1
|
Tebit DM, Nickel G, Gibson R, Rodriguez M, Hathaway NJ, Bain K, Reyes-Rodriguez AL, Ondoa P, Heeney JL, Li Y, Bongorno J, Canaday D, McDonald D, Bailey JA, Arts EJ. Replicative fitness and pathogenicity of primate lentiviruses in lymphoid tissue, primary human and chimpanzee cells: relation to possible jumps to humans. EBioMedicine 2024; 100:104965. [PMID: 38215691 PMCID: PMC10827413 DOI: 10.1016/j.ebiom.2023.104965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Simian immunodeficiency viruses (SIV) have been jumping between non-human primates in West/Central Africa for thousands of years and yet, the HIV-1 epidemic only originated from a primate lentivirus over 100 years ago. METHODS This study examined the replicative fitness, transmission, restriction, and cytopathogenicity of 22 primate lentiviruses in primary human lymphoid tissue and both primary human and chimpanzee peripheral blood mononuclear cells. FINDINGS Pairwise competitions revealed that SIV from chimpanzees (cpz) had the highest replicative fitness in human or chimpanzee peripheral blood mononuclear cells, even higher fitness than HIV-1 group M strains responsible for worldwide epidemic. The SIV strains belonging to the "HIV-2 lineage" (including SIVsmm, SIVmac, SIVagm) had the lowest replicative fitness. SIVcpz strains were less inhibited by human restriction factors than the "HIV-2 lineage" strains. SIVcpz efficiently replicated in human tonsillar tissue but did not deplete CD4+ T-cells, consistent with the slow or nonpathogenic disease observed in most chimpanzees. In contrast, HIV-1 isolates and SIV of the HIV-2 lineage were pathogenic to the human tonsillar tissue, almost independent of the level of virus replication. INTERPRETATION Of all primate lentiviruses, SIV from chimpanzees appears most capable of infecting and replicating in humans, establishing HIV-1. SIV from other Old World monkeys, e.g. the progenitor of HIV-2, replicate slowly in humans due in part to restriction factors. Nonetheless, many of these SIV strains were more pathogenic than SIVcpz. Either SIVcpz evolved into a more pathogenic virus while in humans or a rare SIVcpz, possibly extinct in chimpanzees, was pathogenic immediately following the jump into human. FUNDING Support for this study to E.J.A. was provided by the NIH/NIAID R01 AI49170 and CIHR project grant 385787. Infrastructure support was provided by the NIH CFAR AI36219 and Canadian CFI/Ontario ORF 36287. Efforts of J.A.B. and N.J.H. was provided by NIH AI099473 and for D.H.C., by VA and NIH AI AI080313.
Collapse
Affiliation(s)
- Denis M Tebit
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA; Global Biomed Scientific, LLC, P.O. Box 2368, Forest, VA, USA
| | - Gabrielle Nickel
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Richard Gibson
- Department of Microbiology and Immunology, Western University, Ontario, Canada
| | - Myriam Rodriguez
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Nicolas J Hathaway
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Katie Bain
- Department of Microbiology and Immunology, Western University, Ontario, Canada
| | - Angel L Reyes-Rodriguez
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Pascal Ondoa
- African Society for Laboratory Medicine, Addis Ababa, Ethiopia; Department of Global Health, Institute of Global Health and Development, University of Amsterdam, Amsterdam, the Netherlands
| | - Jonathan L Heeney
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Yue Li
- Department of Microbiology and Immunology, Western University, Ontario, Canada
| | - Jennifer Bongorno
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - David Canaday
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - David McDonald
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jeffrey A Bailey
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Eric J Arts
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Microbiology and Immunology, Western University, Ontario, Canada.
| |
Collapse
|
2
|
Namba MD, Xie Q, Barker JM. Advancing the preclinical study of comorbid neuroHIV and substance use disorders: Current perspectives and future directions. Brain Behav Immun 2023; 113:453-475. [PMID: 37567486 PMCID: PMC10528352 DOI: 10.1016/j.bbi.2023.07.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/23/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Human immunodeficiency virus (HIV) remains a persistent public health concern throughout the world. Substance use disorders (SUDs) are a common comorbidity that can worsen treatment outcomes for people living with HIV. The relationship between HIV infection and SUD outcomes is likely bidirectional, making clear interrogation of neurobehavioral outcomes challenging in clinical populations. Importantly, the mechanisms through which HIV and addictive drugs disrupt homeostatic immune and CNS function appear to be highly overlapping and synergistic within HIV-susceptible reward and motivation circuitry in the central nervous system. Decades of animal research have revealed invaluable insights into mechanisms underlying the pathophysiology SUDs and HIV, although translational studies examining comorbid SUDs and HIV are very limited due to the technical challenges of modeling HIV infection preclinically. In this review, we discuss preclinical animal models of HIV and highlight key pathophysiological characteristics of each model, with a particular emphasis on rodent models of HIV. We then review the implementation of these models in preclinical SUD research and identify key gaps in knowledge in the field. Finally, we discuss how cutting-edge behavioral neuroscience tools, which have revealed key insights into the neurobehavioral mechanisms of SUDs, can be applied to preclinical animal models of HIV to reveal potential, novel treatment avenues for comorbid HIV and SUDs. Here, we argue that future preclinical SUD research would benefit from incorporating comorbidities such as HIV into animal models and would facilitate the discovery of more refined, subpopulation-specific mechanisms and effective SUD prevention and treatment targets.
Collapse
Affiliation(s)
- Mark D Namba
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Qiaowei Xie
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Jacqueline M Barker
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Bibollet-Ruche F, Russell RM, Ding W, Liu W, Li Y, Wagh K, Wrapp D, Habib R, Skelly AN, Roark RS, Sherrill-Mix S, Wang S, Rando J, Lindemuth E, Cruickshank K, Park Y, Baum R, Carey JW, Connell AJ, Li H, Giorgi EE, Song GS, Ding S, Finzi A, Newman A, Hernandez GE, Machiele E, Cain DW, Mansouri K, Lewis MG, Montefiori DC, Wiehe KJ, Alam SM, Teng IT, Kwong PD, Andrabi R, Verkoczy L, Burton DR, Korber BT, Saunders KO, Haynes BF, Edwards RJ, Shaw GM, Hahn BH. A Germline-Targeting Chimpanzee SIV Envelope Glycoprotein Elicits a New Class of V2-Apex Directed Cross-Neutralizing Antibodies. mBio 2023; 14:e0337022. [PMID: 36629414 PMCID: PMC9973348 DOI: 10.1128/mbio.03370-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
HIV-1 and its SIV precursors share a broadly neutralizing antibody (bNAb) epitope in variable loop 2 (V2) at the envelope glycoprotein (Env) trimer apex. Here, we tested the immunogenicity of germ line-targeting versions of a chimpanzee SIV (SIVcpz) Env in human V2-apex bNAb heavy-chain precursor-expressing knock-in mice and as chimeric simian-chimpanzee immunodeficiency viruses (SCIVs) in rhesus macaques (RMs). Trimer immunization of knock-in mice induced V2-directed NAbs, indicating activation of V2-apex bNAb precursor-expressing mouse B cells. SCIV infection of RMs elicited high-titer viremia, potent autologous tier 2 neutralizing antibodies, and rapid sequence escape in the canonical V2-apex epitope. Six of seven animals also developed low-titer heterologous plasma breadth that mapped to the V2-apex. Antibody cloning from two of these animals identified multiple expanded lineages with long heavy chain third complementarity determining regions that cross-neutralized as many as 7 of 19 primary HIV-1 strains, but with low potency. Negative stain electron microscopy (NSEM) of members of the two most cross-reactive lineages confirmed V2 targeting but identified an angle of approach distinct from prototypical V2-apex bNAbs, with antibody binding either requiring or inducing an occluded-open trimer. Probing with conformation-sensitive, nonneutralizing antibodies revealed that SCIV-expressed, but not wild-type SIVcpz Envs, as well as a subset of primary HIV-1 Envs, preferentially adopted a more open trimeric state. These results reveal the existence of a cryptic V2 epitope that is exposed in occluded-open SIVcpz and HIV-1 Env trimers and elicits cross-neutralizing responses of limited breadth and potency. IMPORTANCE An effective HIV-1 vaccination strategy will need to stimulate rare precursor B cells of multiple bNAb lineages and affinity mature them along desired pathways. Here, we searched for V2-apex germ line-targeting Envs among a large set of diverse primate lentiviruses and identified minimally modified versions of one chimpanzee SIV Env that bound several human V2-apex bNAb precursors and stimulated one of these in a V2-apex bNAb precursor-expressing knock-in mouse. We also generated chimeric simian-chimpanzee immunodeficiency viruses and showed that they elicit low-titer V2-directed heterologous plasma breadth in six of seven infected rhesus macaques. Characterization of this antibody response identified a new class of weakly cross-reactive neutralizing antibodies that target the V2-apex, but only in occluded-open Env trimers. The existence of this cryptic epitope, which in some Env backgrounds is immunodominant, needs to be considered in immunogen design.
