1
|
Zhong Q, Qi J, Su N, Li Z, Wang C, Zeng H, Liu R, Li Y, Yang Q. In vivo investigation of PEDV transmission via nasal infection: mechanisms of CD4 + T-cell-mediated intestinal infection. J Virol 2025; 99:e0176124. [PMID: 40094365 PMCID: PMC12020991 DOI: 10.1128/jvi.01761-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025] Open
Abstract
The porcine epidemic diarrhea virus (PEDV), a highly pathogenic coronavirus, poses significant challenges to global swine agriculture with severe economic consequences. Our research reveals that in addition to known transmission routes, PEDV can be airborne, initially invading the nasal mucosa and subsequently being transported by dendritic cells and peripheral blood T cells, ultimately leading to intestinal disease in piglets. This study elucidates the cellular mechanisms behind the process, demonstrating how PEDV is internalized by CD4+ T cells after being transferred by dendritic cells, where it establishes a latent infection. Crucially, PEDV induces the upregulation of the integrin α4β7 homing receptor, facilitating the migration of these infected CD4+ T cells to the small intestine. Furthermore, our findings reveal that the activation of the α4β7-Rho-GTPases-Cofilin signaling pathway by PEDV reorganizes the actin cytoskeleton, enabling CD4+ T-cell transmigration through high endothelial venules into the intestinal mucosa, resulting in the infection of intestinal epithelial cells. These insights not only illuminate the molecular mechanisms PEDV employs to hijack CD4+ T cells for transmission from the respiratory tract to the intestine but also identify novel targets for therapeutic intervention, providing new perspectives for effectively preventing and managing PEDV infection with broader implications for controlling similar pathogens in diverse hosts.IMPORTANCEPorcine epidemic diarrhea virus (PEDV), characterized by rapid transmission and widespread prevalence, poses a significant long-term threat to the global pig farming industry. Our previous research revealed that, in addition to the classic fecal-oral infection route, PEDV can invade through the nasal mucosa, leading to intestinal infection. This study further investigated the molecular mechanisms by which the virus is transported by T lymphocytes from the respiratory tract to the intestines. We found that PEDV establishes a latent infection in CD4+ T cells and promotes their intestinal homing by upregulating the homing receptor integrin α4β7. Additionally, we elucidated the activation of the integrin α4β7-mediated Rho-GTPase-Cofilin signaling axis by PEDV, which regulates pseudopod formation and facilitates CD4+ T-cell migration to the intestinal mucosal lamina propria post-homing. This study elucidates the mechanism underlying the lymphocyte-dependent dissemination of PEDV following nasal infection, providing new insights into strategies for preventing PEDV invasion.
Collapse
Affiliation(s)
- Qiu Zhong
- MOE Joint
International Research Laboratory of Animal Health and Food Safety,
College of Veterinary Medicine, Nanjing Agricultural
University, Nanjing,
Jiangsu, China
| | - Jiaxin Qi
- MOE Joint
International Research Laboratory of Animal Health and Food Safety,
College of Veterinary Medicine, Nanjing Agricultural
University, Nanjing,
Jiangsu, China
| | - Na Su
- MOE Joint
International Research Laboratory of Animal Health and Food Safety,
College of Veterinary Medicine, Nanjing Agricultural
University, Nanjing,
Jiangsu, China
| | - Zi Li
- State Key Laboratory
for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key
Laboratory for Zoonosis Research of the Ministry of Education, Institute
of Zoonosis, and College of Veterinary Medicine, Jilin
University, Changchun,
Jilin, China
| | - Chengcheng Wang
- MOE Joint
International Research Laboratory of Animal Health and Food Safety,
College of Veterinary Medicine, Nanjing Agricultural
University, Nanjing,
Jiangsu, China
| | - Hui Zeng
- MOE Joint
International Research Laboratory of Animal Health and Food Safety,
College of Veterinary Medicine, Nanjing Agricultural
University, Nanjing,
Jiangsu, China
| | - Ruiling Liu
- MOE Joint
International Research Laboratory of Animal Health and Food Safety,
College of Veterinary Medicine, Nanjing Agricultural
University, Nanjing,
Jiangsu, China
| | - Yuchen Li
- MOE Joint
International Research Laboratory of Animal Health and Food Safety,
College of Veterinary Medicine, Nanjing Agricultural
University, Nanjing,
Jiangsu, China
| | - Qian Yang
- MOE Joint
International Research Laboratory of Animal Health and Food Safety,
College of Veterinary Medicine, Nanjing Agricultural
University, Nanjing,
Jiangsu, China
| |
Collapse
|
2
|
Johansen ER, Tarakanova VL. STAT1 and herpesviruses: Making lemonade from lemons. Virology 2025; 603:110364. [PMID: 39894604 PMCID: PMC11788573 DOI: 10.1016/j.virol.2024.110364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 02/04/2025]
Abstract
Signal transducer and activator of transcription 1 (STAT1) is engaged downstream of interferon and other cytokine receptors and has traditionally been defined as an antiviral effector of the host. Consistent with the antiviral role, genetic deficiency of STAT1 leads to increased replication of diverse viruses and severe disease that can lead to host's mortality, including in rare human cases of STAT1 insufficiency. Surprisingly, excessive STAT1 activation recently identified in patients with heterozygous gain-of-function STAT1 mutations and subsequently modeled in laboratory mice, also leads to poor control of select virus infections, including herpesviruses. Thus, the function of STAT1 in viral infections might be more nuanced and extend beyond the canonical antiviral role of this host factor. This review will compare the findings in the animal models and human cases to discuss the role of STAT1 in herpesvirus infection of the intact host, including the emerging cell type-specific proviral roles of STAT1.
Collapse
Affiliation(s)
- Erika R Johansen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Vera L Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
3
|
Owens SM, Sifford JM, Li G, Murdock SJ, Salinas E, Oldenburg D, Ghosh D, Stumhofer JS, Nookaew I, Manzano M, Forrest JC. Intrinsic p53 activation restricts gammaherpesvirus driven germinal center B cell expansion during latency establishment. Nat Commun 2025; 16:951. [PMID: 39843898 PMCID: PMC11754798 DOI: 10.1038/s41467-025-56247-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/13/2025] [Indexed: 01/30/2025] Open
Abstract
Gammaherpesviruses are DNA tumor viruses that establish lifelong latent infections in lymphocytes. For viruses such as Epstein-Barr virus and murine gammaherpesvirus 68, this is accomplished through a viral gene-expression program that promotes cellular proliferation and differentiation, especially of germinal center B cells. Intrinsic host mechanisms that control virus-driven cellular expansion are incompletely defined. Using a small-animal model of gammaherpesvirus pathogenesis, we demonstrate in vivo that the tumor suppressor p53 is activated specifically in B cells latently infected by murine gammaherpesvirus 68. In the absence of p53, the early expansion of murine gammaherpesvirus 68 latency greatly increases, especially in germinal center B cells, a cell type whose proliferation is conversely restricted by p53. We identify the B cell-specific latency gene M2, a viral promoter of germinal center B cell differentiation, as a viral protein sufficient to elicit a p53-dependent anti-proliferative response caused by Src-family kinase activation. We further demonstrate that Epstein-Barr virus-encoded latent membrane protein 1 similarly triggers a p53 response in primary B cells. Our data highlight a model in which gammaherpesvirus latency gene-expression programs that promote B cell proliferation and differentiation to facilitate viral colonization of the host trigger aberrant cellular proliferation that is controlled by p53.
Collapse
Affiliation(s)
- Shana M Owens
- Dept. of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jeffrey M Sifford
- Dept. of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Gang Li
- Dept. of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Steven J Murdock
- Dept. of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Eduardo Salinas
- Dept. of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Debopam Ghosh
- Dept. of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jason S Stumhofer
- Dept. of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Intawat Nookaew
- Dept. of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Mark Manzano
- Dept. of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Inflammatory Responses, and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - J Craig Forrest
- Dept. of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Inflammatory Responses, and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
4
|
Johansen ER, Schmalzriedt DL, Avila D, Sylvester PA, Rahlf CR, Bobek JM, Sahoo D, Dittel BN, Tarakanova VL. Combination of proviral and antiviral roles of B cell-intrinsic STAT1 expression defines parameters of chronic gammaherpesvirus infection. mBio 2024; 15:e0159824. [PMID: 39440973 PMCID: PMC11559066 DOI: 10.1128/mbio.01598-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Gammaherpesviruses are species-specific, ubiquitous pathogens that establish lifelong infection in their hosts and are associated with cancers, including B cell lymphomas. Type I and II interferons (IFNs) are critical for the control of acute and chronic gammaherpesvirus infection. However, the cell type-specific role of IFN signaling during natural infection is poorly defined and is masked by the altered viral pathogenesis observed in hosts with global IFN deficiencies. STAT1 is a constitutively expressed transcription factor that is critical for the effector function of type I and II IFNs. In this study, we defined the impact of B cell-specific STAT1 expression on gammaherpesvirus infection using murine gammaherpesvirus 68 (MHV68). While the acute stage of MHV68 infection was not affected, we found opposite, anatomic site-dependent effects of B cell-intrinsic STAT1 expression during chronic infection. Consistent with the antiviral role of STAT1, B cell-specific STAT1 expression attenuated the latent viral reservoir in peritoneal B cells of chronically infected mice. In contrast, STAT1 expression in splenic B cells supported the establishment of the latent MHV68 reservoir in germinal center B cells, revealing an unexpected proviral role of B cell-intrinsic STAT1 expression during chronic gammaherpesvirus infection. These STAT1-dependent MHV68 chronic infection phenotypes were fully recapitulated in the peritoneal cavity but not the spleen of mice with B cell-specific deficiency of type I IFN receptor. In summary, our study uncovers the intriguing combination of proviral and antiviral roles of B cell-intrinsic STAT1 expression during chronic gammaherpesvirus infection.IMPORTANCEInterferons (IFNs) execute broadly antiviral roles during acute and chronic viral infections. The constitutively expressed transcription factor STAT1 is a critical downstream effector of IFN signaling. Our studies demonstrate that B cell-intrinsic STAT1 expression has opposing and anatomic site-dependent roles during chronic gammaherpesvirus infection. Specifically, B cell-intrinsic STAT1 expression restricted gammaherpesvirus latent reservoir in the peritoneal cavity, consistent with the classical antiviral role of STAT1. In contrast, decreased STAT1 expression in splenic B cells led to the attenuated establishment of gammaherpesvirus latency and decreased latent infection of germinal center B cells, highlighting a novel proviral role of B cell-intrinsic STAT1 expression during chronic infection with a B cell-tropic gammaherpesvirus. Interestingly, B cell-specific type I IFN receptor deficiency primarily recapitulated the antiviral role of B cell-intrinsic STAT1 expression, suggesting the compensatory function of B cell-intrinsic type II IFN signaling or an IFN-independent proviral role of B cell-intrinsic STAT1 expression during chronic gammaherpesvirus infection.
Collapse
Affiliation(s)
- Erika R. Johansen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Damon L. Schmalzriedt
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Danilela Avila
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Paul A. Sylvester
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Cade R. Rahlf
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jordan M. Bobek
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Daisy Sahoo
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - Vera L. Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
5
|
Bland WA, Mitra D, Owens S, McEvoy K, Hogan CH, Boccuzzi L, Kirillov V, Meyer TJ, Khairallah C, Sheridan BS, Forrest JC, Krug LT. A replication-deficient gammaherpesvirus vaccine protects mice from lytic disease and reduces latency establishment. NPJ Vaccines 2024; 9:116. [PMID: 38914546 PMCID: PMC11196663 DOI: 10.1038/s41541-024-00908-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 06/11/2024] [Indexed: 06/26/2024] Open
Abstract
Gammaherpesviruses are oncogenic viruses that establish lifelong infections and are significant causes of morbidity and mortality. Vaccine strategies to limit gammaherpesvirus infection and disease are in development, but there are no FDA-approved vaccines for Epstein-Barr or Kaposi sarcoma herpesvirus. As a new approach to gammaherpesvirus vaccination, we developed and tested a replication-deficient virus (RDV) platform, using murine gammaherpesvirus 68 (MHV68), a well-established mouse model for gammaherpesvirus pathogenesis studies and preclinical therapeutic evaluations. We employed codon-shuffling-based complementation to generate revertant-free RDV lacking expression of the essential replication and transactivator protein encoded by ORF50 to arrest viral gene expression early after de novo infection. Inoculation with RDV-50.stop exposes the host to intact virion particles and leads to limited lytic gene expression in infected cells yet does not produce additional infectious particles. Prime-boost vaccination of mice with RDV-50.stop elicited virus-specific neutralizing antibody and effector T cell responses in the lung and spleen. In contrast to vaccination with heat-inactivated WT MHV68, vaccination with RDV-50.stop resulted in a near complete abolishment of virus replication in the lung 7 days post-challenge and reduction of latency establishment in the spleen 16 days post-challenge with WT MHV68. Ifnar1-/- mice, which lack the type I interferon receptor, exhibit severe disease and high mortality upon infection with WT MHV68. RDV-50.stop vaccination of Ifnar1-/- mice prevented wasting and mortality upon challenge with WT MHV68. These results demonstrate that prime-boost vaccination with a gammaherpesvirus that is unable to undergo lytic replication offers protection against acute replication, impairs the establishment of latency, and prevents severe disease upon the WT virus challenge. Our study also reveals that the ability of a gammaherpesvirus to persist in vivo despite potent pre-existing immunity is an obstacle to obtaining sterilizing immunity.
