1
|
Miyake Y. Classification of C-Type Lectins and Recognition of Pathogens. Microbiol Immunol 2025; 69:257-269. [PMID: 40071890 DOI: 10.1111/1348-0421.13211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/21/2025] [Accepted: 03/03/2025] [Indexed: 05/06/2025]
Abstract
C-type lectins are calcium-dependent glycan-binding proteins that play key roles in the innate immune response by recognizing pathogens. Soluble C-type lectins agglutinate and neutralize pathogens, activate the complement system, and promote pathogen clearance via opsonization. Membrane-bound C-type lectins, also known as C-type lectin receptors (CLRs), internalize pathogens and induce their degradation in lysosomes, presenting pathogen-derived antigens to MHC-II molecules to activate adaptive immunity. CLRs also have signaling capabilities. Some contain the immunoreceptor tyrosine-based activation motif (ITAM), which induces inflammatory responses by activating transcription factors, such as NF-κB and NFAT. Others contain the immunoreceptor tyrosine-based inhibitory motif (ITIM), which suppresses activating signals by activating phosphatases, such as SHP-1. This creates a balance between activation and inhibition. C-type lectins are classified into 17 groups based on their structural domains, with Groups II and V members being particularly important for pathogen recognition. In this review, we present the accumulated and recent information on pathogen recognition by C-type lectins, along with their classification and basic functions.
Collapse
Affiliation(s)
- Yasunobu Miyake
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
2
|
Exel CE, Tamminga SM, Man-Bovenkerk S, Temming AR, Hendriks A, Spaninks M, van Sorge NM, Benedictus L. Wall teichoic acid glycosylation of bovine-associated Staphylococcus aureus strains. Vet Microbiol 2025; 302:110403. [PMID: 39842365 DOI: 10.1016/j.vetmic.2025.110403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
Staphylococcus aureus (S. aureus) is one of the major causes of bovine mastitis, a disease with detrimental effects on health and wellbeing. Current control measures are costly, laborious and not always effective in eradicating S. aureus. The cell wall-linked polysaccharide wall teichoic acid (WTA) is highly immunogenic in humans and is considered as a prospective vaccine antigen based on promising pre-clinical studies in animals. WTA consist of polymerized ribitol-phosphate backbone that is modified with N-acetylglucosamine (GlcNAc) moieties in different configurations by the glycosyltransferases TarS (β-1,4-GlcNAc), TarM (α-1,4-GlcNAc) and TarP (β-1,3-GlcNAc). This study aimed to characterize the presence and genetic variation in tarS, tarM and tarP in bovine-associated S. aureus strains and how this impacts WTA-glycoprofile. Bioinformatic analyses of a whole genome sequence database consisting of 1047 S. aureus, 10 S. schweitzeri, and 6 S. argenteus strains showed that over 99% of strains contained tarS, 34 % also contained tarM, while 5 % of the strains encoded tarP in addition to tarS. The distribution of WTA-glycosyltransferase genes was similar to what has been reported for human-associated S. aureus strains. Phenotypic analysis of WTA glycosylation by flow cytometry corroborated with tarS/tarM/tarP gene presence. The WTA glycoprofile was variable between bovine-associated strains and the levels and ratios of GlcNAcylation were affected by growth conditions. Interestingly, a divergent tarM allele was present in strains of clonal complexes (CC) 49 and the mastitis-associated CC151, but its function was similar to canonical tarM. In conclusion, we demonstrated that bovine-associated S. aureus strains show similar variation in WTA GlcNAc decoration as human S. aureus strains, despite the presence of a divergent tarM allele.
Collapse
Affiliation(s)
- Catharina E Exel
- Department Population Health Sciences, Division Farm Animal Health, Utrecht University, Utrecht, the Netherlands
| | - Sara M Tamminga
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Sandra Man-Bovenkerk
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, University of Amsterdam, the Netherlands
| | - A Robin Temming
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Astrid Hendriks
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Mirlin Spaninks
- Department Population Health Sciences, Division Farm Animal Health, Utrecht University, Utrecht, the Netherlands
| | - Nina M van Sorge
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam UMC location AMC, Amsterdam, the Netherlands
| | - Lindert Benedictus
- Department Population Health Sciences, Division Farm Animal Health, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
3
|
Tamminga SM, Van Der Wal MM, Saager ES, Van Der Gang LF, Boesjes CM, Hendriks A, Pannekoek Y, De Bruin MS, Van Wijk F, Van Sorge NM. Single-cell sequencing of human Langerhans cells identifies altered gene expression profiles in patients with atopic dermatitis. Immunohorizons 2025; 9:vlae009. [PMID: 39849992 PMCID: PMC11841975 DOI: 10.1093/immhor/vlae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 01/25/2025] Open
Abstract
Atopic dermatitis (AD) is characterized by dysregulated T cell immunity and skin microbiome dysbiosis with predominance of Staphylococcus aureus, which is associated with exacerbating AD skin inflammation. Specific glycosylation patterns of S. aureus cell wall structures amplify skin inflammation through interaction with Langerhans cells (LCs). Nevertheless, the role of LCs in AD remains poorly characterized. Here, we performed single cell RNA sequencing of primary epidermal LCs and dermal T cells, isolated from skin biopsies of AD patients and healthy control subjects, alongside specific glycoanalysis of S. aureus strains isolated from the AD lesions. Our findings revealed 4 LC subpopulations ie, 2 steady-state clusters [LC1 and LC1H] and 2 proinflammatory/matured subsets [LC2 and migratory LCs]. The latter 2 subsets were enriched in AD skin. AD LCs showed enhanced expression of C-type lectin receptors, the high-affinity IgE receptor, and activation of prostaglandin and leukotriene biosynthesis pathways, upregulated transcriptional signatures related to T cell activation pathways, and increased expression of CCL17 compared with healthy LCs. Correspondingly, T helper 2 and T regulatory cell populations were increased in AD lesions. Complementary, we performed bulk RNA sequencing of primary LCs stimulated with the S. aureus strains isolated from the AD lesions, which showed upregulation of T helper 2-related pathways. Our study provides proof-of-concept for a role of LCs in connecting the S. aureus-T cell axis in the AD inflammatory cycle.
Collapse
Affiliation(s)
- Sara M Tamminga
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - M Marlot Van Der Wal
- Center for Translational Immunology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Elise S Saager
- Center for Translational Immunology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Lian F Van Der Gang
- National Expertise Center for Atopic Dermatitis, Department of Dermatology and Allergology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Celeste M Boesjes
- National Expertise Center for Atopic Dermatitis, Department of Dermatology and Allergology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Astrid Hendriks
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Yvonne Pannekoek
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Marjolein S De Bruin
- National Expertise Center for Atopic Dermatitis, Department of Dermatology and Allergology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Femke Van Wijk
- Center for Translational Immunology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Nina M Van Sorge
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
- Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam UMC location AMC, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Kuijk MM, Tusveld E, Lehmann E, van Dalen R, Lasa I, Ingmer H, Pannekoek Y, van Sorge NM. The two-component system ArlRS is essential for wall teichoic acid glycoswitching in Staphylococcus aureus. mBio 2025; 16:e0266824. [PMID: 39611840 PMCID: PMC11708061 DOI: 10.1128/mbio.02668-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
Staphylococcus aureus is among the leading causes of hospital-acquired infections. Critical to S. aureus biology and pathogenesis are the cell wall-anchored glycopolymers wall teichoic acids (WTA). Approximately one-third of S. aureus isolates decorates WTA with a mixture of α1,4- and β1,4-N-acetylglucosamine (GlcNAc), which requires the dedicated glycosyltransferases TarM and TarS, respectively. Environmental conditions, such as high salt concentrations, affect the abundance and ratio of α1,4- and β1,4-GlcNAc WTA decorations, thereby impacting biological properties such as antibody binding and phage infection. To identify regulatory mechanisms underlying WTA glycoswitching, we screened 1,920 S. aureus mutants (Nebraska Transposon Mutant Library) by immunoblotting for differential expression of WTA-linked α1,4- or β1,4-GlcNAc using specific monoclonal antibody Fab fragments. Three two-component systems (TCS), GraRS, ArlRS, and AgrCA, were among the 230 potential hits. Using isogenic TCS mutants, we demonstrated that ArlRS is essential for WTA β1,4-GlcNAc decoration. ArlRS repressed tarM expression through the transcriptional regulator MgrA. In bacteria lacking arlRS, the increased expression of tarM correlated with the absence of WTA β1,4-GlcNAc, likely by outcompeting TarS enzymatic activity. ArlRS was responsive to Mg2+, but not Na+, revealing its role in the previously reported salt-induced WTA glycoswitch from α1,4-GlcNAc to β1,4-GlcNAc. Importantly, ArlRS-mediated regulation of WTA glycosylation affected S. aureus interaction with the innate receptor langerin and lysis by β1,4-GlcNAc-dependent phages. Since WTA represents a promising target for future immune-based treatments and vaccines, our findings provide important insight to align strategies targeting S. aureus WTA glycosylation patterns during infection.IMPORTANCEStaphylococcus aureus is a common colonizer but can also cause severe infections in humans. The development of antibiotic resistance complicates the treatment of S. aureus infections, increasing the need for antibiotic alternatives such as vaccines and therapies with bacterial viruses also known as phages. Wall teichoic acids (WTA) are abundant glycosylated structures of the S. aureus cell wall that have gained attention as a promising target for new treatments. Importantly, WTA glycosylation patterns show variation depending on environmental conditions, thereby impacting phage binding and interaction with host factors, such as antibodies and innate pattern-recognition receptors. Here, we show that the two-component system ArlRS is involved in the regulation of WTA glycosylation by responding to environmental changes in Mg2+ concentration. These findings may support the design of new treatment strategies that target WTA glycosylation patterns of S. aureus during infection.
Collapse
Affiliation(s)
- Marieke M. Kuijk
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Emma Tusveld
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Esther Lehmann
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rob van Dalen
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Iñigo Lasa
- Laboratory of Microbial Pathogenesis, Navarrabiomed, Universidad Pública de Navarra, Complejo Hospitalario de Navarra, IdiSNA, Pamplona, Navarra, Spain
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yvonne Pannekoek
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Nina M. van Sorge
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam University Medical Center location AMC, Amsterdam, the Netherlands
| |
Collapse
|
5
|
Hymøller KM, Christiansen SH, Schlosser AG, Skov Sørensen UB, Lee JC, Thiel S. Recognition of Staphylococcus aureus by the pattern recognition molecules langerin, mannan-binding lectin, and surfactant protein D: the influence of capsular polysaccharides and wall teichoic acid. Front Immunol 2025; 15:1504886. [PMID: 39850879 PMCID: PMC11756514 DOI: 10.3389/fimmu.2024.1504886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
The innate immune system plays a critical role in the rapid recognition and elimination of pathogens through pattern recognition receptors (PRRs). Among these PRRs are the C-type lectins (CTLs) langerin, mannan-binding lectin (MBL), and surfactant protein D (SP-D), which recognize carbohydrate patterns on pathogens. Each represents proteins from different compartments of the body and employs separate effector mechanisms. We have investigated their interaction with the Gram-positive opportunistic pathogen Staphylococcus aureus, a bacterium whose cell wall contains two key glycopolymers: capsular polysaccharide (CP) and wall teichoic acid (WTA). Using a langerin-expressing cell line and recombinant langerin, MBL, and SP-D, we demonstrated that langerin, MBL, and SP-D all recognize nonencapsulated S. aureus. However, the bacterium may produce CP that effectively shields S. aureus from recognition by all three CTLs. Experiments utilizing mutant S. aureus strains confirmed that WTA is a ligand for MBL, but that langerin likely interacts with an additional unknown ligand. A competition assay revealed that MBL and SP-D inhibit langerin's interaction with S. aureus, highlighting the intricate redundancy and cooperation within the innate immune system. This study highlights the dynamic interplay of langerin, MBL, and SP-D in recognizing specific surface structures on S. aureus and provides insight into how this pathogen evades innate immune recognition.