Collapse
Affiliation(s)
- Frederic Bibollet-Ruche
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ronnie M. Russell
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wenge Ding
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Weimin Liu
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yingying Li
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kshitij Wagh
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Daniel Wrapp
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Rumi Habib
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ashwin N. Skelly
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ryan S. Roark
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Scott Sherrill-Mix
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shuyi Wang
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Juliette Rando
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Emily Lindemuth
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kendra Cruickshank
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Younghoon Park
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rachel Baum
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John W. Carey
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrew Jesse Connell
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hui Li
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elena E. Giorgi
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Ge S. Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Shilei Ding
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Amanda Newman
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Giovanna E. Hernandez
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Emily Machiele
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Derek W. Cain
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - David C. Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Kevin J. Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - S. Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Laurent Verkoczy
- San Diego Biomedical Research Institute, San Diego, California, USA
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
- Ragon Institute of MGH, Harvard and MIT, Cambridge, Massachusetts, USA
| | - Bette T. Korber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Kevin O. Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Robert J. Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - George M. Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Beatrice H. Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Adhiambo M, Makwaga O, Adungo F, Kimani H, Mulama DH, Korir JC, Mwau M. Human immunodeficiency virus (HIV) type 1 genetic diversity in HIV positive individuals on antiretroviral therapy in a cross-sectional study conducted in Teso, Western Kenya. Pan Afr Med J 2021; 38:335. [PMID: 34046145 PMCID: PMC8140725 DOI: 10.11604/pamj.2021.38.335.26357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 04/01/2021] [Indexed: 11/16/2022] Open
Abstract
Introduction high HIV-1 infection rates and genetic diversity especially in African population pose significant challenges in HIV-1 clinical management and drug design and development. HIV-1 is a major health challenge in Kenya and causes mortality and morbidity in the country as well as straining the healthcare system and the economy. This study sought to identify HIV-1 genetic subtypes circulating in Teso, Western Kenya which borders the Republic of Uganda. Methods a cross-sectional study was conducted in January 2019 to December 2019. Sequencing of the partial pol gene was carried out on 80 HIV positive individuals on antiretroviral therapy. Subtypes and recombinant forms were generated using the jumping profile hidden Markov model. Alignment of the sequences was done using ClustalW program and phylogenetic tree constructed using MEGA7 neighbor-joining method. Results sixty three samples were successful sequenced. In the analysis of these sequences, it was observed that HIV-1 subtype A1 was predominant 43 (68.3%) followed by D 8 (12.7%) and 1 (1.6%) each of C, G and B and inter-subtype recombinants A1-D 3 (4.8%), A1-B 2 (3.2%) and 1 (1.6%) each of A1-A2, A1-C, BC and BD. Phylogenetic analysis of these sequences showed close clustering of closely related and unrelated sequences with reference sequences. Conclusion there was observed increased genetic diversity of HIV-1 subtypes which not only pose a challenge in disease control and management but also drug design and development. Therefore, there is need for continued surveillance to enhance future understanding of the geographical distribution and transmission patterns of the HIV epidemic.
Collapse
Affiliation(s)
- Maureen Adhiambo
- Department of Biological Sciences, Masinde Muliro University of Science and Technology, Kakamega, Kenya.,Department of Infectious Diseases Control Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Olipher Makwaga
- Department of Biological Sciences, Masinde Muliro University of Science and Technology, Kakamega, Kenya.,Department of Infectious Diseases Control Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Ferdinard Adungo
- Department of Infectious Diseases Control Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Humphrey Kimani
- Department of Infectious Diseases Control Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - David Hughes Mulama
- Department of Biological Sciences, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | - Jackson Cheruiyot Korir
- Department of Biological Sciences, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | - Matilu Mwau
- Department of Infectious Diseases Control Research, Kenya Medical Research Institute, Nairobi, Kenya
| |
Collapse
|
5
|
Schmidt JM, de Manuel M, Marques-Bonet T, Castellano S, Andrés AM. The impact of genetic adaptation on chimpanzee subspecies differentiation. PLoS Genet 2019; 15:e1008485. [PMID: 31765391 PMCID: PMC6901233 DOI: 10.1371/journal.pgen.1008485] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/09/2019] [Accepted: 10/17/2019] [Indexed: 12/25/2022] Open
Abstract
Chimpanzees, humans' closest relatives, are in danger of extinction. Aside from direct human impacts such as hunting and habitat destruction, a key threat is transmissible disease. As humans continue to encroach upon their habitats, which shrink in size and grow in density, the risk of inter-population and cross-species viral transmission increases, a point dramatically made in the reverse with the global HIV/AIDS pandemic. Inhabiting central Africa, the four subspecies of chimpanzees differ in demographic history and geographical range, and are likely differentially adapted to their particular local environments. To quantitatively explore genetic adaptation, we investigated the genic enrichment for SNPs highly differentiated between chimpanzee subspecies. Previous analyses of such patterns in human populations exhibited limited evidence of adaptation. In contrast, chimpanzees show evidence of recent positive selection, with differences among subspecies. Specifically, we observe strong evidence of recent selection in eastern chimpanzees, with highly differentiated SNPs being uniquely enriched in genic sites in a way that is expected under recent adaptation but not under neutral evolution or background selection. These sites are enriched for genes involved in immune responses to pathogens, and for genes inferred to differentiate the immune response to infection by simian immunodeficiency virus (SIV) in natural vs. non-natural host species. Conversely, central chimpanzees exhibit an enrichment of signatures of positive selection only at cytokine receptors, due to selective sweeps in CCR3, CCR9 and CXCR6 -paralogs of CCR5 and CXCR4, the two major receptors utilized by HIV to enter human cells. Thus, our results suggest that positive selection has contributed to the genetic and phenotypic differentiation of chimpanzee subspecies, and that viruses likely play a predominate role in this differentiation, with SIV being a likely selective agent. Interestingly, our results suggest that SIV has elicited distinctive adaptive responses in these two chimpanzee subspecies.
Collapse
MESH Headings
- Adaptation, Physiological/genetics
- Adaptation, Physiological/immunology
- Animals
- Demography
- Genetic Drift
- Genetic Speciation
- HIV/genetics
- HIV/immunology
- HIV/pathogenicity
- Humans
- Immunity, Innate/genetics
- Pan troglodytes/genetics
- Pan troglodytes/immunology
- Pan troglodytes/virology
- Polymorphism, Single Nucleotide/genetics
- Receptors, CCR/genetics
- Receptors, CCR3/genetics
- Receptors, CCR5/genetics
- Receptors, CXCR4/genetics
- Receptors, CXCR6/immunology
- Selection, Genetic/genetics
- Simian Immunodeficiency Virus/genetics
- Simian Immunodeficiency Virus/immunology
- Simian Immunodeficiency Virus/pathogenicity
Collapse
Affiliation(s)
- Joshua M. Schmidt
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- Max Planck Institute for Evolutionary Anthropology, Department of Evolutionary Genetics, Leipzig, Germany
- * E-mail: (JMS); (AMA)
| | - Marc de Manuel
- Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas–Universitat Pompeu Fabra), Barcelona, Spain
| | - Tomas Marques-Bonet
- Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas–Universitat Pompeu Fabra), Barcelona, Spain
- National Centre for Genomic Analysis–Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Sergi Castellano
- Max Planck Institute for Evolutionary Anthropology, Department of Evolutionary Genetics, Leipzig, Germany
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London (UCL), London, United Kingdom
- UCL Genomics, London, United Kingdom
| | - Aida M. Andrés
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- Max Planck Institute for Evolutionary Anthropology, Department of Evolutionary Genetics, Leipzig, Germany
- * E-mail: (JMS); (AMA)
| |
Collapse
|
6
|
Modiyinji AF, Amougou Atsama M, Monamele Chavely G, Nola M, Njouom R. Detection of hepatitis E virus antibodies among Cercopithecidae and Hominidae monkeys in Cameroon. J Med Primatol 2019; 48:364-366. [PMID: 31179536 DOI: 10.1111/jmp.12430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/06/2019] [Accepted: 05/21/2019] [Indexed: 12/01/2022]
Abstract
We screened hepatitis E from 15 species of non-human primates. Anti-HEV IgG was detected in 11.1% (1/9) Mandrillus sphinx, 14.3% (2/14) Gorilla gorilla, 5.9% (4/67) pan troglodytes and 8.7% (2/23) Mandrillus leucophaeus, whereas anti-HEV IgM was detected in 1.5% (1/18) papio Anubis, 28.6% (2/7) Cercocebus agilis and 1.5% (1/67) pan troglodyte.
Collapse
Affiliation(s)
- Abdou Fatawou Modiyinji
- Department of Virology, Centre Pasteur of Cameroon, Yaoundé, Cameroon.,Department of Animals Biology and Physiology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | | | | | - Moise Nola
- Department of Animals Biology and Physiology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Richard Njouom
- Department of Virology, Centre Pasteur of Cameroon, Yaoundé, Cameroon
| |
Collapse
|
7
|
Barbian HJ, Jackson-Jewett R, Brown CS, Bibollet-Ruche F, Learn GH, Decker T, Kreider EF, Li Y, Denny TN, Sharp PM, Shaw GM, Lifson J, Acosta EP, Saag MS, Bar KJ, Hahn BH. Effective treatment of SIVcpz-induced immunodeficiency in a captive western chimpanzee. Retrovirology 2017; 14:35. [PMID: 28576126 PMCID: PMC5457593 DOI: 10.1186/s12977-017-0359-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/25/2017] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Simian immunodeficiency virus of chimpanzees (SIVcpz), the progenitor of human immunodeficiency virus type 1 (HIV-1), is associated with increased mortality and AIDS-like immunopathology in wild-living chimpanzees (Pan troglodytes). Surprisingly, however, similar findings have not been reported for chimpanzees experimentally infected with SIVcpz in captivity, raising questions about the intrinsic pathogenicity of this lentivirus. FINDINGS Here, we report progressive immunodeficiency and clinical disease in a captive western chimpanzee (P. t. verus) infected twenty years ago by intrarectal inoculation with an SIVcpz strain (ANT) from a wild-caught eastern chimpanzee (P. t. schweinfurthii). With sustained plasma viral loads of 105 to 106 RNA copies/ml for the past 15 years, this chimpanzee developed CD4+ T cell depletion (220 cells/μl), thrombocytopenia (90,000 platelets/μl), and persistent soft tissue infections refractory to antibacterial therapy. Combination antiretroviral therapy consisting of emtricitabine (FTC), tenofovir disoproxil fumarate (TDF), and dolutegravir (DTG) decreased plasma viremia to undetectable levels (<200 copies/ml), improved CD4+ T cell counts (509 cell/μl), and resulted in the rapid resolution of all soft tissue infections. However, initial lack of adherence and/or differences in pharmacokinetics led to low plasma drug concentrations, which resulted in transient rebound viremia and the emergence of FTC resistance mutations (M184V/I) identical to those observed in HIV-1 infected humans. CONCLUSIONS These data demonstrate that SIVcpz can cause immunodeficiency and other hallmarks of AIDS in captive chimpanzees, including P. t. verus apes that are not naturally infected with this virus. Moreover, SIVcpz-associated immunodeficiency can be effectively treated with antiretroviral therapy, although sufficiently high plasma concentrations must be maintained to prevent the emergence of drug resistance. These findings extend a growing body of evidence documenting the immunopathogenicity of SIVcpz and suggest that experimentally infected chimpanzees may benefit from clinical monitoring and therapeutic intervention.