Collapse
Affiliation(s)
- Wesley A Bland
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Environment, Health and Safety, University of North Carolina, Chapel Hill, NC, USA
| | - Dipanwita Mitra
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, USA
| | - Shana Owens
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kyle McEvoy
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Chad H Hogan
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, USA
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY, USA
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luciarita Boccuzzi
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, USA
- Doctor of Medicine Program, Rush University Medical Center, 1650, West Harrison Street, Chicago, IL, USA
| | - Varvara Kirillov
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Thomas J Meyer
- CCR Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Camille Khairallah
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Brian S Sheridan
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - J Craig Forrest
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Laurie T Krug
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, USA.
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
6
|
Hogan CH, Owens SM, Reynoso GV, Liao Y, Meyer TJ, Zelazowska MA, Liu B, Li X, Grosskopf AK, Khairallah C, Kirillov V, Reich NC, Sheridan BS, McBride KM, Gewurz BE, Hickman HD, Forrest JC, Krug LT. Multifaceted roles for STAT3 in gammaherpesvirus latency revealed through in vivo B cell knockout models. mBio 2024; 15:e0299823. [PMID: 38170993 PMCID: PMC10870824 DOI: 10.1128/mbio.02998-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
Cancers associated with the oncogenic gammaherpesviruses, Epstein-Barr virus and Kaposi sarcoma herpesvirus, are notable for their constitutive activation of the transcription factor signal transducer and activator of transcription 3 (STAT3). To better understand the role of STAT3 during gammaherpesvirus latency and the B cell response to infection, we used the model pathogen murine gammaherpesvirus 68 (MHV68). Genetic deletion of STAT3 in B cells of CD19cre/+Stat3f/f mice reduced peak MHV68 latency approximately sevenfold. However, infected CD19cre/+Stat3f/f mice exhibited disordered germinal centers and heightened virus-specific CD8 T cell responses compared to wild-type (WT) littermates. To circumvent the systemic immune alterations observed in the B cell-STAT3 knockout mice and more directly evaluate intrinsic roles for STAT3, we generated mixed bone marrow chimeric mice consisting of WT and STAT3 knockout B cells. We discovered a dramatic reduction in latency in STAT3 knockout B cells compared to their WT B cell counterparts in the same lymphoid organ. RNA sequencing of sorted germinal center B cells revealed that MHV68 infection shifts the gene signature toward proliferation and away from type I and type II IFN responses. Loss of STAT3 largely reversed the virus-driven transcriptional shift without impacting the viral gene expression program. STAT3 promoted B cell processes of the germinal center, including IL-21-stimulated downregulation of surface CD23 on B cells infected with MHV68 or EBV. Together, our data provide mechanistic insights into the role of STAT3 as a latency determinant in B cells for oncogenic gammaherpesviruses.IMPORTANCEThere are no directed therapies to the latency program of the human gammaherpesviruses, Epstein-Barr virus and Kaposi sarcoma herpesvirus. Activated host factor signal transducer and activator of transcription 3 (STAT3) is a hallmark of cancers caused by these viruses. We applied the murine gammaherpesvirus pathogen system to explore STAT3 function upon primary B cell infection in the host. Since STAT3 deletion in all CD19+ B cells of infected mice led to altered B and T cell responses, we generated chimeric mice with both normal and STAT3-deleted B cells. B cells lacking STAT3 failed to support virus latency compared to normal B cells from the same infected animal. Loss of STAT3 impaired B cell proliferation and differentiation and led to a striking upregulation of interferon-stimulated genes. These findings expand our understanding of STAT3-dependent processes that are key to its function as a pro-viral latency determinant for oncogenic gammaherpesviruses in B cells and may provide novel therapeutic targets.
Collapse
Affiliation(s)
- Chad H. Hogan
- Graduate Program in Genetics, Stony Brook University, Stony Brook, New York, USA
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Shana M. Owens
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Glennys V. Reynoso
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Yifei Liao
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas J. Meyer
- CCR Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Monika A. Zelazowska
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiaofan Li
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Anna K. Grosskopf
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Camille Khairallah
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Varvara Kirillov
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Nancy C. Reich
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Brian S. Sheridan
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Kevin M. McBride
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Benjamin E. Gewurz
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Program in Virology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Heather D. Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - J. Craig Forrest
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Laurie T. Krug
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
7
|
Imberti L, Magro P, Sottini A, Quaresima V, Castelli F, Quiros‐Roldan E. High frequency of type I interferon auto-antibodies in a group of middle-aged HIV-infected patients: A cross-sectional exploratory study. Immun Inflamm Dis 2023; 11:e1056. [PMID: 38018592 PMCID: PMC10664390 DOI: 10.1002/iid3.1056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Auto-antibodies neutralizing the activity of type I interferons have been recently described in patients infected by SARS-CoV-2. They can be present even before the onset of the infection. Since type I interferons exert a dichotomous role in the pathogenesis of acute versus chronic HIV infection and auto-antibodies are often found in untreated and anti-retroviral treated HIV+ patients, we investigated whether auto-antibodies anti-type I interferons are present at high prevalence in those HIV+ patients with concomitant opportunistic infections (OIs). METHODS The analysis of auto-antibodies against two types of type I interferons (IFN-α2 and IFN-ω) was performed using the ELISA test in 60 patients chronically infected by HIV who showed concomitant infections caused by mycobacterium tuberculosis or nontuberculosis mycobacterium or with active cytomegalovirus infections. Results were compared with those of 283 SARS-CoV-2 swab positive patients showing mild to severe pneumonia. A chi-square (χ2 ) test or the Wilcoxon-Mann-Whitney test were used to compare the HIV+ patient categorical or continuous variables, respectively. RESULTS A high prevalence of auto-antibodies to type I interferons was found in middle-aged HIV-infected patients with concomitant OIs (11.6% vs. 5.3% in COVID-19 subjects; p < .05). No statistically differences were found for viro/immunological characteristics (CD4 and CD8 cell counts and viral load) between patients with and without type I interferons auto-antibodies. CONCLUSIONS This study, which is the first searching auto-antibodies against type I interferons in HIV-infected patients, demonstrated that their prevalence was higher than that expected by the age of these patients. Furthermore, it indicated that these auto-antibodies are nonspecifically increased in critical SARS-CoV-2 infection but can be found also in other infections.
Collapse
Affiliation(s)
- Luisa Imberti
- Section of MicrobiologyUniversity of BresciaBresciaItaly
| | - Paola Magro
- Department of Infectious and Tropical DiseasesUniversity of BresciaBresciaItaly
| | | | | | - Francesco Castelli
- Department of Infectious and Tropical DiseasesUniversity of BresciaBresciaItaly
| | | |
Collapse
|
8
|
Owens SM, Sifford JM, Li G, Murdock SJ, Salinas E, Manzano M, Ghosh D, Stumhofer JS, Forrest JC. Intrinsic p53 Activation Restricts Gammaherpesvirus-Driven Germinal Center B Cell Expansion during Latency Establishment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.563188. [PMID: 37961505 PMCID: PMC10634957 DOI: 10.1101/2023.10.31.563188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Gammaherpesviruses (GHV) are DNA tumor viruses that establish lifelong latent infections in lymphocytes. For viruses such as Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV68), this is accomplished through a viral gene-expression program that promotes cellular proliferation and differentiation, especially of germinal center (GC) B cells. Intrinsic host mechanisms that control virus-driven cellular expansion are incompletely defined. Using a small-animal model of GHV pathogenesis, we demonstrate in vivo that tumor suppressor p53 is activated specifically in B cells that are latently infected by MHV68. In the absence of p53, the early expansion of MHV68 latency was greatly increased, especially in GC B cells, a cell-type whose proliferation was conversely restricted by p53. We identify the B cell-specific latency gene M2, a viral promoter of GC B cell differentiation, as a viral protein sufficient to elicit a p53-dependent anti-proliferative response caused by Src-family kinase activation. We further demonstrate that EBV-encoded latent membrane protein 1 (LMP1) similarly triggers a p53 response in primary B cells. Our data highlight a model in which GHV latency gene-expression programs that promote B cell proliferation and differentiation to facilitate viral colonization of the host trigger aberrant cellular proliferation that is controlled by p53. IMPORTANCE Gammaherpesviruses cause lifelong infections of their hosts, commonly referred to as latency, that can lead to cancer. Latency establishment benefits from the functions of viral proteins that augment and amplify B cell activation, proliferation, and differentiation signals. In uninfected cells, off-schedule cellular differentiation would typically trigger anti-proliferative responses by effector proteins known as tumor suppressors. However, tumor suppressor responses to gammaherpesvirus manipulation of cellular processes remain understudied, especially those that occur during latency establishment in a living organism. Here we identify p53, a tumor suppressor commonly mutated in cancer, as a host factor that limits virus-driven B cell proliferation and differentiation, and thus, viral colonization of a host. We demonstrate that p53 activation occurs in response to viral latency proteins that induce B cell activation. This work informs a gap in our understanding of intrinsic cellular defense mechanisms that restrict lifelong GHV infection.
Collapse
|
9
|
Bland WA, Owens S, McEvoy K, Hogan CH, Boccuzzi L, Kirillov V, Khairallah C, Sheridan BS, Forrest JC, Krug LT. Replication-dead gammaherpesvirus vaccine protects against acute replication, reactivation from latency, and lethal challenge in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559621. [PMID: 37808844 PMCID: PMC10557649 DOI: 10.1101/2023.09.26.559621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Gammaherpesviruses (GHVs) are oncogenic viruses that establish lifelong infections and are significant causes of human morbidity and mortality. While several vaccine strategies to limit GHV infection and disease are in development, there are no FDA-approved vaccines for human GHVs. As a new approach to gammaherpesvirus vaccination, we developed and tested a replication-dead virus (RDV) platform, using murine gammaherpesvirus 68 (MHV68), a well-established mouse model for gammaherpesvirus pathogenesis studies and preclinical therapeutic evaluations. We employed codon-shuffling-based complementation to generate revertant-free RDV lacking expression of the essential replication and transactivator protein (RTA) encoded by ORF50 to arrest viral gene expression early after de novo infection. Inoculation with RDV-50.stop exposes the host to intact virion particles and leads to limited lytic gene expression in infected cells. Prime-boost vaccination of mice with RDV-50.stop elicited virus-specific neutralizing antibody and effector T cell responses in the lung and spleen. Vaccination with RDV-50.stop resulted in a near complete abolishment of virus replication in the lung 7 days post-challenge and virus reactivation from spleen 16 days post-challenge with WT MHV68. Ifnar1-/- mice, which lack the type I interferon receptor, exhibit severe disease upon infection with WT MHV68. RDV-50.stop vaccination of Ifnar1-/- mice prevented wasting and mortality upon challenge with WT MHV68. These results demonstrate that prime-boost vaccination with a GHV that is unable to undergo lytic replication offers protection against acute replication, reactivation, and severe disease upon WT virus challenge.
Collapse
Affiliation(s)
- Wesley A Bland
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Shana Owens
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kyle McEvoy
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Chad H Hogan
- Graduate Program in Genetics, Stony Brook University, Stony Brook, New York, USA
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Luciarita Boccuzzi
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Varvara Kirillov
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Camille Khairallah
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Brian S Sheridan
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - J Craig Forrest
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Laurie T Krug
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
10
|
Kutle I, Dittrich A, Wirth D. Mouse Models for Human Herpesviruses. Pathogens 2023; 12:953. [PMID: 37513800 PMCID: PMC10384569 DOI: 10.3390/pathogens12070953] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
More than one hundred herpesviruses have been isolated from different species so far, with nine infecting humans. Infections with herpesviruses are characterized by life-long latency and represent a significant challenge for human health. To investigate the consequences of infections and identify novel treatment options, in vivo models are of particular relevance. The mouse has emerged as an economical small animal model to investigate herpesvirus infections. However, except for herpes simplex viruses (HSV-1, HSV-2), human herpesviruses cannot infect mice. Three natural herpesviruses have been identified in mice: mouse-derived cytomegalovirus (MCMV), mouse herpesvirus 68 (MHV-68), and mouse roseolovirus (MRV). These orthologues are broadly used to investigate herpesvirus infections within the natural host. In the last few decades, immunocompromised mouse models have been developed, allowing the functional engraftment of various human cells and tissues. These xenograft mice represent valuable model systems to investigate human-restricted viruses, making them particularly relevant for herpesvirus research. In this review, we describe the various mouse models used to study human herpesviruses, thereby highlighting their potential and limitations. Emphasis is laid on xenograft mouse models, covering the development and refinement of immune-compromised mice and their application in herpesvirus research.