Collapse
Affiliation(s)
- Kirstine Mejlstrup Hymøller
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Centre for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus, Denmark
| | - Stig Hill Christiansen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Centre for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus, Denmark
| | - Anders Grønnegaard Schlosser
- Department of Inflammation Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Jean C. Lee
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Centre for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Madaan T, Doan K, Hartman A, Gherardini D, Ventrola A, Zhang Y, Kotagiri N. Advances in Microbiome-Based Therapeutics for Dermatological Disorders: Current Insights and Future Directions. Exp Dermatol 2024; 33:e70019. [PMID: 39641544 PMCID: PMC11663288 DOI: 10.1111/exd.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/30/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
The human skin hosts an estimated 1000 bacterial species that are essential for maintaining skin health. Extensive clinical and preclinical studies have established the significant role of the skin microbiome in dermatological disorders such as atopic dermatitis, psoriasis, diabetic foot ulcers, hidradenitis suppurativa and skin cancers. In these conditions, the skin microbiome is not only altered but, in some cases, implicated in disease pathophysiology. Microbiome-based therapies (MBTs) represent an emerging category of live biotherapeutic products with tremendous potential as a novel intervention platform for skin diseases. Beyond using established wild-type strains native to the skin, these therapies can be enhanced to express targeted therapeutic molecules, offering more tailored treatment approaches. This review explores the role of the skin microbiome in various common skin disorders, with a particular focus on the development and therapeutic potential of MBTs for treating these conditions.
Collapse
Affiliation(s)
- Tushar Madaan
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267
| | - Kyla Doan
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267
| | - Alexandra Hartman
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267
| | - Dominick Gherardini
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267
| | - Alec Ventrola
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267
| | - Yuhang Zhang
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267
| | - Nalinikanth Kotagiri
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267
| |
Collapse
|
7
|
Yue C, Zhou H, Wang X, Yu J, Hu Y, Zhou P, Zhao F, Zeng F, Li G, Li Y, Feng Y, Sun X, Huang S, He M, Wu W, Huang N, Li J. Atopic dermatitis: pathogenesis and therapeutic intervention. MedComm (Beijing) 2024; 5:e70029. [PMID: 39654684 PMCID: PMC11625510 DOI: 10.1002/mco2.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
The skin serves as the first protective barrier for nonspecific immunity and encompasses a vast network of skin-associated immune cells. Atopic dermatitis (AD) is a prevalent inflammatory skin disease that affects individuals of all ages and races, with a complex pathogenesis intricately linked to genetic, environmental factors, skin barrier dysfunction as well as immune dysfunction. Individuals diagnosed with AD frequently exhibit genetic predispositions, characterized by mutations that impact the structural integrity of the skin barrier. This barrier dysfunction leads to the release of alarmins, activating the type 2 immune pathway and recruiting various immune cells to the skin, where they coordinate cutaneous immune responses. In this review, we summarize experimental models of AD and provide an overview of its pathogenesis and the therapeutic interventions. We focus on elucidating the intricate interplay between the immune system of the skin and the complex regulatory mechanisms, as well as commonly used treatments for AD, aiming to systematically understand the cellular and molecular crosstalk in AD-affected skin. Our overarching objective is to provide novel insights and inform potential clinical interventions to reduce the incidence and impact of AD.
Collapse
Affiliation(s)
- Chengcheng Yue
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Hong Zhou
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Xiaoyan Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Jiadong Yu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Yawen Hu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Pei Zhou
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Fulei Zhao
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Fanlian Zeng
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Guolin Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Ya Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Yuting Feng
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Xiaochi Sun
- Department of CardiologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Shishi Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Mingxiang He
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Wenling Wu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Nongyu Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Jiong Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| |
Collapse
|
8
|
Raquer-McKay HM, Maqueda-Alfaro RA, Saravanan S, Arroyo Hornero R, Clausen BE, Gottfried-Blackmore A, Idoyaga J. Monocytes give rise to Langerhans cells that preferentially migrate to lymph nodes at steady state. Proc Natl Acad Sci U S A 2024; 121:e2404927121. [PMID: 39541348 PMCID: PMC11588065 DOI: 10.1073/pnas.2404927121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/21/2024] [Indexed: 11/16/2024] Open
Abstract
Current evidence suggests that ontogeny may account for the functional heterogeneity of some tissue macrophages, but not others. Here, we asked whether developmental origin drives different functions of skin Langerhans cells (LCs), an embryo-derived mononuclear phagocyte with features of both tissue macrophages and dendritic cells. Using time-course analyses, bone marrow chimeras, and fate tracing models, we found that the complete elimination of embryo-derived LCs at steady state results in their repopulation from circulating monocytes. However, monocyte-derived LCs inefficiently replenished the epidermal niche. Instead, these cells preferentially migrated to skin-draining lymph nodes. Mechanistically, we show that the enhanced migratory capability of monocyte-derived LCs is associated with higher expression of CD207/Langerin, a C-type lectin involved in the capture of skin microbes. Our data demonstrate that ontogeny plays a role in the migratory behavior of epidermal LCs.
Collapse
Affiliation(s)
- Hayley M. Raquer-McKay
- Microbiology and Immunology Department, Stanford University School of Medicine, Stanford, CA94305
- Immunology Program, Stanford University School of Medicine, Stanford, CA94304
| | - Raul A. Maqueda-Alfaro
- Pharmacology Department, School of Medicine, University of California San Diego, La Jolla, CA92093
| | - Sanjana Saravanan
- Microbiology and Immunology Department, Stanford University School of Medicine, Stanford, CA94305
- Immunology Program, Stanford University School of Medicine, Stanford, CA94304
| | - Rebeca Arroyo Hornero
- Microbiology and Immunology Department, Stanford University School of Medicine, Stanford, CA94305
- Immunology Program, Stanford University School of Medicine, Stanford, CA94304
| | - Björn E. Clausen
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
- Research Center for Immunotherapy (Forschungs-Zentrum für Immuntherapie), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
| | - Andres Gottfried-Blackmore
- Pharmacology Department, School of Medicine, University of California San Diego, La Jolla, CA92093
- Department of Medicine, Division of Gastroenterology, University of California San Diego, La Jolla, CA92093
- Veterans Affairs San Diego Healthcare System, Gastroenterology Section, La Jolla, CA92161
| | - Juliana Idoyaga
- Microbiology and Immunology Department, Stanford University School of Medicine, Stanford, CA94305
- Immunology Program, Stanford University School of Medicine, Stanford, CA94304
- Pharmacology Department, School of Medicine, University of California San Diego, La Jolla, CA92093
- Molecular Biology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
9
|
Lehmann E, van Dalen R, Gritsch L, Slavetinsky C, Korn N, Rohmer C, Krause D, Peschel A, Weidenmaier C, Wolz C. The Capsular Polysaccharide Obstructs Wall Teichoic Acid Functions in Staphylococcus aureus. J Infect Dis 2024; 230:1253-1261. [PMID: 38743812 DOI: 10.1093/infdis/jiae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND The cell envelope of Staphylococcus aureus contains 2 major secondary cell wall glycopolymers: capsular polysaccharide (CP) and wall teichoic acid (WTA). Both CP and WTA are attached to the cell wall and play distinct roles in S. aureus colonization, pathogenesis, and bacterial evasion of host immune defenses. We aimed to investigate whether CP interferes with WTA-mediated properties. METHODS Strains with natural heterogeneous expression of CP, strains with homogeneous high CP expression, and CP-deficient strains were compared regarding WTA-dependent phage binding, cell adhesion, IgG deposition, and virulence in vivo. RESULTS WTA-mediated phage adsorption, specific antibody deposition, and cell adhesion were negatively correlated with CP expression. WTA, but not CP, enhanced the bacterial burden in a mouse abscess model, while CP overexpression resulted in intermediate virulence in vivo. CONCLUSIONS CP protects the bacteria from WTA-dependent opsonization and phage binding. This protection comes at the cost of diminished adhesion to host cells. The highly complex regulation and mostly heterogeneous expression of CP has probably evolved to ensure the survival and optimal physiological adaptation of the bacterial population as a whole.
Collapse
Affiliation(s)
- Esther Lehmann
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Rob van Dalen
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Lisa Gritsch
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Christoph Slavetinsky
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
- Pediatric Surgery and Urology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Natalya Korn
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Carina Rohmer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Daniela Krause
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Christopher Weidenmaier
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| |
Collapse
|
10
|
Lang JC, Brutscher A, Ehrström M, Melican K. Tissue resident cells differentiate S. aureus from S. epidermidis via IL-1β following barrier disruption in healthy human skin. PLoS Pathog 2024; 20:e1012056. [PMID: 39208402 PMCID: PMC11389914 DOI: 10.1371/journal.ppat.1012056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 09/11/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024] Open
Abstract
The Staphylococcus sp. are a dominant part of the human skin microbiome and present across the body. Staphylococcus epidermidis is a ubiquitous skin commensal, while S. aureus is thought to colonize at least 30% of the population. S. aureus are not only colonizers but a leading cause of skin and soft tissue infections and a critical healthcare concern. To understand how healthy human skin may differentiate commensal bacteria, such as S. epidermidis, from the potential pathogen methicillin-resistant S. aureus (MRSA), we use ex vivo human skin models that allow us to study this host-bacterial interaction in the most clinically relevant environment. Our work highlights the role of the outer stratum corneum as a protective physical barrier against invasion by colonizing Staphylococci. We show how the structural cells of the skin can internalize and respond to different Staphylococci with increasing sensitivity. In intact human skin, a discriminatory IL-1β response was identified, while disruption of the protective stratum corneum triggered an increased and more diverse immune response. We identified and localized tissue resident Langerhans cells (LCs) as a potential source of IL-1β and go on to show a dose-dependent response of MUTZ-LCs to S. aureus but not S. epidermidis. This suggests an important role of LCs in sensing and discriminating between bacteria in healthy human skin, particularly in intact skin and provides a detailed snapshot of how human skin differentiates between friend and potential foe. With the rise in antibiotic resistance, understanding the innate immune response of healthy skin may help us find ways to enhance or manipulate these natural defenses to prevent invasive infection.
Collapse
Affiliation(s)
- Julia C Lang
- AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences, Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Brutscher
- AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences, Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Keira Melican
- AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences, Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Beck C, Krusche J, Notaro A, Walter A, Kränkel L, Vollert A, Stemmler R, Wittmann J, Schaller M, Slavetinsky C, Mayer C, De Castro C, Peschel A. Wall teichoic acid substitution with glucose governs phage susceptibility of Staphylococcus epidermidis. mBio 2024; 15:e0199023. [PMID: 38470054 PMCID: PMC11005348 DOI: 10.1128/mbio.01990-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
The species- and clone-specific susceptibility of Staphylococcus cells for bacteriophages is governed by the structures and glycosylation patterns of wall teichoic acid (WTA) glycopolymers. The glycosylation-dependent phage-WTA interactions in the opportunistic pathogen Staphylococcus epidermidis and in other coagulase-negative staphylococci (CoNS) have remained unknown. We report a new S. epidermidis WTA glycosyltransferase TagE whose deletion confers resistance to siphoviruses such as ΦE72 but enables binding of otherwise unbound podoviruses. S. epidermidis glycerolphosphate WTA was found to be modified with glucose in a tagE-dependent manner. TagE is encoded together with the enzymes PgcA and GtaB providing uridine diphosphate-activated glucose. ΦE72 transduced several other CoNS species encoding TagE homologs, suggesting that WTA glycosylation via TagE is a frequent trait among CoNS that permits interspecies horizontal gene transfer. Our study unravels a crucial mechanism of phage-Staphylococcus interaction and horizontal gene transfer, and it will help in the design of anti-staphylococcal phage therapies.IMPORTANCEPhages are highly specific for certain bacterial hosts, and some can transduce DNA even across species boundaries. How phages recognize cognate host cells remains incompletely understood. Phages infecting members of the genus Staphylococcus bind to wall teichoic acid (WTA) glycopolymers with highly variable structures and glycosylation patterns. How WTA is glycosylated in the opportunistic pathogen Staphylococcus epidermidis and in other coagulase-negative staphylococci (CoNS) species has remained unknown. We describe that S. epidermidis glycosylates its WTA backbone with glucose, and we identify a cluster of three genes responsible for glucose activation and transfer to WTA. Their inactivation strongly alters phage susceptibility patterns, yielding resistance to siphoviruses but susceptibility to podoviruses. Many different CoNS species with related glycosylation genes can exchange DNA via siphovirus ΦE72, suggesting that glucose-modified WTA is crucial for interspecies horizontal gene transfer. Our finding will help to develop antibacterial phage therapies and unravel routes of genetic exchange.