Collapse
Affiliation(s)
- Hannah J. Barbian
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 409 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104-6076 USA
| | | | | | - Frederic Bibollet-Ruche
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 409 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104-6076 USA
| | - Gerald H. Learn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 409 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104-6076 USA
| | - Timothy Decker
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 409 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104-6076 USA
| | - Edward F. Kreider
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 409 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104-6076 USA
| | - Yingying Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 409 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104-6076 USA
| | - Thomas N. Denny
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC USA
| | - Paul M. Sharp
- Institute of Evolutionary Biology, and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | - George M. Shaw
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 409 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104-6076 USA
| | - Jeffrey Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Edward P. Acosta
- Department of Medicine and Center for AIDS Research, University of Alabama at Birmingham, Birmingham, AL USA
| | - Michael S. Saag
- Department of Medicine and Center for AIDS Research, University of Alabama at Birmingham, Birmingham, AL USA
| | - Katharine J. Bar
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 409 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104-6076 USA
| | - Beatrice H. Hahn
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 409 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104-6076 USA
| |
Collapse
|
8
|
Locatelli S, Harrigan RJ, Sesink Clee PR, Mitchell MW, McKean KA, Smith TB, Gonder MK. Why Are Nigeria-Cameroon Chimpanzees (Pan troglodytes ellioti) Free of SIVcpz Infection? PLoS One 2016; 11:e0160788. [PMID: 27505066 PMCID: PMC4978404 DOI: 10.1371/journal.pone.0160788] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/24/2016] [Indexed: 12/26/2022] Open
Abstract
Simian immunodeficiency virus (SIV) naturally infects two subspecies of chimpanzee: Pan troglodytes troglodytes from Central Africa (SIVcpzPtt) and P. t. schweinfurtii from East Africa (SIVcpzPts), but is absent in P. t. verus from West Africa and appears to be absent in P. t. ellioti inhabiting Nigeria and western Cameroon. One explanation for this pattern is that P. t. troglodytes and P. t schweinfurthii may have acquired SIVcpz after their divergence from P. t. verus and P. t. ellioti. However, all of the subspecies, except P. t. verus, still occasionally exchange migrants making the absence of SIVcpz in P. t. ellioti puzzling. Sampling of P. t. ellioti has been minimal to date, particularly along the banks of the Sanaga River, where its range abuts that of P. t. troglodytes. This study had three objectives. First, we extended the sampling of SIVcpz across the range of chimpanzees north of the Sanaga River to address whether under-sampling might account for the absence of evidence for SIVcpz infection in P. t. ellioti. Second, we investigated how environmental variation is associated with the spread and prevalence of SIVcpz in the two chimpanzee subspecies inhabiting Cameroon since environmental variation has been shown to contribute to their divergence from one another. Finally, we compared the prevalence and distribution of SIVcpz with that of Simian Foamy Virus (SFV) to examine the role of ecology and behavior in shaping the distribution of diseases in wild host populations. The dataset includes previously published results on SIVcpz infection and SFVcpz as well as newly collected data, and represents over 1000 chimpanzee fecal samples from 41 locations across Cameroon. Results revealed that none of the 181 P. t. ellioti fecal samples collected across the range of P. t. ellioti tested positive for SIVcpz. In addition, species distribution models suggest that environmental variation contributes to differences in the distribution and prevalence of SIVcpz and SFVcpz. The ecological niches of these two viruses are largely non-overlapping, although stronger statistical support for this conclusion will require more sampling. Overall this study demonstrates that SIVcpz infection is absent or very rare in P. t. ellioti, despite multiple opportunities for transmission. The reasons for its absence remain unclear, but might be explained by one or more factors, including environmental variation, viral competition, and/or local adaptation—all of which should be explored in greater detail through continued surveillance of this region.
Collapse
Affiliation(s)
- Sabrina Locatelli
- Unité Mixte Internationale 233, Institut de Recherche pour le Développement, INSERM U1175, and University of Montpellier, 34394 Montpellier, France
- Department of Biological Sciences, University at Albany – State University of New York, Albany, NY, 12222, United States of America
- * E-mail:
| | - Ryan J. Harrigan
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA, 90095, United States of America
| | - Paul R. Sesink Clee
- Department of Biological Sciences, University at Albany – State University of New York, Albany, NY, 12222, United States of America
- Department of Biology, Drexel University, Philadelphia, PA, 19104, United States of America
| | - Matthew W Mitchell
- Department of Biological Sciences, University at Albany – State University of New York, Albany, NY, 12222, United States of America
- Department of Biology, Drexel University, Philadelphia, PA, 19104, United States of America
| | - Kurt A. McKean
- Department of Biological Sciences, University at Albany – State University of New York, Albany, NY, 12222, United States of America
| | - Thomas B. Smith
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA, 90095, United States of America
| | - Mary Katherine Gonder
- Department of Biological Sciences, University at Albany – State University of New York, Albany, NY, 12222, United States of America
- Department of Biology, Drexel University, Philadelphia, PA, 19104, United States of America
| |
Collapse
|
9
|
Garcia-Tellez T, Huot N, Ploquin MJ, Rascle P, Jacquelin B, Müller-Trutwin M. Non-human primates in HIV research: Achievements, limits and alternatives. INFECTION GENETICS AND EVOLUTION 2016; 46:324-332. [PMID: 27469027 DOI: 10.1016/j.meegid.2016.07.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/07/2016] [Accepted: 07/12/2016] [Indexed: 12/20/2022]
Abstract
An ideal model for HIV-1 research is still unavailable. However, infection of non-human primates (NHP), such as macaques, with Simian Immunodeficiency Virus (SIV) recapitulates most virological, immunological and clinical hallmarks of HIV infection in humans. It has become the most suitable model to study the mechanisms of transmission and physiopathology of HIV/AIDS. On the other hand, natural hosts of SIV, such as African green monkeys and sooty mangabeys that when infected do not progress to AIDS, represent an excellent model to elucidate the mechanisms involved in the capacity of controlling inflammation and disease progression. The use of NHP-SIV models has indeed enriched our knowledge in the fields of: i) viral transmission and viral reservoirs, ii) early immune responses, iii) host cell-virus interactions in tissues, iv) AIDS pathogenesis, v) virulence factors, vi) prevention and vii) drug development. The possibility to control many variables during experimental SIV infection, together with the resemblance between SIV and HIV infections, make the NHP model the most appropriate, so far, for HIV/AIDS research. Nonetheless, some limitations in using these models have to be considered. Alternative models for HIV/AIDS research, such as humanized mice and recombinant forms of HIV-SIV viruses (SHIV) for NHP infection, have been developed. The improvement of SHIV viruses that mimic even better the natural history of HIV infection and of humanized mice that develop a greater variety of human immune cell lineages, is ongoing. None of these models is perfect, but they allow contributing to the progress in managing or preventing HIV infection.
Collapse
Affiliation(s)
- Thalía Garcia-Tellez
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France.
| | - Nicolas Huot
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France; Vaccine Research Institute, Créteil, France.
| | - Mickaël J Ploquin
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France.
| | - Philippe Rascle
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France.
| | - Beatrice Jacquelin
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France.
| | - Michaela Müller-Trutwin
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France; Vaccine Research Institute, Créteil, France.
| |
Collapse
|
10
|
Greenwood EJD, Schmidt F, Kondova I, Niphuis H, Hodara VL, Clissold L, McLay K, Guerra B, Redrobe S, Giavedoni LD, Lanford RE, Murthy KK, Rouet F, Heeney JL. Simian Immunodeficiency Virus Infection of Chimpanzees (Pan troglodytes) Shares Features of Both Pathogenic and Non-pathogenic Lentiviral Infections. PLoS Pathog 2015; 11:e1005146. [PMID: 26360709 PMCID: PMC4567047 DOI: 10.1371/journal.ppat.1005146] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 08/12/2015] [Indexed: 01/08/2023] Open
Abstract
The virus-host relationship in simian immunodeficiency virus (SIV) infected chimpanzees is thought to be different from that found in other SIV infected African primates. However, studies of captive SIVcpz infected chimpanzees are limited. Previously, the natural SIVcpz infection of one chimpanzee, and the experimental infection of six chimpanzees was reported, with limited follow-up. Here, we present a long-term study of these seven animals, with a retrospective re-examination of the early stages of infection. The only clinical signs consistent with AIDS or AIDS associated disease was thrombocytopenia in two cases, associated with the development of anti-platelet antibodies. However, compared to uninfected and HIV-1 infected animals, SIVcpz infected animals had significantly lower levels of peripheral blood CD4+ T-cells. Despite this, levels of T-cell activation in chronic infection were not significantly elevated. In addition, while plasma levels of β2 microglobulin, neopterin and soluble TNF-related apoptosis inducing ligand (sTRAIL) were elevated in acute infection, these markers returned to near-normal levels in chronic infection, reminiscent of immune activation patterns in ‘natural host’ species. Furthermore, plasma soluble CD14 was not elevated in chronic infection. However, examination of the secondary lymphoid environment revealed persistent changes to the lymphoid structure, including follicular hyperplasia in SIVcpz infected animals. In addition, both SIV and HIV-1 infected chimpanzees showed increased levels of deposition of collagen and increased levels of Mx1 expression in the T-cell zones of the lymph node. The outcome of SIVcpz infection of captive chimpanzees therefore shares features of both non-pathogenic and pathogenic lentivirus infections. The HIV-1/AIDS pandemic is the result of cross-species transmission of simian immunodeficiency virus (SIVcpz) from chimpanzees to humans. Many African primates are infected with SIV, but those studied in captivity generally do not develop disease. However, wild chimpanzees infected with SIVcpz are at increased risk of death and may develop an AIDS-like disease. It has therefore been suggested that the viral features which SIVcpz and HIV-1 share, that differentiate them from other species’ SIV, may be critical in the development of disease in both humans and chimpanzees. Here, we present a long-term follow-up of 7 SIVcpz infected chimpanzees, housed in primate centres in the US and Europe, under similar conditions to other studied models. These animals did not develop an AIDS-like disease, after up to 25 years of infection, and showed features similar to other species where disease rarely develops, such as limited immune activation in the blood. However, they also had significantly reduced CD4+ T-cells and disruption to the secondary lymphoid tissues, normally associated with pathogenic primate lentiviral infections. Thus, while SIVcpz infection of chimpanzees shares features of both pathogenic and non-pathogenic infections, disease has not developed in captivity.
