1
|
Zhang X, Li Y, Pei Y, Yu C, Zhang X, Cao F. Association between maternal stress patterns and neonatal meconium microbiota: A prospective cohort study. J Affect Disord 2025; 383:59-68. [PMID: 40286937 DOI: 10.1016/j.jad.2025.04.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 02/01/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND This study aimed to identify maternal stress patterns and investigate their associations with neonatal meconium microbiota. METHODS A total of 465 pregnant women reported their stress conditions, including depression, anxiety, pregnancy-related anxiety, perceived stress, sleep, fear of birth, life events, and adverse childhood experiences. Meconium samples were collected from 348 newborns. Latent class analysis was used to identify the patterns of maternal stress. RESULTS Three group profiles were identified: "high negative emotion," "high ACEs-low negative emotion," and "low stress." the high ACEs-low negative emotion group and low stress group had higher levels of Chao1 diversity than the high negative emotion group (B = 0.25, P < 0.001; B = 0.18, P < 0.001, respectively). The high ACEs-low negative emotion group had higher levels of Chao1 diversity than the low stress group (B = 0.08, P = 0.001). The variations were observed in the abundance of Bacteroidetes, unidentified_Muribaculaceae, unclassified_Lachnospiraceae, unclassified_Clostridiales, unidentified_Bacteroidales, Oscillospira, and Ruminococcus among different maternal stress patterns. LIMITATIONS We did not analyze maternal microbiome samples and assessed the gut microbiota at only one time point. CONCLUSIONS These findings emphasized the need for a comprehensive approach to prenatal care that extends beyond traditional medical interventions. Addressing maternal stress through targeted support and interventions may help newborns benefit from a more favorable gut microbiota landscape.
Collapse
Affiliation(s)
- Xuan Zhang
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong Province, China
| | - Yang Li
- School of Nursing, The University of Texas at Austin, Austin, USA
| | - Yifei Pei
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong Province, China
| | - Cheng Yu
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong Province, China
| | - Xiao Zhang
- School of Computer Science and Technology, Shandong University, Qingdao, Shandong Province, China
| | - Fenglin Cao
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
2
|
McDonald T, Aqeel A, Neubert B, Bauer A, Jiang S, Osborne O, Jiang D, Bucardo F, Gutiérrez L, Zambrana L, Jenkins K, Gilner J, Rodriguez J, Lai A, Smith JP, Song R, Ahsan K, Ahmed S, Soomro SI, Umrani F, Barratt M, Gordon J, Ali A, Iqbal N, Hurst J, Martin V, Shreffler W, Yuan Q, Brown J, Surana NK, Vilchez S, Becker-Dreps S, David L. Dietary plant diversity predicts early life microbiome maturation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.28.25323117. [PMID: 40093214 PMCID: PMC11908320 DOI: 10.1101/2025.02.28.25323117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Between birth and adulthood, the human gut is colonized by a complex microbial community. Despite established links between the infant gut microbiome and health, knowledge is limited for how complementary feeding influences colonization. Using FoodSeq, an objective DNA-based dietary assessment technique, we analyzed 1,036 fecal samples from 729 children aged 0-3 years across countries in North America, Central America, Africa, and Asia. We detected a wide diversity of 199 unique plant food sequences, of which only eight staple foods were consistently present across all countries. Despite this variation in global diet, we identified universal trajectories in early life dietary exposure: weaning stage, which tracked with dietary diversity, emerged as the dominant dietary signature across populations. Still, dietary diversity did not correlate with gut microbial diversity. Instead, dietary diversity and weaning stage specifically predicted the abundance of adult-like bacterial taxa, including known fiber-degrading taxa, which colonized after age 1. Our findings support a two-stage model of microbiome maturation: an early phase dominated by milk-adapted taxa independent of complementary feeding, followed by a maturation phase where diet shapes adult-like microbiota colonization. This model suggests that tracking and promoting plant dietary diversity may support the timely emergence of an adult-like microbiome.
Collapse
|
3
|
Safarchi A, Al-Qadami G, Tran CD, Conlon M. Understanding dysbiosis and resilience in the human gut microbiome: biomarkers, interventions, and challenges. Front Microbiol 2025; 16:1559521. [PMID: 40104586 PMCID: PMC11913848 DOI: 10.3389/fmicb.2025.1559521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/19/2025] [Indexed: 03/20/2025] Open
Abstract
The healthy gut microbiome is important in maintaining health and preventing various chronic and metabolic diseases through interactions with the host via different gut-organ axes, such as the gut-brain, gut-liver, gut-immune, and gut-lung axes. The human gut microbiome is relatively stable, yet can be influenced by numerous factors, such as diet, infections, chronic diseases, and medications which may disrupt its composition and function. Therefore, microbial resilience is suggested as one of the key characteristics of a healthy gut microbiome in humans. However, our understanding of its definition and indicators remains unclear due to insufficient experimental data. Here, we review the impact of key drivers including intrinsic and extrinsic factors such as diet and antibiotics on the human gut microbiome. Additionally, we discuss the concept of a resilient gut microbiome and highlight potential biomarkers including diversity indices and some bacterial taxa as recovery-associated bacteria, resistance genes, antimicrobial peptides, and functional flexibility. These biomarkers can facilitate the identification and prediction of healthy and resilient microbiomes, particularly in precision medicine, through diagnostic tools or machine learning approaches especially after antimicrobial medications that may cause stable dysbiosis. Furthermore, we review current nutrition intervention strategies to maximize microbial resilience, the challenges in investigating microbiome resilience, and future directions in this field of research.
Collapse
Affiliation(s)
- Azadeh Safarchi
- Microbiome for One Systems Health FSP, CSIRO, Westmead, NSW, Australia
- Health and Biosecurity Research Unit, CSIRO, Adelaide, SA, Australia
| | - Ghanyah Al-Qadami
- Microbiome for One Systems Health FSP, CSIRO, Westmead, NSW, Australia
- Health and Biosecurity Research Unit, CSIRO, Adelaide, SA, Australia
| | - Cuong D Tran
- Health and Biosecurity Research Unit, CSIRO, Adelaide, SA, Australia
| | - Michael Conlon
- Health and Biosecurity Research Unit, CSIRO, Adelaide, SA, Australia
| |
Collapse
|
4
|
Cubillejo I, Theis KR, Panzer J, Luo X, Banerjee S, Thummel R, Withey JH. Vibrio cholerae Gut Colonization of Zebrafish Larvae Induces a Dampened Sensorimotor Response. Biomedicines 2025; 13:226. [PMID: 39857809 PMCID: PMC11761238 DOI: 10.3390/biomedicines13010226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Cholera is a diarrheal disease prevalent in populations without access to clean water. Cholera is caused by Vibrio cholerae, which colonizes the upper small intestine in humans once ingested. A growing number of studies suggest that the gut microbiome composition modulates animal behavior. Zebrafish are an established cholera model that can maintain a complex, mature gut microbiome during infection. Larval zebrafish, which have immature gut microbiomes, provide the advantage of high-throughput analyses for established behavioral models. Methods: We identified the effects of V. cholerae O1 El Tor C6706 colonization at 5 days post-fertilization (dpf) on larval zebrafish behavior by tracking startle responses at 10 dpf. We also characterized the larval gut microbiome using 16S rRNA sequencing. V. cholerae-infected or uninfected control groups were exposed to either an alternating light/dark stimuli or a single-tap stimulus, and average distance and velocity were tracked. Results: While there was no significant difference in the light/dark trial, we report a significant decrease in distance moved for C6706-colonized larvae during the single-tap trial. Conclusion: This suggests that early V. cholerae colonization of the larval gut microbiome has a dampening effect on sensorimotor function, supporting the idea of a link between the gut microbiome and behavior.