Collapse
Affiliation(s)
- Christian Beck
- Cluster of Excellence “Controlling Microbes to Fight Infections (CMFI)”, University of Tübingen, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Janes Krusche
- Cluster of Excellence “Controlling Microbes to Fight Infections (CMFI)”, University of Tübingen, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Anna Notaro
- Department of Agricultural Sciences, University of Naples, Naples, Italy
| | - Axel Walter
- Cluster of Excellence “Controlling Microbes to Fight Infections (CMFI)”, University of Tübingen, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions/Glycobiology, University of Tübingen, Tübingen, Germany
| | - Lara Kränkel
- Cluster of Excellence “Controlling Microbes to Fight Infections (CMFI)”, University of Tübingen, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Anneli Vollert
- Electron-Microscopy, Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Regine Stemmler
- Cluster of Excellence “Controlling Microbes to Fight Infections (CMFI)”, University of Tübingen, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Johannes Wittmann
- Leibniz Institute, DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Martin Schaller
- Electron-Microscopy, Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Christoph Slavetinsky
- Cluster of Excellence “Controlling Microbes to Fight Infections (CMFI)”, University of Tübingen, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
- Pediatric Surgery and Urology, University Children's Hospital Tübingen, University of Tübingen, Tübingen, Germany
| | - Christoph Mayer
- Cluster of Excellence “Controlling Microbes to Fight Infections (CMFI)”, University of Tübingen, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions/Glycobiology, University of Tübingen, Tübingen, Germany
| | | | - Andreas Peschel
- Cluster of Excellence “Controlling Microbes to Fight Infections (CMFI)”, University of Tübingen, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| |
Collapse
|
12
|
Heydarian N, Ferrell M, Nair AS, Roedl C, Peng Z, Nguyen TD, Best W, Wozniak KL, Rice CV. Neutralizing Staphylococcus aureus PAMPs that Trigger Cytokine Release from THP-1 Monocytes. ACS OMEGA 2024; 9:10967-10978. [PMID: 38463252 PMCID: PMC10918781 DOI: 10.1021/acsomega.4c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 03/12/2024]
Abstract
Innate immunity has considerable specificity and can discriminate between individual species of microbes. In this regard, pathogens are "seen" as dangerous to the host and elicit an inflammatory response capable of destroying the microbes. This immune discrimination is achieved by toll-like receptors on host cells recognizing pathogens, such as Staphylococcus aureus, and microbe-specific pathogen-associated molecular pattern (PAMP) molecules, such as lipoteichoic acid (LTA). PAMPs impede wound healing by lengthening the inflammatory phase of healing and contributing to the development of chronic wounds. Preventing PAMPs from triggering the release of inflammatory cytokines will counteract the dysregulation of inflammation. Here, we use ELISA to evaluate the use of cationic molecules branched polyethylenimine (BPEI), PEGylated BPEI (PEG-BPEI), and polymyxin-B to neutralize anionic LTA and lower levels of TNF-α cytokine release from human THP-1 monocytes in a concentration-dependent manner. Additional data collected with qPCR shows that BPEI and PEG-BPEI reduce the expression profile of the TNF-α gene. Similar effects are observed for the neutralization of whole-cell S. aureus bacteria. In vitro cytotoxicity data demonstrate that PEGylation lowers the toxicity of PEG-BPEI (IC50 = 2661 μm) compared to BPEI (IC50 = 853 μM) and that both compounds are orders of magnitude less toxic than the cationic antibiotic polymyxin-B (IC50 = 79 μM). Additionally, the LTA neutralization ability of polymyxin-B is less effective than BPEI or PEG-BPEI. These properties of BPEI and PEG-BPEI expand their utility beyond disabling antibiotic resistance mechanisms and disrupting S. aureus biofilms, providing additional justification for developing these agents as wound healing therapeutics. The multiple mechanisms of action for BPEI and PEG-BPEI are superior to current wound treatment strategies that have a single modality.
Collapse
Affiliation(s)
- Neda Heydarian
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Maya Ferrell
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Ayesha S. Nair
- Department
of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, Oklahoma 74078, United States
| | - Chase Roedl
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Zongkai Peng
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Tra D. Nguyen
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - William Best
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Karen L. Wozniak
- Department
of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, Oklahoma 74078, United States
| | - Charles V. Rice
- Department
of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| |
Collapse
|
13
|
Slavetinsky J, Lehmann E, Slavetinsky C, Gritsch L, van Dalen R, Kretschmer D, Bleul L, Wolz C, Weidenmaier C, Peschel A. Wall Teichoic Acid Mediates Staphylococcus aureus Binding to Endothelial Cells via the Scavenger Receptor LOX-1. ACS Infect Dis 2023; 9:2133-2140. [PMID: 37910786 DOI: 10.1021/acsinfecdis.3c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The success of Staphylococcus aureus as a major cause for endovascular infections depends on effective interactions with blood-vessel walls. We have previously shown that S. aureus uses its wall teichoic acid (WTA), a surface glycopolymer, to attach to endothelial cells. However, the endothelial WTA receptor remained unknown. We show here that the endothelial oxidized low-density lipoprotein receptor 1 (LOX-1) interacts with S. aureus WTA and permits effective binding of S. aureus to human endothelial cells. Purified LOX-1 bound to isolated S. aureus WTA. Ectopic LOX-1 expression led to increased binding of S. aureus wild type but not of a WTA-deficient mutant to a cell line, and LOX-1 blockage prevented S. aureus binding to endothelial cells. Moreover, WTA and LOX-1 expression levels correlated with the efficacy of the S. aureus-endothelial interaction. Thus, LOX-1 is an endothelial ligand for S. aureus, whose blockage may help to prevent or treat severe endovascular infections.
Collapse
Affiliation(s)
- Jessica Slavetinsky
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Esther Lehmann
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Christoph Slavetinsky
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
- Pediatric Surgery and Urology, University Children's Hospital Tübingen, Tübingen 72076, Germany
| | - Lisa Gritsch
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Rob van Dalen
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Dorothee Kretschmer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Lisa Bleul
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Christopher Weidenmaier
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| |
Collapse
|
14
|
Zhang D, Qu Y, Sui C, Li M, Yuan Y, Wang N, Ma W. CD207 Expression Level is a New Prognostic Marker for Condyloma Acuminatum. Clin Cosmet Investig Dermatol 2023; 16:1607-1613. [PMID: 37383183 PMCID: PMC10295532 DOI: 10.2147/ccid.s412162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/16/2023] [Indexed: 06/30/2023]
Abstract
Background Condyloma cuminata (CA) is a sexually transmitted disease caused by human papillomavirus (HPV) infection, which is prone to recurrence and difficult to cure in the short term. CD207 is a C-type lectin receptor that is specifically expressed on the surface of Langerhans cells (LCs) and is considered as an LC-specific immunohistochemical marker. The main purpose of this study is to explore the correlation between the expression of CD207 in CA skin lesions and the duration of CA disease course and frequency of recurrence, in order to provide new prognostic markers for CA to clinicians. Materials and Methods A total of 40 male patients with CA and their skin lesions were collected, as well as 40 healthy male penile tissue samples. The skin lesions of CA were clinically and histologically confirmed by acetic acid test. The expression of CD207 in epidermal tissues was detected using immunohistochemistry. The difference in the number of CD207 positive cells between CA skin lesions and healthy skin controls was compared, and the association between the number of CD207 positive cells in CA skin lesions and the duration of disease course and the frequency of recurrence was determined through Spearman correlation analysis. Conclusion In CA skin lesions, CD207 positive cells were found to have morphological abnormalities and the number of cells was significantly reduced compared to healthy skin, suggesting that there may be antigen presentation dysfunction in CA skin lesions, which may be the reason for the prolonged and unresolved condition of the disease. The fewer CD207 positive cells in CA skin lesions, the longer the disease course and the more frequent the recurrence, therefore, the expression level of CD207 can be used as a new prognostic marker for predicting the outcome of CA.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Dermatology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, People’s Republic of China
| | - Yan Qu
- Department of Dermatology, Yantai Yuhuangding Hospital, Yantai, Shandong, People’s Republic of China
| | - Changlin Sui
- Department of Dermatology, Yantai Yuhuangding Hospital, Yantai, Shandong, People’s Republic of China
| | - Meiling Li
- Department of Dermatology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, People’s Republic of China
| | - Yanmei Yuan
- Department of Dermatology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, People’s Republic of China
| | - Ningning Wang
- Department of Dermatology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, People’s Republic of China
| | - Weiyuan Ma
- Department of Dermatology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, People’s Republic of China
| |
Collapse
|
15
|
Duan XC, Li XX, Li XM, Wang S, Zhang FQ, Qian P. Exploiting Broad-Spectrum Chimeric Lysin to Cooperate with Mupirocin against Staphylococcus aureus-Induced Skin Infections and Delay the Development of Mupirocin Resistance. Microbiol Spectr 2023; 11:e0505022. [PMID: 37125939 PMCID: PMC10269905 DOI: 10.1128/spectrum.05050-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/10/2023] [Indexed: 05/02/2023] Open
Abstract
Staphylococcus aureus often leads to severe skin infections. However, S. aureus is facing a crisis of antibiotic resistance. The combination of phage and antibiotics is effective for drug-resistant S. aureus infections. Therefore, it is worth exploiting novel antibacterial agents to cooperate with antibiotics against S. aureus infections. Herein, a novel chimeric lysin ClyQ was constructed, which was composed of a cysteine- and histidine-dependent amidohydrolase/peptidase (CHAP) catalytic domain from S. aureus phage lysin LysGH15 and cell wall-binding domain (CBD) from Enterococcus faecalis phage lysin PlyV12. ClyQ had an exceptionally broad host range targeting streptococci, staphylococci, E. faecalis, and E. rhusiopathiae. ClyQ combined with mupirocin (2.64 log reduction) was more effective at treating S. aureus skin infections than ClyQ (0.46 log reduction) and mupirocin (2.23 log reduction) alone. Of equal importance, none of S. aureus ATCC 29213 or S3 exposed to ClyQ developed resistance, and the combination of ClyQ and mupirocin delayed the development of mupirocin resistance. Collectively, chimeric lysin ClyQ enriches the reservoirs for treating S. aureus infections. Our findings may provide a way to alleviate the current antibiotic resistance crisis. IMPORTANCE Staphylococcus aureus, as an Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species (ESKAPE) pathogen, can escape the elimination of existing antibiotics. At present, phages and phage lysins against S. aureus infections are considered alternative antibacterial agents. However, the development of broad-spectrum chimeric phage lysins to cooperate with antibiotics against S. aureus infections remains at its initial stage. In this study, we found that the broad-host-range chimeric lysin ClyQ can synergize with mupirocin to treat S. aureus skin infections. Furthermore, the development of S. aureus resistance to mupirocin is delayed by the combination of ClyQ and mupirocin in vitro. Our results bring research attention toward the development of chimeric lysin that cooperates with antibiotics to overcome bacterial infections.
Collapse
Affiliation(s)
- Xiao-chao Duan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xin-xin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xiang-min Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shuang Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Fen-qiang Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
16
|
Shen P, Zheng L, Qin X, Li D, Zhang Z, Zhao J, Lin H, Hong H, Zhou Z, Wu Z. Synthesis of structure-defined β-1,4-GlcNAc-modified wall teichoic acids as potential vaccine against methicillin-resistant Staphylococcus aureus. Eur J Med Chem 2023; 258:115553. [PMID: 37336068 DOI: 10.1016/j.ejmech.2023.115553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a high priority pathogen due to its life-threating infections to human health. Development of prophylactic or therapeutic anti-MRSA vaccine is a potential approach to treat S. aureus infections and overcome the resistance crisis. β-1,4-GlcNAc glycosylated wall teichoic acids (WTAs) derived from S. aureus are a new type of antigen that is closely associated with β-lactam resistance. In this study, structure-defined β-1,4-GlcNAc-modified WTAs varied in chain length and numbers of GlcNAc modification were synthesized by an ionic liquid-supported oligosaccharide synthesis (ILSOS) strategy in high efficiency and chromatography-free approach. Then the obtained WTAs were conjugated with tetanus toxin (TT) as vaccine candidates and were further evaluated in a mouse model to determine the structure-immunogenicity relationship. In vivo immunological studies revealed that the WTAs-TT conjugates provoked robust T cell-dependent responses and elicited high levels of specific anti-WTAs IgG antibodies production associated with the WTAs structure including chain length as well as the β-1,4-GlcNAc modification pattern. Heptamer WTAs conjugate T6, carrying three copy of β-1,4-GlcNAc modified RboP, was identified to elicit the highest titers of specific antibody production. The T6 antisera exhibited the highest recognition and binding affinity and the most potent OP-killing activities to MSSA and MRSA cells. This study demonstrated that β-1,4-GlcNAc glycosylated WTAs are promising antigens for further development against MRSA.
