. Mice deficient in the C3aR fail to develop AHR following acute RSV infection, and production of Th17 cytokines was significantly attenuated. Tachykinin production also has been implicated in RSV pathophysiology, and tachykinin receptor-null mice were similarly protected from developing AHR. These animals were also deficient in production of Th17 cytokines. Tachykinin release was absent in mice deficient in C3aR, whereas C3a levels were unchanged in tachykinin receptor-null animals. Thus, our data reveal a crucial sequence following acute RSV infection where initial C3a production causes tachykinin release, followed by activation of the IL-17A pathway. Deficiency of either receptor affords protection from AHR, identifying two potential therapeutic targets.
Collapse
Affiliation(s)
- Monali M Bera
- Ina Sue Perlmutter Laboratory, Division of Respiratory Diseases, Department of Pediatrics, Children's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Hu W, Wang J, Dou J, He X, Zhao F, Jiang C, Yu F, Hu K, Chu L, Li X, Gu N. Augmenting Therapy of Ovarian Cancer Efficacy by Secreting IL-21 Human Umbilical Cord Blood Stem Cells in Nude Mice. Cell Transplant 2011; 20:669-80. [DOI: 10.3727/096368910x536509] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In the present study, CD34+ human umbilical cord blood stem cells (UCBSCs) were engineered to express interleukin-21 (IL-21) and then were transplanted into A2780 ovarian cancer xenograft-bearing Balb/c nude mice. The therapeutic efficacy of this procedure on ovarian cancer was evaluated. The findings from the study indicated that UCBSCs did not form gross or histological teratomas until up to 70 days postinjection. The CD34+ UCBSC-IL-21 therapy showed a consistent effect in the ovarian cancer of the treated mice, delaying the tumor appearance, reducing the tumor sizes, and extending life expectancy. The efficacy was attributable to keeping CD34+ UCBSC-IL-21 in the neoplastic tissues for more than 21 days. The secreted IL-21 not only increased the quantity of CD11a+ and CD56+ NK cells but also increased NK cell cytotoxicities to YAC-1 cells and A2780 cells, respectively. The efficacy was also associated with enhancing the levels of IFN-γ, IL-4, and TNF-α in the mice as well as the high expressions of the NKG2D and MIC A/B molecules in the tumor tissues. This study suggested that transferring CD34+ UCBSC-IL-21 into the nude mice was safe and feasible in ovarian cancer therapy, and that the method would be a promising new strategy for clinical treatment of ovarian cancer.
Collapse
Affiliation(s)
- Weihua Hu
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Jing Wang
- Department of Gynecology & Obstetrics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Jun Dou
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Xiangfeng He
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Fengshu Zhao
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Cuilian Jiang
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Fangliu Yu
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Kai Hu
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Lili Chu
- Paediatric Research Institute, Nanjing Children's Hospital, Nanjing, China
| | - Xiaoli Li
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Ning Gu
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
10
|
Setoguchi K, Schenk AD, Ishii D, Hattori Y, Baldwin WM, Tanabe K, Fairchild RL. LFA-1 antagonism inhibits early infiltration of endogenous memory CD8 T cells into cardiac allografts and donor-reactive T cell priming. Am J Transplant 2011; 11:923-35. [PMID: 21466654 PMCID: PMC3215941 DOI: 10.1111/j.1600-6143.2011.03492.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alloreactive memory T cells are present in virtually all transplant recipients due to prior sensitization or heterologous immunity and mediate injury undermining graft outcome. In mouse models, endogenous memory CD8 T cells infiltrate MHC-mismatched cardiac allografts and produce IFN-γ in response to donor class I MHC within 24 h posttransplant. The current studies analyzed the efficacy of anti-LFA-1 mAb to inhibit early CD8 T cell cardiac allograft infiltration and activation. Anti-LFA-1 mAb given to C57BL/6 6 (H-2(b)) recipients of A/J (H-2(a)) heart grafts on days -1 and 0 completely inhibited CD8 T cell allograft infiltration, markedly decreased neutrophil infiltration and significantly reduced intragraft expression levels of IFN-γ-induced genes. Donor-specific T cells producing IFN-γ were at low/undetectable numbers in spleens of anti-LFA-1 mAb treated recipients until day 21. These effects combined to promote substantial prolongation (from day 8 to 27) in allograft survival. Delaying anti-LFA-1 mAb treatment until days 3 and 4 posttransplant did not inhibit early memory CD8 T cell infiltration and proliferation within the allograft. These data indicate that peritransplant anti-LFA-1 mAb inhibits early donor-reactive memory CD8 T cell allograft infiltration and inflammation suggesting an effective strategy to attenuate the negative effects of heterologous immunity in transplant recipients.