Collapse
Affiliation(s)
- Isabella Cubillejo
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA; (I.C.)
| | - Kevin R. Theis
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA; (I.C.)
| | - Jonathan Panzer
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA; (I.C.)
| | - Xixia Luo
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Shreya Banerjee
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Ryan Thummel
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jeffrey H. Withey
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA; (I.C.)
| |
Collapse
|
5
|
Klinhom S, Kunasol C, Sriwichaiin S, Kerdphoo S, Chattipakorn N, Chattipakorn SC, Thitaram C. Characteristics of gut microbiota profiles in Asian elephants (Elephas maximus) with gastrointestinal disorders. Sci Rep 2025; 15:1327. [PMID: 39779898 PMCID: PMC11711614 DOI: 10.1038/s41598-025-85495-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025] Open
Abstract
Colic and diarrhea are common gastrointestinal (GI) disorders in captive Asian elephants, which can severely impact health and lead to mortality. Gut dysbiosis, indicated by alterations in gut microbiome composition, can be observed in individuals with GI disorders. However, changes in gut microbial profiles of elephants with GI disorders have never been investigated. Thus, this study aimed to elucidate the profiles of gut microbiota in captive elephants with different GI symptoms. Fecal samples were collected from eighteen elephants in Chiang Mai, Thailand, including seven healthy individuals, seven with impaction colic, and four with diarrhea. The samples were subjected to DNA extraction and amplification targeting the V3-V4 region of 16S rRNA gene for next-generation sequencing analysis. Elephants with GI symptoms exhibited a decreased microbial stability, as characterized by a significant reduction in microbiota diversity within individual guts and notable differences in microbial community composition when compared with healthy elephants. These changes included a decrease in the relative abundance of specific bacterial taxa, in elephants with GI symptoms such as a reduction in genera Rubrobacter, Rokubacteria, UBA1819, Nitrospira, and MND1. Conversely, an increase in genera Lysinibacillus, Bacteroidetes_BD2-2, and the family Marinifilaceae was observed when, compared with the healthy group. Variations in taxa of gut microbiota among elephants with GI disorders indicated diverse microbial characteristics associated with different GI symptoms. This study suggests that exploring gut microbiota dynamics in elephant health and GI disorders can lead to a better understanding of food and water management for maintaining a healthy gut and ensuring the longevity of the elephants.
Collapse
Affiliation(s)
- Sarisa Klinhom
- Center of Elephant and Wildlife Health, Animal Hospital, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Chanon Kunasol
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neurophysiology Unit, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sirawit Sriwichaiin
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neurophysiology Unit, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sasiwan Kerdphoo
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neurophysiology Unit, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neurophysiology Unit, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neurophysiology Unit, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Chatchote Thitaram
- Center of Elephant and Wildlife Health, Animal Hospital, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand.
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand.
- Elephant, Wildlife and Companion Animals Research Group, Chiang Mai University, Chiang Mai, 50100, Thailand.
| |
Collapse
|
6
|
Jiang Y, Wang Y, Che L, Yang S, Zhang X, Lin Y, Shi Y, Zou N, Wang S, Zhang Y, Zhao Z, Li S. GutMetaNet: an integrated database for exploring horizontal gene transfer and functional redundancy in the human gut microbiome. Nucleic Acids Res 2025; 53:D772-D782. [PMID: 39526401 PMCID: PMC11701528 DOI: 10.1093/nar/gkae1007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Metagenomic studies have revealed the critical roles of complex microbial interactions, including horizontal gene transfer (HGT) and functional redundancy (FR), in shaping the gut microbiome's functional capacity and resilience. However, the lack of comprehensive data integration and systematic analysis approaches has limited the in-depth exploration of HGT and FR dynamics across large-scale gut microbiome datasets. To address this gap, we present GutMetaNet (https://gutmetanet.deepomics.org/), a first-of-its-kind database integrating extensive human gut microbiome data with comprehensive HGT and FR analyses. GutMetaNet contains 21 567 human gut metagenome samples with whole-genome shotgun sequencing data related to various health conditions. Through systematic analysis, we have characterized the taxonomic profiles and FR profiles, and identified 14 636 HGT events using a shared reference genome database across the collected samples. These HGT events have been curated into 8049 clusters, which are annotated with categorized mobile genetic elements, including transposons, prophages, integrative mobilizable elements, genomic islands, integrative conjugative elements and group II introns. Additionally, GutMetaNet incorporates automated analyses and visualizations for the HGT events and FR, serving as an efficient platform for in-depth exploration of the interactions among gut microbiome taxa and their implications for human health.
Collapse
Affiliation(s)
- Yiqi Jiang
- City University of Hong Kong Shenzhen Research Institute, 8 Yue Xing Yi Road, Nanshan District, Shenzhen, 518057, China
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong
| | - Yanfei Wang
- City University of Hong Kong Shenzhen Research Institute, 8 Yue Xing Yi Road, Nanshan District, Shenzhen, 518057, China
| | - Lijia Che
- City University of Hong Kong Shenzhen Research Institute, 8 Yue Xing Yi Road, Nanshan District, Shenzhen, 518057, China
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong
| | - Shuo Yang
- City University of Hong Kong Shenzhen Research Institute, 8 Yue Xing Yi Road, Nanshan District, Shenzhen, 518057, China
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong
| | - Xianglilan Zhang
- State Key Laboratory of Pathogen and Biosafety, 20 East Street, Fengtai District, Beijing, 100071, China
| | - Yu Lin
- State Key Laboratory of Pathogen and Biosafety, 20 East Street, Fengtai District, Beijing, 100071, China
- Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Yucheng Shi
- City University of Hong Kong Shenzhen Research Institute, 8 Yue Xing Yi Road, Nanshan District, Shenzhen, 518057, China
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong
| | - Nanhe Zou
- City University of Hong Kong Shenzhen Research Institute, 8 Yue Xing Yi Road, Nanshan District, Shenzhen, 518057, China
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong
| | - Shuai Wang
- City University of Hong Kong Shenzhen Research Institute, 8 Yue Xing Yi Road, Nanshan District, Shenzhen, 518057, China
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong
| | - Yuanzheng Zhang
- City University of Hong Kong Shenzhen Research Institute, 8 Yue Xing Yi Road, Nanshan District, Shenzhen, 518057, China
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong
| | - Zicheng Zhao
- OmicLab Limited, Unit 917, 19 Science Park West Avenue, New Territories, Hong Kong
| | - Shuai Cheng Li
- City University of Hong Kong Shenzhen Research Institute, 8 Yue Xing Yi Road, Nanshan District, Shenzhen, 518057, China
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong
| |
Collapse
|
7
|
Zhu J, Sun Y, Ma L, Chen Q, Hu C, Yang H, Hong Q, Xiao Y. Comparative analysis of fecal microbiota between diarrhea and non-diarrhea piglets reveals biomarkers of gut microbiota associated with diarrhea. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:401-410. [PMID: 39640543 PMCID: PMC11617881 DOI: 10.1016/j.aninu.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/05/2024] [Accepted: 05/21/2024] [Indexed: 12/07/2024]
Abstract
Diarrhea poses a significant threat to the health and well-being of weaned piglets, leading to substantial morbidity and mortality and economic loss in the pig industry. However, the structural characteristics of the gut microbiota and the key genera associated with early diarrhea in piglets within large-scale production systems are poorly understood. This study aimed to investigate the differences in the microbial community structure and the specific genera alteration between the healthy piglets and diarrhea piglets, and to identify the biomarkers of gut microbiota associated with diarrhea in piglets. A total of 250 fecal samples, including 130 healthy piglets (Duroc × Landrace × Large Yorkshire) in the Control group and 120 from diarrhea piglets in Diarrhea group, were collected from three large-scale farms as discovery cohorts and were used for 16S rRNA gene sequencing. Additionally, 150 fecal samples from another large-scale pig farm were collected for the validation trail. The Chao1 and ACE indices were obviously lower (P < 0.01) in the diarrhea piglets compared to the healthy ones. Principal coordinate analysis showed significant differences in the distance matrix of gut microbiota between the healthy and diarrhea piglets (Bray-Curtis: P = 0.001, Jaccard: P = 0.001). Eighty-five genera were differentially enriched (P < 0.001) between healthy and diarrhea piglets. Notably, Treponema, Sphaerochaeta, Escherichia-Shigella, Slackia, and Staphylococcus were identified as potential biomarkers of diarrhea susceptibility; Clostridium sensu stricto 1, Prevotella_9, Olsenella, Dorea, and Lachnospiraceae NK4A136 group were found to be beneficial for maintaining intestinal homeostasis. These differentially enriched genera of healthy and diarrhea piglets were further confirmed in the validation cohort. In conclusion, this study identified the diarrhea-associated and beneficial genera in the faces of piglet, providing a theoretical basis for the diagnosis and intervention of diarrhea in weaned piglets.