Collapse
Affiliation(s)
- Peng Shen
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Lele Zheng
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xinfang Qin
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Dan Li
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zijiang Zhang
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jie Zhao
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Han Lin
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Haofei Hong
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhifang Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhimeng Wu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
17
|
Linz MS, Mattappallil A, Finkel D, Parker D. Clinical Impact of Staphylococcus aureus Skin and Soft Tissue Infections. Antibiotics (Basel) 2023; 12:557. [PMID: 36978425 PMCID: PMC10044708 DOI: 10.3390/antibiotics12030557] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
The pathogenic bacterium Staphylococcus aureus is the most common pathogen isolated in skin-and-soft-tissue infections (SSTIs) in the United States. Most S. aureus SSTIs are caused by the epidemic clone USA300 in the USA. These infections can be serious; in 2019, SSTIs with S. aureus were associated with an all-cause, age-standardized mortality rate of 0.5 globally. Clinical presentations of S. aureus SSTIs vary from superficial infections with local symptoms to monomicrobial necrotizing fasciitis, which can cause systemic manifestations and may lead to serious complications or death. In order to cause skin infections, S. aureus employs a host of virulence factors including cytolytic proteins, superantigenic factors, cell wall-anchored proteins, and molecules used for immune evasion. The immune response to S. aureus SSTIs involves initial responders such as keratinocytes and neutrophils, which are supported by dendritic cells and T-lymphocytes later during infection. Treatment for S. aureus SSTIs is usually oral therapy, with parenteral therapy reserved for severe presentations; it ranges from cephalosporins and penicillin agents such as oxacillin, which is generally used for methicillin-sensitive S. aureus (MSSA), to vancomycin for methicillin-resistant S. aureus (MRSA). Treatment challenges include adverse effects, risk for Clostridioides difficile infection, and potential for antibiotic resistance.
Collapse
Affiliation(s)
- Matthew S. Linz
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Arun Mattappallil
- Department of Pharmaceutical Services, University Hospital, Newark, NJ 07103, USA
| | - Diana Finkel
- Division of Infectious Diseases, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
18
|
Kengmo Tchoupa A, Kretschmer D, Schittek B, Peschel A. The epidermal lipid barrier in microbiome-skin interaction. Trends Microbiol 2023:S0966-842X(23)00027-6. [PMID: 36822953 DOI: 10.1016/j.tim.2023.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 02/25/2023]
Abstract
The corneocyte layers forming the upper surface of mammalian skin are embedded in a lamellar-membrane matrix which repels harmful molecules while retaining solutes from subcutaneous tissues. Only certain bacterial and fungal taxa colonize skin surfaces. They have ways to use epidermal lipids as nutrients while resisting antimicrobial fatty acids. Skin microorganisms release lipophilic microbe-associated molecular pattern (MAMP) molecules which are largely retained by the epidermal lipid barrier. Skin barrier defects, as in atopic dermatitis, impair lamellar-membrane integrity, resulting in altered skin microbiomes, which then include the pathogen Staphylococcus aureus. The resulting increased penetration of MAMPs and toxins promotes skin inflammation. Elucidating how microorganisms manipulate the epidermal lipid barrier will be key for better ways of preventing inflammatory skin disorders.
Collapse
Affiliation(s)
- Arnaud Kengmo Tchoupa
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology Section, University of Tübingen, Tübingen, Germany; Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany; German Center for Infection Research (DZIF), partner site Tübingen, Germany
| | - Dorothee Kretschmer
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology Section, University of Tübingen, Tübingen, Germany; Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany; German Center for Infection Research (DZIF), partner site Tübingen, Germany
| | - Birgit Schittek
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany; Dermatology Department, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology Section, University of Tübingen, Tübingen, Germany; Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany; German Center for Infection Research (DZIF), partner site Tübingen, Germany.
| |
Collapse
|
19
|
Katsarou S, Makris M, Vakirlis E, Gregoriou S. The Role of Tight Junctions in Atopic Dermatitis: A Systematic Review. J Clin Med 2023; 12:jcm12041538. [PMID: 36836073 PMCID: PMC9967084 DOI: 10.3390/jcm12041538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Tight junctions are transmembrane proteins that regulate the permeability of water, solutes including ions, and water-soluble molecules. The objective of this systematic review is to focus on the current knowledge regarding the role of tight junctions in atopic dermatitis and the possible impact on their therapeutic potential. METHODS A literature search was performed in PubMed, Google Scholar, and Cochrane library between 2009 and 2022. After evaluation of the literature and taking into consideration their content, 55 articles were finally included. RESULTS TJs' role in atopic dermatitis extends from a microscopic scale to having macroscopic effects, such as increased susceptibility to pathogens and infections and worsening of atopic dermatitis features. Impaired TJ barrier function and skin permeability in AD lesions is correlated with cldn-1 levels. Th2 inflammation inhibits the expression of cldn-1 and cldn-23. Scratching has also been reported to decrease cldn-1 expression. Dysfunctional TJs' interaction with Langerhans cells could increase allergen penetration. Susceptibility to cutaneous infections in AD patients could also be affected by TJ cohesion. CONCLUSIONS Dysfunction of TJs and their components, especially claudins, have a significant role in the pathogenesis and vicious circle of inflammation in AD. Discovering more basic science data regarding TJ functionality may be the key for the use of specific/targeted therapies in order to improve epidermal barrier function in AD.
Collapse
Affiliation(s)
- Spyridoula Katsarou
- 1st Department of Dermatology and Venereology, Medical School, National and Kapodistrian University of Athens, Andreas Syggros Hospital, 11528 Athens, Greece
- Correspondence:
| | - Michael Makris
- 2nd Department of Dermatology and Venereology, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, Allergy Unit, 12461 Athens, Greece
| | - Efstratios Vakirlis
- 1st Department of Dermatology and Venereology, Medical School, Aristotle University, 54124 Thessaloniki, Greece
| | - Stamatios Gregoriou
- 1st Department of Dermatology and Venereology, Medical School, National and Kapodistrian University of Athens, Andreas Syggros Hospital, 11528 Athens, Greece
| |
Collapse
|
20
|
Tamminga SM, Völpel SL, Schipper K, Stehle T, Pannekoek Y, van Sorge NM. Genetic diversity of Staphylococcus aureus wall teichoic acid glycosyltransferases affects immune recognition. Microb Genom 2022; 8:mgen000902. [PMID: 36748528 PMCID: PMC9837562 DOI: 10.1099/mgen.0.000902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus is a leading cause of skin and soft tissue infections and systemic infections. Wall teichoic acids (WTAs) are cell wall-anchored glycopolymers that are important for S. aureus nasal colonization, phage-mediated horizontal gene transfer, and antibiotic resistance. WTAs consist of a polymerized ribitol phosphate (RboP) chain that can be glycosylated with N-acetylglucosamine (GlcNAc) by three glycosyltransferases: TarS, TarM, and TarP. TarS and TarP modify WTA with β-linked GlcNAc at the C-4 (β1,4-GlcNAc) and the C-3 position (β1,3-GlcNAc) of the RboP subunit, respectively, whereas TarM modifies WTA with α-linked GlcNAc at the C-4 position (α1,4-GlcNAc). Importantly, these WTA glycosylation patterns impact immune recognition and clearance of S. aureus. Previous studies suggest that tarS is near-universally present within the S. aureus population, whereas a smaller proportion co-contain either tarM or tarP. To gain more insight into the presence and genetic variation of tarS, tarM and tarP in the S. aureus population, we analysed a collection of 25 652 S. aureus genomes within the PubMLST database. Over 99 % of isolates contained tarS. Co-presence of tarS/tarM or tarS/tarP occurred in 37 and 7 % of isolates, respectively, and was associated with specific S. aureus clonal complexes. We also identified 26 isolates (0.1 %) that contained all three glycosyltransferase genes. At sequence level, we identified tar alleles with amino acid substitutions in critical enzymatic residues or with premature stop codons. Several tar variants were expressed in a S. aureus tar-negative strain. Analysis using specific monoclonal antibodies and human langerin showed that WTA glycosylation was severely attenuated or absent. Overall, our data provide a broad overview of the genetic diversity of the three WTA glycosyltransferases in the S. aureus population and the functional consequences for immune recognition.
Collapse
Affiliation(s)
- Sara M. Tamminga
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Simon L. Völpel
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Kim Schipper
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany,Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yvonne Pannekoek
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands,*Correspondence: Nina M. van Sorge,
| | - Nina M. van Sorge
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands,Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam UMC, Amsterdam, The Netherlands,*Correspondence: Nina M. van Sorge,
| |
Collapse
|
21
|
The Roles of Skin Langerhans Cells in Immune Tolerance and Cancer Immunity. Vaccines (Basel) 2022; 10:vaccines10091380. [PMID: 36146458 PMCID: PMC9503294 DOI: 10.3390/vaccines10091380] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/14/2022] [Accepted: 08/19/2022] [Indexed: 12/19/2022] Open
Abstract
Langerhans cells (LC) are a unique population of tissue-resident macrophages with dendritic cell (DC) functionality that form a network of cells across the epidermis of the skin. Their location at the skin barrier suggests an important role for LC as immune sentinels at the skin surface. The classification of LC as DC over the past few decades has driven the scientific community to extensively study how LC function as DC-like cells that prime T cell immunity. However, LC are a unique type of tissue-resident macrophages, and recent evidence also supports an immunoregulatory role of LC at steady state and during specific inflammatory conditions, highlighting the impact of cutaneous environment in shaping LC functionality. In this mini review, we discuss the recent literature on the immune tolerance function of LC in homeostasis and disease conditions, including malignant transformation and progression; as well as LC functional plasticity for adaption to microenvironmental cues and the potential connection between LC population heterogeneity and functional diversity. Future investigation into the molecular mechanisms that LC use to integrate different microenvironment cues and adapt immunological responses for controlling LC functional plasticity is needed for future breakthroughs in tumor immunology, vaccine development, and treatments for inflammatory skin diseases.
Collapse
|
22
|
Ma X, Ru Y, Luo Y, Kuai L, Chen QL, Bai Y, Liu YQ, Chen J, Luo Y, Song JK, Zhou M, Li B. Post-Translational Modifications in Atopic Dermatitis: Current Research and Clinical Relevance. Front Cell Dev Biol 2022; 10:942838. [PMID: 35874824 PMCID: PMC9301047 DOI: 10.3389/fcell.2022.942838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/16/2022] [Indexed: 11/20/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic and relapsing cutaneous disorder characterized by compromised immune system, excessive inflammation, and skin barrier disruption. Post-translational modifications (PTMs) are covalent and enzymatic modifications of proteins after their translation, which have been reported to play roles in inflammatory and allergic diseases. However, less attention has been paid to the effect of PTMs on AD. This review summarized the knowledge of six major classes (including phosphorylation, acetylation, ubiquitination, SUMOylation, glycosylation, o-glycosylation, and glycation) of PTMs in AD pathogenesis and discussed the opportunities for disease management.
Collapse
Affiliation(s)
- Xin Ma
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Qi-Long Chen
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
| | - Yun Bai
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
| | - Ye-Qiang Liu
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
| | - Jia Chen
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
| | - Yue Luo
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
| | - Jian-Kun Song
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
| | - Mi Zhou
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Mi Zhou, ; Bin Li,
| | - Bin Li
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Mi Zhou, ; Bin Li,
| |
Collapse
|
23
|
Exploring the Role of Staphylococcus aureus in Inflammatory Diseases. Toxins (Basel) 2022; 14:toxins14070464. [PMID: 35878202 PMCID: PMC9318596 DOI: 10.3390/toxins14070464] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023] Open
Abstract
Staphylococcus aureus is a very common Gram-positive bacterium, and S. aureus infections play an extremely important role in a variety of diseases. This paper describes the types of virulence factors involved, the inflammatory cells activated, the process of host cell death, and the associated diseases caused by S. aureus. S. aureus can secrete a variety of enterotoxins and other toxins to trigger inflammatory responses and activate inflammatory cells, such as keratinocytes, helper T cells, innate lymphoid cells, macrophages, dendritic cells, mast cells, neutrophils, eosinophils, and basophils. Activated inflammatory cells can express various cytokines and induce an inflammatory response. S. aureus can also induce host cell death through pyroptosis, apoptosis, necroptosis, autophagy, etc. This article discusses S. aureus and MRSA (methicillin-resistant S. aureus) in atopic dermatitis, psoriasis, pulmonary cystic fibrosis, allergic asthma, food poisoning, sarcoidosis, multiple sclerosis, and osteomyelitis. Summarizing the pathogenic mechanism of Staphylococcus aureus provides a basis for the targeted treatment of Staphylococcus aureus infection.