Collapse
Affiliation(s)
| | - Fabian Schmidt
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ivanela Kondova
- Division of Pathology and Microbiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Henk Niphuis
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Vida L. Hodara
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
- Southwest National Primate Research Center, San Antonio, Texas, United States of America
| | - Leah Clissold
- The Genome Analysis Centre (TGAC), Norwich, United Kingdom
| | - Kirsten McLay
- The Genome Analysis Centre (TGAC), Norwich, United Kingdom
| | - Bernadette Guerra
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Sharon Redrobe
- Twycross Zoo - East Midland Zoological Society, Atherstone, United Kingdom
| | - Luis D. Giavedoni
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
- Southwest National Primate Research Center, San Antonio, Texas, United States of America
| | - Robert E. Lanford
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
- Southwest National Primate Research Center, San Antonio, Texas, United States of America
| | - Krishna K. Murthy
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - François Rouet
- Laboratoire de Rétrovirologie, Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | - Jonathan L. Heeney
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Garnier R, Graham AL. Insights from parasite-specific serological tools in eco-immunology. Integr Comp Biol 2014; 54:363-76. [PMID: 24760794 PMCID: PMC7537858 DOI: 10.1093/icb/icu022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Eco-immunology seeks evolutionary explanations for the tremendous variation in immune defense observed in nature. Assays to quantify immune phenotypes often are crucial to this endeavor. To this end, we suggest that more use could (and arguably should) be made of the veterinary and clinical serological toolbox. For example, measuring the magnitude and half-life of parasite-specific antibodies across a range of host taxa may provide new ways of testing theories in eco-immunology. Here, we suggest that antibody assays developed in veterinary and clinical immunology and epidemiology provide excellent tools--or at least excellent starting points for development of tools--for tests of such hypotheses. We review how such assays work and how they may be optimized for new questions and new systems in eco-immunology. We provide examples of the application of such tools to eco-immunological studies of seabirds and mammals, and suggest a decision-tree to aid development of assays. We expect that addition of such tools to the eco-immunological toolbox will promote progress in the field and help elucidate how immune systems function and why they vary in nature.
Collapse
Affiliation(s)
- Romain Garnier
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Andrea L Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
12
|
Santoro MM, Perno CF. HIV-1 Genetic Variability and Clinical Implications. ISRN MICROBIOLOGY 2013; 2013:481314. [PMID: 23844315 PMCID: PMC3703378 DOI: 10.1155/2013/481314] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 04/16/2013] [Indexed: 11/29/2022]
Abstract
Despite advances in antiretroviral therapy that have revolutionized HIV disease management, effective control of the HIV infection pandemic remains elusive. Beyond the classic non-B endemic areas, HIV-1 non-B subtype infections are sharply increasing in previous subtype B homogeneous areas such as Europe and North America. As already known, several studies have shown that, among non-B subtypes, subtypes C and D were found to be more aggressive in terms of disease progression. Luckily, the response to antiretrovirals against HIV-1 seems to be similar among different subtypes, but these results are mainly based on small or poorly designed studies. On the other hand, differences in rates of acquisition of resistance among non-B subtypes are already being observed. This different propensity, beyond the type of treatment regimens used, as well as access to viral load testing in non-B endemic areas seems to be due to HIV-1 clade specific peculiarities. Indeed, some non-B subtypes are proved to be more prone to develop resistance compared to B subtype. This phenomenon can be related to the presence of subtype-specific polymorphisms, different codon usage, and/or subtype-specific RNA templates. This review aims to provide a complete picture of HIV-1 genetic diversity and its implications for HIV-1 disease spread, effectiveness of therapies, and drug resistance development.
Collapse
Affiliation(s)
- Maria Mercedes Santoro
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Carlo Federico Perno
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- INMI L Spallanzani Hospital, Antiretroviral Therapy Monitoring Unit, Via Portuense 292, 00149 Rome, Italy
| |
Collapse
|
13
|
de Groot NG, Bontrop RE. The HIV-1 pandemic: does the selective sweep in chimpanzees mirror humankind's future? Retrovirology 2013; 10:53. [PMID: 23705941 PMCID: PMC3667106 DOI: 10.1186/1742-4690-10-53] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 04/04/2013] [Indexed: 12/31/2022] Open
Abstract
An HIV-1 infection progresses in most human individuals sooner or later into AIDS, a devastating disease that kills more than a million people worldwide on an annual basis. Nonetheless, certain HIV-1-infected persons appear to act as long-term non-progressors, and elite control is associated with the presence of particular MHC class I allotypes such as HLA-B*27 or -B*57. The HIV-1 pandemic in humans arose from the cross-species transmission of SIVcpz originating from chimpanzees. Chimpanzees, however, appear to be relatively resistant to developing AIDS after HIV-1/SIVcpz infection. Mounting evidence illustrates that, in the distant past, chimpanzees experienced a selective sweep resulting in a severe reduction of their MHC class I repertoire. This was most likely caused by an HIV-1/SIV-like retrovirus, suggesting that chimpanzees may have experienced long-lasting host-virus relationships with SIV-like viruses. Hence, if natural selection is allowed to follow its course, prospects for the human population may look grim, thus underscoring the desperate need for an effective vaccine.
Collapse
Affiliation(s)
- Natasja G de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands.
| | | |
Collapse
|
14
|
Souquière S, Makuwa M, Sallé B, Kazanji M. New strain of simian immunodeficiency virus identified in wild-born chimpanzees from central Africa. PLoS One 2012; 7:e44298. [PMID: 22984489 PMCID: PMC3440395 DOI: 10.1371/journal.pone.0044298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 08/01/2012] [Indexed: 12/27/2022] Open
Abstract
Studies of primate lentiviruses continue to provide information about the evolution of simian immunodeficiency viruses (SIVs) and the origin and emergence of HIV since chimpanzees in west–central Africa (Pan troglodytes troglodytes) were recognized as the reservoir of SIVcpzPtt viruses, which have been related phylogenetically to HIV-1. Using in-house peptide ELISAs to study SIV prevalence, we tested 104 wild-born captive chimpanzees from Gabon and Congo. We identified two new cases of SIVcpz infection in Gabon and characterized a new SIVcpz strain, SIVcpzPtt-Gab4. The complete sequence (9093 bp) was obtained by a PCR-based ‘genome walking’ approach to generate 17 overlapping fragments. Phylogenetic analyses of separated genes (gag, pol-vif and env-nef) showed that SIVcpzPtt-Gab4 is closely related to SIVcpzPtt-Gab1 and SIVcpzPtt-Gab2. No significant variation in viral load was observed during 3 years of follow-up, but a significantly lower CD4+ T cells count was found in infected than in uninfected chimpanzees (p<0.05). No clinical symptoms of SIV infection were observed in the SIV-positive chimpanzees. Further field studies with non-invasive methods are needed to determine the prevalence, geographic distribution, species association, and natural history of SIVcpz strains in the chimpanzee habitat in Gabon.
Collapse
Affiliation(s)
- Sandrine Souquière
- Unité de Rétrovirologie, Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | - Maria Makuwa
- Unité de Rétrovirologie, Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | - Bettina Sallé
- Centre de Primatologie, Centre International de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon
| | - Mirdad Kazanji
- Unité de Rétrovirologie, Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
- Institut Pasteur de Bangui, Réseau International des Instituts Pasteur, Bangui, Central African Republic
- * E-mail:
| |
Collapse
|
15
|
Abstract
It is now well established that simian immunodeficiency viruses (SIVs) from chimpanzees (SIVcpz) and gorillas (SIVgor) from west Central Africa are at the origin of HIV-1/AIDS. Apes are also infected with other retroviruses, notably simian T-cell lymphotropic viruses (STLVs) and simian foamy viruses (SFVs), that can be transmitted to humans. We discuss the actual knowledge on SIV, STLV and SFV infections in chimpanzees, gorillas, and bonobos. We especially elaborate on how the recent development of non-invasive methods has allowed us to identify the reservoirs of the HIV-1 ancestors in chimpanzees and gorillas, and increased our knowledge of the natural history of SIV infections in chimpanzees. Multiple cross-species events with retroviruses from apes to humans have occurred, but only one transmission of SIVcpz from chimpanzees in south-eastern Cameroon spread worldwide, and is responsible for the actual HIV pandemic. Frequent SFV transmissions have been recently reported, but no human-to-human transmission has been documented yet. Because humans are still in contact with apes, identification of pathogens in wild ape populations can signal which pathogens may be cause risk for humans, and allow the development of serological and molecular assays with which to detect transmissions to humans. Finally, non-invasive sampling also allows the study of the impact of retroviruses and other pathogens on the health and survival of endangered species such as chimpanzees, gorillas, and bonobos.