Collapse
Affiliation(s)
- Jiang Zhu
- College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou 310058, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro -products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yue Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro -products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lingyan Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro -products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro -products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Caihong Hu
- College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou 310058, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro -products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qihua Hong
- College of Animal Sciences, Zhejiang University, Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou 310058, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro -products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
8
|
Guo Q, Cheng Y, Li T, Huang J, Li J, Zhang Z, Qu Y. The Gut Microbiota Contributes to the Development of LPS-Induced Orchitis by Disrupting the Blood-Testosterone Barrier in Mice. Reprod Sci 2024; 31:3379-3390. [PMID: 38858330 DOI: 10.1007/s43032-024-01613-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024]
Abstract
Orchitis is a frequent inflammatory reproductive disease that causes male infertility and a decline in sperm quality. Gut microbiota can regulate systemic and local inflammation, spermatogenesis and blood-testosterone barrier (BTB). In this study, we investigated correlation between gut microbiota and orchitis by establishing a mouse gut microbiota imbalance model induced by antibiotics (ABX) treatment and orchitis model induced by lipopolysaccharide (LPS) infection. Based on these two models, 16s rRNA sequencing and feces microbiota transplantation (FMT) experiments were combined to examine the function and regulatory mechanisms of the gut microbiota in host defense against orchitis. Compared with control mice, gut microbiota imbalance resulted in increasing inflammatory responses, modulating oxidative stress related enzyme activity, testosterone levels and the permeability of blood testosterone barrier, which are restored after FMT. Subsequently, we tested the relationship between the gut microbiota imbalance and testicular inflammation severity in orchitis. It was found that the ABX and LPS co-treated mice had more severe inflammatory responses, lower testosterone levels and greater permeability of the BTB than the LPS-treated mice, but these changes could be partially recovered by gut microbiota transplantation. In conclusion, these above results proved for the first time that gut microbiota is involved in the pathogenesis of orchitis, which laid a good foundation for the subsequent development of anti-orchitis drugs and probiotic targeting intestinal flora.
Collapse
Affiliation(s)
- Qing Guo
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
- Heilongjiang Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Ye Cheng
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
- Heilongjiang Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Tianfeng Li
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
- Heilongjiang Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Jiang Huang
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Jinchun Li
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
- Heilongjiang Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Zecai Zhang
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China.
| | - Yongli Qu
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China.
- Heilongjiang Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China.
| |
Collapse
|
9
|
Abanikannda MF, Shiflett MB, Morais ARC, Hong J, Sealey WM, Bledsoe JW. Evaluating Inclusion of Commercial Pistachio By-Product as a Functional Ingredient in Rainbow Trout Fishmeal and Plant Meal-Based Diets. Antioxidants (Basel) 2024; 13:1280. [PMID: 39594422 PMCID: PMC11591393 DOI: 10.3390/antiox13111280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
To meet the growing demand for sustainable aquaculture, plant proteins are being explored as alternative sources in fish diets. However, some plant proteins can have adverse health effects on fish, prompting research into functional feed ingredients to mitigate these issues. This study investigated pistachio shell powder (PSP), rich in antioxidants, as a functional feed ingredient for rainbow trout (Oncorhynchus mykiss). The effects of PSP inclusion (0%, 0.5%, 1%, 2%) on growth performance, intestinal health, and gut microbiota were assessed in fish fed either a fishmeal (FM) or plant meal (PM) diet over a 12-week feeding period. The results indicated that PSP inclusion at 1% significantly (p < 0.05) improved weight gain and growth performance in FM treatments, with no impact on growth in PM treatments. No significant differences were observed in other growth parameters, intestinal morphology, or oxidative stress markers, although a trend toward the downregulation of inflammatory genes was noted in PM treatments at 2% PSP inclusion. PSP inclusion did not significantly alter gut microbiota alpha diversity but affected beta diversity at the 0.5% level in the FM treatments (p < 0.05). Differential abundance analysis of gut microbiota revealed taxa-specific responses to PSP, particularly the genus Candidatus arthromitus, increasing in relative abundance with PSP inclusion in both the FM- and PM-based treatments. Overall, PSP inclusion up to 2% did not have significant adverse effects on the growth, intestinal health, or antioxidant status of rainbow trout.
Collapse
Affiliation(s)
- Mosope F. Abanikannda
- Department of Animal Veterinary & Food Sciences, University of Idaho, Moscow, ID 83844, USA;
- Aquaculture Research Institute, Hagerman Fish Culture Experiment Station, University of Idaho, Hagerman, ID 83332, USA;
| | - Mark B. Shiflett
- Wonderful Institute for Sustainable Engineering, University of Kansas, Lawrence, KS 66045, USA; (M.B.S.); (A.R.C.M.)
| | - Ana Rita C. Morais
- Wonderful Institute for Sustainable Engineering, University of Kansas, Lawrence, KS 66045, USA; (M.B.S.); (A.R.C.M.)
| | - Jeoungwhui Hong
- Aquaculture Research Institute, Hagerman Fish Culture Experiment Station, University of Idaho, Hagerman, ID 83332, USA;
| | - Wendy M. Sealey
- US Department of Agriculture (USDA) Agriculture Research Service (ARS), Bozeman, MT 59715, USA;
| | - Jacob W. Bledsoe
- Department of Animal Veterinary & Food Sciences, University of Idaho, Moscow, ID 83844, USA;
- Aquaculture Research Institute, Hagerman Fish Culture Experiment Station, University of Idaho, Hagerman, ID 83332, USA;
| |
Collapse
|
10
|
Tesfaw G, Siraj DS, Abdissa A, Jakobsen RR, Johansen ØH, Zangenberg M, Hanevik K, Mekonnen Z, Langeland N, Bjørang O, Safdar N, Mapes AC, Kates A, Krych L, Castro-Mejía JL, Nielsen DS. Gut microbiota patterns associated with duration of diarrhea in children under five years of age in Ethiopia. Nat Commun 2024; 15:7532. [PMID: 39223134 PMCID: PMC11369280 DOI: 10.1038/s41467-024-51464-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Diarrhea claims >500,000 lives annually among children under five years of age in low- and middle-income countries. Mortality due to acute diarrhea (<7 days' duration) is decreasing, but prolonged (7-13 days) and persistent (≥14 days of duration) diarrhea remains a massive challenge. Here, we use a case-control study to decipher if fecal gut microbiota compositional differences between Ethiopian children with acute (n=554) or prolonged/persistent (n=95) diarrhea and frequency-matched non-diarrheal controls (n=663) are linked to diarrheal etiology. We show that diarrhea cases are associated with lower bacterial diversity and enriched in Escherichia spp., Campylobacter spp., and Streptococcus spp. Further, diarrhea cases are depleted in gut commensals such as Prevotella copri, Faecalibacterium prausnitzii, and Dialister succinatiphilus, with depletion being most pronounced in prolonged/persistent cases, suggesting that prolonged duration of diarrhea is accompanied by depletion of gut commensals and that re-establishing these via e.g., microbiota-directed food supplements offer a potential treatment strategy.
Collapse
Affiliation(s)
- Getnet Tesfaw
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark.
- School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia.
| | - Dawd S Siraj
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Alemseged Abdissa
- School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | - Øystein H Johansen
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Microbiology, Vestfold Hospital Trust, Tønsberg, Norway
- Microbiology Laboratory, Southern Health and Social Care Trust, Portadown, Northern Ireland
| | - Mike Zangenberg
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark
| | - Kurt Hanevik
- Department of Clinical Science, University of Bergen, Bergen, Norway
- National Center for Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Zeleke Mekonnen
- School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
| | - Nina Langeland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- National Center for Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Ola Bjørang
- Department of Microbiology, Vestfold Hospital Trust, Tønsberg, Norway
| | - Nasia Safdar
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Abigail C Mapes
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Ashley Kates
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Lukasz Krych
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Dennis S Nielsen
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Wang S, Jiang Y, Che L, Wang RH, Li SC. Enhancing insights into diseases through horizontal gene transfer event detection from gut microbiome. Nucleic Acids Res 2024; 52:e61. [PMID: 38884260 DOI: 10.1093/nar/gkae515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/23/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024] Open
Abstract
Horizontal gene transfer (HGT) phenomena pervade the gut microbiome and significantly impact human health. Yet, no current method can accurately identify complete HGT events, including the transferred sequence and the associated deletion and insertion breakpoints from shotgun metagenomic data. Here, we develop LocalHGT, which facilitates the reliable and swift detection of complete HGT events from shotgun metagenomic data, delivering an accuracy of 99.4%-verified by Nanopore data-across 200 gut microbiome samples, and achieving an average F1 score of 0.99 on 100 simulated data. LocalHGT enables a systematic characterization of HGT events within the human gut microbiome across 2098 samples, revealing that multiple recipient genome sites can become targets of a transferred sequence, microhomology is enriched in HGT breakpoint junctions (P-value = 3.3e-58), and HGTs can function as host-specific fingerprints indicated by the significantly higher HGT similarity of intra-personal temporal samples than inter-personal samples (P-value = 4.3e-303). Crucially, HGTs showed potential contributions to colorectal cancer (CRC) and acute diarrhoea, as evidenced by the enrichment of the butyrate metabolism pathway (P-value = 3.8e-17) and the shigellosis pathway (P-value = 5.9e-13) in the respective associated HGTs. Furthermore, differential HGTs demonstrated promise as biomarkers for predicting various diseases. Integrating HGTs into a CRC prediction model achieved an AUC of 0.87.