Collapse
Affiliation(s)
- Kiyoshi Setoguchi
- Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
- Department of Immunology, Cleveland Clinic Foundation, Cleveland, OH 44195
- Department of Urology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Austin D. Schenk
- Department of Immunology, Cleveland Clinic Foundation, Cleveland, OH 44195
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Daisuke Ishii
- Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Yusuke Hattori
- Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
- Department of Immunology, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - William M. Baldwin
- Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
- Department of Immunology, Cleveland Clinic Foundation, Cleveland, OH 44195
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Kazunari Tanabe
- Department of Urology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Robert L. Fairchild
- Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
- Department of Immunology, Cleveland Clinic Foundation, Cleveland, OH 44195
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| |
Collapse
|
11
|
Badell IR, Russell MC, Thompson PW, Turner AP, Weaver TA, Robertson JM, Avila JG, Cano JA, Johnson BE, Song M, Leopardi FV, Swygert S, Strobert EA, Ford ML, Kirk AD, Larsen CP. LFA-1-specific therapy prolongs allograft survival in rhesus macaques. J Clin Invest 2010; 120:4520-31. [PMID: 21099108 PMCID: PMC2994340 DOI: 10.1172/jci43895] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 09/22/2010] [Indexed: 02/02/2023] Open
Abstract
Outcomes in transplantation have been limited by suboptimal long-term graft survival and toxicities associated with current immunosuppressive approaches. T cell costimulation blockade has shown promise as an alternative strategy to avoid the side effects of conventional immunosuppressive therapies, but targeting CD28-mediated costimulation alone has proven insufficient to prevent graft rejection in primates. Donor-specific memory T (TM) cells have been implicated in costimulation blockade-resistant transplant rejection, due to their enhanced effector function and decreased reliance on costimulatory signaling. Thus, we have tested a potential strategy to overcome TM cell-driven rejection by targeting molecules preferentially expressed on these cells, such as the adhesion molecule lymphocyte function-associated antigen 1 (LFA-1). Here, we show that short-term treatment (i.e., induction therapy) with the LFA-1-specific antibody TS-1/22 in combination with either basiliximab (an IL-2Rα-specific mAb) and sirolimus (a mammalian target of rapamycin inhibitor) or belatacept (a high-affinity variant of the CD28 costimulation-blocker CTLA4Ig) prolonged islet allograft survival in nonhuman primates relative to control treatments. Moreover, TS-1/22 masked LFA-1 on TM cells in vivo and inhibited the generation of alloproliferative and cytokine-producing effector T cells that expressed high levels of LFA-1 in vitro. These results support the use of LFA-1-specific induction therapy to neutralize costimulation blockade-resistant populations of T cells and further evaluation of LFA-1-specific therapeutics for use in transplantation.