Collapse
Affiliation(s)
- M Peeters
- UMI 233, TransVIHMI, Institut de Recherche pour le Développement, Montpellier, France.
| | | |
Collapse
|
16
|
Wimmer E, Paul AV. Synthetic poliovirus and other designer viruses: what have we learned from them? Annu Rev Microbiol 2012; 65:583-609. [PMID: 21756105 DOI: 10.1146/annurev-micro-090110-102957] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Owing to known genome sequences, modern strategies of DNA synthesis have made it possible to recreate in principle all known viruses independent of natural templates. We describe the first synthesis of a virus (poliovirus) in 2002 that was accomplished outside living cells. We comment on the reaction of laypeople and scientists to the work, which shaped the response to de novo syntheses of other viruses. We discuss those viruses that have been synthesized since 2002, among them viruses whose precise genome sequence had to be established by painstakingly stitching together pieces of sequence information, and viruses involved in zoonosis. Synthesizing viral genomes provides a powerful tool for studying gene function and the pathogenic potential of these organisms. It also allows modification of viral genomes to an extent hitherto unthinkable. Recoding of poliovirus and influenza virus to develop new vaccine candidates and refactoring the phage T7 DNA genome are discussed as examples.
Collapse
Affiliation(s)
- Eckard Wimmer
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11790, USA.
| | | |
Collapse
|
17
|
Foupouapouognigni Y, Mba SA, Njouom R. Prevalence of hepatitis B virus infection among Cercopithecidae monkeys in Cameroon. J Med Primatol 2011; 40:194-6. [DOI: 10.1111/j.1600-0684.2011.00471.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Etienne L, Nerrienet E, LeBreton M, Bibila GT, Foupouapouognigni Y, Rousset D, Nana A, Djoko CF, Tamoufe U, Aghokeng AF, Mpoudi-Ngole E, Delaporte E, Peeters M, Wolfe ND, Ayouba A. Characterization of a new simian immunodeficiency virus strain in a naturally infected Pan troglodytes troglodytes chimpanzee with AIDS related symptoms. Retrovirology 2011; 8:4. [PMID: 21232091 PMCID: PMC3034674 DOI: 10.1186/1742-4690-8-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 01/13/2011] [Indexed: 12/20/2022] Open
Abstract
Background Data on the evolution of natural SIV infection in chimpanzees (SIVcpz) and on the impact of SIV on local ape populations are only available for Eastern African chimpanzee subspecies (Pan troglodytes schweinfurthii), and no data exist for Central chimpanzees (Pan troglodytes troglodytes), the natural reservoir of the ancestors of HIV-1 in humans. Here, we report a case of naturally-acquired SIVcpz infection in a P.t.troglodytes chimpanzee with clinical and biological data and analysis of viral evolution over the course of infection. Results A male chimpanzee (Cam155), 1.5 years, was seized in southern Cameroon in November 2003 and screened SIV positive during quarantine. Clinical follow-up and biological analyses have been performed for 7 years and showed a significant decline of CD4 counts (1,380 cells/mm3 in 2004 vs 287 in 2009), a severe thrombocytopenia (130,000 cells/mm3 in 2004 vs 5,000 cells/mm3 in 2009), a weight loss of 21.8% from August 2009 to January 2010 (16 to 12.5 kg) and frequent periods of infections with diverse pathogens. DNA from PBMC, leftover from clinical follow-up samples collected in 2004 and 2009, was used to amplify overlapping fragments and sequence two full-length SIVcpzPtt-Cam155 genomes. SIVcpzPtt-Cam155 was phylogenetically related to other SIVcpzPtt from Cameroon (SIVcpzPtt-Cam13) and Gabon (SIVcpzPtt-Gab1). Ten molecular clones 5 years apart, spanning the V1V4 gp120 env region (1,100 bp), were obtained. Analyses of the env region showed positive selection (dN-dS >0), intra-host length variation and extensive amino acid diversity between clones, greater in 2009. Over 5 years, N-glycosylation site frequency significantly increased (p < 0.0001). Conclusions Here, we describe for the first time the clinical history and viral evolution of a naturally SIV infected P.t.troglodytes chimpanzee. The findings show an increasing viral diversity over time and suggest clinical progression to an AIDS-like disease, showing that SIVcpz can be pathogenic in its host, as previously described in P.t.schweinfurthii. Although studying the impact of SIV infection in wild apes is difficult, efforts should be made to better characterize the pathogenicity of the ancestors of HIV-1 in their natural host and to find out whether SIV infection also plays a role in ape population decline.
Collapse
Affiliation(s)
- Lucie Etienne
- UMR145, Institut de Recherche pour le Développement (IRD) and Université Montpellier 1, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Tebit DM, Arts EJ. Tracking a century of global expansion and evolution of HIV to drive understanding and to combat disease. THE LANCET. INFECTIOUS DISEASES 2011; 11:45-56. [PMID: 21126914 DOI: 10.1016/s1473-3099(10)70186-9] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Lerche NW. Simian retroviruses: infection and disease--implications for immunotoxicology research in primates. J Immunotoxicol 2010; 7:93-101. [PMID: 20433415 DOI: 10.3109/15476911003657406] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Non-human primates have assumed an important role in preclinical safety assessment studies, particularly in the evaluation of biopharmaceutical and immunomodulatory therapies. Naturally occurring simian retrovirus infections may adversely affect the suitability of primates for use in such studies. Various species of non-human primates are the natural hosts for six exogenous retroviruses, representing five genera within the family Retroviridae. Retroviruses establish persistent infections with a broad spectrum of pathogenic potential, ranging from nonpathogenic to highly pathogenic, depending on the variety of the host, virus, and environmental factors. In the context of immunotoxicology, in which the research objective is to specifically evaluate the effect of drugs or biologics on the immune system, the immune modulatory effects of simian retroviruses, which may be subtle or profound, may introduce significant confounding into the studies of immunotoxic effects utilizing non-human primates. Latent or subclinical retrovirus infections are common and research-related procedures may lead to virus reactivation or overt disease. Adverse effects of undetected retrovirus infections on preclinical research include the loss of experimental subjects (and potentially of statistical power) due to increased morbidity and mortality, virus-induced clinical abnormalities, histologic lesions, alteration of physiologic parameters and biologic responses, and interference with in vitro assays and/or cytolytic destruction of primary cell cultures. The aim of this review is to provide an overview of the key biological, clinical, and pathological features of several important simian retroviruses, with emphasis on viruses infecting macaques and other primate species commonly used in preclinical research, and a discussion of the implications of these infections for immunotoxicology and other preclinical research in primates. Adequate pre-study retrovirus screening is essential to exclude retrovirus-infected primates from research protocols.
Collapse
Affiliation(s)
- Nicholas W Lerche
- California National Primate Research Center, University of California, Davis, CA 95616-8542, USA.
| |
Collapse
|
21
|
Njouom R, Mba SAS, Nerrienet E, Foupouapouognigni Y, Rousset D. Detection and characterization of hepatitis B virus strains from wild-caught gorillas and chimpanzees in Cameroon, Central Africa. INFECTION GENETICS AND EVOLUTION 2010; 10:790-6. [PMID: 20471498 DOI: 10.1016/j.meegid.2010.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 05/04/2010] [Accepted: 05/07/2010] [Indexed: 12/18/2022]
Abstract
Previous epidemiological studies have reported a high prevalence of hepatitis B virus (HBV) infection in chimpanzees in Gabon and Congo, Central Africa. There is no data for this species from Cameroon. To date few cases of active HBV infection have been documented in gorillas and only one complete HBV sequence has been described from a wild-caught gorilla originating from Cameroon and housed in Germany. Since gorillas are apes found in Cameroon, we thus investigated the prevalence and genetic relationships of HBV infecting apes in this area. We subjected 185 wild-caught apes' plasmas, including 159 from chimpanzees and 26 from gorillas to ELISA screening for HBV surface antigen (HBsAg). Subsequently, we detected HBV DNA, sequenced the whole HBV genome and performed phylogenetic analysis. Eleven (6.9%) chimpanzees and 3 (11.6%) gorillas plasma were found HBsAg positive, of which 8 and 3 were positive for HBV DNA, respectively. Phylogenetic analyses revealed that the 3 new gorilla HBV sequences grouped together with the single available HBV sequence from gorilla. Evidence of recombination between HBV Pan troglodytes troglodytes and Pan troglodytes vellerosus was observed in two of the Cameroonian strains. Findings from our study show that HBV infection is endemic in wild-born gorillas and chimpanzees in Cameroon, and that there is evidence of recombination between HBV strains circulating in chimpanzees. We demonstrated the existence of gorillas' specific HBV strains distinct but related to those found in chimpanzees living in the same habitat in Cameroon, providing substantial evidence of species association of HBV in NHPs.
Collapse
Affiliation(s)
- Richard Njouom
- Laboratoire de Virologie, Centre Pasteur du Cameroun, Yaounde, Cameroon.
| | | | | | | | | |
Collapse
|
22
|
Ghobrial L, Lankester F, Kiyang JA, Akih AE, de Vries S, Fotso R, Gadsby EL, Jenkins PD, Gonder MK. Tracing the origins of rescued chimpanzees reveals widespread chimpanzee hunting in Cameroon. BMC Ecol 2010; 10:2. [PMID: 20096098 PMCID: PMC2823610 DOI: 10.1186/1472-6785-10-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 01/22/2010] [Indexed: 11/24/2022] Open
Abstract
Background While wild chimpanzees are experiencing drastic population declines, their numbers at African rescue and rehabilitation projects are growing rapidly. Chimpanzees follow complex routes to these refuges; and their geographic origins are often unclear. Identifying areas where hunting occurs can help law enforcement authorities focus scarce resources for wildlife protection planning. Efficiently focusing these resources is particularly important in Cameroon because this country is a key transportation waypoint for international wildlife crime syndicates. Furthermore, Cameroon is home to two chimpanzee subspecies, which makes ascertaining the origins of these chimpanzees important for reintroduction planning and for scientific investigations involving these chimpanzees. Results We estimated geographic origins of 46 chimpanzees from the Limbe Wildlife Centre (LWC) in Cameroon. Using Bayesian approximation methods, we determined their origins using mtDNA sequences and microsatellite (STRP) genotypes compared to a spatial map of georeferenced chimpanzee samples from 10 locations spanning Cameroon and Nigeria. The LWC chimpanzees come from multiple regions of Cameroon or forested areas straddling the Cameroon-Nigeria border. The LWC chimpanzees were partitioned further as originating from one of three biogeographically important zones occurring in Cameroon, but we were unable to refine these origin estimates to more specific areas within these three zones. Conclusions Our findings suggest that chimpanzee hunting is widespread across Cameroon. Live animal smuggling appears to occur locally within Cameroon, despite the existence of local wildlife cartels that operate internationally. This pattern varies from the illegal wildlife trade patterns observed in other commercially valuable species, such as elephants, where specific populations are targeted for exploitation. A broader sample of rescued chimpanzees compared against a more comprehensive grid of georeferenced samples may reveal 'hotspots' of chimpanzee hunting and live animal transport routes in Cameroon. These results illustrate also that clarifying the origins of refuge chimpanzees is an important tool for designing reintroduction programs. Finally, chimpanzees at refuges are frequently used in scientific investigations, such as studies investigating the history of zoonotic diseases. Our results provide important new information for interpreting these studies within a precise geographical framework.