Collapse
Affiliation(s)
- Shuai Wang
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong
| | - Yiqi Jiang
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong
| | - Lijia Che
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong
| | - Ruo Han Wang
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong
| | - Shuai Cheng Li
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
12
|
Guitor AK, Katyukhina A, Mokomane M, Lechiile K, Goldfarb DM, Wright GD, McArthur AG, Pernica JM. Minimal Impact on the Resistome of Children in Botswana After Azithromycin Treatment for Acute Severe Diarrheal Disease. J Infect Dis 2024; 230:239-249. [PMID: 39052715 PMCID: PMC11272098 DOI: 10.1093/infdis/jiae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Macrolide antibiotics, including azithromycin, can reduce under 5 years of age mortality rates and treat various infections in children in sub-Saharan Africa. These exposures, however, can select for antibiotic-resistant bacteria in the gut microbiota. METHODS Our previous randomized controlled trial (RCT) of a rapid-test-and-treat strategy for severe acute diarrheal disease in children in Botswana included an intervention (3-day azithromycin dose) group and a control group that received supportive treatment. In this prospective matched cohort study using stools collected at baseline and 60 days after treatment from RCT participants, the collection of antibiotic resistance genes or resistome was compared between groups. RESULTS Certain macrolide resistance genes increased in prevalence by 13%-55% at 60 days, without differences in gene presence between the intervention and control groups. These genes were linked to tetracycline resistance genes and mobile genetic elements. CONCLUSIONS Azithromycin treatment for bacterial diarrhea for young children in Botswana resulted in similar effects on the gut resistome as the supportive treatment and did not provide additional selective pressure for macrolide resistance gene maintenance. The gut microbiota of these children contains diverse macrolide resistance genes that may be transferred within the gut upon repeated exposures to azithromycin or coselected by other antibiotics. CLINICAL TRIALS REGISTRATION NCT02803827.
Collapse
Affiliation(s)
- Allison K Guitor
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Anna Katyukhina
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Margaret Mokomane
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
- Botswana National Health Laboratory, Gaborone, Botswana
| | - Kwana Lechiile
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
| | - David M Goldfarb
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
- Department of Pathology and Laboratory Medicine, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | - Gerard D Wright
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Andrew G McArthur
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Jeffrey M Pernica
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
13
|
Chandel N, Maile A, Shrivastava S, Verma AK, Thakur V. Establishment and perturbation of human gut microbiome: common trends and variations between Indian and global populations. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2024; 5:e8. [PMID: 39776539 PMCID: PMC11704572 DOI: 10.1017/gmb.2024.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 01/11/2025]
Abstract
Human gut microbial species are crucial for dietary metabolism and biosynthesis of micronutrients. Digested products are utilised by the host as well as several gut bacterial species. These species are influenced by various factors such as diet, age, geographical location, and ethnicity. India is home to the largest human population in the world. It is spread across diverse ecological and geographical locations. With variable dietary habits and lifestyles, Indians have unique gut microbial composition. This review captures contrasting and common trends of gut bacterial community establishment in infants (born through different modes of delivery), and how that bacterial community manifests itself along infancy, through old age between Indian and global populations. Because dysbiosis of the gut community structure is associated with various diseases, this review also highlights the common and unique bacterial species associated with various communicable as well as noncommunicable diseases such as diarrhoea, amoebiasis, malnutrition, type 2 diabetes, obesity, colorectal cancer, inflammatory bowel disease, and gut inflammation and damage to the brain in the global and Indian population.
Collapse
Affiliation(s)
- Nisha Chandel
- Department of Systems and Computational Biology, University of Hyderabad, Hyderabad, India
| | - Anwesh Maile
- DBT-Centre for Microbial Informatics, University of Hyderabad, Hyderabad, India
| | - Suyesh Shrivastava
- ICMR-National Institute of Research in Tribal Health (NIRTH), Jabalpur, India
| | - Anil Kumar Verma
- ICMR-National Institute of Research in Tribal Health (NIRTH), Jabalpur, India
| | - Vivek Thakur
- Department of Systems and Computational Biology, University of Hyderabad, Hyderabad, India
| |
Collapse
|
14
|
Zhao X, Pang J, Zhang W, Peng X, Yang Z, Bai G, Xia Y. Tryptophan metabolism and piglet diarrhea: Where we stand and the challenges ahead. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:123-133. [PMID: 38766516 PMCID: PMC11101943 DOI: 10.1016/j.aninu.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/13/2024] [Accepted: 03/20/2024] [Indexed: 05/22/2024]
Abstract
The intestinal architecture of piglets is vulnerable to disruption during weaning transition and leads to diarrhea, frequently accompanied by inflammation and metabolic disturbances (including amino acid metabolism). Tryptophan (Trp) plays an essential role in orchestrating intestinal immune tolerance through its metabolism via the kynurenine, 5-hydroxytryptamine, or indole pathways, which could be dictated by the gut microbiota either directly or indirectly. Emerging evidence suggests a strong association between piglet diarrhea and Trp metabolism. Here we aim to summarize the intricate balance of microbiota-host crosstalk by analyzing alterations in both the host and microbial pathways of Trp and discuss how Trp metabolism may affect piglet diarrhea. Overall, this review could provide valuable insights to explore effective strategies for managing piglet diarrhea and the related challenges.
Collapse
Affiliation(s)
- Xuan Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Jiaman Pang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Wanghong Zhang
- Yunnan Vocational College of Agriculture, Kunming 650211, China
| | - Xie Peng
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhenguo Yang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Guangdong Bai
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yaoyao Xia
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| |
Collapse
|
15
|
Jurburg SD, Blowes SA, Shade A, Eisenhauer N, Chase JM. Synthesis of recovery patterns in microbial communities across environments. MICROBIOME 2024; 12:79. [PMID: 38711157 DOI: 10.1186/s40168-024-01802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/25/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Disturbances alter the diversity and composition of microbial communities. Yet a generalized empirical assessment of microbiome responses to disturbance across different environments is needed to understand the factors driving microbiome recovery, and the role of the environment in driving these patterns. RESULTS To this end, we combined null models with Bayesian generalized linear models to examine 86 time series of disturbed mammalian, aquatic, and soil microbiomes up to 50 days following disturbance. Overall, disturbances had the strongest effect on mammalian microbiomes, which lost taxa and later recovered their richness, but not their composition. In contrast, following disturbance, aquatic microbiomes tended away from their pre-disturbance composition over time. Surprisingly, across all environments, we found no evidence of increased compositional dispersion (i.e., variance) following disturbance, in contrast to the expectations of the Anna Karenina Principle. CONCLUSIONS This is the first study to systematically compare secondary successional dynamics across disturbed microbiomes, using a consistent temporal scale and modeling approach. Our findings show that the recovery of microbiomes is environment-specific, and helps to reconcile existing, environment-specific research into a unified perspective. Video Abstract.
Collapse
Affiliation(s)
- Stephanie D Jurburg
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany.
- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany.
- Institute of Biology, Leipzig University, 04103, Leipzig, Germany.
| | - Shane A Blowes
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
- Institute of Computer Science, Martin-Luther University Halle-Wittenberg, 06108, Halle (Saale), Halle, Germany
| | - Ashley Shade
- Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Universite Claude Bernard Lyon 1, 69622, Villeurbanne, France
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, 04103, Leipzig, Germany
| | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
- Institute of Computer Science, Martin-Luther University Halle-Wittenberg, 06108, Halle (Saale), Halle, Germany
| |
Collapse
|
16
|
García-Bayona L, Said N, Coyne MJ, Flores K, Elmekki NM, Sheahan ML, Camacho AG, Hutt K, Yildiz FH, Kovács ÁT, Waldor MK, Comstock LE. A pervasive large conjugative plasmid mediates multispecies biofilm formation in the intestinal microbiota increasing resilience to perturbations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.590671. [PMID: 38746121 PMCID: PMC11092513 DOI: 10.1101/2024.04.29.590671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Although horizontal gene transfer is pervasive in the intestinal microbiota, we understand only superficially the roles of most exchanged genes and how the mobile repertoire affects community dynamics. Similarly, little is known about the mechanisms underlying the ability of a community to recover after a perturbation. Here, we identified and functionally characterized a large conjugative plasmid that is one of the most frequently transferred elements among Bacteroidales species and is ubiquitous in diverse human populations. This plasmid encodes both an extracellular polysaccharide and fimbriae, which promote the formation of multispecies biofilms in the mammalian gut. We use a hybridization-based approach to visualize biofilms in clarified whole colon tissue with unprecedented 3D spatial resolution. These biofilms increase bacterial survival to common stressors encountered in the gut, increasing strain resiliency, and providing a rationale for the plasmid's recent spread and high worldwide prevalence.