Collapse
Affiliation(s)
- Idelberto R. Badell
- Emory Transplant Center and
Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Maria C. Russell
- Emory Transplant Center and
Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Peter W. Thompson
- Emory Transplant Center and
Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Alexandra P. Turner
- Emory Transplant Center and
Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Tim A. Weaver
- Emory Transplant Center and
Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Jennifer M. Robertson
- Emory Transplant Center and
Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Jose G. Avila
- Emory Transplant Center and
Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Jose A. Cano
- Emory Transplant Center and
Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Brandi E. Johnson
- Emory Transplant Center and
Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Mingqing Song
- Emory Transplant Center and
Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Frank V. Leopardi
- Emory Transplant Center and
Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Sarah Swygert
- Emory Transplant Center and
Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Elizabeth A. Strobert
- Emory Transplant Center and
Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Mandy L. Ford
- Emory Transplant Center and
Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Allan D. Kirk
- Emory Transplant Center and
Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Christian P. Larsen
- Emory Transplant Center and
Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
12
|
Eliciting protective immune responses against murine myeloma challenge in lymphopenia mice through adoptive transfer of tumor antigen-specific lymphocytes and immunization of tumor vaccine secreting mIL-21. Cancer Gene Ther 2010; 17:675-83. [PMID: 20539320 DOI: 10.1038/cgt.2010.23] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Previous studies have indicated that the cytokine interleukin (IL)-21 may induce both innate and adaptive immune responses against tumors. The goal of this study was to evaluate a new adoptive immunotherapy strategy that combined lymphocytes from mice immunized with a murine myeloma vaccine secreting murine IL-21 (mIL-21-Sp2/0) in lymphopenic mice induced by cyclophosphamide. The data indicate that effective antitumor immunity was induced in mice receiving syngeneic murine lymphocytes from the mice immunized with the mIL-21-Sp2/0. More importantly, the efficacy against the Sp2/0 cell challenge was enhanced after the lymphocytes were activated and proliferated ex vivo before administration into the lymphopenic mice. We conclude that the adoptive transfer of tumor antigen-specific lymphocytes into mice immunized with mIL-21-Sp2/0 induced protective immune responses against myeloma challenge.
Collapse
|
13
|
Zhao F, Dou J, He XF, Wang J, Chu L, Hu W, Yu F, Hu K, Wu Y, Gu N. Enhancing therapy of B16F10 melanoma efficacy through tumor vaccine expressing GPI-anchored IL-21 and secreting GM-CSF in mouse model. Vaccine 2010; 28:2846-52. [DOI: 10.1016/j.vaccine.2010.01.057] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Revised: 01/25/2010] [Accepted: 01/28/2010] [Indexed: 12/14/2022]
|
14
|
Letellier C, Boxus M, Rosar L, Toussaint JF, Walravens K, Roels S, Meyer G, Letesson JJ, Kerkhofs P. Vaccination of calves using the BRSV nucleocapsid protein in a DNA prime-protein boost strategy stimulates cell-mediated immunity and protects the lungs against BRSV replication and pathology. Vaccine 2008; 26:4840-8. [PMID: 18644416 PMCID: PMC7115630 DOI: 10.1016/j.vaccine.2008.06.100] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 06/25/2008] [Accepted: 06/29/2008] [Indexed: 11/06/2022]
Abstract
Respiratory syncytial virus (RSV) is a major cause of respiratory disease in both cattle and young children. Despite the development of vaccines against bovine (B)RSV, incomplete protection and exacerbation of subsequent RSV disease have occurred. In order to circumvent these problems, calves were vaccinated with the nucleocapsid protein, known to be a major target of CD8+ T cells in cattle. This was performed according to a DNA prime–protein boost strategy. The results showed that DNA vaccination primed a specific T-cell-mediated response, as indicated by both a lymphoproliferative response and IFN-γ production. These responses were enhanced after protein boost. After challenge, mock-vaccinated calves displayed gross pneumonic lesions and viral replication in the lungs. In contrast, calves vaccinated by successive administrations of plasmid DNA and protein exhibited protection against the development of pneumonic lesions and the viral replication in the BAL fluids and the lungs. The protection correlated to the cell-mediated immunity and not to the antibody response.
Collapse
|
15
|
Zeng R, Qi X, Gong W, Mei X, Wei L, Ma C, Yin X. Long-lasting balanced immunity and protective efficacy against respiratory syncytial virus in mice induced by a recombinant protein G1F/M2. Vaccine 2007; 25:7422-8. [PMID: 17850930 DOI: 10.1016/j.vaccine.2007.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2007] [Revised: 08/03/2007] [Accepted: 08/07/2007] [Indexed: 11/18/2022]
Abstract
Respiratory syncytial virus (RSV) is the primary cause of serious lower respiratory tract illness in young children. We have engineered a recombinant candidate vaccine G1F/M2, consisting of a cytotoxic T lymphocyte (CTL) epitope of RSV-M2 protein and a domain of RSV-G protein. In this study, the long-term immunogenicity and protective effect were evaluated. In G1F/M2-immunized mice, special antibodies lasted for more than 19 weeks, and the IgG1/IgG2a ratio remained a balanced level till the end of the study, suggesting mixed Th1/Th2 type of responses. Concomitantly, G1F/M2 elicited long-lived RSV-specific CTL activity that was detectable at 12 weeks after the final immunization. Stronger CTL responses were induced with immunization once more at 13 weeks after the last immunization in G1F/M2-primed mice than those in F/M2-primed mice. These results suggest that G1F/M2-induced long-lasting balanced humoral and cellular immunity responses, and immunological memory in mice. Furthermore, following RSV challenge, long-term protective efficacy was observed. RSV replication in lungs of G1F/M2-primed mice elicited also mixed Th1/Th2 responses, a property that is considered advantageous for the safety of an RSV vaccine. Therefore, G1F/M2 is a promising RSV subunit vaccine.