Collapse
Affiliation(s)
- Ivana Kutle
- Research Group Model Systems for Infection, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Anne Dittrich
- Research Group Model Systems for Infection, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
- InSCREENeX GmbH, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Dagmar Wirth
- Research Group Model Systems for Infection, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
11
|
Rex V, Zargari R, Stempel M, Halle S, Brinkmann MM. The innate and T-cell mediated immune response during acute and chronic gammaherpesvirus infection. Front Cell Infect Microbiol 2023; 13:1146381. [PMID: 37065193 PMCID: PMC10102517 DOI: 10.3389/fcimb.2023.1146381] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Immediately after entry into host cells, viruses are sensed by the innate immune system, leading to the activation of innate antiviral effector mechanisms including the type I interferon (IFN) response and natural killer (NK) cells. This innate immune response helps to shape an effective adaptive T cell immune response mediated by cytotoxic T cells and CD4+ T helper cells and is also critical for the maintenance of protective T cells during chronic infection. The human gammaherpesvirus Epstein-Barr virus (EBV) is a highly prevalent lymphotropic oncovirus that establishes chronic lifelong infections in the vast majority of the adult population. Although acute EBV infection is controlled in an immunocompetent host, chronic EBV infection can lead to severe complications in immunosuppressed patients. Given that EBV is strictly host-specific, its murine homolog murid herpesvirus 4 or MHV68 is a widely used model to obtain in vivo insights into the interaction between gammaherpesviruses and their host. Despite the fact that EBV and MHV68 have developed strategies to evade the innate and adaptive immune response, innate antiviral effector mechanisms still play a vital role in not only controlling the acute infection but also shaping an efficient long-lasting adaptive immune response. Here, we summarize the current knowledge about the innate immune response mediated by the type I IFN system and NK cells, and the adaptive T cell-mediated response during EBV and MHV68 infection. Investigating the fine-tuned interplay between the innate immune and T cell response will provide valuable insights which may be exploited to design better therapeutic strategies to vanquish chronic herpesviral infection.
Collapse
Affiliation(s)
- Viktoria Rex
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Razieh Zargari
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Markus Stempel
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Virology and Innate Immunity Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stephan Halle
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
- *Correspondence: Stephan Halle, ; Melanie M. Brinkmann,
| | - Melanie M. Brinkmann
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Virology and Innate Immunity Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- *Correspondence: Stephan Halle, ; Melanie M. Brinkmann,
| |
Collapse
|
12
|
Hogan CH, Owens SM, Reynoso GV, Kirillov V, Meyer TJ, Zelazowska MA, Liu B, Li X, Chikhalya A, Dong Q, Khairallah C, Reich NC, Sheridan B, McBride KM, Hearing P, Hickman HD, Forrest JC, Krug LT. B cell-intrinsic STAT3-mediated support of latency and interferon suppression during murine gammaherpesvirus 68 infection revealed through an in vivo competition model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.22.533727. [PMID: 36993230 PMCID: PMC10055336 DOI: 10.1101/2023.03.22.533727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Cancers associated with the oncogenic gammaherpesviruses, Epstein-Barr virus and Kaposi sarcoma herpesvirus, are notable for their constitutive activation of the transcription factor STAT3. To better understand the role of STAT3 during gammaherpesvirus latency and immune control, we utilized murine gammaherpesvirus 68 (MHV68) infection. Genetic deletion of STAT3 in B cells of CD19cre/+Stat3f/f mice reduced peak latency approximately 7-fold. However, infected CD19cre/+Stat3f/f mice exhibited disordered germinal centers and heightened virus-specific CD8 T cell responses compared to WT littermates. To circumvent the systemic immune alterations observed in the B cell-STAT3 knockout mice and more directly evaluate intrinsic roles for STAT3, we generated mixed bone marrow chimeras consisting of WT and STAT3-knockout B cells. Using a competitive model of infection, we discovered a dramatic reduction in latency in STAT3-knockout B cells compared to their WT B cell counterparts in the same lymphoid organ. RNA sequencing of sorted germinal center B cells revealed that STAT3 promotes proliferation and B cell processes of the germinal center but does not directly regulate viral gene expression. Last, this analysis uncovered a STAT3-dependent role for dampening type I IFN responses in newly infected B cells. Together, our data provide mechanistic insight into the role of STAT3 as a latency determinant in B cells for oncogenic gammaherpesviruses.
Collapse
Affiliation(s)
- Chad H. Hogan
- Graduate Program in Genetics, Stony Brook University, Stony Brook, New York, USA
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Shana M. Owens
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Glennys V. Reynoso
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Varvara Kirillov
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Thomas J. Meyer
- CCR Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Monika A. Zelazowska
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaofan Li
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Aniska Chikhalya
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Qiwen Dong
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Graduate Program of Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York, USA
| | - Camille Khairallah
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Nancy C. Reich
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Brian Sheridan
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Kevin M. McBride
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrick Hearing
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Heather D. Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - J. Craig Forrest
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Laurie T. Krug
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, MD, USA
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
13
|
Tian H, Yu K, He L, Xu H, Han C, Zhang X, Wang X, Zhang X, Zhang L, Gao G, Deng H. RNF213 modulates γ-herpesvirus infection and reactivation via targeting the viral Replication and Transcription Activator. Proc Natl Acad Sci U S A 2023; 120:e2218825120. [PMID: 36917666 PMCID: PMC10041092 DOI: 10.1073/pnas.2218825120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/10/2023] [Indexed: 03/16/2023] Open
Abstract
Interferons (IFNs) and the products of interferon-stimulated genes (ISGs) play crucial roles in host defense against virus infections. Although many ISGs have been characterized with respect to their antiviral activity, their target specificities and mechanisms of action remain largely unknown. Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus that is linked to several human malignancies. Here, we used the genetically and biologically related virus, murine gammaherpesvirus 68 (MHV-68) and screened for ISGs with anti-gammaherpesvirus activities. We found that overexpression of RNF213 dramatically inhibited MHV-68 infection, whereas knockdown of endogenous RNF213 significantly promoted MHV-68 proliferation. Importantly, RNF213 also inhibited KSHV de novo infection, and depletion of RNF213 in the latently KSHV-infected iSLK-219 cell line significantly enhanced lytic reactivation. Mechanistically, we demonstrated that RNF213 targeted the Replication and Transcription Activator (RTA) of both KSHV and MHV-68, and promoted the degradation of RTA protein through the proteasome-dependent pathway. RNF213 directly interacted with RTA and functioned as an E3 ligase to ubiquitinate RTA via K48 linkage. Taken together, we conclude that RNF213 serves as an E3 ligase and inhibits the de novo infection and lytic reactivation of gammaherpesviruses by degrading RTA through the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Huabin Tian
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
| | - Kuai Yu
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
- University of the Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Liang He
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
- University of the Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Hongtao Xu
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
| | - Chuanhui Han
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
| | - Xiaolin Zhang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
| | - Xinlu Wang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
| | - Xuyuan Zhang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
| | - Liguo Zhang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
| | - Guangxia Gao
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
- University of the Chinese Academy of Sciences, Beijing100049, P. R. China
- CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
| | - Hongyu Deng
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
- University of the Chinese Academy of Sciences, Beijing100049, P. R. China
- CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, P. R. China
| |
Collapse
|
14
|
Type I Interferon Signaling Controls Gammaherpesvirus Latency In Vivo. Pathogens 2022; 11:pathogens11121554. [PMID: 36558888 PMCID: PMC9787724 DOI: 10.3390/pathogens11121554] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Gammaherpesviruses, such as Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus, are important human pathogens involved in lymphoproliferative disorders and tumorigenesis. Herpesvirus infections are characterized by a biphasic cycle comprised of an acute phase with lytic replication and a latent state. Murine gammaherpesvirus 68 (MHV-68) is a well-established model for the study of lytic and latent life cycles in the mouse. We investigated the interplay between the type I interferon (IFN)-mediated innate immune response and MHV-68 latency using sensitive bioluminescent reporter mice. Adoptive transfer of latently infected splenocytes into type I IFN receptor-deficient mice led to a loss of latency control. This was revealed by robust viral propagation and dissemination of MHV-68, which coincided with type I IFN reporter induction. Despite MHV-68 latency control by IFN, the continuous low-level cell-to-cell transmission of MHV-68 was detected in the presence of IFN signaling, indicating that IFN cannot fully prevent viral dissemination during latency. Moreover, impaired type I IFN signaling in latently infected splenocytes increased the risk of virus reactivation, demonstrating that IFN directly controls MHV-68 latency in infected cells. Overall, our data show that locally constrained type I IFN responses control the cellular reservoir of latency, as well as the distribution of latent infection to potential new target cells.
Collapse
|
15
|
Sylvester PA, Jondle CN, Schmalzriedt DL, Dittel BN, Tarakanova VL. T Cell-Specific STAT1 Expression Promotes Lytic Replication and Supports the Establishment of Gammaherpesvirus Latent Reservoir in Splenic B Cells. mBio 2022; 13:e0210722. [PMID: 35968944 PMCID: PMC9430880 DOI: 10.1128/mbio.02107-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022] Open
Abstract
Gammaherpesviruses establish lifelong infections in most vertebrate species, including humans and rodents, and are associated with cancers, including B cell lymphomas. While type I and II interferon (IFN) systems of the host are critical for the control of acute and chronic gammaherpesvirus infection, the cell type-specific role(s) of IFN signaling during infection is poorly understood and is often masked by the profoundly altered viral pathogenesis in the hosts with global IFN deficiencies. STAT1 is a critical effector of all classical IFN responses along with its involvement in other cytokine signaling pathways. In this study, we defined the effect of T cell-specific STAT1 deficiency on the viral and host parameters of infection with murine gammaherpesvirus 68 (MHV68). MHV68 is a natural rodent pathogen that, similar to human gammaherpesviruses, manipulates and usurps B cell differentiation to establish a lifelong latent reservoir in B cells. Specifically, germinal center B cells host the majority of latent MHV68 reservoir in the lymphoid organs, particularly at the peak of viral latency. Unexpectedly, T cell-specific STAT1 expression, while limiting the overall expansion of the germinal center B cell population during chronic infection, rendered these B cells more effective at hosting the latent virus reservoir. Further, T cell-specific STAT1 expression in a wild type host limited circulating levels of IFNγ, with corresponding increases in lytic MHV68 replication and viral reactivation. Thus, our study unveils an unexpected proviral role of T cell-specific STAT1 expression during gammaherpesvirus infection of a natural intact host. IMPORTANCE Interferons (IFNs) represent a major antiviral host network vital to the control of multiple infections, including acute and chronic gammaherpesvirus infections. Ubiquitously expressed STAT1 plays a critical effector role in all classical IFN responses. This study utilized a mouse model of T cell-specific STAT1 deficiency to define cell type-intrinsic role of STAT1 during natural gammaherpesvirus infection. Unexpectedly, T cell-specific loss of STAT1 led to better control of acute and persistent gammaherpesvirus replication and decreased establishment of latent viral reservoir in B cells, revealing a surprisingly diverse proviral role of T cell-intrinsic STAT1.
Collapse
Affiliation(s)
- P. A. Sylvester
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - C. N. Jondle
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - D. L. Schmalzriedt
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - B. N. Dittel
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
| | - V. L. Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
16
|
Márquez AC, Croft C, Shanina I, Horwitz MS. Influence of Type I Interferons in Gammaherpesvirus-68 and Its Influence on EAE Enhancement. Front Immunol 2022; 13:858583. [PMID: 35874728 PMCID: PMC9301468 DOI: 10.3389/fimmu.2022.858583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022] Open
Abstract
Epstein-Barr virus (EBV) has been identified as a putative trigger of multiple sclerosis (MS). Previously, we reported that mice latently infected with murine gammaherpesvirus 68 (γHV-68), the murine homolog to EBV, and induced for experimental autoimmune encephalomyelitis (EAE), developed an enhanced disease more reminiscent of MS. These prior results showed that expression of CD40 on CD11b+CD11c+ cells in latently infected mice was required to prime the strong Th1 response driving disease as well as decreasing Treg frequencies in the periphery and CNS. Subsequent work demonstrated that transfer of B cells from latently infected mice was sufficient to enhance disease. Herein, we show that B cells from infected mice do not need type I IFN signaling to drive a strong Th1 response, yet are important in driving infiltration of the CNS by CD8+ T cells. Given the importance of type I IFNs in MS, we used IFNARko mice in order to determine if type I IFN signaling was important in the enhancement of EAE in latently infected mice. We found that while type I IFNs are important for the control of γHV-68 infection and maintenance of latency, they do not have a direct effect in the development of enhanced EAE.