Collapse
Affiliation(s)
- Lora Ghobrial
- Department of Biological Sciences, University at Albany - State University of New York, Albany, NY 12222, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Torimiro JN, Javanbakht H, Diaz-Griffero F, Kim J, Carr JK, Carrington M, Sawitzke J, Burke DS, Wolfe ND, Dean M, Sodroski J. A rare null allele potentially encoding a dominant-negative TRIM5alpha protein in Baka pygmies. Virology 2009; 391:140-7. [PMID: 19577266 PMCID: PMC2760473 DOI: 10.1016/j.virol.2009.05.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 05/16/2009] [Accepted: 05/28/2009] [Indexed: 01/07/2023]
Abstract
The global acquired immunodeficiency syndrome (AIDS) pandemic is thought to have arisen by the transmission of human immunodeficiency virus (HIV-1)-like viruses from chimpanzees in southeastern Cameroon to humans. TRIM5alpha is a restriction factor that can decrease the susceptibility of cells of particular mammalian species to retrovirus infection. A survey of TRIM5 genes in 127 indigenous individuals from southeastern Cameroon revealed that approximately 4% of the Baka pygmies studied were heterozygous for a rare variant with a stop codon in exon 8. The predicted product of this allele, TRIM5 R332X, is truncated in the functionally important B30.2(SPRY) domain, does not restrict retrovirus infection, and acts as a dominant-negative inhibitor of wild-type human TRIM5alpha. Thus, some indigenous African forest dwellers potentially exhibit diminished TRIM5alpha function; such genetic factors, along with the high frequency of exposure to chimpanzee body fluids, may have predisposed to the initial cross-species transmission of HIV-1-like viruses.
Collapse
Affiliation(s)
- Judith N. Torimiro
- Department of Biochemistry and Physiologic Sciences, Faculty of Medicine and Biomedical Sciences, University of Yaounde I, Yaounde, Cameroon
- Chantal Biya International Reference Centre, Yaounde, Cameroon
| | - Hassan Javanbakht
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, MA 02115, USA
| | - Felipe Diaz-Griffero
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, MA 02115, USA
| | - Jonghwa Kim
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, MA 02115, USA
| | - Jean K. Carr
- Institute of Human Virology, University of Maryland School of Medicine, 725 W. Lombard Street, Baltimore, MD 21201, USA
| | - Mary Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC Frederick, Inc., NCI-Frederick, Frederick, MD 21702-1201, USA
| | - Julie Sawitzke
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC Frederick, Inc., NCI-Frederick, Frederick, MD 21702-1201, USA
| | - Donald S. Burke
- Graduate School of Public Health, A-624 Crabtree Hall, 130 De Soto Street, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nathan D. Wolfe
- Global Viral Forecasting Initiative, San Francisco, CA 94105, USA
- Stanford University, Program in Human Biology, Stanford, CA 94305, USA
| | - Michael Dean
- Cancer and Inflammation Program, National Cancer Institute, Building 560, Room 21-18, Frederick, MD 21702, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, MA 02115, USA
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115 USA
| |
Collapse
|
24
|
Stürmer M, Doerr HW, Gürtler L. Human immunodeficiency virus: 25 years of diagnostic and therapeutic strategies and their impact on hepatitis B and C virus. Med Microbiol Immunol 2009; 198:147-55. [PMID: 19495792 PMCID: PMC2714449 DOI: 10.1007/s00430-009-0117-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Indexed: 12/04/2022]
Abstract
The human immunodeficiency virus (HIV) had spread unrecognized in the human population as sexually transmitted disease and was finally identified by its disease AIDS in 1981. Even after the isolation of the causative agent in 1983, the burden and death rate of AIDS accelerated worldwide especially in young people despite the confection of new drugs capable to inhibit virus replication since 1997. However, at least in industrialised countries, this trend could be reversed by the introduction of combination therapy strategies. The design of new drugs is on going; besides the inhibition of the three enzymes of HIV for replication and maturation (reverse transcriptase, integrase and protease), further drugs inhibits fusion of viral and cellular membranes and virus maturation. On the other hand, viral diagnostics had been considerably improved since the emergence of HIV. There was a need to identify infected people correctly, to follow up the course of immune reconstitution of patients by measuring viral load and CD4 cells, and to analyse drug escape mutations leading to drug resistance. Both the development of drugs and the refined diagnostics have been transferred to the treatment of patients infected with hepatitis B virus (HBV) and hepatitis C virus (HCV). This progress is not completed; there are beneficial aspects in the response of the scientific community to the HIV burden for the management of other viral diseases. These aspects are described in this contribution. Further aspects as handling a stigmatising disease, education of self-responsiveness within sexual relationships, and ways for confection of a protective vaccine are not covered.
Collapse
Affiliation(s)
- Martin Stürmer
- Institute for Medical Virology, Johann Wolfgang Goethe University Hospital, Frankfurt am Main, Germany
| | | | | |
Collapse
|
25
|
Hvilsom C, Carlsen F, Siegismund HR, Corbet S, Nerrienet E, Fomsgaard A. Genetic subspecies diversity of the chimpanzee CD4 virus-receptor gene. Genomics 2008; 92:322-8. [PMID: 18718520 DOI: 10.1016/j.ygeno.2008.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 07/11/2008] [Accepted: 07/13/2008] [Indexed: 11/25/2022]
Abstract
Chimpanzees are naturally and asymptomatically infected by simian immunodeficiency virus (SIV). Pathogenic properties of SIV/HIV vary and differences in susceptibility and pathogenicity of SIV/HIV depend in part on host-specific factors such as virus-receptor/co-receptor interactions. Since CD4 plays a primary role in virus binding and since SIVcpz have been found only in two African chimpanzee subspecies, we characterized the genetic diversity of CD4 receptors in all four recognized subspecies of chimpanzees. We found noticeable variation in the first variable region V1 of CD4 and in intron six among the subspecies of chimpanzees. We found the CD4 receptor to be conserved in individuals belonging to the P. t. verus subspecies and divergent from the other three subspecies, which harbored highly variable CD4 receptors. The CD4 receptor of chimpanzees differed from that of humans. We question whether the observed diversity can explain the species-specific differences in susceptibility to and pathogenicity of SIV/HIV.
Collapse
|
26
|
Van Heuverswyn F, Li Y, Bailes E, Neel C, Lafay B, Keele BF, Shaw KS, Takehisa J, Kraus MH, Loul S, Butel C, Liegeois F, Yangda B, Sharp PM, Mpoudi-Ngole E, Delaporte E, Hahn BH, Peeters M. Genetic diversity and phylogeographic clustering of SIVcpzPtt in wild chimpanzees in Cameroon. Virology 2007; 368:155-71. [PMID: 17651775 DOI: 10.1016/j.virol.2007.06.018] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 06/07/2007] [Accepted: 06/13/2007] [Indexed: 11/19/2022]
Abstract
It is now well established that the clade of simian immunodeficiency viruses (SIVs) infecting west central African chimpanzees (Pan troglodytes troglodytes) and western gorillas (Gorilla gorilla gorilla) comprises the progenitors of human immunodeficiency virus type 1 (HIV-1). In this study, we have greatly expanded our previous molecular epidemiological survey of SIVcpz in wild chimpanzees in Cameroon. The new results confirm a wide but uneven distribution of SIVcpzPtt in P. t. troglodytes throughout southern Cameroon and indicate the absence of SIVcpz infection in Pan troglodytes vellerosus. Analyzing 725 fecal samples from 15 field sites, we obtained partial nucleotide sequences from 16 new SIVcpzPtt strains and determined full-length sequences for two of these. Phylogenetic analyses of these new viruses confirmed the previously reported phylogeographic clustering of SIVcpzPtt lineages, with viruses related to the ancestors of HIV-1 groups M and N circulating exclusively in southeastern and south central P. t. troglodytes communities, respectively. Importantly, the SIVcpzPtt strains from the southeastern corner of Cameroon represent a relatively isolated clade indicating a defined geographic origin of the chimpanzee precursor of HIV-1 group M. Since contacts between humans and apes continue, the possibility of ongoing transmissions of SIV from chimpanzees (or gorillas) to humans has to be considered. In this context, our finding of distinct SIVcpzPtt envelope V3 sequence clades suggests that these peptides may be useful for the serological differentiation of SIVcpzPtt and HIV-1 infections, and thus the diagnosis of new cross-species transmissions if they occurred.