Collapse
|
24
|
Nerb B, Dudziak D, Gessner A, Feuerer M, Ritter U. Have We Ignored Vector-Associated Microbiota While Characterizing the Function of Langerhans Cells in Experimental Cutaneous Leishmaniasis? FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.874081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
25
|
Kinetic Characterization of the Immune Response to Methicillin-Resistant Staphylococcus aureus Subcutaneous Skin Infection. Infect Immun 2022; 90:e0006522. [PMID: 35647662 DOI: 10.1128/iai.00065-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus is a leading cause of skin and soft tissue infections (SSTIs). Studies examining the immune response to S. aureus have been conducted, yet our understanding of the kinetic response to S. aureus subcutaneous skin infection remains incomplete. In this study, we used C57BL/6J mice and USA300 S. aureus to examine the host-pathogen interface from 8 h postinfection to 15 days postinfection (dpi), with the following outcomes measured: lesion size, bacterial titers, local cytokine and chemokine levels, phenotype of the responding leukocytes, and histopathology and Gram staining of skin tissue. Lesions were largest at 1 dpi, with peak necrotic tissue areas at 3 dpi, and were largely resolved by 15 dpi. During early infection, bacterial titers were high, neutrophils were the most abundant immune cell type, there was a decrease in most leukocyte populations found in uninfected skin, and many different cytokines were produced. Histopathological analysis demonstrated swift and extensive keratinocyte death and robust and persistent neutrophil infiltration. Gram staining revealed subdermal S. aureus colonization and, later, limited migration into upper skin layers. Interleukin-17A/F (IL-17A/F) was detected only starting at 5 dpi and coincided with an immediate decrease in bacterial numbers in the following days. After 9 days, neutrophils were no longer the most abundant immune cell type present as most other leukocyte subsets returned, and surface wounds resolved coincident with declining bacterial titers. Collectively, these data illustrate a dynamic immune response to S. aureus skin infection and suggest a key role for precisely timed IL-17 production for infection clearance and healthy tissue formation.
Collapse
|
26
|
The Influence of Antibiotic Resistance on Innate Immune Responses to Staphylococcus aureus Infection. Antibiotics (Basel) 2022; 11:antibiotics11050542. [PMID: 35625186 PMCID: PMC9138074 DOI: 10.3390/antibiotics11050542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus (S. aureus) causes a broad range of infections and is associated with significant morbidity and mortality. S. aureus produces a diverse range of cellular and extracellular factors responsible for its invasiveness and ability to resist immune attack. In recent years, increasing resistance to last-line anti-staphylococcal antibiotics daptomycin and vancomycin has been observed. Resistant strains of S. aureus are highly efficient in invading a variety of professional and nonprofessional phagocytes and are able to survive inside host cells. Eliciting immune protection against antibiotic-resistant S. aureus infection is a global challenge, requiring both innate and adaptive immune effector mechanisms. Dendritic cells (DC), which sit at the interface between innate and adaptive immune responses, are central to the induction of immune protection against S. aureus. However, it has been observed that S. aureus has the capacity to develop further antibiotic resistance and acquire increased resistance to immunological recognition by the innate immune system. In this article, we review the strategies utilised by S. aureus to circumvent antibiotic and innate immune responses, especially the interaction between S. aureus and DC, focusing on how this relationship is perturbed with the development of antibiotic resistance.
Collapse
|
27
|
Miyano T, Irvine AD, Tanaka RJ. Model-based meta-analysis to optimise S. aureus-targeted therapies for atopic dermatitis. JID INNOVATIONS 2022; 2:100110. [PMID: 35757782 PMCID: PMC9214323 DOI: 10.1016/j.xjidi.2022.100110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 11/29/2022] Open
Abstract
Several clinical trials of Staphylococcus aureus (S. aureus)‒targeted therapies for atopic dermatitis (AD) have shown conflicting results about whether they improve AD severity scores. This study performs a model-based meta-analysis to investigate the possible causes of these conflicting results and suggests how to improve the efficacies of S. aureus‒targeted therapies. We developed a mathematical model that describes systems-level AD pathogenesis involving dynamic interactions between S. aureus and coagulase-negative Staphylococcus (CoNS). Our model simulation reproduced the clinically observed detrimental effects of the application of S. hominis A9 and flucloxacillin on AD severity and showed that these effects disappeared if the bactericidal activity against CoNS was removed. A hypothetical (modeled) eradication of S. aureus by 3.0 log10 colony-forming unit per cm2 without killing CoNS achieved Eczema Area and Severity Index 75 comparable with that of dupilumab. This efficacy was potentiated if dupilumab was administered in conjunction with S. aureus eradication (Eczema Area and Severity Index 75 at week 16) (S. aureus eradication: 66.7%, dupilumab 61.6% and combination 87.8%). The improved efficacy was also seen for virtual dupilumab poor responders. Our model simulation suggests that killing CoNS worsens AD severity and that S. aureus‒specific eradication without killing CoNS could be effective for patients with AD, including dupilumab poor responders. This study will contribute to designing promising S. aureus‒targeted therapy.
Collapse
Affiliation(s)
- Takuya Miyano
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Alan D. Irvine
- Pediatric Dermatology, Children’s Health Ireland at Crumlin, Dublin, Ireland
- Clinical Medicine, College of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Reiko J. Tanaka
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Correspondence: Reiko J. Tanaka, Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom.
| |
Collapse
|
28
|
Sudo K, Todoroki T, Ka Y, Takahara K. Vγ5Vδ1 TCR signaling is required to different extents for embryonic versus postnatal development of DETCs. Int Immunol 2022; 34:263-276. [PMID: 35031803 DOI: 10.1093/intimm/dxac001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
δγ T cells expressing Vγ5Vδ1 TCR originally develop in the embryonic thymus and migrate to the epidermis, forming dendritic epidermal T cells (DETCs) throughout life. It is thought that a TCR signal is essential for their development; e.g., lack of TCR signal-transducer ZAP70 significantly decreases DETC numbers. On the other hand, lack of ZAP70 does not affect Vγ5Vδ1 + T cells in the embryonic thymus; thus, the involvement of TCR signaling remains elusive. Here, we used SKG mice with attenuated TCR signaling rather than gene-knockout mice. In SKG mice, Vγ5 + T cells showed a marked decrease (10% of wild-type) in adult epidermis; however, there was just a moderate decrease (50% of wild-type) in the embryonic thymus. In early postnatal epidermis in SKG mice, substantial numbers of Vγ5 + T cells were observed (50% of wild-type). Their activation markers including CD122, a component of the IL-15 receptor indispensable for DETC proliferation, were comparable to those of WT. However, the Vγ5 + T cells in SKG mice did not proliferate and form DETCs thereafter. Furthermore, in SKG/+ mice, the number of thymic Vγ5Vδ1 + T cells increased, compared to SKG mice; however, the number of DETCs remained significantly lower than in WT, similar to SKG mice. Our results suggest that signaling via Vγ5Vδ1 TCR is indispensable for DETC development, with distinct contributions to embryonic development and postnatal proliferation.
Collapse
Affiliation(s)
- Koichi Sudo
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto, Kyoto 606-8501, Japan
| | - Takero Todoroki
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto, Kyoto 606-8501, Japan
| | - Yuyo Ka
- Central Institute for Experimental Animals, Kawasaki, Kanagawa 210-0821, Japan
| | - Kazuhiko Takahara
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto, Kyoto 606-8501, Japan
| |
Collapse
|
29
|
Fischer S, Stegmann F, Gnanapragassam VS, Lepenies B. From structure to function – Ligand recognition by myeloid C-type lectin receptors. Comput Struct Biotechnol J 2022; 20:5790-5812. [DOI: 10.1016/j.csbj.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/29/2022] Open
|
30
|
Suarez Carneiro MAM, Silva LDS, Diniz RM, Saminez WFDS, Oliveira PVD, Pereira Mendonça JS, Colasso AHM, Soeiro Silva IS, Jandú JJB, Sá JCD, Figueiredo CSSES, Correia MTDS, Nascimento da Silva LC. Immunomodulatory and anti-infective effects of Cratylia mollis lectin (Cramoll) in a model of wound infection induced by Staphylococcus aureus. Int Immunopharmacol 2021; 100:108094. [PMID: 34508942 DOI: 10.1016/j.intimp.2021.108094] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/02/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022]
Abstract
This work evaluated the immunomodulatory and anti-infective effects of Cratylia mollis lectin (Cramoll) in a model of wound infection induced by S. aureus. Swiss mice were divided into 3 groups (n = 12/group): non-inoculated (Control group); inoculated with S. aureus (Sa group); inoculated with S. aureus and treated with Cramoll (Sa + Cramoll group). In each animal, one lesion (64 mm2) was induced on the back and contaminated with S. aureus (~4.0 × 106 CFU/wound). The treatment with Cramoll (5 μg/animal/day) started 1-day post-infection (dpi) and extended for 10 days. Clinical parameters (wound size, inflammatory aspects, etc.) were daily recorded; while cytokines levels, bacterial load and histological aspects were determined in the cutaneous tissue at 4th dpi or 11th dpi. The mice infected with S. aureus exhibited a delay in wound contraction and the highest inflammatory scores. These effects were impaired by the treatment with Cramoll which reduced the release of key inflammatory mediators (TNF-α, NO, VEGF) and the bacterial load at wound tissue. Histological evaluations showed a restauration of skin structures in the animals treated with Cramoll. Taken together, these results provide more insights about the healing and immunomodulatory properties of Cramoll and suggest this lectin as a lead compound for treatment of wound infection.
Collapse
Affiliation(s)
| | - Lucas Dos Santos Silva
- Laboratório de Patogenicidade Microbiana, Universidade Ceuma, 65075-120 São Luís, MA, Brazil
| | - Roseana Muniz Diniz
- Laboratório de Patogenicidade Microbiana, Universidade Ceuma, 65075-120 São Luís, MA, Brazil
| | | | | | | | | | | | - Jannyson José Braz Jandú
- Laboratório de Bioquímica de Proteínas, Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, 50740-570 Recife, Brazil
| | - Joicy Cortez de Sá
- Laboratório de Patogenicidade Microbiana, Universidade Ceuma, 65075-120 São Luís, MA, Brazil
| | | | - Maria Tereza Dos Santos Correia
- Laboratório de Bioquímica de Proteínas, Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, 50740-570 Recife, Brazil
| | | |
Collapse
|
31
|
Hendriks A, van Dalen R, Ali S, Gerlach D, van der Marel GA, Fuchsberger FF, Aerts PC, de Haas CJ, Peschel A, Rademacher C, van Strijp JA, Codée JD, van Sorge NM. Impact of Glycan Linkage to Staphylococcus aureus Wall Teichoic Acid on Langerin Recognition and Langerhans Cell Activation. ACS Infect Dis 2021; 7:624-635. [PMID: 33591717 PMCID: PMC8023653 DOI: 10.1021/acsinfecdis.0c00822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Staphylococcus
aureus is the leading cause of
skin and soft tissue infections. It remains incompletely understood
how skin-resident immune cells respond to invading S. aureus and contribute to an effective immune response. Langerhans cells
(LCs), the only professional antigen-presenting cell type in the epidermis,
sense S. aureus through their pattern-recognition
receptor langerin, triggering a proinflammatory response. Langerin
recognizes the β-1,4-linked N-acetylglucosamine
(β1,4-GlcNAc) but not α-1,4-linked GlcNAc (α1,4-GlcNAc)
modifications, which are added by dedicated glycosyltransferases TarS
and TarM, respectively, on the cell wall glycopolymer wall teichoic
acid (WTA). Recently, an alternative WTA glycosyltransferase, TarP,
was identified, which also modifies WTA with β-GlcNAc but at
the C-3 position (β1,3-GlcNAc) of the WTA ribitol phosphate
(RboP) subunit. Here, we aimed to unravel the impact of β-GlcNAc
linkage position for langerin binding and LC activation. Using genetically
modified S. aureus strains, we observed that langerin
similarly recognized bacteria that produce either TarS- or TarP-modified
WTA, yet tarP-expressing S. aureus induced increased cytokine production and maturation of in vitro-generated LCs compared to tarS-expressing S. aureus. Chemically synthesized WTA
molecules, representative of the different S. aureus WTA glycosylation patterns, were used to identify langerin-WTA binding
requirements. We established that β-GlcNAc is sufficient to
confer langerin binding, thereby presenting synthetic WTA molecules
as a novel glycobiology tool for structure-binding studies and for
elucidating S. aureus molecular pathogenesis. Overall,
our data suggest that LCs are able to sense all β-GlcNAc-WTA
producing S. aureus strains, likely performing an
important role as first responders upon S. aureus skin invasion.