Collapse
Affiliation(s)
- Ana Citlali Márquez
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- BC Centre for Disease Control, University of British Columbia, Vancouver, BC, Canada
| | - Carys Croft
- Innate Immunity Unit, Institut Pasteur, Inserm U1223, Paris, France
| | - Iryna Shanina
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Marc Steven Horwitz
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Marc Steven Horwitz,
| |
Collapse
|
17
|
Critically ill COVID-19 patients with neutralizing autoantibodies against type I interferons have increased risk of herpesvirus disease. PLoS Biol 2022; 20:e3001709. [PMID: 35788562 PMCID: PMC9286229 DOI: 10.1371/journal.pbio.3001709] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/15/2022] [Accepted: 06/14/2022] [Indexed: 01/09/2023] Open
Abstract
Autoantibodies neutralizing the antiviral action of type I interferons (IFNs) have been associated with predisposition to severe Coronavirus Disease 2019 (COVID-19). Here, we screened for such autoantibodies in 103 critically ill COVID-19 patients in a tertiary intensive care unit (ICU) in Switzerland. Eleven patients (10.7%), but no healthy donors, had neutralizing anti-IFNα or anti-IFNα/anti-IFNω IgG in plasma/serum, but anti-IFN IgM or IgA was rare. One patient had non-neutralizing anti-IFNα IgG. Strikingly, all patients with plasma anti-IFNα IgG also had anti-IFNα IgG in tracheobronchial secretions, identifying these autoantibodies at anatomical sites relevant for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. Longitudinal analyses revealed patient heterogeneity in terms of increasing, decreasing, or stable anti-IFN IgG levels throughout the length of hospitalization. Notably, presence of anti-IFN autoantibodies in this critically ill COVID-19 cohort appeared to predict herpesvirus disease (caused by herpes simplex viruses types 1 and 2 (HSV-1/-2) and/or cytomegalovirus (CMV)), which has been linked to worse clinical outcomes. Indeed, all 7 tested COVID-19 patients with anti-IFN IgG in our cohort (100%) suffered from one or more herpesviruses, and analysis revealed that these patients were more likely to experience CMV than COVID-19 patients without anti-IFN autoantibodies, even when adjusting for age, gender, and systemic steroid treatment (odds ratio (OR) 7.28, 95% confidence interval (CI) 1.14 to 46.31, p = 0.036). As the IFN system deficiency caused by neutralizing anti-IFN autoantibodies likely directly and indirectly exacerbates the likelihood of latent herpesvirus reactivations in critically ill patients, early diagnosis of anti-IFN IgG could be rapidly used to inform risk-group stratification and treatment options. Trial Registration: ClinicalTrials.gov Identifier: NCT04410263. Autoantibodies that neutralize the antiviral action of type I interferons are associated with predisposition to severe COVID-19. This study shows that this deficiency in the interferon system is associated with a heightened risk of herpesvirus disease in critically ill patients infected with SARS-CoV-2.
Collapse
|
18
|
Wang Z, Chen J, Zhang QG, Huang K, Ma D, Du Q, Tong D, Huang Y. Porcine circovirus type 2 infection inhibits the activation of type I interferon signaling via capsid protein and host gC1qR. Vet Microbiol 2022; 266:109354. [DOI: 10.1016/j.vetmic.2022.109354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022]
|
19
|
Wang Y, Tibbetts SA, Krug LT. Conquering the Host: Determinants of Pathogenesis Learned from Murine Gammaherpesvirus 68. Annu Rev Virol 2021; 8:349-371. [PMID: 34586873 PMCID: PMC9153731 DOI: 10.1146/annurev-virology-011921-082615] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Gammaherpesviruses are an important class of oncogenic pathogens that are exquisitely evolved to their respective hosts. As such, the human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi sarcoma herpesvirus (KSHV) do not naturally infect nonhuman primates or rodents. There is a clear need to fully explore mechanisms of gammaherpesvirus pathogenesis, host control, and immune evasion in the host. A gammaherpesvirus pathogen isolated from murid rodents was first reported in 1980; 40 years later, murine gammaherpesvirus 68 (MHV68, MuHV-4, γHV68) infection of laboratory mice is a well-established pathogenesis system recognized for its utility in applying state-of-the-art approaches to investigate virus-host interactions ranging from the whole host to the individual cell. Here, we highlight recent advancements in our understanding of the processes by which MHV68 colonizes the host and drives disease. Lessons that inform KSHV and EBV pathogenesis and provide future avenues for novel interventions against infection and virus-associated cancers are emphasized.
Collapse
Affiliation(s)
- Yiping Wang
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Scott A Tibbetts
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Laurie T Krug
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA;
| |
Collapse
|
20
|
Conserved Gammaherpesvirus Protein Kinase Counters the Antiviral Effects of Myeloid Cell-Specific STAT1 Expression To Promote the Establishment of Splenic B Cell Latency. J Virol 2021; 95:e0085921. [PMID: 34132573 DOI: 10.1128/jvi.00859-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gammaherpesviruses establish lifelong infections and are associated with B cell lymphomas. Murine gammaherpesvirus 68 (MHV68) infects epithelial and myeloid cells during acute infection, with subsequent passage of the virus to B cells, where physiological B cell differentiation is usurped to ensure the establishment of a chronic latent reservoir. Interferons (IFNs) represent a major antiviral defense system that engages the transcriptional factor STAT1 to attenuate diverse acute and chronic viral infections, including those of gammaherpesviruses. Correspondingly, global deficiency of type I or type II IFN signaling profoundly increases the pathogenesis of acute and chronic gammaherpesvirus infection, compromises host survival, and impedes mechanistic understanding of cell type-specific role of IFN signaling. Here, we demonstrate that myeloid-specific STAT1 expression attenuates acute and persistent MHV68 replication in the lungs and suppresses viral reactivation from peritoneal cells, without any effect on the establishment of viral latent reservoir in splenic B cells. All gammaherpesviruses encode a conserved protein kinase that antagonizes type I IFN signaling in vitro. Here, we show that myeloid-specific STAT1 deficiency rescues the attenuated splenic latent reservoir of the kinase-null MHV68 mutant. However, despite having gained access to splenic B cells, the protein kinase-null MHV68 mutant fails to drive B cell differentiation. Thus, while myeloid-intrinsic STAT1 expression must be counteracted by the gammaherpesvirus protein kinase to facilitate viral passage to splenic B cells, expression of the viral protein kinase continues to be required to promote optimal B cell differentiation and viral reactivation, highlighting the multifunctional nature of this conserved viral protein during chronic infection. IMPORTANCE IFN signaling is a major antiviral system of the host that suppresses replication of diverse viruses, including acute and chronic gammaherpesvirus infection. STAT1 is a critical member and the primary antiviral effector of IFN signaling pathways. Given the significantly compromised antiviral status of global type I or type II IFN deficiency, unabated gammaherpesvirus replication and pathogenesis hinders understanding of cell type-specific antiviral effects. In this study, a mouse model of myeloid-specific STAT1 deficiency unveiled site-specific antiviral effects of STAT1 in the lungs and peritoneal cavity, but not the spleen, of chronically infected hosts. Interestingly, expression of a conserved gammaherpesvirus protein kinase was required to counteract the antiviral effects of myeloid-specific STAT1 expression to facilitate latent infection of splenic B cells, revealing a cell type-specific virus-host antagonism during the establishment of chronic gammaherpesvirus infection.
Collapse
|
21
|
T cell-intrinsic Interferon Regulatory Factor-1 expression suppresses differentiation of CD4 + T cell populations that support chronic gammaherpesvirus infection. J Virol 2021; 95:e0072621. [PMID: 34346769 DOI: 10.1128/jvi.00726-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gammaherpesviruses are ubiquitous pathogens that establish life-long infection and are associated with B cell lymphomas. To establish chronic infection, these viruses usurp B cell differentiation and drive a robust germinal center response to expand the latent viral reservoir and gain access to memory B cells. Germinal center B cells, while important for the establishment of latent infection, are also thought to be the target of viral transformation. The host and viral factors that impact the gammaherpesvirus-driven germinal center response are not clearly defined. We showed that global expression of the antiviral and tumor-suppressor interferon regulatory factor 1 (IRF-1) selectively attenuates the murine gammaherpesvirus 68 (MHV68)-driven germinal center response and restricts expansion of the latent viral reservoir. In this study we found that T cell intrinsic IRF-1 expression recapitulates some aspects of antiviral state imposed by IRF-1 during chronic MHV68 infection, including attenuation of the germinal center response and viral latency in the spleen. We also discovered that global and T cell-intrinsic IRF-1 deficiency leads to unhindered rise of IL-17A-expressing and follicular helper T cell populations, two CD4+ T cell subsets that support chronic MHV68 infection. Thus, this study unveils a novel aspect of antiviral activity of IRF-1 by demonstrating IRF-1-mediated suppression of specific CD4+ T cell subsets that support chronic gammaherpesvirus infection. Importance Gammaherpesviruses infect over 95% of the adult population, last the lifetime of the host, and are associated with multiple cancers. These viruses usurp the germinal center response to establish lifelong infection in memory B cells. This manipulation of B cell differentiation by the virus is thought to contribute to lymphomagenesis, though exactly how the virus precipitates malignant transformation in vivo is unclear. IRF-1, a host transcription factor and a known tumor suppressor, restricts the MHV68-driven germinal center response in a B cell-extrinsic manner. We found that T cell intrinsic IRF-1 expression attenuates the MHV68-driven germinal center response by restricting the CD4+ T follicular helper population. Further, our study identified IRF-1 as a novel negative regulator of IL-17-driven immune responses, highlighting the multifaceted role of IRF-1 in gammaherpesvirus infection.
Collapse
|
22
|
Interferon Regulatory Factor 3 Supports the Establishment of Chronic Gammaherpesvirus Infection in a Route- and Dose-Dependent Manner. J Virol 2021; 95:JVI.02208-20. [PMID: 33597211 DOI: 10.1128/jvi.02208-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/10/2021] [Indexed: 12/15/2022] Open
Abstract
Gammaherpesviruses are ubiquitous pathogens that establish lifelong infections and are associated with several malignancies, including B cell lymphomas. Uniquely, these viruses manipulate B cell differentiation to establish long-term latency in memory B cells. This study focuses on the interaction between gammaherpesviruses and interferon regulatory factor 3 (IRF-3), a ubiquitously expressed transcription factor with multiple direct target genes, including beta interferon (IFN-β), a type I IFN. IRF-3 attenuates acute replication of a plethora of viruses, including gammaherpesvirus. Furthermore, IRF-3-driven IFN-β expression is antagonized by the conserved gammaherpesvirus protein kinase during lytic virus replication in vitro In this study, we have uncovered an unexpected proviral role of IRF-3 during chronic gammaherpesvirus infection. In contrast to the antiviral activity of IRF-3 during acute infection, IRF-3 facilitated establishment of latent gammaherpesvirus infection in B cells, particularly, germinal center and activated B cells, the cell types critical for both natural infection and viral lymphomagenesis. This proviral role of IRF-3 was further modified by the route of infection and viral dose. Furthermore, using a combination of viral and host genetics, we show that IRF-3 deficiency does not rescue attenuated chronic infection of a protein kinase null gammaherpesvirus mutant, highlighting the multifunctional nature of the conserved gammaherpesvirus protein kinases in vivo In summary, this study unveils an unexpected proviral nature of the classical innate immune factor, IRF-3, during chronic virus infection.IMPORTANCE Interferon regulatory factor 3 (IRF-3) is a critical component of the innate immune response, in part due to its transactivation of beta interferon (IFN-β) expression. Similar to that observed in all acute virus infections examined to date, IRF-3 suppresses lytic viral replication during acute gammaherpesvirus infection. Because gammaherpesviruses establish lifelong infection, this study aimed to define the antiviral activity of IRF-3 during chronic infection. Surprisingly, we found that, in contrast to acute infection, IRF-3 supported the establishment of gammaherpesvirus latency in splenic B cells, revealing an unexpected proviral nature of this classical innate immune host factor.