Collapse
Affiliation(s)
- Ruihong Zeng
- Department of Immunology, Hebei Medical University, Shijiazhuang 050017, China.
| | | | | | | | | | | | | |
Collapse
|
16
|
Cyr SL, Jones T, Stoica-Popescu I, Brewer A, Chabot S, Lussier M, Burt D, Ward BJ. Intranasal proteosome-based respiratory syncytial virus (RSV) vaccines protect BALB/c mice against challenge without eosinophilia or enhanced pathology. Vaccine 2007; 25:5378-89. [PMID: 17561317 DOI: 10.1016/j.vaccine.2007.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2007] [Revised: 05/02/2007] [Accepted: 05/02/2007] [Indexed: 01/22/2023]
Abstract
A safe and effective vaccine against respiratory syncytial virus (RSV) is still unavailable. Proteosome-based adjuvants are derived from the outer membrane proteins (OMP) of Neisseria species and are potent inducers of both mucosal and systemic immunity in humans and animals. Candidate RSV subunit vaccines comprising enriched RSV proteins (eRSV) formulated with proteosomes alone or with LPS (Protollin) were produced. Administered intranasally in BALB/c mice, both vaccines elicited long-lasting systemic and mucosal RSV-specific antibodies and fully protected against challenge. In vitro restimulation of lymphocytes from the Protollin-eRSV immunized mice with F (MHC-I) and G (MHC-II) peptides elicited F peptide-specific CD8(+) T cells and supernatant IFNgamma, TNFalpha, IL-2 and IL-10 while the formalin-inactivated RSV (FI-RSV) vaccine elicited predominantly IL-5. Pulmonary eosinophilia did not develop following immunization with either proteosome-based vaccine following challenge compared to mice immunized with FI-RSV. Proteosome-based eRSV vaccines can therefore protect against RSV challenge in mice without increasing the risk of pulmonary immunopathologic responses.
Collapse
Affiliation(s)
- Sonya L Cyr
- McGill Center for Tropical Diseases, Montreal General Hospital, Montreal, Quebec H3G IA4, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Boxus M, Tignon M, Roels S, Toussaint JF, Walravens K, Benoit MA, Coppe P, Letesson JJ, Letellier C, Kerkhofs P. DNA immunization with plasmids encoding fusion and nucleocapsid proteins of bovine respiratory syncytial virus induces a strong cell-mediated immunity and protects calves against challenge. J Virol 2007; 81:6879-89. [PMID: 17459933 PMCID: PMC1933320 DOI: 10.1128/jvi.00502-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Respiratory syncytial viruses (RSV) are one of the most important respiratory pathogens of humans and cattle, and there is currently no safe and effective vaccine prophylaxis. In this study, we designed two codon-optimized plasmids encoding the bovine RSV fusion (F) and nucleocapsid (N) proteins and assessed their immunogenicity in young calves. Two administrations of both plasmids elicited low antibody levels but primed a strong cell-mediated immunity characterized by lymphoproliferative response and gamma interferon production in vitro and in vivo. Interestingly, this strong cellular response drastically reduced viral replication, clinical signs, and pulmonary lesions after a highly virulent challenge. Moreover, calves that were further vaccinated with a killed-virus vaccine developed high levels of neutralizing antibody and were fully protected following challenge. These results indicate that DNA vaccination could be a promising alternative to the classical vaccines against RSV in cattle and could therefore open perspectives for vaccinating young infants.