Collapse
Affiliation(s)
- Astrid Hendriks
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
- Glaxo-Smith Kline, 53100 Siena, Italy
| | - Rob van Dalen
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Sara Ali
- Leiden Institute of Chemistry, Leiden University, 2311 EZ Leiden, The Netherlands
| | - David Gerlach
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72074 Tübingen, Germany
- Partner Site Tübingen, German Centre for Infection Research (DZIF), 72074 Tübingen, Germany
| | | | | | - Piet C. Aerts
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Carla J.C. de Haas
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72074 Tübingen, Germany
- Partner Site Tübingen, German Centre for Infection Research (DZIF), 72074 Tübingen, Germany
| | | | - Jos A.G. van Strijp
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Jeroen D.C. Codée
- Leiden Institute of Chemistry, Leiden University, 2311 EZ Leiden, The Netherlands
| | - Nina M. van Sorge
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
32
|
Polak ME, Singh H. Tolerogenic and immunogenic states of Langerhans cells are orchestrated by epidermal signals acting on a core maturation gene module. Bioessays 2021; 43:e2000182. [PMID: 33645739 DOI: 10.1002/bies.202000182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022]
Abstract
Langerhans cells (LCs), residing in the epidermis, are able to induce potent immunogenic responses and also to mediate immune tolerance. We propose that tolerogenic and immunogenic responses of LCs are directed by signaling from the epidermis and involve counter-acting gene circuits that are coupled to a core maturation gene module. We base our analysis on recent genetic and genomic findings facilitating the understanding of the molecular mechanisms controlling these divergent immune functions. Comparing gene regulatory network (GRN) analyses of various types of dendritic cells (DCs) including LCs we integrate signaling-dependent (TGFβ, EpCAM, β-Catenin) and transcription factor (IRF4, IRF1, NFκB) regulated gene circuits that appear to orchestrate the distinctive LC functional states. Our model proposes, that while epidermal signaling in the steady-state promotes LC tolerogenic function, the disruption of cell-cell contacts coupled with inflammatory signaling induces LC immunogenic programing. The conceptual framework emphasizes the sensing of discrete epidermal and inflammatory cues by resident LCs in dictating their genomic programing and cell state dynamics.
Collapse
Affiliation(s)
- Marta E Polak
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Harinder Singh
- Center for Systems Immunology, Departments of Immunology and Computational and Systems Biology, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
33
|
Ohkawa Y, Harada Y, Taniguchi N. Keratan sulfate-based glycomimetics using Langerin as a target for COPD: lessons from studies on Fut8 and core fucose. Biochem Soc Trans 2021; 49:441-453. [PMID: 33616615 PMCID: PMC7924997 DOI: 10.1042/bst20200780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 12/19/2022]
Abstract
Glycosylation represents one of the most abundant posttranslational modification of proteins. Glycosylation products are diverse and are regulated by the cooperative action of various glycosyltransferases, glycosidases, substrates thereof: nucleoside sugars and their transporters, and chaperons. In this article, we focus on a glycosyltransferase, α1,6-fucosyltransferase (Fut8) and its product, the core fucose structure on N-glycans, and summarize the potential protective functions of this structure against emphysema and chronic obstructive pulmonary disease (COPD). Studies of FUT8 and its enzymatic product, core fucose, are becoming an emerging area of interest in various fields of research including inflammation, cancer and therapeutics. This article discusses what we can learn from studies of Fut8 and core fucose by using knockout mice or in vitro studies that were conducted by our group as well as other groups. We also include a discussion of the potential protective functions of the keratan sulfate (KS) disaccharide, namely L4, against emphysema and COPD as a glycomimetic. Glycomimetics using glycan analogs is one of the more promising therapeutics that compensate for the usual therapeutic strategy that involves targeting the genome and the proteome. These typical glycans using KS derivatives as glycomimetics, will likely become a clue to the development of novel and effective therapeutic strategies.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Surface/genetics
- Antigens, Surface/metabolism
- Antigens, Surface/physiology
- Biomimetic Materials/chemistry
- Biomimetic Materials/therapeutic use
- Fucose/metabolism
- Fucosyltransferases/physiology
- Glycosylation
- Humans
- Keratan Sulfate/chemistry
- Lectins, C-Type/antagonists & inhibitors
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Lectins, C-Type/physiology
- Mannose-Binding Lectins/antagonists & inhibitors
- Mannose-Binding Lectins/genetics
- Mannose-Binding Lectins/metabolism
- Mannose-Binding Lectins/physiology
- Mice
- Mice, Knockout
- Molecular Targeted Therapy/methods
- Polysaccharides/chemistry
- Polysaccharides/metabolism
- Pulmonary Disease, Chronic Obstructive/drug therapy
- Pulmonary Disease, Chronic Obstructive/genetics
- Pulmonary Disease, Chronic Obstructive/metabolism
Collapse
Affiliation(s)
- Yuki Ohkawa
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Yoichiro Harada
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Naoyuki Taniguchi
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| |
Collapse
|
34
|
Zhang Z, Song X, Zhang Z, Li H, Duan Y, Zhang H, Lu H, Luo C, Wang M. The molecular characterization and immune protection of adhesion protein 65 (AP65) of Trichomonas vaginalis. Microb Pathog 2021; 152:104750. [PMID: 33484808 DOI: 10.1016/j.micpath.2021.104750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/13/2020] [Accepted: 01/13/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Adherence to the surface of the host cell is the precondition for T. vaginalis parasitism and pathogenicity, causing urogenital infection. The AP65 of T. vaginalis (TvAP65) involves in the process of adhesion. So, the present study was aimed at investigating the molecular characterization and vaccine candidacy of TvAP65 for protecting the host from the onset of Trichomoniasis. METHODS The open reading frame (ORF) of TvAP65 was amplified and then inserted into pET-32a (+) to clone recombinant TvAP65 (rTvAP65). The immunoblotting determined the immunogenicity and molecular size of TvAP65, while immunofluorescence staining visualized and the precise localization of TvAP65 in T. vaginalis trophozoites. Animal challenge and enzyme-linked immunosorbent assay (ELISA) test were used to evaluate the immunoprotection and the types of the immune response of TvAP65. RESULTS By the sequence analysis, TvAP65 encoded a 63.13 kDa protein that consisted 567 amino acid residues with a high antigenic index. The western blotting revealed that rTvAP65 and native TvAP65 could interact with the antibodies in the rat serums post hoc rTvAP65 immunization and the serums from the mice that were experimentally infected with T. vaginalis, respectively. Immunofluorescence stained TvAP65 on the surface of T. vaginalis trophozoites. Moreover, following emulsification with Freund's adjuvant, rTvAP65 was subsequently administered to BALB/c mice three times at 0, 2, and 4 weeks and the results from this animal challenge experiments showed significant increases in immunoglobulins of IgG2a, IgG1, and IgG, and cytokine of IFN-γ, and IL-2, and 10. Lastly, rTvAP65 vaccinated animals had a prolonged survival time (26.80 ± 4.05) after challenged by T. vaginalis. CONCLUSIONS TvAP65 mediated the adhesion of T. vaginalis to the host epithelia for the pathogenesis of the parasite and can be considered as a candidate protein for designing a functional vaccine that induces cell-mediated and humoral immunity against the T. vaginalis infection.
Collapse
Affiliation(s)
- Zhenchao Zhang
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China.
| | - Xiaoxiao Song
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Zhengbo Zhang
- School of International Education, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Haoran Li
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Yujuan Duan
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Hao Zhang
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Haoran Lu
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Chengyang Luo
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Mingyong Wang
- Henan Key Laboratory of Immunology and Targeted Therapy, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China.
| |
Collapse
|
35
|
Moller AG, Winston K, Ji S, Wang J, Hargita Davis MN, Solís-Lemus CR, Read TD. Genes Influencing Phage Host Range in Staphylococcus aureus on a Species-Wide Scale. mSphere 2021; 6:e01263-20. [PMID: 33441407 PMCID: PMC7845607 DOI: 10.1128/msphere.01263-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus is a human pathogen that causes serious diseases, ranging from skin infections to septic shock. Bacteriophages (phages) are both natural killers of S. aureus, offering therapeutic possibilities, and important vectors of horizontal gene transfer (HGT) in the species. Here, we used high-throughput approaches to understand the genetic basis of strain-to-strain variation in sensitivity to phages, which defines the host range. We screened 259 diverse S. aureus strains covering more than 40 sequence types for sensitivity to eight phages, which were representatives of the three phage classes that infect the species. The phages were variable in host range, each infecting between 73 and 257 strains. Using genome-wide association approaches, we identified putative loci that affect host range and validated their function using USA300 transposon knockouts. In addition to rediscovering known host range determinants, we found several previously unreported genes affecting bacterial growth during phage infection, including trpA, phoR, isdB, sodM, fmtC, and relA We used the data from our host range matrix to develop predictive models that achieved between 40% and 95% accuracy. This work illustrates the complexity of the genetic basis for phage susceptibility in S. aureus but also shows that with more data, we may be able to understand much of the variation. With a knowledge of host range determination, we can rationally design phage therapy cocktails that target the broadest host range of S. aureus strains and address basic questions regarding phage-host interactions, such as the impact of phage on S. aureus evolution.IMPORTANCEStaphylococcus aureus is a widespread, hospital- and community-acquired pathogen, many strains of which are antibiotic resistant. It causes diverse diseases, ranging from local to systemic infection, and affects both the skin and many internal organs, including the heart, lungs, bones, and brain. Its ubiquity, antibiotic resistance, and disease burden make new therapies urgent. One alternative therapy to antibiotics is phage therapy, in which viruses specific to infecting bacteria clear infection. In this work, we identified and validated S. aureus genes that influence phage host range-the number of strains a phage can infect and kill-by testing strains representative of the diversity of the S. aureus species for phage host range and associating the genome sequences of strains with host range. These findings together improved our understanding of how phage therapy works in the bacterium and improve prediction of phage therapy efficacy based on the predicted host range of the infecting strain.
Collapse
Affiliation(s)
- Abraham G Moller
- Microbiology and Molecular Genetics (MMG) Program, Graduate Division of Biological and Biomedical Sciences (GDBBS), Emory University, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Kyle Winston
- Department of Epidemiology, Rollins School of Public Health (RSPH), Emory University, Atlanta, Georgia, USA
| | - Shiyu Ji
- Eugene Gangarosa Laboratory Research Fellowship, Emory College Online & Summer Programs, Emory College of Arts and Sciences, Atlanta, Georgia, USA
| | - Junting Wang
- Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michelle N Hargita Davis
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Claudia R Solís-Lemus
- Wisconsin Institute for Discovery, Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy D Read
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
36
|
Wall Teichoic Acid in Staphylococcus aureus Host Interaction. Trends Microbiol 2020; 28:985-998. [DOI: 10.1016/j.tim.2020.05.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
|
37
|
Huitema L, Phillips T, Alexeev V, Tomic-Canic M, Pastar I, Igoucheva O. Intracellular escape strategies of Staphylococcus aureus in persistent cutaneous infections. Exp Dermatol 2020; 30:1428-1439. [PMID: 33179358 DOI: 10.1111/exd.14235] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/19/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022]
Abstract
Pathogenic invasion of Staphylococcus aureus is a major concern in patients with chronic skin diseases like atopic dermatitis (AD), epidermolysis bullosa (EB), or chronic diabetic foot and venous leg ulcers, and can result in persistent and life-threatening chronic non-healing wounds. Staphylococcus aureus is generally recognized as extracellular pathogens. However, S. aureus can also invade, hide and persist in skin cells to contribute to wound chronicity. The intracellular life cycle of S. aureus is currently incompletely understood, although published studies indicate that its intracellular escape strategies play an important role in persistent cutaneous infections. This review provides current scientific knowledge about the intracellular life cycle of S. aureus in skin cells, which can be classified into professional and non-professional antigen-presenting cells, and its strategies to escape adaptive defense mechanisms. First, we discuss phenotypic switch of S. aureus, which affects intracellular routing and degradation. This review also evaluates potential intracellular escape mechanism of S. aureus to avoid intracellular degradation and antigen presentation, preventing an immune response. Furthermore, we discuss potential drug targets that can interfere with the intracellular life cycle of S. aureus. Taken together, this review aimed to increase scientific understanding about the intracellular life cycle of S. aureus into skin cells and its strategies to evade the host immune response, information that is crucial to reduce pathogenic invasion and life-threatening persistence of S. aureus in chronic cutaneous infections.