Collapse
|
23
|
Interferon Regulatory Factor 7 Attenuates Chronic Gammaherpesvirus Infection. J Virol 2020; 94:JVI.01554-20. [PMID: 32967960 DOI: 10.1128/jvi.01554-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/15/2020] [Indexed: 01/02/2023] Open
Abstract
Gammaherpesviruses are ubiquitous pathogens that establish lifelong infections and are associated with a variety of malignancies, including lymphomas. Interferon regulatory factor 7 (IRF-7) is an innate immune transcription factor that restricts acute replication of diverse viruses, including murine gammaherpesvirus 68 (MHV68). Importantly, very little is known about the role of IRF-7 during chronic virus infections. In this study, we demonstrate that IRF-7 attenuates chronic infection by restricting establishment of gammaherpesvirus latency in the peritoneal cavity and, to a lesser extent, viral reactivation in the spleen. Despite the classical role of IRF-7 as a stimulator of type I interferon (IFN) transcription, there were no global effects on the expression of IFN-induced genes (ISGs) in the absence of IRF-7, with only a few ISGs showing attenuated expression in IRF-7-deficient peritoneal cells. Further, IRF-7 expression was dispensable for the induction of a virus-specific CD8 T cell response. In contrast, IRF-7 expression restricted latent gammaherpesvirus infection in the peritoneal cavity under conditions where the viral latent reservoir is predominantly hosted by peritoneal B cells. This report is the first demonstration of the antiviral role of IRF-7 during the chronic stage of gammaherpesvirus infection.IMPORTANCE The innate immune system of the host is critical for the restriction of acute viral infections. In contrast, the role of the innate immune network during chronic herpesvirus infection remains poorly defined. Interferon regulatory factor 7 (IRF-7) is a transcription factor with many target genes, including type I interferons (IFNs). In this study, we show that the antiviral role of IRF-7 continues into the chronic phase of gammaherpesvirus infection, wherein IRF-7 restricts the establishment of viral latency and viral reactivation. This study is, to our knowledge, the first to define the role of IRF-7 in chronic virus infection.
Collapse
|
24
|
Márquez AC, Shanina I, Horwitz MS. Multiple Sclerosis-Like Symptoms in Mice Are Driven by Latent γHerpesvirus-68 Infected B Cells. Front Immunol 2020; 11:584297. [PMID: 33329556 PMCID: PMC7711133 DOI: 10.3389/fimmu.2020.584297] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022] Open
Abstract
Multiple sclerosis (MS) is caused by a combination of genetic and environmental factors. It is believed that previous infection with Epstein Barr Virus (EBV) plays an important role in the development of MS. Previously, we developed a murine model where latent infection with gamma herpesvirus 68 (γHV-68), a murine homolog to EBV, enhanced the symptoms of experimental autoimmune encephalomyelitis (EAE), resulting in disease that more closely resembles MS in humans. Here, we explored the conditions that were necessary for EAE enhancement. We showed that latently infected CD19+IgD− B cells were capable of enhancing EAE symptoms when transferred from mice previously infected with γHV-68 into uninfected mice. We also observed a prevention of enhancement when B cells were depleted before infection. However, depletion after the establishment of latency only partially reduced EAE. This indicated the existence of a mechanism where B cells play an important role as antigen presenting cells (APCs) prior to EAE induction for the priming of Th1 cells. It is possible that these signals persist even after B cell depletion, strongly suggesting a paracrine signaling modulation of non-B cell APCs. These results strongly support the concept that EBV contributes to the development of autoimmunity and highlights the need for a vaccine against EBV that could limit or prevent multiple sclerosis development.
Collapse
Affiliation(s)
- Ana Citlali Márquez
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Iryna Shanina
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Marc Steven Horwitz
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
25
|
Jondle CN, Tarakanova VL. Innate immunity and alpha/gammaherpesviruses: first impressions last a lifetime. Curr Opin Virol 2020; 44:81-89. [PMID: 32777757 DOI: 10.1016/j.coviro.2020.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 06/25/2020] [Accepted: 07/04/2020] [Indexed: 12/26/2022]
Abstract
Innate immune system is considered the first line of defense during viral invasion, with the wealth of the literature demonstrating innate immune control of diverse viruses during acute infection. What is far less clear is the role of innate immune system during chronic virus infections. This short review focuses on alphaherpesviruses and gammaherpesviruses, two highly prevalent herpesvirus subfamilies that, following a brief, once in a lifetime period of acute lytic infection, establish life-long latent infection that is characterized by sporadic reactivation in an immunocompetent host. In spite of many similarities, these two viral families are characterized by distinct cellular tropism and pathogenesis. Here we focus on the published in vivo studies to review known interactions of these two viral subfamilies with the innate immunity of the intact host, both during acute and, particularly, chronic virus infection.
Collapse
Affiliation(s)
- Christopher N Jondle
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI, 53226, United States
| | - Vera L Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI, 53226, United States; Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States.
| |
Collapse
|
26
|
Miller HE, Johnson KE, Tarakanova VL, Robinson RT. γ-herpesvirus latency attenuates Mycobacterium tuberculosis infection in mice. Tuberculosis (Edinb) 2019; 116:56-60. [PMID: 31153519 DOI: 10.1016/j.tube.2019.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 12/13/2022]
Abstract
Tuberculosis is caused by Mycobacterium tuberculosis (Mtb), a bacterial pathogen which is transmitted via aerosol and establishes a chronic lung infection. In naïve hosts, Mtb grows for several weeks without being restricted by IFNγ-producing T cells, which eventually accumulate and limit Mtb dissemination. In this study, we used a mouse model of Mtb/γ-herpesvirus (γHV) coinfection to test the hypothesis that latent γHV infection alters host resistance to Mtb. γHVs are DNA viruses which elicit a polyclonal T cell response and attenuate some acute bacterial pathogens in mice; whether γHVs modulate infection with Mtb is unknown. Here, mice harboring latent mouse gammaherpesvirus 68 (MHV68)-a γHV genetically and biologically related to human Epstein Barr virus (EBV)-were infected via aerosol with a low dose of virulent Mtb. Mtb burdens and IFNγ+ T cell frequencies in mice with latent MHV68 (MHV68POS mice) were subsequently measured and compared to control mice that did not harbor latent MHV68 (MHV68NEG mice). Relative to MHV68NEG controls, MHV68POS mice more effectively limited Mtb growth and dissemination, and had higher frequencies of CD4+IFNγ+ cells in lung-draining lymph nodes. Collectively, our results support a model wherein latent γHV confers moderate protection against subsequent Mtb infection.
Collapse
Affiliation(s)
| | | | - Vera L Tarakanova
- Department of Microbiology and Immunology, USA; Cancer Center, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - Richard T Robinson
- Department of Microbial Infection & Immunity, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
27
|
LXR Alpha Restricts Gammaherpesvirus Reactivation from Latently Infected Peritoneal Cells. J Virol 2019; 93:JVI.02071-18. [PMID: 30602604 DOI: 10.1128/jvi.02071-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 12/19/2018] [Indexed: 12/28/2022] Open
Abstract
Gammaherpesviruses are ubiquitous viruses that establish lifelong infections. Importantly, these viruses are associated with numerous cancers and lymphoproliferative diseases. While risk factors for developing gammaherpesvirus-driven cancers are poorly understood, it is clear that elevated viral reactivation from latency often precedes oncogenesis. Here, we demonstrate that the liver X receptor alpha isoform (LXRα) restricts gammaherpesvirus reactivation in an anatomic-site-specific manner. We have previously demonstrated that deficiency of both LXR isoforms (α and β) leads to an increase in fatty acid and cholesterol synthesis in primary macrophage cultures, with a corresponding increase in gammaherpesvirus replication. Interestingly, expression of fatty acid synthesis genes was not derepressed in LXRα-deficient hosts, indicating that the antiviral effects of LXRα are independent of lipogenesis. Additionally, the critical host defenses against gammaherpesvirus reactivation, virus-specific CD8+ T cells and interferon (IFN) signaling, remained intact in the absence of LXRα. Remarkably, using a murine gammaherpesvirus 68 (MHV68) reporter virus, we discovered that LXRα expression dictates the cellular tropism of MHV68 in the peritoneal cavity. Specifically, LXRα-/- mice exhibit reduced latency within the peritoneal B cell compartment and elevated latency within F4/80+ cells. Thus, LXRα restricts gammaherpesvirus reactivation through a novel mechanism that is independent of the known CD8+ T cell-based antiviral responses or changes in lipid synthesis and likely involves changes in the tropism of MHV68 in the peritoneal cavity.IMPORTANCE Liver X receptors (LXRs) are nuclear receptors that mediate cholesterol and fatty acid homeostasis. Importantly, as ligand-activated transcription factors, LXRs represent potential targets for the treatment of hypercholesterolemia and atherosclerosis. Here, we demonstrate that LXRα, one of the two LXR isoforms, restricts reactivation of latent gammaherpesvirus from peritoneal cells. As gammaherpesviruses are ubiquitous oncogenic agents, LXRs may represent a targetable host factor for the treatment of poorly controlled gammaherpesvirus infection and associated lymphomagenesis.
Collapse
|
28
|
Liu M, Barton ES, Jennings RN, Oldenburg DG, Whirry JM, White DW, Grayson JM. Unsupervised learning techniques reveal heterogeneity in memory CD8 + T cell differentiation following acute, chronic and latent viral infections. Virology 2017; 509:266-279. [PMID: 28689040 DOI: 10.1016/j.virol.2017.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/14/2017] [Accepted: 06/15/2017] [Indexed: 01/09/2023]
Abstract
CD8+ T lymphocytes are critical for the control of gammaherpesvirus latency. To determine how memory CD8+ T cells generated during latency differ from those primed during acute or chronic viral infection, we adoptively transferred naive P14 CD8+ T cells into uninfected recipients, and examined surface proteins, cytokines and transcription factors following infection with the Armstrong (acute) or Clone 13 (chronic) strains of lymphocytic choriomeningitis virus (LCMV), or murine gammaherpesvirus 68 (MHV68) expressing the LCMV epitope DbGP33-41. By performing k-means clustering and generating self organizing maps (SOM), we observed increased short-lived effector-like, CD27lo CD62Llo and Bcl-6lo CD8+ T cells following latent infection. In addition, we found that memory CD8+ T cells from latent primed mice underwent less expansion following adoptive transfer and antigen rechallenge. Data from cluster models were combined and visualized by principal component analysis (PCA) demonstrating memory CD8+ T cells from latent infection occupy an intermediate differentiation space.
Collapse
Affiliation(s)
- Mingyong Liu
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Erik S Barton
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Ryan N Jennings
- Department of Veterinary Biosciences, The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA
| | | | | | | | - Jason M Grayson
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
29
|
Racicot K, Aldo P, El-Guindy A, Kwon JY, Romero R, Mor G. Cutting Edge: Fetal/Placental Type I IFN Can Affect Maternal Survival and Fetal Viral Load during Viral Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:3029-3032. [PMID: 28264970 PMCID: PMC5633930 DOI: 10.4049/jimmunol.1601824] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/13/2017] [Indexed: 01/19/2023]
Abstract
Pregnant women have greater mortality and complications associated with viral infections compared with the general population, but the reason for the increased susceptibility is not well defined. Placenta type I IFN is an important immune modulator and protects the pregnancy. We hypothesized that loss of placental IFN affects the regulation of the maternal immune system, resulting in the differential response to infections observed in pregnancy. Pregnant mice lacking the IFN-α/β receptor (IFNAR) became viremic and had higher mortality compared with nonpregnant animals. Notably, an embryo with functional IFN signaling alone was sufficient to rescue the pregnant IFNAR-/- dam from virus-associated demise. Placental IFN was also an important regulator of viral replication in placental tissue and significantly affected viral transmission to the fetus. These findings highlight the role of fetal/placental IFN in the modulation of viral infection in the mother and fetus.
Collapse
Affiliation(s)
- Karen Racicot
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06520
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503
| | - Paulomi Aldo
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06520
| | - Ayman El-Guindy
- Department of Pediatrics, Yale School of Medicine, New Haven, CT 06520
| | - Ja-Young Kwon
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06520
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 120-749, Korea; and
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Detroit, MI 48201
| | - Gil Mor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06520;
| |
Collapse
|
30
|
Tao L, Reese TA. Making Mouse Models That Reflect Human Immune Responses. Trends Immunol 2017; 38:181-193. [PMID: 28161189 DOI: 10.1016/j.it.2016.12.007] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/19/2016] [Accepted: 12/30/2016] [Indexed: 02/08/2023]
Abstract
Humans are infected with a variety of acute and chronic pathogens over the course of their lives, and pathogen-driven selection has shaped the immune system of humans. The same is likely true for mice. However, laboratory mice we use for most biomedical studies are bred in ultra-hygienic environments, and are kept free of specific pathogens. We review recent studies that indicate that pathogen infections are important for the basal level of activation and the function of the immune system. Consideration of these environmental exposures of both humans and mice can potentially improve mouse models of human disease.