Collapse
Affiliation(s)
- Fran Van Heuverswyn
- UMR145, Institut de Recherche pour le Développement, Department of International Health, University of Montpellier 1, 911, Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wain LV, Bailes E, Bibollet-Ruche F, Decker JM, Keele BF, Van Heuverswyn F, Li Y, Takehisa J, Ngole EM, Shaw GM, Peeters M, Hahn BH, Sharp PM. Adaptation of HIV-1 to its human host. Mol Biol Evol 2007; 24:1853-60. [PMID: 17545188 PMCID: PMC4053193 DOI: 10.1093/molbev/msm110] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) originated from three independent cross-species transmissions of simian immunodeficiency virus (SIVcpzPtt) infecting chimpanzees (Pan troglodytes troglodytes) in west central Africa, giving rise to pandemic (group M) and non-pandemic (groups N and O) clades of HIV-1. To identify host-specific adaptations in HIV-1 we compared the inferred ancestral sequences of HIV-1 groups M, N and O to 12 full length genome sequences of SIVcpzPtt and four of the outlying but closely related SIVcpzPts (from P. t. schweinfurthii). This analysis revealed a single site that was completely conserved among SIVcpzPtt strains but different (due to the same change) in all three groups of HIV-1. This site, Gag-30, lies within p17, the gag-encoded matrix protein. It is Met in SIVcpzPtt, underwent a conservative replacement by Leu in one lineage of SIVcpzPts but changed radically to Arg on all three lineages leading to HIV-1. During subsequent diversification this site has been conserved as a basic residue (Arg or Lys) in most lineages of HIV-1. Retrospective analysis revealed that Gag-30 had reverted to Met in a previous experiment in which HIV-1 was passaged through chimpanzees. To examine whether this substitution conferred a species specific growth advantage, we used site-directed mutagenesis to generate variants of these chimpanzee-adapted HIV-1 strains with Lys at Gag-30, and tested their replication in both human and chimpanzee CD4+ T lymphocytes. Remarkably, viruses encoding Met replicated to higher titers than viruses encoding Lys in chimpanzee T cells, but the opposite was found in human T cells. Taken together, these observations provide compelling evidence for host-specific adaptation during the emergence of HIV-1 and identify the viral matrix protein as a modulator of viral fitness following transmission to the new human host.
Collapse
Affiliation(s)
- Louise V Wain
- Institute of Genetics, University of Nottingham, Queens Medical Centre, Nottingham, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Takehisa J, Kraus MH, Decker JM, Li Y, Keele BF, Bibollet-Ruche F, Zammit KP, Weng Z, Santiago ML, Kamenya S, Wilson ML, Pusey AE, Bailes E, Sharp PM, Shaw GM, Hahn BH. Generation of infectious molecular clones of simian immunodeficiency virus from fecal consensus sequences of wild chimpanzees. J Virol 2007; 81:7463-75. [PMID: 17494082 PMCID: PMC1933379 DOI: 10.1128/jvi.00551-07] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Studies of simian immunodeficiency viruses (SIVs) in their endangered primate hosts are of obvious medical and public health importance, but technically challenging. Although SIV-specific antibodies and nucleic acids have been detected in primate fecal samples, recovery of replication-competent virus from such samples has not been achieved. Here, we report the construction of infectious molecular clones of SIVcpz from fecal viral consensus sequences. Subgenomic fragments comprising a complete provirus were amplified from fecal RNA of three wild-living chimpanzees and sequenced directly. One set of amplicons was concatenated using overlap extension PCR. The resulting clone (TAN1.24) contained intact genes and regulatory regions but was replication defective. It also differed from the fecal consensus sequence by 76 nucleotides. Stepwise elimination of all missense mutations generated several constructs with restored replication potential. The clone that yielded the most infectious virus (TAN1.910) was identical to the consensus sequence in both protein and long terminal repeat sequences. Two additional SIVcpz clones were constructed by direct synthesis of fecal consensus sequences. One of these (TAN3.1) yielded fully infectious virus, while the second one (TAN2.69) required modification at one ambiguous site in the viral pol gene for biological activity. All three reconstructed proviruses produced infectious virions that replicated in human and chimpanzee CD4(+) T cells, were CCR5 tropic, and resembled primary human immunodeficiency virus type 1 isolates in their neutralization phenotype. These results provide the first direct evidence that naturally occurring SIVcpz strains already have many of the biological properties required for persistent infection of humans, including CD4 and CCR5 dependence and neutralization resistance. Moreover, they outline a new strategy for obtaining medically important "SIV isolates" that have thus far eluded investigation. Such isolates are needed to identify viral determinants that contribute to cross-species transmission and host adaptation.
Collapse
Affiliation(s)
- Jun Takehisa
- Department of Medicine, University of Alabama at Birmingham, 720 20th Street South, Kaul 816, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
VandeWoude S, Apetrei C. Going wild: lessons from naturally occurring T-lymphotropic lentiviruses. Clin Microbiol Rev 2006; 19:728-62. [PMID: 17041142 PMCID: PMC1592692 DOI: 10.1128/cmr.00009-06] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Over 40 nonhuman primate (NHP) species harbor species-specific simian immunodeficiency viruses (SIVs). Similarly, more than 20 species of nondomestic felids and African hyenids demonstrate seroreactivity against feline immunodeficiency virus (FIV) antigens. While it has been challenging to study the biological implications of nonfatal infections in natural populations, epidemiologic and clinical studies performed thus far have only rarely detected increased morbidity or impaired fecundity/survival of naturally infected SIV- or FIV-seropositive versus -seronegative animals. Cross-species transmissions of these agents are rare in nature but have been used to develop experimental systems to evaluate mechanisms of pathogenicity and to develop animal models of HIV/AIDS. Given that felids and primates are substantially evolutionarily removed yet demonstrate the same pattern of apparently nonpathogenic lentiviral infections, comparison of the biological behaviors of these viruses can yield important implications for host-lentiviral adaptation which are relevant to human HIV/AIDS infection. This review therefore evaluates similarities in epidemiology, lentiviral genotyping, pathogenicity, host immune responses, and cross-species transmission of FIVs and factors associated with the establishment of lentiviral infections in new species. This comparison of consistent patterns in lentivirus biology will expose new directions for scientific inquiry for understanding the basis for virulence versus avirulence.
Collapse
Affiliation(s)
- Sue VandeWoude
- Department of Microbiology, Immunology and Pathology, College of Veterinary and Biomedical Sciences, Colorado State University, Fort Collins, CO 80538-1619, USA
| | | |
Collapse
|
30
|
Ely JJ, Dye B, Frels WI, Fritz J, Gagneux P, Khun HH, Switzer WM, Lee DR. Subspecies composition and founder contribution of the captive U.S. chimpanzee (Pan troglodytes) population. Am J Primatol 2006; 67:223-41. [PMID: 16229023 DOI: 10.1002/ajp.20179] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Chimpanzees are presently classified into three subspecies: Pan troglodytes verus from west Africa, P.t. troglodytes from central Africa, and P.t. schweinfurthii from east Africa. A fourth subspecies (P.t. vellerosus), from Cameroon and northern Nigeria, has been proposed. These taxonomic designations are based on geographical origins and are reflected in sequence variation in the first hypervariable region (HVR-I) of the mtDNA D-loop. Although advances have been made in our understanding of chimpanzee phylogenetics, little has been known regarding the subspecies composition of captive chimpanzees. We sequenced part of the mtDNA HVR-I region in 218 African-born population founders and performed a phylogenetic analysis with previously characterized African sequences of known provenance to infer subspecies affiliations. Most founders were P.t. verus (95.0%), distantly followed by the troglodytes schweinfurthii clade (4.6%), and a single P.t. vellerosus (0.4%). Pedigree-based estimates of genomic representation in the descendant population revealed that troglodytes schweinfurthii founder representation was reduced in captivity, vellerosus representation increased due to prolific breeding by a single male, and reproductive variance resulted in uneven representation among male P.t.verus founders. No increase in mortality was evident from between-subspecies interbreeding, indicating a lack of outbreeding depression. Knowledge of subspecies and their genomic representation can form the basis for phylogenetically informed genetic management of extant chimpanzees to preserve rare genetic variation for research, conservation, or possible future breeding.
Collapse
Affiliation(s)
- John J Ely
- Alamogordo Primate Facility, Holloman AFB, New Mexico
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
HIV is among the most generically variable of human pathogens. A comprehensive and detailed description of HIV strains in the pandemic is an important foundation for diagnosis, treatment, and prevention. The current sequence database for HIV includes almost 800 complete genome sequences, documenting HIV-1 groups M, O, and N, and HIV-2. Among HIV-1 group M strains, responsible for the vast majority of HIV infections worldwide, 743 sequences represent 9 genetic subtypes, 16 circulating recombinant forms (CRF) that are spreading in populations, and a variety of unique recombinant forms (URF), identified so far only from a single individual. The global distribution of HIV is complex and dynamic with regional epidemics harboring only a subset of the global diversity. HIV strains differ enormously in terms of global prevalence. Six strains account for the majority of HIV infections: HIV-1 subtypes A, B, C, D, and two of the CRF, CRF01-AE and CRF02_AG, respectively. Many of the known subtypes and recombinant forms are currently rare in the epidemic, but could spread more widely if favorable conditions arise. HIV-2 is largely restricted to West Africa at relatively low prevalence there. Groups O and N of HIV-1 are very rare in the pandemic. The goal of universal coverage of HIV-1 strains by diagnostic tests can be met by minimizing false negative test rates for the six globally prevalent HIV-1 group M strains and HIV-2, and by evaluating systematically coverage of rare subtypes and recombinant forms.
Collapse
|
32
|
Keele BF, Van Heuverswyn F, Li Y, Bailes E, Takehisa J, Santiago ML, Bibollet-Ruche F, Chen Y, Wain LV, Liegeois F, Loul S, Ngole EM, Bienvenue Y, Delaporte E, Brookfield JFY, Sharp PM, Shaw GM, Peeters M, Hahn BH. Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science 2006; 313:523-6. [PMID: 16728595 PMCID: PMC2442710 DOI: 10.1126/science.1126531] [Citation(s) in RCA: 540] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1), the cause of human acquired immunodeficiency syndrome (AIDS), is a zoonotic infection of staggering proportions and social impact. Yet uncertainty persists regarding its natural reservoir. The virus most closely related to HIV-1 is a simian immunodeficiency virus (SIV) thus far identified only in captive members of the chimpanzee subspecies Pan troglodytes troglodytes. Here we report the detection of SIVcpz antibodies and nucleic acids in fecal samples from wild-living P. t. troglodytes apes in southern Cameroon, where prevalence rates in some communities reached 29 to 35%. By sequence analysis of endemic SIVcpz strains, we could trace the origins of pandemic (group M) and nonpandemic (group N) HIV-1 to distinct, geographically isolated chimpanzee communities. These findings establish P. t. troglodytes as a natural reservoir of HIV-1.