Collapse
|
17
|
Le SNH, Nguyen Ngoc Minh C, de Sessions PF, Jie S, Tran Thi Hong C, Thwaites GE, Baker S, Pham DT, Chung The H. The impact of antibiotics on the gut microbiota of children recovering from watery diarrhoea. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:12. [PMID: 38686335 PMCID: PMC11057199 DOI: 10.1038/s44259-024-00030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/15/2024] [Indexed: 05/02/2024]
Abstract
Infectious diarrhoeal diseases remain a substantial health burden in young children in low- and middle-income countries. The disease and its variable treatment options significantly alter the gut microbiome, which may affect clinical outcomes and overall gut health. Antibiotics are often prescribed, but their impact on the gut microbiome during recovery is unclear. Here, we used 16S rRNA sequencing to investigate changes in the gut microbiota in Vietnamese children with acute watery diarrhoea, and highlight the impact of antibiotic treatment on these changes. Our analyses identified that, regardless of treatment, recovery was characterised by reductions in Streptococcus and Rothia species and expansion of Bacteroides/Phocaeicola, Lachnospiraceae and Ruminococcacae taxa. Antibiotic treatment significantly delayed the temporal increases in alpha- and beta-diversity within patients, resulting in distinctive patterns of taxonomic change. These changes included a pronounced, transient overabundance of Enterococcus species and depletion of Bifidobacterium pseudocatenulatum. Our findings demonstrate that antibiotic treatment slows gut microbiota recovery in children following watery diarrhoea.
Collapse
Affiliation(s)
- Son-Nam H. Le
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City, Vietnam
| | | | | | - Song Jie
- Genome Institute of Singapore, Singapore, Singapore
| | | | - Guy E. Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Stephen Baker
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Diseases (CITIID), University of Cambridge, Cambridge, United Kingdom
| | - Duy Thanh Pham
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Hao Chung The
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| |
Collapse
|
18
|
Madi N, Cato ET, Abu Sayeed M, Creasy-Marrazzo A, Cuénod A, Islam K, Khabir MIU, Bhuiyan MTR, Begum YA, Freeman E, Vustepalli A, Brinkley L, Kamat M, Bailey LS, Basso KB, Qadri F, Khan AI, Shapiro BJ, Nelson EJ. Phage predation, disease severity, and pathogen genetic diversity in cholera patients. Science 2024; 384:eadj3166. [PMID: 38669570 DOI: 10.1126/science.adj3166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 03/12/2024] [Indexed: 04/28/2024]
Abstract
Despite an increasingly detailed picture of the molecular mechanisms of bacteriophage (phage)-bacterial interactions, we lack an understanding of how these interactions evolve and impact disease within patients. In this work, we report a year-long, nationwide study of diarrheal disease patients in Bangladesh. Among cholera patients, we quantified Vibrio cholerae (prey) and its virulent phages (predators) using metagenomics and quantitative polymerase chain reaction while accounting for antibiotic exposure using quantitative mass spectrometry. Virulent phage (ICP1) and antibiotics suppressed V. cholerae to varying degrees and were inversely associated with severe dehydration depending on resistance mechanisms. In the absence of antiphage defenses, predation was "effective," with a high predator:prey ratio that correlated with increased genetic diversity among the prey. In the presence of antiphage defenses, predation was "ineffective," with a lower predator:prey ratio that correlated with increased genetic diversity among the predators. Phage-bacteria coevolution within patients should therefore be considered in the deployment of phage-based therapies and diagnostics.
Collapse
Affiliation(s)
- Naïma Madi
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
| | - Emilee T Cato
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Md Abu Sayeed
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Ashton Creasy-Marrazzo
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Aline Cuénod
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
| | - Kamrul Islam
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md Imam Ul Khabir
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md Taufiqur R Bhuiyan
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Yasmin A Begum
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Emma Freeman
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Anirudh Vustepalli
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Lindsey Brinkley
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Manasi Kamat
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Laura S Bailey
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Kari B Basso
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Firdausi Qadri
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ashraful I Khan
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - B Jesse Shapiro
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
- McGill Centre for Microbiome Research, McGill University, Montréal, QC, Canada
| | - Eric J Nelson
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| |
Collapse
|
19
|
Fogarty EC, Schechter MS, Lolans K, Sheahan ML, Veseli I, Moore RM, Kiefl E, Moody T, Rice PA, Yu MK, Mimee M, Chang EB, Ruscheweyh HJ, Sunagawa S, Mclellan SL, Willis AD, Comstock LE, Eren AM. A cryptic plasmid is among the most numerous genetic elements in the human gut. Cell 2024; 187:1206-1222.e16. [PMID: 38428395 PMCID: PMC10973873 DOI: 10.1016/j.cell.2024.01.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/03/2023] [Accepted: 01/25/2024] [Indexed: 03/03/2024]
Abstract
Plasmids are extrachromosomal genetic elements that often encode fitness-enhancing features. However, many bacteria carry "cryptic" plasmids that do not confer clear beneficial functions. We identified one such cryptic plasmid, pBI143, which is ubiquitous across industrialized gut microbiomes and is 14 times as numerous as crAssphage, currently established as the most abundant extrachromosomal genetic element in the human gut. The majority of mutations in pBI143 accumulate in specific positions across thousands of metagenomes, indicating strong purifying selection. pBI143 is monoclonal in most individuals, likely due to the priority effect of the version first acquired, often from one's mother. pBI143 can transfer between Bacteroidales, and although it does not appear to impact bacterial host fitness in vivo, it can transiently acquire additional genetic content. We identified important practical applications of pBI143, including its use in identifying human fecal contamination and its potential as an alternative approach to track human colonic inflammatory states.
Collapse
Affiliation(s)
- Emily C Fogarty
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA; Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| | - Matthew S Schechter
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA; Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Karen Lolans
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Madeline L Sheahan
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA; Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - Iva Veseli
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Ryan M Moore
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Evan Kiefl
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Thomas Moody
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Phoebe A Rice
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA; Department of Biochemistry, University of Chicago, Chicago, IL 60637, USA
| | - Michael K Yu
- Toyota Technological Institute at Chicago, Chicago, IL 60637, USA
| | - Mark Mimee
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA; Department of Microbiology, University of Chicago, Chicago, IL 60637, USA; Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Eugene B Chang
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Hans-Joachim Ruscheweyh
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich 8093, Switzerland
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich 8093, Switzerland
| | - Sandra L Mclellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53204, USA
| | - Amy D Willis
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Laurie E Comstock
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA; Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA; Department of Microbiology, University of Chicago, Chicago, IL 60637, USA.
| | - A Murat Eren
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA; Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany; Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, 26129 Oldenburg, Germany; Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany; Helmholtz Institute for Functional Marine Biodiversity, 26129 Oldenburg, Germany.
| |
Collapse
|
20
|
Kırdök E, Kashuba N, Damlien H, Manninen MA, Nordqvist B, Kjellström A, Jakobsson M, Lindberg AM, Storå J, Persson P, Andersson B, Aravena A, Götherström A. Metagenomic analysis of Mesolithic chewed pitch reveals poor oral health among stone age individuals. Sci Rep 2024; 13:22125. [PMID: 38238372 PMCID: PMC10796427 DOI: 10.1038/s41598-023-48762-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/30/2023] [Indexed: 01/22/2024] Open
Abstract
Prehistoric chewed pitch has proven to be a useful source of ancient DNA, both from humans and their microbiomes. Here we present the metagenomic analysis of three pieces of chewed pitch from Huseby Klev, Sweden, that were dated to 9,890-9,540 before present. The metagenomic profile exposes a Mesolithic oral microbiome that includes opportunistic oral pathogens. We compared the data with healthy and dysbiotic microbiome datasets and we identified increased abundance of periodontitis-associated microbes. In addition, trained machine learning models predicted dysbiosis with 70-80% probability. Moreover, we identified DNA sequences from eukaryotic species such as red fox, hazelnut, red deer and apple. Our results indicate a case of poor oral health during the Scandinavian Mesolithic, and show that pitch pieces have the potential to provide information on material use, diet and oral health.