Collapse
Affiliation(s)
- Mathieu Boxus
- Biologie Cellulaire et Moléculaire, Faculté des Sciences Agronomiques, 5030 Gembloux, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Moore ML, Chi MH, Zhou W, Goleniewska K, O'Neal JF, Higginbotham JN, Peebles RS. Cutting Edge: Oseltamivir decreases T cell GM1 expression and inhibits clearance of respiratory syncytial virus: potential role of endogenous sialidase in antiviral immunity. THE JOURNAL OF IMMUNOLOGY 2007; 178:2651-4. [PMID: 17312105 DOI: 10.4049/jimmunol.178.5.2651] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The sialoglycosphingolipid GM1 is important for lipid rafts and immune cell signaling. T cell activation in vitro increases GM1 expression and increases endogenous sialidase activity. GM1 expression has been hypothesized to be regulated by endogenous sialidase. We tested this hypothesis in vivo using a mouse model of respiratory syncytial virus (RSV) infection. RSV infection increased endogenous sialidase activity in lung mononuclear cells. RSV infection increased lung CD8+ T cell surface GM1 expression. Activated CD8+ T cells in the lungs of RSV-infected mice were GM1(high). Treatment of RSV-infected mice with the sialidase/neuraminidase inhibitor oseltamivir decreased T cell surface GM1 levels. Oseltamivir treatment decreased RSV-induced weight loss and inhibited RSV clearance. Our data indicate a novel role for an endogenous sialidase in regulating T cell GM1 expression and antiviral immunity. Also, oseltamivir, an important anti-influenza drug, inhibits the clearance of a respiratory virus that lacks a neuraminidase gene, RSV.
Collapse
Affiliation(s)
- Martin L Moore
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Perez OD, Mitchell D, Nolan GP. Differential role of ICAM ligands in determination of human memory T cell differentiation. BMC Immunol 2007; 8:2. [PMID: 17233909 PMCID: PMC1784112 DOI: 10.1186/1471-2172-8-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2006] [Accepted: 01/18/2007] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Leukocyte Function Antigen-1 (LFA-1) is a primary adhesion molecule that plays important roles in T cell activation, leukocyte recirculation, and trans-endothelial migration. By applying a multivariate intracellular phospho-proteomic analysis, we demonstrate that LFA-1 differentially activates signaling molecules. RESULTS Signal intensity was dependent on both ICAM ligand and LFA-1 concentration. In the presence of CD3 and CD28 stimulation, ICAM-2 and ICAM-3 decreased TGFbeta1 production more than ICAM-1. In long-term differentiation experiments, stimulation with ICAM-3, CD3, and CD28 generated IFNgamma producing CD4+CD45RO+CD62L-CD11aBrightCD27- cells that had increased expression of intracellular BCL2, displayed distinct chemokine receptor profiles, and exhibited distinct migratory characteristics. Only CD3/CD28 with ICAM-3 generated CD4+CD45RO+CD62L-CD11aBrightCD27- cells that were functionally responsive to chemotaxis and exhibited higher frequencies of cells that signaled to JNK and ERK1/2 upon stimulation with MIP3alpha. Furthermore, these reports identify that the LFA-1 receptor, when presented with multiple ligands, can result in distinct T cell differentiation states and suggest that the combinatorial integration of ICAM ligand interactions with LFA-1 have functional consequences for T cell biology. CONCLUSION Thus, the ICAM ligands, differentially modulate LFA-1 signaling in T cells and potentiate the development of memory human T cells in vitro. These findings are of importance in a mechanistic understanding of memory cell differentiation and ex vivo generation of memory cell subsets for therapeutic applications.