Collapse
Affiliation(s)
- Leonie Huitema
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Taylor Phillips
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Vitali Alexeev
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Olga Igoucheva
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
38
|
Mrochen DM, Fernandes de Oliveira LM, Raafat D, Holtfreter S. Staphylococcus aureus Host Tropism and Its Implications for Murine Infection Models. Int J Mol Sci 2020; 21:E7061. [PMID: 32992784 PMCID: PMC7582387 DOI: 10.3390/ijms21197061] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is a pathobiont of humans as well as a multitude of animal species. The high prevalence of multi-resistant and more virulent strains of S. aureus necessitates the development of new prevention and treatment strategies for S. aureus infection. Major advances towards understanding the pathogenesis of S. aureus diseases have been made using conventional mouse models, i.e., by infecting naïve laboratory mice with human-adapted S.aureus strains. However, the failure to transfer certain results obtained in these murine systems to humans highlights the limitations of such models. Indeed, numerous S. aureus vaccine candidates showed promising results in conventional mouse models but failed to offer protection in human clinical trials. These limitations arise not only from the widely discussed physiological differences between mice and humans, but also from the lack of attention that is paid to the specific interactions of S. aureus with its respective host. For instance, animal-derived S. aureus lineages show a high degree of host tropism and carry a repertoire of host-specific virulence and immune evasion factors. Mouse-adapted S.aureus strains, humanized mice, and microbiome-optimized mice are promising approaches to overcome these limitations and could improve transferability of animal experiments to human trials in the future.
Collapse
Affiliation(s)
- Daniel M. Mrochen
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse DZ 7, 17475 Greifswald, Germany; (L.M.F.d.O.); (D.R.); (S.H.)
| | - Liliane M. Fernandes de Oliveira
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse DZ 7, 17475 Greifswald, Germany; (L.M.F.d.O.); (D.R.); (S.H.)
| | - Dina Raafat
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse DZ 7, 17475 Greifswald, Germany; (L.M.F.d.O.); (D.R.); (S.H.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| | - Silva Holtfreter
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse DZ 7, 17475 Greifswald, Germany; (L.M.F.d.O.); (D.R.); (S.H.)
| |
Collapse
|
39
|
Schulz A, Jiang L, de Vor L, Ehrström M, Wermeling F, Eidsmo L, Melican K. Neutrophil Recruitment to Noninvasive MRSA at the Stratum Corneum of Human Skin Mediates Transient Colonization. Cell Rep 2020; 29:1074-1081.e5. [PMID: 31665625 DOI: 10.1016/j.celrep.2019.09.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/16/2019] [Accepted: 09/18/2019] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus is a leading cause of skin and soft issue infection, but paradoxically, it also transiently, and often harmlessly, colonizes human skin. An obstacle to understanding this contradiction has been a shortage of in vivo models reproducing the unique structure and immunology of human skin. In this work, we developed a humanized model to study how healthy adult human skin responds to colonizing methicillin-resistant S. aureus (MRSA). We demonstrate the importance of the outer stratum corneum as the major site of bacterial colonization and how noninvasive MRSA adhesion to corneocytes induces a local inflammatory response in underlying skin layers. This signaling recruits neutrophils to the skin, where they control bacterial numbers, mediating transiency in colonization. This work highlights the spatiotemporal aspects of human skin colonization and demonstrates a subclinical inflammatory response to noninvasive MRSA that allows human skin to regulate the bacterial population at its outer surface.
Collapse
Affiliation(s)
- Anette Schulz
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institute, Stockholm 171 77, Sweden
| | - Long Jiang
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm 171 77, Sweden
| | - Lisanne de Vor
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institute, Stockholm 171 77, Sweden
| | - Marcus Ehrström
- Department of Reconstructive Plastic Surgery, Karolinska University Hospital Solna, Stockholm 171 77, Sweden
| | - Fredrik Wermeling
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm 171 77, Sweden
| | - Liv Eidsmo
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm 171 77, Sweden
| | - Keira Melican
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institute, Stockholm 171 77, Sweden.
| |
Collapse
|
40
|
Miller LS, Fowler VG, Shukla SK, Rose WE, Proctor RA. Development of a vaccine against Staphylococcus aureus invasive infections: Evidence based on human immunity, genetics and bacterial evasion mechanisms. FEMS Microbiol Rev 2020; 44:123-153. [PMID: 31841134 PMCID: PMC7053580 DOI: 10.1093/femsre/fuz030] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022] Open
Abstract
Invasive Staphylococcus aureus infections are a leading cause of morbidity and mortality in both hospital and community settings, especially with the widespread emergence of virulent and multi-drug resistant methicillin-resistant S. aureus strains. There is an urgent and unmet clinical need for non-antibiotic immune-based approaches to treat these infections as the increasing antibiotic resistance is creating a serious threat to public health. However, all vaccination attempts aimed at preventing S. aureus invasive infections have failed in human trials, especially all vaccines aimed at generating high titers of opsonic antibodies against S. aureus surface antigens to facilitate antibody-mediated bacterial clearance. In this review, we summarize the data from humans regarding the immune responses that protect against invasive S. aureus infections as well as host genetic factors and bacterial evasion mechanisms, which are important to consider for the future development of effective and successful vaccines and immunotherapies against invasive S. aureus infections in humans. The evidence presented form the basis for a hypothesis that staphylococcal toxins (including superantigens and pore-forming toxins) are important virulence factors, and targeting the neutralization of these toxins are more likely to provide a therapeutic benefit in contrast to prior vaccine attempts to generate antibodies to facilitate opsonophagocytosis.
Collapse
Affiliation(s)
- Lloyd S Miller
- Immunology, Janssen Research and Development, 1400 McKean Road, Spring House, PA, 19477, USA.,Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Cancer Research Building 2, Suite 209, Baltimore, MD, 21231, USA.,Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, 1830 East Monument Street, Baltimore, MD, 21287, USA.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, 601 North Caroline Street, Baltimore, MD, 21287, USA.,Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Vance G Fowler
- Department of Medicine, Division of Infectious Diseases, Duke University Medical Center, 315 Trent Drive, Hanes House, Durham, NC, 27710, USA.,Duke Clinical Research Institute, Duke University Medical Center, 40 Duke Medicine Circle, Durham, NC, 27710, USA
| | - Sanjay K Shukla
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, 1000 North Oak Avenue, Marshfield, WI, 54449, USA.,Computation and Informatics in Biology and Medicine, University of Wisconsin, 425 Henry Mall, Room 3445, Madison, WI, 53706, USA
| | - Warren E Rose
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI, 53705, USA.,Pharmacy Practice Division, University of Wisconsin-Madison, 777 Highland Avenue, 4123 Rennebohm Hall, Madison, WI, 53705 USA
| | - Richard A Proctor
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI, 53705, USA.,Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, 1550 Linden Drive, Microbial Sciences Building, Room 1334, Madison, WI, 53705, USA
| |
Collapse
|
41
|
Mnich ME, van Dalen R, van Sorge NM. C-Type Lectin Receptors in Host Defense Against Bacterial Pathogens. Front Cell Infect Microbiol 2020; 10:309. [PMID: 32733813 PMCID: PMC7358460 DOI: 10.3389/fcimb.2020.00309] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
Antigen-presenting cells (APCs) are present throughout the human body—in tissues, at barrier sites and in the circulation. They are critical for processing external signals to instruct both local and systemic responses toward immune tolerance or immune defense. APCs express an extensive repertoire of pattern-recognition receptors (PRRs) to detect and transduce these signals. C-type lectin receptors (CLRs) comprise a subfamily of PRRs dedicated to sensing glycans, including those expressed by commensal and pathogenic bacteria. This review summarizes recent findings on the recognition of and responses to bacteria by membrane-expressed CLRs on different APC subsets, which are discussed according to the primary site of infection. Many CLR-bacterial interactions promote bacterial clearance, whereas other interactions are exploited by bacteria to enhance their pathogenic potential. The discrimination between protective and virulence-enhancing interactions is essential to understand which interactions to target with new prophylactic or treatment strategies. CLRs are also densely concentrated at APC dendrites that sample the environment across intact barrier sites. This suggests an–as yet–underappreciated role for CLR-mediated recognition of microbiota-produced glycans in maintaining tolerance at barrier sites. In addition to providing a concise overview of identified CLR-bacteria interactions, we discuss the main challenges and potential solutions for the identification of new CLR-bacterial interactions, including those with commensal bacteria, and for in-depth structure-function studies on CLR-bacterial glycan interactions. Finally, we highlight the necessity for more relevant tissue-specific in vitro, in vivo and ex vivo models to develop therapeutic applications in this area.
Collapse
Affiliation(s)
- Malgorzata E Mnich
- Medical Microbiology, UMC Utrecht, Utrecht University, Utrecht, Netherlands.,GSK, Siena, Italy
| | - Rob van Dalen
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Nina M van Sorge
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
42
|
Zhang Z, Li Y, Wang S, Hao L, Zhu Y, Li H, Song X, Duan Y, Sang Y, Wu P, Li X. The Molecular Characterization and Immunity Identification of Trichomonas vaginalis Adhesion Protein 33 (AP33). Front Microbiol 2020; 11:1433. [PMID: 32695085 PMCID: PMC7338309 DOI: 10.3389/fmicb.2020.01433] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/03/2020] [Indexed: 12/22/2022] Open
Abstract
Trichomoniasis is caused by Trichomonas vaginalis (T. vaginalis), which is a widespread and serious sexually transmitted pathogen in humans. The procedure of T. vaginalis adherence to the host cell is the precondition for T. vaginalis parasitism and pathogenicity. The AP33 adhesin of T. vaginalis (TvAP33) plays a key role in the process of adhesion. In this study, the specific primers for polymerase chain reaction (PCR) were designed based on the sequence of TvAP33 (GenBank Accession No. U87098.1) to amplify the open reading frame (ORF), and the ORF was inserted into pET-32a (+) to produce recombinant TvAP33 (rTvAP33). The sequence analysis indicated that the TvAP33 gene encoded a protein of 309 amino acids with 32.53 kDa, and the protein was predicted to have a high antigen index. Western blotting assay showed rTvAP33 was successfully recognized by the sera of mice experimentally infected with T. vaginalis, while native TvAP33 in the somatic extract of T. vaginalis trophozoite was as well detected by sera from rats immunized with the rTvAP33. Immunofluorescence analysis using an antibody against rTvAP33 demonstrated that the protein was expressed and located on the surface of T. vaginalis trophozoites. The recombinant protein was emulsified in Freund's adjuvant and used to immunize BALB/C mice three times at days 0, 14, and 28. The result of animal challenge experiments revealed the levels of IgG, IgG1, and IgG2a, and IL-4, IL-10, and IL17 among rTvAP33 vaccinated animals were integrally increased. Moreover, the rTvAP33 vaccinated animals were apparently prolonged survival time (26.45 ± 4.10) after challenge infection with this parasite. All these results indicated that TvAP33 could be used as vaccine candidate antigen to induce cell-mediated and humoral immunity.
Collapse
Affiliation(s)
- Zhenchao Zhang
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yuhua Li
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Shuai Wang
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Lixia Hao
- Xinxiang Maternity and Child Health Care Hospital, Xinxiang, China
| | - Yunqing Zhu
- Xinxiang Maternity and Child Health Care Hospital, Xinxiang, China
| | - Haoran Li
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xiaoxiao Song
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yujuan Duan
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yuhui Sang
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Pucheng Wu
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xiangrui Li
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
43
|
Identification of Toxoplasma Gondii Tyrosine Hydroxylase (TH) Activity and Molecular Immunoprotection against Toxoplasmosis. Vaccines (Basel) 2020; 8:vaccines8020158. [PMID: 32244791 PMCID: PMC7349186 DOI: 10.3390/vaccines8020158] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023] Open
Abstract
The neurotropic parasite Toxoplasma gondii (T. gondii) infection can change the behavior of rodents and cause neuropsychological symptoms in humans, which may be related to the change in neurotransmitter dopamine in the host brain caused by T. gondii infection. T. gondii tyrosine hydroxylase (TgTH) is an important factor in increasing the neurotransmitter dopamine in the host brain. In this study, the enzyme activity of TgTH catalytic substrate for dopamine production and the molecular characteristics of TgTH were identified. In order to amplify the open reading frame (ORF), the designing of the specific primers for polymerase chain reaction (PCR) was on the basis of the TgTH sequence (GenBank Accession No. EU481510.1), which was inserted into pET-32a (+) for the expression of recombined TgTH (rTgTH). The sequence analysis indicated that the gene of TgTH directed the encoding of a 62.4-kDa protein consisting of 565 amino acid residues, which was predicted to have a high antigen index. The enzyme activity test showed that rTgTH and the soluble proteins extracted separately from T. gondii RH strain and PRU strain could catalyze the substrate to produce dopamine in a dose-dependent manner, and the optimum catalytic temperature was 37 °C. The result of the Western Blotting assay revealed that the rTgTH and the native TgTH extracted from somatic of T. gondii RH tachyzoite were successfully detected by the sera of mice infected with T. gondii and the rat serum after rTgTH immune, respectively. Immunofluorescence analysis using antibody against rTgTH demonstrated that the protein was expressed and located on the surface of T. gondii RH tachyzoite. Freund’s adjuvant was used to emulsify the rTgTH, which was subsequently applied to BALB/c mouse immune thrice on week 0, week 2, and week 4, respectively. The result of the animal challenge experiments showed an integral increase in IgG, IgG2a, IgG1, and IFN-γ, IL-4, and IL17 were as well significantly increased, and that the rTgTH vaccinated animals apparently had a prolonged survival time (14.30 ± 2.41) after infection with the RH strain of T. gondii compared with that of the non-vaccinated control animals, which died within 11 days. Additionally, in the rTgTH vaccination group, the number of brain cysts (1275 ± 224) significantly decreased (p < 0.05) compared to the blank control group (2375 ± 883), and the size of the brain cysts in the animals immunized with rTgTH vaccination was remarkably smaller than that of the control mice. All the findings prove that TgTH played an important role in increasing the neurotransmitter dopamine in the host brain and could be used as a vaccine candidate antigen to mediate cell-mediated and humoral immunity.