Collapse
Affiliation(s)
- Lili Tao
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tiffany A Reese
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
31
|
Interferon Regulatory Factor 1 and Type I Interferon Cooperate To Control Acute Gammaherpesvirus Infection. J Virol 2016; 91:JVI.01444-16. [PMID: 27795415 DOI: 10.1128/jvi.01444-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/18/2016] [Indexed: 12/20/2022] Open
Abstract
Gammaherpesviruses are ubiquitous pathogens that establish lifelong infection in >95% of adults worldwide and are associated with a variety of malignancies. Coevolution of gammaherpesviruses with their hosts has resulted in an intricate relationship between the virus and the host immune system, and perturbation of the virus-host balance results in pathology. Interferon regulatory factor 1 (IRF-1) is a tumor suppressor that is also involved in the regulation of innate and adaptive immune responses. Here, we show that type I interferon (IFN) and IRF-1 cooperate to control acute gammaherpesvirus infection. Specifically, we demonstrate that a combination of IRF-1 and type I IFN signaling ensures host survival during acute gammaherpesvirus infection and supports IFN gamma-mediated suppression of viral replication. Thus, our studies reveal an intriguing cross talk between IRF-1 and type I and II IFNs in the induction of the antiviral state during acute gammaherpesvirus infection. IMPORTANCE Gammaherpesviruses establish chronic infection in a majority of adults, and this long-term infection is associated with virus-driven development of a range of malignancies. In contrast, a brief period of active gammaherpesvirus replication during acute infection of a naive host is subclinical in most individuals. Here, we discovered that a combination of type I interferon (IFN) signaling and interferon regulatory factor 1 (IRF-1) expression is required to ensure survival of a gammaherpesvirus-infected host past the first 8 days of infection. Specifically, both type I IFN receptor and IRF-1 expression potentiated antiviral effects of type II IFN to restrict gammaherpesvirus replication in vivo, in the lungs, and in vitro, in primary macrophage cultures.
Collapse
|
32
|
CD95 Signaling Inhibits B Cell Receptor-Mediated Gammaherpesvirus Replication in Apoptosis-Resistant B Lymphoma Cells. J Virol 2016; 90:9782-9796. [PMID: 27558422 DOI: 10.1128/jvi.00668-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/13/2016] [Indexed: 11/20/2022] Open
Abstract
While CD95 is an apoptosis-inducing receptor and has emerged as a potential anticancer therapy target, mounting evidence shows that CD95 is also emerging as a tumor promoter by activating nonapoptotic signaling pathways. Gammaherpesviral infection is closely associated with lymphoproliferative diseases, including B cell lymphomas. The nonapoptotic function of CD95 in gammaherpesvirus-associated lymphomas is largely unknown. Here, we show that stimulation of CD95 agonist antibody drives the majority of sensitive gammaherpesvirus-transformed B cells to undergo caspase-dependent apoptosis and promotes the survival and proliferation of a subpopulation of apoptosis-resistant B cells. Surprisingly, CD95-mediated nonapoptotic signaling induced beta interferon (IFN-β) expression and correlatively inhibited B cell receptor (BCR)-mediated gammaherpesviral replication in the apoptosis-resistant lymphoma cells without influencing BCR signaling. Further analysis showed that IFN-β alone or synergizing with CD95 blocked the activation of lytic switch proteins and the gene expression of gammaherpesviruses. Our findings indicate that, independent of its apoptotic activity, CD95 signaling activity plays an important role in blocking viral replication in apoptosis-resistant, gammaherpesvirus-associated B lymphoma cells, suggesting a novel mechanism that indicates how host CD95 prototype death receptor controls the life cycle of gammaherpesviruses independent of its apoptotic activity. IMPORTANCE Gammaherpesviruses are closely associated with lymphoid malignancies and other cancers. Viral replication and persistence strategies leading to cancer involve the activation of antiapoptotic and proliferation programs, as well as evasion of the host immune response. Here, we provide evidence that the stimulation of CD95 agonist antibody, mimicking one of the major mechanisms of cytotoxic T cell killing, inhibits B cell receptor-mediated gammaherpesviral replication in CD95 apoptosis-resistant lymphoma cells. CD95-induced type I interferon (IFN-β) contributes to the inhibition of gammaherpesviral replication. This finding sheds new light on the CD95 nonapoptotic function and provides a novel mechanism for gammaherpesviruses that helps them to escape host immune surveillance.
Collapse
|
33
|
Tan CSE, Lawler C, May JS, Belz GT, Stevenson PG. Type I Interferons Direct Gammaherpesvirus Host Colonization. PLoS Pathog 2016; 12:e1005654. [PMID: 27223694 PMCID: PMC4880296 DOI: 10.1371/journal.ppat.1005654] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/02/2016] [Indexed: 12/24/2022] Open
Abstract
Gamma-herpesviruses colonise lymphocytes. Murid Herpesvirus-4 (MuHV-4) infects B cells via epithelial to myeloid to lymphoid transfer. This indirect route entails exposure to host defences, and type I interferons (IFN-I) limit infection while viral evasion promotes it. To understand how IFN-I and its evasion both control infection outcomes, we used Mx1-cre mice to tag floxed viral genomes in IFN-I responding cells. Epithelial-derived MuHV-4 showed low IFN-I exposure, and neither disrupting viral evasion nor blocking IFN-I signalling markedly affected acute viral replication in the lungs. Maximising IFN-I induction with poly(I:C) increased virus tagging in lung macrophages, but the tagged virus spread poorly. Lymphoid-derived MuHV-4 showed contrastingly high IFN-I exposure. This occurred mainly in B cells. IFN-I induction increased tagging without reducing viral loads; disrupting viral evasion caused marked attenuation; and blocking IFN-I signalling opened up new lytic spread between macrophages. Thus, the impact of IFN-I on viral replication was strongly cell type-dependent: epithelial infection induced little response; IFN-I largely suppressed macrophage infection; and viral evasion allowed passage through B cells despite IFN-I responses. As a result, IFN-I and its evasion promoted a switch in infection from acutely lytic in myeloid cells to chronically latent in B cells. Murine cytomegalovirus also showed a capacity to pass through IFN-I-responding cells, arguing that this is a core feature of herpesvirus host colonization.
Collapse
Affiliation(s)
- Cindy S. E. Tan
- School of Chemistry and Molecular Biosciences, University of Queensland and Royal Children’s Hospital, Brisbane, Australia
| | - Clara Lawler
- School of Chemistry and Molecular Biosciences, University of Queensland and Royal Children’s Hospital, Brisbane, Australia
| | - Janet S. May
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Gabrielle T. Belz
- Molecular Immunology, Walter and Eliza Hall Institute, Parkville, Melbourne, Australia
| | - Philip G. Stevenson
- School of Chemistry and Molecular Biosciences, University of Queensland and Royal Children’s Hospital, Brisbane, Australia
- * E-mail:
| |
Collapse
|
34
|
Lopušná K, Benkóczka T, Lupták J, Matúšková R, Lukáčiková Ľ, Ovečková I, Režuchová I. Murine gammaherpesvirus targets type I IFN receptor but not type III IFN receptor early in infection. Cytokine 2016; 83:158-170. [PMID: 27152708 DOI: 10.1016/j.cyto.2016.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 02/07/2023]
Abstract
The innate immune response represents a primary line of defense against invading viral pathogens. Since epithelial cells are the primary site of gammaherpesvirus replication during infection in vivo and there are no information on activity of IFN-III signaling against gammaherpesviruses in this cell type, in present study, we evaluated the expression profile and virus-host interactions in mouse mammary epithelial cell (NMuMG) infected with three strains of murine gammaherpesvirus, MHV-68, MHV-72 and MHV-4556. Studying three strains of murine gammaherpesvirus, which differ in nucleotide sequence of some structural and non-structural genes, allowed us to compare the strain-dependent interactions with host organism. Our results clearly demonstrate that: (i) MHV-68, MHV-72 and MHV-4556 differentially interact with intracellular signaling and dysregulate IFN signal transduction; (ii) MHV-68, MHV-72 and MHV-4556 degrade type I IFN receptor in very early stages of infection (2-4hpi), but not type III IFN receptor; (iii) type III IFN signaling might play a key role in antiviral defense of epithelial cells in early stages of murine gammaherpesvirus replication; (iv) NMuMG cells are an appropriate model for study of not only type I IFN signaling, but also type III IFN signaling pathway. These findings are important for better understanding of individual virus-host interactions in lytic as well as in persistent gammaherpesvirus replication and help us to elucidate IFN-III function in early events of virus infection.
Collapse
Affiliation(s)
- Katarína Lopušná
- Institute of Virology, Biomedical Research Center of Slovak Academy of Sciences, Bratislava 845 05, Slovak Republic
| | - Tímea Benkóczka
- Institute of Virology, Biomedical Research Center of Slovak Academy of Sciences, Bratislava 845 05, Slovak Republic
| | - Jakub Lupták
- School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Radka Matúšková
- Institute of Virology, Biomedical Research Center of Slovak Academy of Sciences, Bratislava 845 05, Slovak Republic
| | - Ľubomíra Lukáčiková
- Institute of Virology, Biomedical Research Center of Slovak Academy of Sciences, Bratislava 845 05, Slovak Republic
| | - Ingrid Ovečková
- Institute of Virology, Biomedical Research Center of Slovak Academy of Sciences, Bratislava 845 05, Slovak Republic
| | - Ingeborg Režuchová
- Institute of Virology, Biomedical Research Center of Slovak Academy of Sciences, Bratislava 845 05, Slovak Republic.
| |
Collapse
|
35
|
Cytoplasmic isoforms of Kaposi sarcoma herpesvirus LANA recruit and antagonize the innate immune DNA sensor cGAS. Proc Natl Acad Sci U S A 2016; 113:E1034-43. [PMID: 26811480 DOI: 10.1073/pnas.1516812113] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The latency-associated nuclear antigen (LANA) of Kaposi sarcoma herpesvirus (KSHV) is mainly localized and functions in the nucleus of latently infected cells, playing a pivotal role in the replication and maintenance of latent viral episomal DNA. In addition, N-terminally truncated cytoplasmic isoforms of LANA, resulting from internal translation initiation, have been reported, but their function is unknown. Using coimmunoprecipitation and MS, we found the cGMP-AMP synthase (cGAS), an innate immune DNA sensor, to be a cellular interaction partner of cytoplasmic LANA isoforms. By directly binding to cGAS, LANA, and particularly, a cytoplasmic isoform, inhibit the cGAS-STING-dependent phosphorylation of TBK1 and IRF3 and thereby antagonize the cGAS-mediated restriction of KSHV lytic replication. We hypothesize that cytoplasmic forms of LANA, whose expression increases during lytic replication, inhibit cGAS to promote the reactivation of the KSHV from latency. This observation points to a novel function of the cytoplasmic isoforms of LANA during lytic replication and extends the function of LANA from its role during latency to the lytic replication cycle.
Collapse
|
36
|
Type I Interferon Counteracts Antiviral Effects of Statins in the Context of Gammaherpesvirus Infection. J Virol 2016; 90:3342-54. [PMID: 26739055 DOI: 10.1128/jvi.02277-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/30/2015] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED The cholesterol synthesis pathway is a ubiquitous cellular biosynthetic pathway that is attenuated therapeutically by statins. Importantly, type I interferon (IFN), a major antiviral mediator, also depresses the cholesterol synthesis pathway. Here we demonstrate that attenuation of cholesterol synthesis decreases gammaherpesvirus replication in primary macrophages in vitro and reactivation from peritoneal exudate cells in vivo. Specifically, the reduced availability of the intermediates required for protein prenylation was responsible for decreased gammaherpesvirus replication in statin-treated primary macrophages. We also demonstrate that statin treatment of a chronically infected host attenuates gammaherpesvirus latency in a route-of-infection-specific manner. Unexpectedly, we found that the antiviral effects of statins are counteracted by type I IFN. Our studies suggest that type I IFN signaling counteracts the antiviral nature of the subdued cholesterol synthesis pathway and offer a novel insight into the utility of statins as antiviral agents. IMPORTANCE Statins are cholesterol synthesis inhibitors that are therapeutically administered to 12.5% of the U.S. POPULATION Statins attenuate the replication of diverse viruses in culture; however, this attenuation is not always obvious in an intact animal model. Further, it is not clear whether statins alter parameters of highly prevalent chronic herpesvirus infections. We show that statin treatment attenuated gammaherpesvirus replication in primary immune cells and during chronic infection of an intact host. Further, we demonstrate that type I interferon signaling counteracts the antiviral effects of statins. Considering the fact that type I interferon decreases the activity of the cholesterol synthesis pathway, it is intriguing to speculate that gammaherpesviruses have evolved to usurp the type I interferon pathway to compensate for the decreased cholesterol synthesis activity.