Collapse
Affiliation(s)
- Omar D Perez
- The Baxter Laboratory for Genetic Pharmacology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dennis Mitchell
- The Baxter Laboratory for Genetic Pharmacology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Garry P Nolan
- The Baxter Laboratory for Genetic Pharmacology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
20
|
Davis IC, Lazarowski ER, Hickman-Davis JM, Fortenberry JA, Chen FP, Zhao X, Sorscher E, Graves LM, Sullender WM, Matalon S. Leflunomide prevents alveolar fluid clearance inhibition by respiratory syncytial virus. Am J Respir Crit Care Med 2005; 173:673-82. [PMID: 16387801 PMCID: PMC2662951 DOI: 10.1164/rccm.200508-1200oc] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
RATIONALE Previously, we demonstrated that intranasal infection of BALB/c mice with respiratory syncytial virus (RSV) resulted in an early 40% reduction in alveolar fluid clearance (AFC), an effect mediated via P2Y purinergic receptors. OBJECTIVES To confirm that RSV-induced inhibition of AFC is mediated by uridine triphosphate (UTP), and to demonstrate that inhibition of de novo pyrimidine synthesis with leflunomide prevents increased UTP release after RSV infection, and thereby also prevents inhibition of AFC by RSV. METHODS BALB/c mice were infected intranasally with RSV strain A2. AFC was measured in anesthetized, ventilated mice by instillation of 5% bovine serum albumin into the dependent lung. Some mice were pretreated with leflunomide or 6-mercaptopurine. MEASUREMENTS AND MAIN RESULTS RSV-mediated inhibition of AFC is associated temporally with a 20-nM increase in UTP and ATP content of bronchoalveolar lavage fluid, hypoxemia, and altered nasal potential difference. RSV-mediated nucleotide release, AFC inhibition, and physiologic sequelae thereof can be prevented by pretreatment of mice with the de novo pyrimidine synthesis inhibitor leflunomide, which is not toxic to the mice, and which does not affect RSV replication in the lungs. In contrast, pretreatment of mice with 6-mercaptopurine, an inhibitor of de novo purine synthesis, has no beneficial effect on AFC or other indicators of disease progression. Finally, RSV-mediated inhibition of AFC is prevented by volume-regulated anion channel inhibitors. CONCLUSION Pyrimidine synthesis or release pathways may provide novel therapeutic targets to counter the pathophysiologic sequelae of impaired AFC in RSV disease.
Collapse
Affiliation(s)
- Ian C Davis
- Department of Anesthesiology, University of Alabama at Birmingham, 224 BMR II, 901 South 19th Street, Birmingham, AL 35205-3703, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
González-Amaro R, Mittelbrunn M, Sánchez-Madrid F. Therapeutic anti-integrin (alpha4 and alphaL) monoclonal antibodies: two-edged swords? Immunology 2005; 116:289-96. [PMID: 16236118 PMCID: PMC1802423 DOI: 10.1111/j.1365-2567.2005.02225.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Anti-alpha4 and anti-alphaL integrin chain monoclonal antibodies have shown a clear-cut beneficial effect in different animal models of autoimmune and inflammatory disorders as well as in human diseases, including multiple sclerosis, inflammatory bowel disease, and psoriasis. It has been widely assumed that this therapeutic effect is mainly consequence of the blockade of leucocyte adhesion to endothelium, inhibiting thus their extravasation and the inflammatory phenomenon. However, it is evident that both alpha4beta1 (very late antigen-4) and alphaLbeta2 (leucocyte function-associated antigen-1) integrins have additional important roles in other immune phenomena, including the formation of the immune synapse and the differentiation of T helper 1 lymphocytes. Therefore, it is very feasible that the long-term administration of blocking agents directed against these integrins to patients with inflammatory/autoimmune conditions may have undesirable or unexpected effects.