Collapse
Affiliation(s)
- Emrah Kırdök
- Department of Biotechnology, Faculty of Science, Mersin University, 33100 Yenişehir, Mersin, Turkey.
| | - Natalija Kashuba
- Department of Archaeology and Ancient History, Uppsala University, Engelska Parken, Thunbergsvägen 3H Box 626, 751 26, Uppsala, Sweden
| | - Hege Damlien
- Museum of Cultural History, University of Oslo, St. Olavs Plass, P.O. Box 6762, NO-0130, Oslo, Norway
| | - Mikael A Manninen
- PAES, Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences and Helsinki Institute of Sustainability Science, University of Helsinki, Viikinkaari 1, P.O. Box 65, Helsinki, Finland
| | - Bengt Nordqvist
- Foundation War-Booty Site Finnestorp, Klarinettvägen 75, 434 75, Kungsbacka, Sweden
| | - Anna Kjellström
- Department of Archaeology and Classical Studies, Osteoarchaeological Research Laboratory, Stockholm University, Stockholm, Sweden
| | - Mattias Jakobsson
- Department of Organismal Biology, Human Evolution, Uppsala University, Evolutionsbiologiskt Centrum EBC Norbyvägen 18 A, Uppsala, Sweden
| | - A Michael Lindberg
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, Hus Vita, 44018, Kalmar, Sweden
| | - Jan Storå
- Department of Archaeology and Classical Studies, Osteoarchaeological Research Laboratory, Stockholm University, Stockholm, Sweden
| | - Per Persson
- Museum of Cultural History, University of Oslo, St. Olavs Plass, P.O. Box 6762, NO-0130, Oslo, Norway
| | - Björn Andersson
- Department of Cell and Molecular Biology (CMB), Karolinska Insitutet, P.O. Box 285, 171 77, Stockholm, Sweden
| | - Andrés Aravena
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Vezneciler, 34134, Istanbul, Turkey
| | - Anders Götherström
- Centre for Palaeogenetics, Svante Arrhenius Väg 20C, 106 91, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Archaeological Research Laboratory, Stockholm University, Stockholm, Sweden
| |
Collapse
|
21
|
Ng KM, Pannu S, Liu S, Burckhardt JC, Hughes T, Van Treuren W, Nguyen J, Naqvi K, Nguyen B, Clayton CA, Pepin DM, Collins SR, Tropini C. Single-strain behavior predicts responses to environmental pH and osmolality in the gut microbiota. mBio 2023; 14:e0075323. [PMID: 37432034 PMCID: PMC10470613 DOI: 10.1128/mbio.00753-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/23/2023] [Indexed: 07/12/2023] Open
Abstract
Changes to gut environmental factors such as pH and osmolality due to disease or drugs correlate with major shifts in microbiome composition; however, we currently cannot predict which species can tolerate such changes or how the community will be affected. Here, we assessed the growth of 92 representative human gut bacterial strains spanning 28 families across multiple pH values and osmolalities in vitro. The ability to grow in extreme pH or osmolality conditions correlated with the availability of known stress response genes in many cases, but not all, indicating that novel pathways may participate in protecting against acid or osmotic stresses. Machine learning analysis uncovered genes or subsystems that are predictive of differential tolerance in either acid or osmotic stress. For osmotic stress, we corroborated the increased abundance of these genes in vivo during osmotic perturbation. The growth of specific taxa in limiting conditions in isolation in vitro correlated with survival in complex communities in vitro and in an in vivo mouse model of diet-induced intestinal acidification. Our data show that in vitro stress tolerance results are generalizable and that physical parameters may supersede interspecies interactions in determining the relative abundance of community members. This study provides insight into the ability of the microbiota to respond to common perturbations that may be encountered in the gut and provides a list of genes that correlate with increased ability to survive in these conditions. IMPORTANCE To achieve greater predictability in microbiota studies, it is crucial to consider physical environmental factors such as pH and particle concentration, as they play a pivotal role in influencing bacterial function and survival. For example, pH is significantly altered in various diseases, including cancers, inflammatory bowel disease, as well in the case of over-the-counter drug use. Additionally, conditions like malabsorption can affect particle concentration. In our study, we investigate how changes in environmental pH and osmolality can serve as predictive indicators of bacterial growth and abundance. Our research provides a comprehensive resource for anticipating shifts in microbial composition and gene abundance during complex perturbations. Moreover, our findings underscore the significance of the physical environment as a major driver of bacterial composition. Finally, this work emphasizes the necessity of incorporating physical measurements into animal and clinical studies to better understand the factors influencing shifts in microbiota abundance.
Collapse
Affiliation(s)
- Katharine M. Ng
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| | - Sagar Pannu
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Sijie Liu
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| | - Juan C. Burckhardt
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Thad Hughes
- Independent Researcher, Vancouver, British Columbia, Canada
| | - Will Van Treuren
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Jen Nguyen
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Kisa Naqvi
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| | - Bachviet Nguyen
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Charlotte A. Clayton
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Deanna M. Pepin
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Samuel R. Collins
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Carolina Tropini
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, Canada
| |
Collapse
|
22
|
Ballash GA, Diaz-Campos D, van Balen JC, Mollenkopf DF, Wittum TE. Previous Antibiotic Exposure Reshapes the Population Structure of Infecting Uropathogenic Escherichia coli Strains by Selecting for Antibiotic Resistance over Urovirulence. Microbiol Spectr 2023; 11:e0524222. [PMID: 37338386 PMCID: PMC10433818 DOI: 10.1128/spectrum.05242-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/28/2023] [Indexed: 06/21/2023] Open
Abstract
Antibiotic therapy is the standard of care for urinary tract infections (UTIs) caused by uropathogenic Escherichia coli (UPEC). However, previous antibiotic therapy may impart a selective pressure that influences the population structure and pathogenic potential of infecting UPEC strains. Here, we conducted a 3-year study using whole-genome-sequencing analysis and retrospective medical record review to characterize how antibiotic exposure influenced the phenotypic antibiotic resistance, acquired resistome, virulome, and population structure of 88 UTI-causing E. coli strains from dogs. A majority of UTI-associated E. coli strains were from phylogroup B2 and clustered within sequence type 372. Previous antibiotic exposure was associated with a population shift toward UPEC from phylogroups other than the typical urovirulent phylogroup B2. The specific virulence profiles within the accessory virulome that were associated with antibiotic use were elicited by the effect of antibiotics on UPEC phylogenetic structure. Among phylogroup B2, antibiotic exposure increased the quantity of genes within the resistome and the odds of developing reduced susceptibility to at least one antibiotic. Non-B2 UPEC strains harbored a more diverse and greater resistome that conferred reduced susceptibility to multiple antibiotic classes following antibiotic exposure. Collectively, these data suggest that previous antibiotic exposure establishes an environment that provides a selective edge to non-B2 UPEC strains through their diverse and abundant antibiotic resistance genes, despite their lack of urovirulence genes. Our findings highlight the necessity for judicious use of antibiotics as we uncover another mechanism by which antibiotic exposure and resistance can influence the dynamics of bacterial infectious disease. IMPORTANCE Urinary tract infections (UTIs) are one of the most common infections of dogs and humans. While antibiotic therapy is the standard of care for UTIs and other infections, antibiotic exposure may influence the pathogenic profile of subsequent infections. We used whole-genome sequencing and retrospective medical record review to characterize the effect of systemic antibiotic therapy on the resistance, virulence, and population structure of 88 UTI-causing UPEC strains isolated from dogs. Our results indicate that antibiotic exposure alters the population structure of infecting UPEC strains, providing a selective edge for non-B2 phylogroups that harbor diverse and abundant resistance gene catalogues but fewer urovirulence genes. These findings highlight how antibiotic resistance can influence pathogen infection dynamics and have clinical implications for the judicious use of antibiotics for bacterial infections.
Collapse
Affiliation(s)
- Gregory A. Ballash
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Dubraska Diaz-Campos
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Joany C. van Balen
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Dixie F. Mollenkopf
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Thomas E. Wittum
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
23
|
Fredriksen S, de Warle S, van Baarlen P, Boekhorst J, Wells JM. Resistome expansion in disease-associated human gut microbiomes. MICROBIOME 2023; 11:166. [PMID: 37507809 PMCID: PMC10386251 DOI: 10.1186/s40168-023-01610-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND The resistome, the collection of antibiotic resistance genes (ARGs) in a microbiome, is increasingly recognised as relevant to the development of clinically relevant antibiotic resistance. Many metagenomic studies have reported resistome differences between groups, often in connection with disease and/or antibiotic treatment. However, the consistency of resistome associations with antibiotic- and non-antibiotic-treated diseases has not been established. In this study, we re-analysed human gut microbiome data from 26 case-control studies to assess the link between disease and the resistome. RESULTS The human gut resistome is highly variable between individuals both within and between studies, but may also vary significantly between case and control groups even in the absence of large taxonomic differences. We found that for diseases commonly treated with antibiotics, namely cystic fibrosis and diarrhoea, patient microbiomes had significantly elevated ARG abundances compared to controls. Disease-associated resistome expansion was found even when ARG abundance was high in controls, suggesting ongoing and additive ARG acquisition in disease-associated strains. We also found a trend for increased ARG abundance in cases from some studies on diseases that are not treated with antibiotics, such as colorectal cancer. CONCLUSIONS Diseases commonly treated with antibiotics are associated with expanded gut resistomes, suggesting that historical exposure to antibiotics has exerted considerable selective pressure for ARG acquisition in disease-associated strains. Video Abstract.