Collapse
|
37
|
Abstract
Since Isaac's and Lindenmann's seminal experiments over 50 years ago demonstrating a soluble factor generated from heat killed virus-stimulated chicken embryos could inhibit live influenza virus replication, the term interferon has been synonymous with inhibition of virus replication. While the antiviral properties of type 1 interferon (IFN-I) are undeniable, recent studies have reported expanding and somewhat unexpected roles of IFN-I signaling during both acute and persistent viral infections. IFN-I signaling can promote morbidity and mortality through induction of aberrant inflammatory responses and recruitment of inflammatory innate immune cell populations during acute respiratory viral infections. During persistent viral infection, IFN-I signaling promotes containment of early viral replication/dissemination, however, also initiates and maintains immune suppression, lymphoid tissue disorganization, and CD4 T cell dysfunction through modulation of multiple immune cell populations. Finally, new data are emerging illuminating how specific IFN-I species regulate immune pathology and suppression during acute and persistent viral infections, respectively. Systematic characterization of the cellular populations that produce IFN-I, how the timing of IFN-I induction and intricacies of subtype specific IFN-I signaling promote pathology or immune suppression during acute and persistent viral infections should inform the development of treatments and modalities to control viral associated pathologies.
Collapse
|
38
|
Márquez AC, Horwitz MS. The Role of Latently Infected B Cells in CNS Autoimmunity. Front Immunol 2015; 6:544. [PMID: 26579121 PMCID: PMC4623415 DOI: 10.3389/fimmu.2015.00544] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/09/2015] [Indexed: 11/16/2022] Open
Abstract
The onset of multiple sclerosis (MS) is caused by both genetic and environmental factors. Among the environmental factors, it is believed that previous infection with Epstein–Barr virus (EBV) may contribute in the development of MS. EBV has been associated with other autoimmune diseases, such as systemic lupus erythematous, and cancers like Burkitt’s lymphoma. EBV establishes a life-long latency in B cells with occasional reactivation of the virus throughout the individual’s life. The role played by B cells in MS pathology has been largely studied, yet is not clearly understood. In MS patients, Rituximab, a novel treatment that targets CD20+ B cells, has proven to have successful results in diminishing the number of relapses in remitting relapsing MS; however, the mechanism of how this drug acts has not been clearly established. In this review, we analyze the evidence of how B cells latently infected with EBV might be altering the immune system response and helping in the development of MS. We will also discuss how animal models, such as experimental autoimmune encephalomyelitis (EAE) and murine gammaherpesvirus-68 (γHV-68), can be used as powerful tools in the study of the relationship between EBV, MS, and B cells.
Collapse
Affiliation(s)
- Ana Citlali Márquez
- Department of Microbiology and Immunology, The University of British Columbia , Vancouver, BC , Canada
| | - Marc Steven Horwitz
- Department of Microbiology and Immunology, The University of British Columbia , Vancouver, BC , Canada
| |
Collapse
|
39
|
Latent virus infection upregulates CD40 expression facilitating enhanced autoimmunity in a model of multiple sclerosis. Sci Rep 2015; 5:13995. [PMID: 26356194 PMCID: PMC4564856 DOI: 10.1038/srep13995] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 08/13/2015] [Indexed: 02/07/2023] Open
Abstract
Epstein-Barr virus (EBV) has been identified as a putative environmental trigger of multiple sclerosis (MS) by multiple groups working worldwide. Previously, we reported that when experimental autoimmune encephalomyelitis (EAE) was induced in mice latently infected with murine γ-herpesvirus 68 (γHV-68), the murine homolog to EBV, a disease more reminiscent of MS developed. Specifically, MS-like lesions developed in the brain that included equal numbers of IFN-γ producing CD4+ and CD8+ T cells and demyelination, none of which is observed in MOG induced EAE. Herein, we demonstrate that this enhanced disease was dependent on the γHV-68 latent life cycle and was associated with STAT1 and CD40 upregulation on uninfected dendritic cells. Importantly, we also show that, during viral latency, the frequency of regulatory T cells is reduced via a CD40 dependent mechanism and this contributes towards a strong T helper 1 response that resolves in severe EAE disease pathology. Latent γ-herpesvirus infection established a long-lasting impact that enhances subsequent adaptive autoimmune responses.
Collapse
|
40
|
Matar CG, Jacobs NT, Speck SH, Lamb TJ, Moormann AM. Does EBV alter the pathogenesis of malaria? Parasite Immunol 2015; 37:433-45. [DOI: 10.1111/pim.12212] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 05/20/2015] [Indexed: 02/06/2023]
Affiliation(s)
- C. G. Matar
- Department of Microbiology and Immunology; Emory University School of Medicine; Atlanta GA USA
| | - N. T. Jacobs
- Department of Pediatrics; Emory University School of Medicine; Atlanta GA USA
| | - S. H. Speck
- Department of Microbiology and Immunology; Emory University School of Medicine; Atlanta GA USA
- Emory Vaccine Center; Emory University; Atlanta GA USA
| | - T. J. Lamb
- Department of Pediatrics; Emory University School of Medicine; Atlanta GA USA
| | - A. M. Moormann
- Program in Molecular Medicine; University of Massachusetts Medical School; Worcester MA USA
| |
Collapse
|
41
|
Sun L, Miyoshi H, Origanti S, Nice TJ, Barger AC, Manieri NA, Fogel LA, French AR, Piwnica-Worms D, Piwnica-Worms H, Virgin HW, Lenschow DJ, Stappenbeck TS. Type I interferons link viral infection to enhanced epithelial turnover and repair. Cell Host Microbe 2015; 17:85-97. [PMID: 25482432 PMCID: PMC4297260 DOI: 10.1016/j.chom.2014.11.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/30/2014] [Accepted: 11/05/2014] [Indexed: 02/06/2023]
Abstract
The host immune system functions constantly to maintain chronic commensal and pathogenic organisms in check. The consequences of these immune responses on host physiology are as yet unexplored, and may have long-term implications in health and disease. We show that chronic viral infection increases epithelial turnover in multiple tissues, and the antiviral cytokines type I interferons (IFNs) mediate this response. Using a murine model with persistently elevated type I IFNs in the absence of exogenous viral infection, the Irgm1(-/-) mouse, we demonstrate that type I IFNs act through nonepithelial cells, including macrophages, to promote increased epithelial turnover and wound repair. Downstream of type I IFN signaling, the highly related IFN-stimulated genes Apolipoprotein L9a and b activate epithelial proliferation through ERK activation. Our findings demonstrate that the host immune response to chronic viral infection has systemic effects on epithelial turnover through a myeloid-epithelial circuit.
Collapse
Affiliation(s)
- Lulu Sun
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hiroyuki Miyoshi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sofia Origanti
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timothy J Nice
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alexandra C Barger
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicholas A Manieri
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Leslie A Fogel
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anthony R French
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David Piwnica-Worms
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Helen Piwnica-Worms
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Deborah J Lenschow
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thaddeus S Stappenbeck
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
42
|
Type I interferon signaling enhances CD8+ T cell effector function and differentiation during murine gammaherpesvirus 68 infection. J Virol 2014; 88:14040-9. [PMID: 25253356 DOI: 10.1128/jvi.02360-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED CD8(+) T cell responses are critical to the control of replication and reactivation associated with gammaherpesvirus infection. Type I interferons (IFNs) have been shown to have direct and indirect roles in supporting CD8(+) T cell development and function during viral infection; however, the role of type I interferons during latent viral infection has not been examined. Mice deficient in type I IFN signaling (IFNAR1(-/-) mice) have high levels of reactivation during infection with murine gammaherpesvirus 68 (MHV68), a murine gammaherpesvirus model for Epstein-Barr virus. We hypothesized that type I IFNs function to enhance the anti-gammaherpesvirus CD8(+) T cell response. To test this, IFNAR1(-/-) mice were infected with MHV68 and the CD8(+) T cell response was analyzed. In the absence of type I IFN signaling, there was a marked increase in short-lived effector CD8(+) T cells, and MHV68-specific CD8(+) T cells had upregulated expression of PD-1 and reduced tumor necrosis factor alpha (TNF-α), gamma IFN (IFN-γ), and interleukin-2 (IL-2) production. Suppressing MHV68 replication early in infection using the antiviral cidofovir rescued CD8(+) T cell cytokine production and reduced PD-1 expression. However, suppressing high levels of reactivation in IFNAR1(-/-) mice failed to improve CD8(+) T cell cytokine production during latency. T cell-specific abrogation of type I IFN signaling showed that the effects of type I IFNs on the CD8(+) T cell response during MHV68 infection are independent of direct type I IFN signaling on T cells. Our findings support a model in which type I IFNs likely suppress MHV68 replication, thus limiting viral antigen and facilitating an effective gammaherpesvirus-directed CD8(+) T cell response. IMPORTANCE The murine gammaherpesvirus MHV68 has both genetic and biologic homology to the human gammaherpesvirus Epstein-Barr virus (EBV), which infects over 90% of humans. Latent EBV infection and reactivation are associated with various life-threatening diseases and malignancies. Host suppression of gammaherpesvirus latency and reactivation requires both CD8(+) T cells as well as type I interferon signaling. Type I IFNs have been shown to critically support the antiviral CD8(+) T cell response in other virus models. Here, we identify an indirect role for type I IFN signaling in enhancing gammaherpesvirus-specific CD8(+) T cell cytokine production. Further, this function of type I IFN signaling can be partially rescued by suppressing viral replication during early MHV68 infection. Our data suggest that type I IFN signaling on non-T cells can enhance CD8(+) T cell function during gammaherpesvirus infection, potentially through suppression of MHV68 replication.
Collapse
|
43
|
Sheridan V, Polychronopoulos L, Dutia BM, Ebrahimi B. A shutoff and exonuclease mutant of murine gammaherpesvirus-68 yields infectious virus and causes RNA loss in type I interferon receptor knockout cells. J Gen Virol 2014; 95:1135-1143. [DOI: 10.1099/vir.0.059329-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Significant loss of RNA followed by severely reduced cellular protein pool, a phenomenon termed host shutoff, is associated with a number of lytic virus infections and is a critical player in viral pathogenesis. Until recently, viral DNA exonucleases were associated only with processing of viral genomic DNA and its encapsidation. However, recent observations have identified host shutoff and exonuclease function for the highly conserved viral exonucleases in γ-herpesviruses, which include Kaposi’s sarcoma-associated herpesvirus, Epstein–Barr virus and the mouse model murine gammaherpesvirus-68, also referred to as MHV-68. In this study, we show that although ablation of the MHV-68 exonuclease ORF37 caused a restrictive phenotype in WT IFN-α/β receptor-positive cells such as NIH 3T3, lack of ORF37 was tolerated in cells lacking the IFN-α/β receptor: the ORF37Stop virus was capable of forming infectious particles and caused loss of mRNA in IFN-α/β receptor knockout cells. Moreover, ORF37Stop virus was able to establish lytic infection in the lungs of mice lacking the IFN-α/β receptor. These observations provide evidence that lytic MHV-68 infection and subsequent loss of mRNA can take place independently of ORF37. Moreover, efficient growth of ORF37Stop virus also identifies a role for this family of viral nucleases in providing a window of opportunity for virus growth by overcoming type I IFN-dependent responses.
Collapse
Affiliation(s)
- Victoria Sheridan
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Louise Polychronopoulos
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Bernadette M. Dutia
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Bahram Ebrahimi
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| |
Collapse
|
44
|
Interferon regulatory factor 1 restricts gammaherpesvirus replication in primary immune cells. J Virol 2014; 88:6993-7004. [PMID: 24719409 DOI: 10.1128/jvi.00638-14] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED Gammaherpesviruses are ubiquitous pathogens that establish a lifelong infection and are associated with cancer. In spite of the high seroprevalence of infection, the risk factors that predispose the host toward gammaherpesvirus-induced malignancies are still poorly understood. Interferon (IFN) regulatory factor 1 (IRF-1) is a tumor suppressor that is also involved in the regulation of innate and adaptive immune responses. On the basis of its biology, IRF-1 represents a plausible host factor to attenuate gammaherpesvirus infection and tumorigenesis. In this study, we show that IRF-1 restricts gammaherpesvirus replication in primary macrophages, a physiologically relevant immune cell type. In spite of the known role of IRF-1 in stimulating type I IFN expression, induction of a global type I IFN response was similar in IRF-1-deficient and -proficient macrophages during gammaherpesvirus infection. However, IRF-1 was required for optimal expression of cholesterol-25-hydroxylase, a host enzyme that restricted gammaherpesvirus replication in primary macrophages and contributed to the antiviral effects of IRF-1. In summary, the current study provides an insight into the mechanism by which IRF-1 attenuates gammaherpesvirus replication in primary immune cells, a mechanism that is likely to contribute to the antiviral effects of IRF-1 in other virus systems. IMPORTANCE Interferon regulatory factor 1 (IRF-1) is a transcription factor that regulates innate and adaptive immune responses and functions as a tumor suppressor. IRF-1 restricts the replication of diverse viruses; however, the mechanisms responsible for the antiviral effects of IRF-1 are still poorly understood. Gammaherpesviruses are ubiquitous pathogens that are associated with the induction of several malignancies. Here we show that IRF-1 expression attenuates gammaherpesvirus replication in primary macrophages, in part by increasing expression of cholesterol-25-hydroxylase (CH25H). CH25H and its product, 25-hydroxycholesterol, restrict replication of diverse virus families. Thus, our findings offer an insight into the mechanism by which IRF-1 attenuates the replication of gammaherpesviruses, a mechanism that is likely to be applicable to other virus systems.