Collapse
|
44
|
Clausen BE, Romani N, Stoitzner P. Meeting Report of the 16th International Langerhans Cell Workshop: Recent Developments in Langerhans Cell and Skin Dendritic Cell Biology and their Therapeutic Application. J Invest Dermatol 2020; 140:1315-1319. [PMID: 32199991 DOI: 10.1016/j.jid.2020.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Björn E Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| | - Nikolaus Romani
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
45
|
Walter A, Unsleber S, Rismondo J, Jorge AM, Peschel A, Gründling A, Mayer C. Phosphoglycerol-type wall and lipoteichoic acids are enantiomeric polymers differentiated by the stereospecific glycerophosphodiesterase GlpQ. J Biol Chem 2020; 295:4024-4034. [PMID: 32047114 PMCID: PMC7086022 DOI: 10.1074/jbc.ra120.012566] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/11/2020] [Indexed: 12/23/2022] Open
Abstract
The cell envelope of Gram-positive bacteria generally comprises two types of polyanionic polymers linked to either peptidoglycan (wall teichoic acids; WTA) or to membrane glycolipids (lipoteichoic acids; LTA). In some bacteria, including Bacillus subtilis strain 168, both WTA and LTA are glycerolphosphate polymers yet are synthesized through different pathways and have distinct but incompletely understood morphogenetic functions during cell elongation and division. We show here that the exolytic sn-glycerol-3-phosphodiesterase GlpQ can discriminate between B. subtilis WTA and LTA. GlpQ completely degraded unsubstituted WTA, which lacks substituents at the glycerol residues, by sequentially removing glycerolphosphates from the free end of the polymer up to the peptidoglycan linker. In contrast, GlpQ could not degrade unsubstituted LTA unless it was partially precleaved, allowing access of GlpQ to the other end of the polymer, which, in the intact molecule, is protected by a connection to the lipid anchor. Differences in stereochemistry between WTA and LTA have been suggested previously on the basis of differences in their biosynthetic precursors and chemical degradation products. The differential cleavage of WTA and LTA by GlpQ reported here represents the first direct evidence that they are enantiomeric polymers: WTA is made of sn-glycerol-3-phosphate, and LTA is made of sn-glycerol-1-phosphate. Their distinct stereochemistries reflect the dissimilar physiological and immunogenic properties of WTA and LTA. It also enables differential degradation of the two polymers within the same envelope compartment in vivo, particularly under phosphate-limiting conditions, when B. subtilis specifically degrades WTA and replaces it with phosphate-free teichuronic acids.
Collapse
Affiliation(s)
- Axel Walter
- Microbiology/Glycobiology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - Sandra Unsleber
- Microbiology/Glycobiology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - Jeanine Rismondo
- Section of Molecular Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ana Maria Jorge
- Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - Andreas Peschel
- Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - Angelika Gründling
- Section of Molecular Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Christoph Mayer
- Microbiology/Glycobiology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
46
|
Sirvent S, Vallejo AF, Davies J, Clayton K, Wu Z, Woo J, Riddell J, Chaudhri VK, Stumpf P, Nazlamova LA, Wheway G, Rose-Zerilli M, West J, Pujato M, Chen X, Woelk CH, MacArthur B, Ardern-Jones M, Friedmann PS, Weirauch MT, Singh H, Polak ME. Genomic programming of IRF4-expressing human Langerhans cells. Nat Commun 2020; 11:313. [PMID: 31949143 PMCID: PMC6965086 DOI: 10.1038/s41467-019-14125-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023] Open
Abstract
Langerhans cells (LC) can prime tolerogenic as well as immunogenic responses in skin, but the genomic states and transcription factors (TF) regulating these context-specific responses are unclear. Bulk and single-cell transcriptional profiling demonstrates that human migratory LCs are robustly programmed for MHC-I and MHC-II antigen presentation. Chromatin analysis reveals enrichment of ETS-IRF and AP1-IRF composite regulatory elements in antigen-presentation genes, coinciding with expression of the TFs, PU.1, IRF4 and BATF3 but not IRF8. Migration of LCs from the epidermis is accompanied by upregulation of IRF4, antigen processing components and co-stimulatory molecules. TNF stimulation augments LC cross-presentation while attenuating IRF4 expression. CRISPR-mediated editing reveals IRF4 to positively regulate the LC activation programme, but repress NF2EL2 and NF-kB pathway genes that promote responsiveness to oxidative stress and inflammatory cytokines. Thus, IRF4-dependent genomic programming of human migratory LCs appears to enable LC maturation while attenuating excessive inflammatory and immunogenic responses in the epidermis. Langerhans cells (LC) can prime tolerogenic as well as immunogenic responses in the skin. Here the authors show, by transcriptomic, epigenetic and CRISPR editing analyses, that during LC migration and maturation the transcription factor IRF4 regulates expression of antigen presentation and co-stimulatory gene modules while attenuating inflammatory response genes.
Collapse
Affiliation(s)
- Sofia Sirvent
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, SO16 6YD, Southampton, UK
| | - Andres F Vallejo
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, SO16 6YD, Southampton, UK
| | - James Davies
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, SO16 6YD, Southampton, UK
| | - Kalum Clayton
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, SO16 6YD, Southampton, UK
| | - Zhiguo Wu
- Division of Immunobiology & Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Jeongmin Woo
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
| | - Jeremy Riddell
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Virendra K Chaudhri
- Division of Immunobiology & Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.,Center for Systems Immunology, Departments of Immunology and Computational and Systems Biology, The University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Patrick Stumpf
- Human Development and Health, Faculty of Medicine, University of Southampton, SO17 1BJ, Southampton, UK
| | - Liliya Angelova Nazlamova
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, SO16 6YD, Southampton, UK
| | - Gabrielle Wheway
- Human Development and Health, Faculty of Medicine, University of Southampton, SO17 1BJ, Southampton, UK
| | - Matthew Rose-Zerilli
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD, Southampton, UK
| | - Jonathan West
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD, Southampton, UK.,Institute for Life Sciences, University of Southampton, SO17 1BJ, Southampton, UK
| | - Mario Pujato
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | | | - Ben MacArthur
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD, Southampton, UK.,Institute for Life Sciences, University of Southampton, SO17 1BJ, Southampton, UK
| | - Michael Ardern-Jones
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, SO16 6YD, Southampton, UK
| | - Peter S Friedmann
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, SO16 6YD, Southampton, UK
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45229, USA
| | - Harinder Singh
- Division of Immunobiology & Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45229, USA. .,Center for Systems Immunology, Departments of Immunology and Computational and Systems Biology, The University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - Marta E Polak
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, SO16 6YD, Southampton, UK. .,Institute for Life Sciences, University of Southampton, SO17 1BJ, Southampton, UK.
| |
Collapse
|
47
|
Keinhörster D, George SE, Weidenmaier C, Wolz C. Function and regulation of Staphylococcus aureus wall teichoic acids and capsular polysaccharides. Int J Med Microbiol 2019; 309:151333. [DOI: 10.1016/j.ijmm.2019.151333] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/09/2019] [Accepted: 07/17/2019] [Indexed: 01/05/2023] Open
|
48
|
Mnich ME, van Dalen R, Gerlach D, Hendriks A, Xia G, Peschel A, van Strijp JAG, van Sorge NM. The C-type lectin receptor MGL senses N-acetylgalactosamine on the unique Staphylococcus aureus ST395 wall teichoic acid. Cell Microbiol 2019; 21:e13072. [PMID: 31219660 PMCID: PMC6771913 DOI: 10.1111/cmi.13072] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/24/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022]
Abstract
Staphylococcus aureus is a common skin commensal but is also associated with various skin and soft tissue pathologies. Upon invasion, S. aureus is detected by resident innate immune cells through pattern-recognition receptors (PRRs), although a comprehensive understanding of the specific molecular interactions is lacking. Recently, we demonstrated that the PRR langerin (CD207) on epidermal Langerhans cells senses the conserved β-1,4-linked N-acetylglucosamine (GlcNAc) modification on S. aureus wall teichoic acid (WTA), thereby increasing skin inflammation. Interestingly, the S. aureus ST395 lineage as well as certain species of coagulase-negative staphylococci (CoNS) produce a structurally different WTA molecule, consisting of poly-glycerolphosphate with α-O-N-acetylgalactosamine (GalNAc) residues, which are attached by the glycosyltransferase TagN. Here, we demonstrate that S. aureus ST395 strains interact with the human Macrophage galactose-type lectin (MGL; CD301) receptor, which is expressed by dendritic cells and macrophages in the dermis. MGL bound S. aureus ST395 in a tagN- and GalNAc-dependent manner but did not interact with different tagN-positive CoNS species. However, heterologous expression of Staphylococcus lugdunensis tagN in S. aureus conferred phage infection and MGL binding, confirming the role of this CoNS enzyme as GalNAc-transferase. Functionally, the detection of GalNAc on S. aureus ST395 WTA by human monocyte-derived dendritic cells significantly enhanced cytokine production. Together, our findings highlight differential recognition of S. aureus glycoprofiles by specific human innate receptors, which may affect downstream adaptive immune responses and pathogen clearance.
Collapse
Affiliation(s)
- Malgorzata E Mnich
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Glaxo-Smith Kline, Siena, Italy
| | - Rob van Dalen
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - David Gerlach
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.,German Center for Infection Research (DZIF), Tübingen, Germany
| | - Astrid Hendriks
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Glaxo-Smith Kline, Siena, Italy
| | - Guoqing Xia
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.,German Center for Infection Research (DZIF), Tübingen, Germany
| | - Jos A G van Strijp
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Nina M van Sorge
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
49
|
van Dalen R, Fuchsberger FF, Rademacher C, van Strijp JAG, van Sorge NM. A Common Genetic Variation in Langerin (CD207) Compromises Cellular Uptake of Staphylococcus aureus. J Innate Immun 2019; 12:191-200. [PMID: 31141812 DOI: 10.1159/000500547] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/18/2019] [Indexed: 01/25/2023] Open
Abstract
Langerhans cells are key sentinel cells of the skin and mucosal lining. They sense microorganisms through their repertoire of pattern-recognition receptors to mount and direct appropriate immune responses. We recently demonstrated that human Langerhans cells interact with the Gram-positive pathogen Staphylococcus aureus through the Langerhans cell-specific receptor langerin (CD207). It was previously hypothesized that two linked single nucleotide polymorphisms (SNPs; N288D and K313I) in the carbohydrate recognition domain of langerin would affect interaction with microorganisms. We show that recognition of S. aureus by recombinant langerin molecules is abrogated in the co-inheriting SNP variant, which is mainly explained by the N288D SNP and further enhanced by K313I. Moreover, introduction of SNP N288D in ectopically-expressed langerin affected cellular distribution of the receptor such that langerin displayed enhanced plasma membraneexpression. Despite this increased binding of S. aureus by the langerin double SNP variant, uptake of bacteria by this langerin variant was compromised. Our findings indicate that in a proportion of the human population, the recognition and uptake of S. aureus by Langerhans cells may be affected, which could have important consequences for proper immune activation and S. aureus-associated disease.
Collapse
Affiliation(s)
- Rob van Dalen
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Felix F Fuchsberger
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Christoph Rademacher
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Jos A G van Strijp
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Nina M van Sorge
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands,
| |
Collapse
|