Collapse
Affiliation(s)
- Simen Fredriksen
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University & Research, Wageningen, The Netherlands.
| | - Stef de Warle
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University & Research, Wageningen, The Netherlands
| | - Peter van Baarlen
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University & Research, Wageningen, The Netherlands
| | - Jos Boekhorst
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University & Research, Wageningen, The Netherlands
| | - Jerry M Wells
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
24
|
Walton MG, Cubillejo I, Nag D, Withey JH. Advances in cholera research: from molecular biology to public health initiatives. Front Microbiol 2023; 14:1178538. [PMID: 37283925 PMCID: PMC10239892 DOI: 10.3389/fmicb.2023.1178538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/14/2023] [Indexed: 06/08/2023] Open
Abstract
The aquatic bacterium Vibrio cholerae is the etiological agent of the diarrheal disease cholera, which has plagued the world for centuries. This pathogen has been the subject of studies in a vast array of fields, from molecular biology to animal models for virulence activity to epidemiological disease transmission modeling. V. cholerae genetics and the activity of virulence genes determine the pathogenic potential of different strains, as well as provide a model for genomic evolution in the natural environment. While animal models for V. cholerae infection have been used for decades, recent advances in this area provide a well-rounded picture of nearly all aspects of V. cholerae interaction with both mammalian and non-mammalian hosts, encompassing colonization dynamics, pathogenesis, immunological responses, and transmission to naïve populations. Microbiome studies have become increasingly common as access and affordability of sequencing has improved, and these studies have revealed key factors in V. cholerae communication and competition with members of the gut microbiota. Despite a wealth of knowledge surrounding V. cholerae, the pathogen remains endemic in numerous countries and causes sporadic outbreaks elsewhere. Public health initiatives aim to prevent cholera outbreaks and provide prompt, effective relief in cases where prevention is not feasible. In this review, we describe recent advancements in cholera research in these areas to provide a more complete illustration of V. cholerae evolution as a microbe and significant global health threat, as well as how researchers are working to improve understanding and minimize impact of this pathogen on vulnerable populations.
Collapse
Affiliation(s)
| | | | | | - Jeffrey H. Withey
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
25
|
Watson AR, Füssel J, Veseli I, DeLongchamp JZ, Silva M, Trigodet F, Lolans K, Shaiber A, Fogarty E, Runde JM, Quince C, Yu MK, Söylev A, Morrison HG, Lee STM, Kao D, Rubin DT, Jabri B, Louie T, Eren AM. Metabolic independence drives gut microbial colonization and resilience in health and disease. Genome Biol 2023; 24:78. [PMID: 37069665 PMCID: PMC10108530 DOI: 10.1186/s13059-023-02924-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 04/07/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Changes in microbial community composition as a function of human health and disease states have sparked remarkable interest in the human gut microbiome. However, establishing reproducible insights into the determinants of microbial succession in disease has been a formidable challenge. RESULTS Here we use fecal microbiota transplantation (FMT) as an in natura experimental model to investigate the association between metabolic independence and resilience in stressed gut environments. Our genome-resolved metagenomics survey suggests that FMT serves as an environmental filter that favors populations with higher metabolic independence, the genomes of which encode complete metabolic modules to synthesize critical metabolites, including amino acids, nucleotides, and vitamins. Interestingly, we observe higher completion of the same biosynthetic pathways in microbes enriched in IBD patients. CONCLUSIONS These observations suggest a general mechanism that underlies changes in diversity in perturbed gut environments and reveal taxon-independent markers of "dysbiosis" that may explain why widespread yet typically low-abundance members of healthy gut microbiomes can dominate under inflammatory conditions without any causal association with disease.
Collapse
Affiliation(s)
- Andrea R Watson
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
- Committee On Microbiology, The University of Chicago, Chicago, IL, 60637, USA
| | - Jessika Füssel
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, 26129, Oldenburg, Germany
| | - Iva Veseli
- Biophysical Sciences Program, The University of Chicago, Chicago, IL, 60637, USA
| | | | - Marisela Silva
- Department of Medicine, The University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Florian Trigodet
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Karen Lolans
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Alon Shaiber
- Biophysical Sciences Program, The University of Chicago, Chicago, IL, 60637, USA
| | - Emily Fogarty
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
- Committee On Microbiology, The University of Chicago, Chicago, IL, 60637, USA
| | - Joseph M Runde
- Department of Pediatrics, Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Christopher Quince
- Organisms and Ecosystems, Earlham Institute, Norwich, Norwich, NR4 7UZ, UK
- Gut Microbes and Health, Quadram Institute, Norwich, NR4 7UQ, UK
| | - Michael K Yu
- Toyota Technological Institute at Chicago, Chicago, IL, 60637, USA
| | - Arda Söylev
- Department of Computer Engineering, Konya Food and Agriculture University, Konya, Turkey
| | - Hilary G Morrison
- Marine Biological Laboratory, Josephine Bay Paul Center, Woods Hole, Falmouth, MA, 02543, USA
| | - Sonny T M Lee
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Dina Kao
- Department of Medicine, University of Alberta, Edmonton, AB, T6G 2G3, Canada
| | - David T Rubin
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Bana Jabri
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Thomas Louie
- Department of Medicine, The University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - A Murat Eren
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA.
- Committee On Microbiology, The University of Chicago, Chicago, IL, 60637, USA.
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, 26129, Oldenburg, Germany.
- Marine Biological Laboratory, Josephine Bay Paul Center, Woods Hole, Falmouth, MA, 02543, USA.
- Helmholtz Institute for Functional Marine Biodiversity, 26129, Oldenburg, Germany.
| |
Collapse
|
26
|
Fogarty EC, Schechter MS, Lolans K, Sheahan ML, Veseli I, Moore R, Kiefl E, Moody T, Rice PA, Yu MK, Mimee M, Chang EB, Mclellan SL, Willis AD, Comstock LE, Eren AM. A highly conserved and globally prevalent cryptic plasmid is among the most numerous mobile genetic elements in the human gut. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.25.534219. [PMID: 36993556 PMCID: PMC10055365 DOI: 10.1101/2023.03.25.534219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Plasmids are extrachromosomal genetic elements that often encode fitness enhancing features. However, many bacteria carry 'cryptic' plasmids that do not confer clear beneficial functions. We identified one such cryptic plasmid, pBI143, which is ubiquitous across industrialized gut microbiomes, and is 14 times as numerous as crAssphage, currently established as the most abundant genetic element in the human gut. The majority of mutations in pBI143 accumulate in specific positions across thousands of metagenomes, indicating strong purifying selection. pBI143 is monoclonal in most individuals, likely due to the priority effect of the version first acquired, often from one's mother. pBI143 can transfer between Bacteroidales and although it does not appear to impact bacterial host fitness in vivo, can transiently acquire additional genetic content. We identified important practical applications of pBI143, including its use in identifying human fecal contamination and its potential as an inexpensive alternative for detecting human colonic inflammatory states.
Collapse
Affiliation(s)
- Emily C Fogarty
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Matthew S Schechter
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Karen Lolans
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Madeline L. Sheahan
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Microbiology, University of Chicago, Chicago, IL, 60637, USA
| | - Iva Veseli
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Ryan Moore
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Evan Kiefl
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Thomas Moody
- Department of Systems Biology, Columbia University, New York, NY, 10032 USA
| | - Phoebe A Rice
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA
- Department of Biochemistry, University of Chicago, Chicago, IL, 60637, USA
| | | | - Mark Mimee
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA
- Department of Microbiology, University of Chicago, Chicago, IL, 60637, USA
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Eugene B Chang
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Sandra L Mclellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53204, USA
| | - Amy D Willis
- Department of Biostatistics, University of Washington, Seattle, WA, 98195, USA
| | - Laurie E Comstock
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Microbiology, University of Chicago, Chicago, IL, 60637, USA
| | - A Murat Eren
- Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, 26129 Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity, 26129 Oldenburg, Germany
| |
Collapse
|
27
|
Quaye EK, Adjei RL, Isawumi A, Allen DJ, Caporaso JG, Quaye O. Altered Faecal Microbiota Composition and Structure of Ghanaian Children with Acute Gastroenteritis. Int J Mol Sci 2023; 24:3607. [PMID: 36835017 PMCID: PMC9962333 DOI: 10.3390/ijms24043607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 02/15/2023] Open
Abstract
Acute gastroenteritis (AGE) is a disease of global public health importance. Recent studies show that children with AGE have an altered gut microbiota relative to non-AGE controls. Yet, how the gut microbiota differs in Ghanaian children with and without AGE remains unclear. Here, we explore the 16S rRNA gene-based faecal microbiota profiles of Ghanaian children five years of age and younger, comprising 57 AGE cases and 50 healthy controls. We found that AGE cases were associated with lower microbial diversity and altered microbial sequence profiles relative to the controls. The faecal microbiota of AGE cases was enriched for disease-associated bacterial genera, including Enterococcus, Streptococcus, and Staphylococcus. In contrast, the faecal microbiota of controls was enriched for potentially beneficial genera, including Faecalibacterium, Prevotella, Ruminococcus, and Bacteroides. Lastly, distinct microbial correlation network characteristics were observed between AGE cases and controls, thereby supporting broad differences in faecal microbiota structure. Altogether, we show that the faecal microbiota of Ghanaian children with AGE differ from controls and are enriched for bacterial genera increasingly associated with diseases.