Collapse
|
45
|
Murine gammaherpesvirus 68 encoding open reading frame 11 targets TANK binding kinase 1 to negatively regulate the host type I interferon response. J Virol 2014; 88:6832-46. [PMID: 24696485 DOI: 10.1128/jvi.03460-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Upon viral infection, type I interferons, such as alpha and beta interferon (IFN-α and IFN-β, respectively), are rapidly induced and activate multiple antiviral genes, thereby serving as the first line of host defense. Many DNA and RNA viruses counteract the host interferon system by modulating the production of IFNs. In this study, we report that murine gammaherpesvirus 68 (MHV-68), a double-stranded DNA virus, encodes open reading frame 11 (ORF11), a novel immune modulator, to block IFN-β production. ORF11-deficient recombinant viruses induced more IFN-β production in fibroblast and macrophage cells than the MHV-68 wild type or a marker rescue virus. MHV-68 ORF11 decreased IFN-β promoter activation by various factors, the signaling of which converges on TBK1-IRF3 activation. MHV-68 ORF11 directly interacted with both overexpressed and endogenous TBK1 but not with IRF3. Physical interactions between ORF11 and endogenous TBK1 were further confirmed during virus replication in fibroblasts using a recombinant virus expressing FLAG-ORF11. ORF11 efficiently reduced interaction between TBK1 and IRF3 and subsequently inhibited activation of IRF3, thereby negatively regulating IFN-β production. Our domain-mapping study showed that the central domain of ORF11 was responsible for both TBK1 binding and inhibition of IFN-β induction, while the kinase domain of TBK1 was sufficient for ORF11 binding. Taken together, these results suggest a mechanism underlying inhibition of IFN-β production by a gammaherpesvirus and highlight the importance of TBK1 in DNA virus replication. IMPORTANCE Gammaherpesviruses are important human pathogens, as they are associated with various kinds of tumors. Upon virus infection, the type I interferon pathway is activated by a series of signaling molecules and stimulates antiviral gene expression. To subvert such interferon antiviral responses, viruses are equipped with multiple factors that can inhibit its critical steps. In this study, we took an unbiased genomic approach using a mutant library of murine gammaherpesvirus 68 to screen a novel viral immune modulator that negatively regulates the type I interferon pathway and identified ORF11 as a strong candidate. ORF11-deficient virus infection produced more interferon than the wild type in both fibroblasts and macrophages. During virus replication, ORF11 directly bound to TBK1, a key regulatory protein in the interferon pathway, and inhibited TBK1-mediated interferon production. Our results highlight a crucial role of TBK1 in controlling DNA virus infection and a viral strategy to curtail host surveillance.
Collapse
|
46
|
Identification of alternative transcripts encoding the essential murine gammaherpesvirus lytic transactivator RTA. J Virol 2014; 88:5474-90. [PMID: 24574412 DOI: 10.1128/jvi.03110-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED The essential immediate early transcriptional activator RTA, encoded by gene 50, is conserved among all characterized gammaherpesviruses. Analyses of a recombinant murine gammaherpesvirus 68 (MHV68) lacking both of the known gene 50 promoters (G50DblKo) revealed that this mutant retained the ability to replicate in the simian kidney epithelial cell line Vero but not in permissive murine fibroblasts following low-multiplicity infection. However, G50DblKo replication in permissive fibroblasts was partially rescued by high-multiplicity infection. In addition, replication of the G50DblKo virus was rescued by growth on mouse embryonic fibroblasts (MEFs) isolated from IFN-α/βR-/- mice, while growth on Vero cells was suppressed by the addition of alpha interferon (IFN-α). 5' rapid amplification of cDNA ends (RACE) analyses of RNAs prepared from G50DblKo and wild-type MHV68-infected murine macrophages identified three novel gene 50 transcripts initiating from 2 transcription initiation sites located upstream of the currently defined proximal and distal gene 50 promoters. In transient promoter assays, neither of the newly identified gene 50 promoters exhibited sensitivity to IFN-α treatment. Furthermore, in a single-step growth analysis RTA levels were higher at early times postinfection with the G50DblKo mutant than with wild-type virus but ultimately fell below the levels of RTA expressed by wild-type virus at later times in infection. Infection of mice with the MHV68 G50DblKo virus demonstrated that this mutant virus was able to establish latency in the spleen and peritoneal exudate cells (PECs) of C57BL/6 mice with about 1/10 the efficiency of wild-type virus or marker rescue virus. However, despite the ability to establish latency, the G50DblKo virus mutant was severely impaired in its ability to reactivate from either latently infected splenocytes or PECs. Consistent with the ability to rescue replication of the G50DblKo mutant by growth on type I interferon receptor null MEFs, infection of IFN-α/βR-/- mice with the G50DblKo mutant virus demonstrated partial rescue of (i) acute virus replication in the lungs, (ii) establishment of latency, and (iii) reactivation from latency. The identification of additional gene 50/RTA transcripts highlights the complex mechanisms involved in controlling expression of RTA, likely reflecting time-dependent and/or cell-specific roles of different gene 50 promoters in controlling virus replication. Furthermore, the newly identified gene 50 transcripts may also act as negative regulators that modulate RTA expression. IMPORTANCE The viral transcription factor RTA, encoded by open reading frame 50 (Orf50), is well conserved among all known gammaherpesviruses and is essential for both virus replication and reactivation from latently infected cells. Previous studies have shown that regulation of gene 50 transcription is complex. The studies reported here describe the presence of additional alternatively initiated, spliced transcripts that encode RTA. Understanding how expression of this essential viral gene product is regulated may identify new strategies for interfering with infection in the setting of gammaherpesvirus-induced diseases.
Collapse
|
47
|
Abstract
Although type I interferons (IFN-I) were initially defined as potent antiviral agents, they can also cause decreased host resistance to some bacterial and viral infections. The many antiviral functions of the IFN-I include direct suppression of viral replication and activation of the immune response against viruses. In addition to their antiviral effects, IFN-I are also protective against several extracellular bacterial infections, in part, by promoting the induction of TNF-α and nitric oxide. In contrast, there is a negative effect of IFN-I on host resistance during chronic infection with lymphocytic choriomeningitis virus (LCMV) and acute infections with intracellular bacteria. In the case of LCMV, chronic IFN-I signaling induces adaptive immune system suppression. Blockade of IFN-I signaling removes the suppression and allows CD4 T-cell- and IFN-γ-mediated resolution of the infection. During acute intracellular bacterial infection, IFN-I suppress innate immunity by at least two defined mechanisms. During Francisella infection, IFN-I prevent IL-17 upregulation on γδ T cells and neutrophil recruitment. Following Listeria infection, IFN-I promote the cell death of macrophages and lymphocytes, which leads to innate immune suppression. These divergent findings for the role of IFN-I on pathogen control emphasize the complexity of the interferons system and force more mechanistic evaluation of its role in pathogenesis. This review evaluates IFN-I during infection with an emphasis on work carried out IFN-I-receptor-deficient mice.
Collapse
Affiliation(s)
- Javier Antonio Carrero
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
48
|
Wood BM, Mboko WP, Mounce BC, Tarakanova VL. Mouse gammaherpesvirus-68 infection acts as a rheostat to set the level of type I interferon signaling in primary macrophages. Virology 2013; 443:123-33. [PMID: 23706314 DOI: 10.1016/j.virol.2013.04.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/12/2013] [Accepted: 04/30/2013] [Indexed: 11/30/2022]
Abstract
Type I interferon (IFN) is a critical antiviral response of the host. We found that Interferon Regulatory Factor 3 (IRF-3) was responsible for induction of type I IFN following mouse gammaherpesvirus-68 (MHV68) infection of primary macrophages. Intriguingly, type I IFN signaling was maintained throughout the entire MHV68 replication cycle, in spite of several known viral IFN antagonists. However, MHV68-infected primary macrophages displayed attenuated responses to exogenous type I IFN, suggesting that MHV68 controls the level of type I IFN signaling that is allowed to occur during replication. Type I IFN receptor and IRF-3 were necessary to attenuate transcription of MHV68 RTA, an immediate early gene critical for replication. Furthermore, higher constitutive activity of RTA promoters was observed in the absence of type I IFN signaling. Our study suggests that MHV68 has preserved the ability to sense type I IFN status of the host in order to limit lytic replication.
Collapse
Affiliation(s)
- Brittani M Wood
- Department of Microbiology and Molecular Genetics, Cancer Center, Medical College of Wisconsin, USA
| | | | | | | |
Collapse
|
49
|
Ataxia telangiectasia mutated kinase controls chronic gammaherpesvirus infection. J Virol 2012; 86:12826-37. [PMID: 22993144 DOI: 10.1128/jvi.00917-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Gammaherpesviruses, such as Epstein-Barr virus (EBV), are ubiquitous cancer-associated pathogens that interact with DNA damage response, a tumor suppressor network. Chronic gammaherpesvirus infection and pathogenesis in a DNA damage response-insufficient host are poorly understood. Ataxia-telangiectasia (A-T) is associated with insufficiency of ataxia-telangiectasia mutated (ATM), a critical DNA damage response kinase. A-T patients display a pattern of anti-EBV antibodies suggestive of poorly controlled EBV replication; however, parameters of chronic EBV infection and pathogenesis in the A-T population remain unclear. Here we demonstrate that chronic gammaherpesvirus infection is poorly controlled in an animal model of A-T. Intriguingly, in spite of a global increase in T cell activation and numbers in wild-type (wt) and ATM-deficient mice in response to mouse gammaherpesvirus 68 (MHV68) infection, the generation of an MHV68-specific immune response was altered in the absence of ATM. Our finding that ATM expression is necessary for an optimal adaptive immune response against gammaherpesvirus unveils an important connection between DNA damage response and immune control of chronic gammaherpesvirus infection, a connection that is likely to impact viral pathogenesis in an ATM-insufficient host.
Collapse
|
50
|
Murine gammaherpesvirus 68 infection protects lupus-prone mice from the development of autoimmunity. Proc Natl Acad Sci U S A 2012; 109:E1092-100. [PMID: 22474381 DOI: 10.1073/pnas.1203019109] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gammaherpesvirus infections, such as those caused by EBV, have been suggested to promote the development of autoimmunity. To test this idea, we infected healthy WT and lupus-prone B6.Sle123 mice with an EBV-related and rodent-specific gammaherpesvirus, γHV68. Although acute γHV68 infection increased autoantibody levels for 4 to 6 wk, latent infection inhibited these responses for 1 y. The inhibition of autoantibody expression was only observed in B6.Sle123 females and not in males, which already displayed lower autoantibody titers. Contrary to the initial hypothesis, infection of young B6.Sle123 mice, both male and female, resulted in suppression of lymphoid activation and expansion and of glomerular inflammation and sclerosis, preserving kidney function. Moreover, γHV68 infection led to reduced autoantibody titers, lymphoid activation, and glomerular inflammation whether lupus-prone females were infected before or during disease manifestation. Finally, γHV68 infection also inhibited autoantibody production in the genetically distinct MRL/lpr lupus-prone mice. Our findings indicate that γHV68 infection strongly inhibits the development and progression of lupus-like disease in mice that spontaneously develop this condition mediating its beneficial effects at the humoral, cellular, and organ levels. The mechanisms by which the virus exerts this down-modulatory action are not yet clear, but appear to operate via reduced activation of dendritic cells, T cells, and B cells. Gammaherpesviruses coevolved with the vertebrate immune systems, establishing lifelong infections in humans and other mammals. Our findings that γHV68 infection prevents rather than exacerbates autoimmunity in mice suggest that infection with gammaherpesviruses may be protective rather than pathological in most individuals.
Collapse
|