Collapse
|
22
|
Beyer M, Wang H, Peters N, Doths S, Koerner-Rettberg C, Openshaw PJM, Schwarze J. The beta2 integrin CD11c distinguishes a subset of cytotoxic pulmonary T cells with potent antiviral effects in vitro and in vivo. Respir Res 2005; 6:70. [PMID: 16011799 PMCID: PMC1184101 DOI: 10.1186/1465-9921-6-70] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Accepted: 07/12/2005] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The integrin CD11c is known as a marker for dendritic cells and has recently been described on T cells following lymphotropic choriomeningitis virus infection, a systemic infection affecting a multitude of organs. Here, we characterise CD11c bearing T cells in a murine model of localised pulmonary infection with respiratory syncytial virus (RSV). METHODS Mice were infected intranasally with RSV and expression of beta2 integrins and T lymphocyte activation markers were monitored by flow cytometry. On day 8 post RSV infection CD11c+ CD8+ and CD11c- CD8+ T cells were assessed for cytokine production, cytotoxic activity and migration. Expression of CD11c mRNA in CD8+ T cells was assessed by quantitative PCR. RESULTS Following RSV infection CD11c+ CD8+ T cells were detectable in the lung from day 4 onwards and accounted for 45.9 +/- 4.8% of CD8+ T cells on day 8 post infection, while only few such cells were present in mediastinal lymph nodes, spleen and blood. While CD11c was virtually absent from CD8+ T cells in the absence of RSV infection, its mRNA was expressed in CD8+ T cells of both naïve and RSV infected mice. CD11c+, but not CD11c-, CD8+ T cells showed signs of recent activation, including up-regulation of CD11a and expression of CD11b and CD69 and were recruited preferentially to the lung. In addition, CD11c+ CD8+ T cells were the major subset responsible for IFNgamma production, induction of target cell apoptosis in vitro and reduction of viral titres in vivo. CONCLUSION CD11c is a useful marker for detection and isolation of pulmonary antiviral cytotoxic T cells following RSV infection. It identifies a subset of activated, virus-specific, cytotoxic T cells that exhibit potent antiviral effects in vivo.
Collapse
Affiliation(s)
- Marc Beyer
- Department of Respiratory Medicine, NHLI, Imperial College London, Norfolk Place, London, UK
- Klinik für Kinder- und Jugendmedizin, St. Josef-Hospital, Ruhr-Universität Bochum, Alexandrinenstr. 3, 44791 Bochum, Germany
| | - Hongwei Wang
- Department of Respiratory Medicine, NHLI, Imperial College London, Norfolk Place, London, UK
| | - Nina Peters
- Department of Respiratory Medicine, NHLI, Imperial College London, Norfolk Place, London, UK
| | - Sandra Doths
- Klinik für Kinder- und Jugendmedizin, St. Josef-Hospital, Ruhr-Universität Bochum, Alexandrinenstr. 3, 44791 Bochum, Germany
| | - Cordula Koerner-Rettberg
- Klinik für Kinder- und Jugendmedizin, St. Josef-Hospital, Ruhr-Universität Bochum, Alexandrinenstr. 3, 44791 Bochum, Germany
| | - Peter JM Openshaw
- Department of Respiratory Medicine, NHLI, Imperial College London, Norfolk Place, London, UK
| | - Jürgen Schwarze
- Department of Respiratory Medicine, NHLI, Imperial College London, Norfolk Place, London, UK
- Klinik für Kinder- und Jugendmedizin, St. Josef-Hospital, Ruhr-Universität Bochum, Alexandrinenstr. 3, 44791 Bochum, Germany
| |
Collapse
|
23
|
Fan CF, Zeng RH, Sun CY, Mei XG, Wang YF, Liu Y. Fusion of DsbA to the N-terminus of CTL chimeric epitope, F/M2:81-95, of respiratory syncytial virus prolongs protein- and virus-specific CTL responses in Balb/c mice. Vaccine 2005; 23:2869-75. [PMID: 15780735 DOI: 10.1016/j.vaccine.2004.11.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Accepted: 11/24/2004] [Indexed: 11/15/2022]
Abstract
In an effort to seek a means of inducing long lasting respiratory syncytial virus-specific CTL responses in mice, we constructed a new recombinant protein, DsbA-F/M2:81-95, by fusing carrier protein DsbA (disulfide bond isomerase) to the N-terminus of CTL chimeric epitope F/M2:81-95 of this virus. DsbA-F/M2:81-95 can induce effectively virus-specific CTL responses as well as protective immunity without association with enhanced disease. Furthermore, compared with F/M2:81-95 alone, it increases the longevity of CTL responses in vivo up to 2.93 folds. Our study emphasizes that appropriate stimulation of non-antigen-specific T helper cells is essential to induce long lasting CD8+ CTL, and also implies DsbA-F/M2:81-95 may be a promising candidate for RSV vaccine development since it is an efficacious and safe immunogen.
Collapse
Affiliation(s)
- Chang-Fa Fan
- Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, PR China.
| | | | | | | | | | | |
Collapse
|