Collapse
Affiliation(s)
- Brandon F. Keele
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Fran Van Heuverswyn
- Laboratoire Retrovirus, UMR145, Institut de Recherche pour le Développement and Department of International Health, University of Montpellier I, 911 Avenue Agropolis, Boite Postale 64501, 34394 Montpellier Cedex 5, France
| | - Yingying Li
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Elizabeth Bailes
- Institute of Genetics, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK
| | - Jun Takehisa
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mario L. Santiago
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Frederic Bibollet-Ruche
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yalu Chen
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Louise V. Wain
- Institute of Genetics, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK
| | - Florian Liegeois
- Laboratoire Retrovirus, UMR145, Institut de Recherche pour le Développement and Department of International Health, University of Montpellier I, 911 Avenue Agropolis, Boite Postale 64501, 34394 Montpellier Cedex 5, France
| | - Severin Loul
- Projet Prevention du Sida au Cameroun (PRESICA), Boite Postale 1857, Yaoundé, Cameroun
| | - Eitel Mpoudi Ngole
- Projet Prevention du Sida au Cameroun (PRESICA), Boite Postale 1857, Yaoundé, Cameroun
| | - Yanga Bienvenue
- Projet Prevention du Sida au Cameroun (PRESICA), Boite Postale 1857, Yaoundé, Cameroun
| | - Eric Delaporte
- Laboratoire Retrovirus, UMR145, Institut de Recherche pour le Développement and Department of International Health, University of Montpellier I, 911 Avenue Agropolis, Boite Postale 64501, 34394 Montpellier Cedex 5, France
| | - John F. Y. Brookfield
- Institute of Genetics, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK
| | - Paul M. Sharp
- Institute of Genetics, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK
| | - George M. Shaw
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Howard Hughes Medical Institute, 720 South 20th Street, KAUL 816, Birmingham, AL 35294, USA
| | - Martine Peeters
- Laboratoire Retrovirus, UMR145, Institut de Recherche pour le Développement and Department of International Health, University of Montpellier I, 911 Avenue Agropolis, Boite Postale 64501, 34394 Montpellier Cedex 5, France
| | - Beatrice H. Hahn
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
33
|
Abstract
The cross-species transmission of lentiviruses from African primates to humans has selected viral adaptations which have subsequently facilitated human-to-human transmission. HIV adapts not only by positive selection through mutation but also by recombination of segments of its genome in individuals who become multiply infected. Naturally infected nonhuman primates are relatively resistant to AIDS-like disease despite high plasma viral loads and sustained viral evolution. Further understanding of host resistance factors and the mechanisms of disease in natural primate hosts may provide insight into unexplored therapeutic avenues for the prevention of AIDS.
Collapse
Affiliation(s)
- Jonathan L Heeney
- Department of Virology, Biomedical Primate Research Centre, Rijswijk 2280 GH, Netherlands.
| | | | | |
Collapse
|
34
|
Heeney JL, Rutjens E, Verschoor EJ, Niphuis H, ten Haaft P, Rouse S, McClure H, Balla-Jhagjhoorsingh S, Bogers W, Salas M, Cobb K, Kestens L, Davis D, van der Groen G, Courgnaud V, Peeters M, Murthy KK. Transmission of simian immunodeficiency virus SIVcpz and the evolution of infection in the presence and absence of concurrent human immunodeficiency virus type 1 infection in chimpanzees. J Virol 2006; 80:7208-18. [PMID: 16809326 PMCID: PMC1489021 DOI: 10.1128/jvi.00382-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Accepted: 04/24/2006] [Indexed: 11/20/2022] Open
Abstract
Current data suggest that the human immunodeficiency virus type 1 (HIV-1) epidemic arose by transmission of simian immunodeficiency virus (SIV) SIVcpz from a subspecies of common chimpanzees (Pan troglodytes troglodytes) to humans. SIVcpz of chimpanzees is itself a molecular chimera of SIVs from two or more different monkey species, suggesting that recombination was made possible by coinfection of one individual animal with different lentiviruses. However, very little is known about SIVcpz transmission and the susceptibility to lentivirus coinfection of its natural host, the chimpanzee. Here, it is revealed that either infected plasma or peripheral blood mononuclear cells readily confer infection when exposure occurs by the intravenous or mucosal route. Importantly, the presence of preexisting HIV-1 infection did not modify the kinetics of SIVcpz infection once it was established by different routes. Although humoral responses appeared as early as 4 weeks postinfection, neutralization to SIVcpz-ANT varied markedly between animals. Analysis of the SIVcpz env sequence over time revealed the emergence of genetic viral variants and persistent SIVcpz RNA levels of between 10(4) and 10(5) copies/ml plasma regardless of the presence or absence of concurrent HIV-1 infection. These unique data provide important insight into possible routes of transmission, the kinetics of acute SIVcpz infection, and how readily coinfection with SIVcpz and other lentiviruses may be established as necessary preconditions for potential recombination.
Collapse
Affiliation(s)
- Jonathan L Heeney
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 139, P.O. Box 3306, 2280 GH Rijswijk, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Affiliation(s)
- Paul M Sharp
- Institute of Genetics, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom
| | | | | |
Collapse
|
36
|
Gomez LM, Pacyniak E, Flick M, Hout DR, Gomez ML, Nerrienet E, Ayouba A, Santiago ML, Hahn BH, Stephens EB. Vpu-mediated CD4 down-regulation and degradation is conserved among highly divergent SIVcpz strains. Virology 2005; 335:46-60. [PMID: 15823605 DOI: 10.1016/j.virol.2005.01.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 11/19/2004] [Accepted: 01/31/2005] [Indexed: 11/27/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) along with simian immunodeficiency viruses from chimpanzees (SIV(cpz)) and three species of Old World monkeys from the genus Cercopithecus have been shown to encode a Vpu protein. To date, the functional characterization of Vpu has been limited to a small number of subtype B and more recently subtype C Vpu proteins. Using a recently developed VpuEGFP reporter system, we have shown that the subtype B and C Vpus are capable of preventing CD4 from being expressed on the cell surface. Using the same reporter system, we report here on the expression and functional analysis of Vpu protein from four SIV(cpz) isolates (CAM13, ANT, TAN1, and GAB1). All four SIV Vpu fusion proteins were efficiently expressed and prevented CD4 expression on the cell surface and induced CD4 degradation. This was surprising as three of the SIV(cpz) Vpu fusion proteins had only one canonical casein kinase II (CK-II) site (CAM13, ANT, TAN1) while previous studies with laboratory adapted HXB2 had indicated that both CK-II sites were required for CD4 degradation. Both ANT and TAN1 Vpu sequences encoded five consecutive negatively charged amino acids residues following the only CKII site (SAIEEDEE for ANT; SGVEEDEE for TAN1). We thus explored the possibility that this stretch of negatively charged amino acids might substitute for the lack of second CK-II site. Substitution of the aspartic acid at position 61 and glutamic acid at position 63 in the SIV(cpz) ANT Vpu within with lysine residues abolished the ability of this protein to down-modulate cell surface expression of CD4. Similarly, change of a serine to an alanine residue following the single consensus CK-II site of the CAM13 Vpu (SGNESDGGEEE) abolished CD4-down-regulation, suggesting that this serine was phosphorylated in the absence of a canonical CK-II site. Our results indicate that the serine was required, suggesting that this serine was phosphorylated by CK-II or possibly another cellular kinase. Taken together, these results show for the first time that Vpu proteins from SIV(cpz) isolates, although quite diverse in sequence and predicted secondary structure from the HIV-1 subtype B protein, are capable of down-regulating CD4, which is one of the major functions of the HIV-1 protein.
Collapse
Affiliation(s)
- Lisa M Gomez
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bibollet-Ruche F, Gao F, Bailes E, Saragosti S, Delaporte E, Peeters M, Shaw GM, Hahn BH, Sharp PM. Complete genome analysis of one of the earliest SIVcpzPtt strains from Gabon (SIVcpzGAB2). AIDS Res Hum Retroviruses 2004; 20:1377-81. [PMID: 15650433 PMCID: PMC2692896 DOI: 10.1089/aid.2004.20.1377] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Chimpanzees in west central Africa (Pan troglodytes troglodytes) are known to harbor simian immunodeficiency viruses (SIVcpzPtt) that represent the closest relatives of human immunodeficiency virus type 1 (HIV-1); however, the number of SIVcpzPtt strains that have been fully characterized is still limited. Here, we report the complete nucleotide sequence of SIVcpzGAB2, a virus originally identified in 1989 in a chimpanzee (P. t. troglodytes) from Gabon. Analysis of this sequence reveals that SIVcpzGAB2 is a member of the SIVcpzPtt group of viruses, but that it differs from other SIVcpzPtt strains by exhibiting a highly divergent Env V3 loop with an unusual crown (NLSPGTT) containing a canonical N-linked glycosylation site, an unpaired cysteine residue in Env V4, and two late (L) domain motifs (PTAP and YPSL) in Gag p6. Moreover, phylogenetic analyses indicate evidence of recombination during the early divergence of SIVcpzPtt strains; in particular, part of the pol gene sequence of SIVcpzGAB2 appears to be derived from a previously unidentified SIVcpz lineage ancestral to HIV-1 group O. These data indicate extensive diversity among naturally occurring SIVcpzPtt strains and provide new insight into the origin of HIV-1 group O.
Collapse
Affiliation(s)
- Frederic Bibollet-Ruche
- Department of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | | | |
Collapse
|