Collapse
Affiliation(s)
- Emmanuel Kofi Quaye
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra P.O. Box LG 54, Ghana
| | - Raymond Lovelace Adjei
- Council for Scientific and Industrial Research (CSIR)-Animal Research Institute, Accra P.O. Box AH 20, Ghana
| | - Abiola Isawumi
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra P.O. Box LG 54, Ghana
| | - David J. Allen
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
- Vaccine Centre, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - J. Gregory Caporaso
- Centre for Applied Microbiome Science, Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Osbourne Quaye
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra P.O. Box LG 54, Ghana
| |
Collapse
|
28
|
Muhammad AY, Amonov M, Murugaiah C, Baig AA, Yusoff M. Intestinal colonization against Vibrio cholerae: host and microbial resistance mechanisms. AIMS Microbiol 2023; 9:346-374. [PMID: 37091815 PMCID: PMC10113163 DOI: 10.3934/microbiol.2023019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Vibrio cholerae is a non-invasive enteric pathogen known to cause a major public health problem called cholera. The pathogen inhabits the aquatic environment while outside the human host, it is transmitted into the host easily through ingesting contaminated food and water containing the vibrios, thus causing diarrhoea and vomiting. V. cholerae must resist several layers of colonization resistance mechanisms derived from the host or the gut commensals to successfully survive, grow, and colonize the distal intestinal epithelium, thus causing an infection. The colonization resistance mechanisms derived from the host are not specific to V. cholerae but to all invading pathogens. However, some of the gut commensal-derived colonization resistance may be more specific to the pathogen, making it more challenging to overcome. Consequently, the pathogen has evolved well-coordinated mechanisms that sense and utilize the anti-colonization factors to modulate events that promote its survival and colonization in the gut. This review is aimed at discussing how V. cholerae interacts and resists both host- and microbe-specific colonization resistance mechanisms to cause infection.
Collapse
Affiliation(s)
| | - Malik Amonov
- Faculty of Medicine, Universiti Sultan Zainal Abidin, Malaysia
- * Correspondence: ; Tel: +60189164478
| | | | - Atif Amin Baig
- University Institute of Public Health, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Marina Yusoff
- Faculty of Medicine, Universiti Sultan Zainal Abidin, Malaysia
| |
Collapse
|
29
|
Zhang B, Wei X, Ding M, Luo Z, Tan X, Zheng Z. Daidzein Protects Caco-2 Cells against Lipopolysaccharide-Induced Intestinal Epithelial Barrier Injury by Suppressing PI3K/AKT and P38 Pathways. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248928. [PMID: 36558058 PMCID: PMC9781898 DOI: 10.3390/molecules27248928] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The intestinal epithelium provides an important barrier against bacterial endotoxin translocation, which can regulate the absorption of water and ions. The disruption of epithelial barrier function can result in water transport and tight junction damage, or further cause diarrhea. Therefore, reducing intestinal epithelial barrier injury plays an important role in diarrhea. Inflammatory response is an important cause of intestinal barrier defects. Daidzein improving the barrier integrity has been reported, but the effect on tight junction proteins and aquaporins is not well-described yet, and the underlying mechanism remains indistinct in the human intestinal epithelium. This study aimed to investigate the effects and mechanisms of daidzein on intestinal epithelial barrier injury induced by LPS, and a barrier injury model induced by LPS was established with human colorectal epithelial adenocarcinoma cell line Caco-2 cells. We found that daidzein protected the integrity of Caco-2 cell monolayers, reversed LPS-induced downregulation of ZO-1, occludin, claudin-1, and AQP3 expression, maintained intercellular junction of ZO-1, and suppressed NF-κB and the expression of inflammatory factors (TNF-α, IL-6). Furthermore, we found that daidzein suppressed the phosphorylation of the PI3K/AKT and P38 pathway-related proteins and the level of the related genes, and the PI3K/AKT and P38 pathway inhibitors increased ZO-1, occludin, claudin-1, and AQP3 expression. The study showed that daidzein could resist LPS-induced intestinal epithelial barrier injury, and the mechanism is related to suppressing the PI3K/AKT and P38 pathways. Therefore, daidzein could be a candidate as a dietary supplementation or drug to prevent or cure diarrhea.
Collapse
Affiliation(s)
- Baoping Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, China
| | - Xiaohan Wei
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, China
| | - Mengze Ding
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, China
| | - Zhenye Luo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, China
| | - Xiaomei Tan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
- Guangzhou Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, China
- Correspondence: (X.T.); (Z.Z.)
| | - Zezhong Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (X.T.); (Z.Z.)
| |
Collapse
|
30
|
Impact of international travel and diarrhea on gut microbiome and resistome dynamics. Nat Commun 2022; 13:7485. [PMID: 36470885 PMCID: PMC9722912 DOI: 10.1038/s41467-022-34862-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/08/2022] [Indexed: 12/11/2022] Open
Abstract
International travel contributes to the global spread of antimicrobial resistance. Travelers' diarrhea exacerbates the risk of acquiring multidrug-resistant organisms and can lead to persistent gastrointestinal disturbance post-travel. However, little is known about the impact of diarrhea on travelers' gut microbiomes, and the dynamics of these changes throughout travel. Here, we assembled a cohort of 159 international students visiting the Andean city of Cusco, Peru and applied next-generation sequencing techniques to 718 longitudinally-collected stool samples. We find that gut microbiome composition changed significantly throughout travel, but taxonomic diversity remained stable. However, diarrhea disrupted this stability and resulted in an increased abundance of antimicrobial resistance genes that can remain high for weeks. We also identified taxa differentially abundant between diarrheal and non-diarrheal samples, which were used to develop a classification model that distinguishes between these disease states. Additionally, we sequenced the genomes of 212 diarrheagenic Escherichia coli isolates and found those from travelers who experienced diarrhea encoded more antimicrobial resistance genes than those who did not. In this work, we find the gut microbiomes of international travelers' are resilient to dysbiosis; however, they are also susceptible to colonization by multidrug-resistant bacteria, a risk that is more pronounced in travelers with diarrhea.
Collapse
|
31
|
Letourneau J, Holmes ZC, Dallow EP, Durand HK, Jiang S, Carrion VM, Gupta SK, Mincey AC, Muehlbauer MJ, Bain JR, David LA. Ecological memory of prior nutrient exposure in the human gut microbiome. THE ISME JOURNAL 2022; 16:2479-2490. [PMID: 35871250 PMCID: PMC9563064 DOI: 10.1038/s41396-022-01292-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 04/20/2023]
Abstract
Many ecosystems have been shown to retain a memory of past conditions, which in turn affects how they respond to future stimuli. In microbial ecosystems, community disturbance has been associated with lasting impacts on microbiome structure. However, whether microbial communities alter their response to repeated stimulus remains incompletely understood. Using the human gut microbiome as a model, we show that bacterial communities retain an "ecological memory" of past carbohydrate exposures. Memory of the prebiotic inulin was encoded within a day of supplementation among a cohort of human study participants. Using in vitro gut microbial models, we demonstrated that the strength of ecological memory scales with nutrient dose and persists for days. We found evidence that memory is seeded by transcriptional changes among primary degraders of inulin within hours of nutrient exposure, and that subsequent changes in the activity and abundance of these taxa are sufficient to enhance overall community nutrient metabolism. We also observed that ecological memory of one carbohydrate species impacts microbiome response to other carbohydrates, and that an individual's habitual exposure to dietary fiber was associated with their gut microbiome's efficiency at digesting inulin. Together, these findings suggest that the human gut microbiome's metabolic potential reflects dietary exposures over preceding days and changes within hours of exposure to a novel nutrient. The dynamics of this ecological memory also highlight the potential for intra-individual microbiome variation to affect the design and interpretation of interventions involving the gut microbiome.
Collapse
Affiliation(s)
- Jeffrey Letourneau
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Zachary C Holmes
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Eric P Dallow
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Heather K Durand
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Sharon Jiang
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Verónica M Carrion
- Duke Office of Clinical Research, Duke University School of Medicine, Durham, NC, USA
| | - Savita K Gupta
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Adam C Mincey
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Michael J Muehlbauer
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - James R Bain
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine (Endocrinology), Duke University School of Medicine, Durham, NC, USA
| | - Lawrence A David
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
- Program in Computational Biology and Bioinformatics, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
32
|
Saikia K, Saharia N, Singh CS, Borah PP, Namsa ND. Association of histo-blood group antigens and predisposition to gastrointestinal diseases. J Med Virol 2022; 94:5149-5162. [PMID: 35882942 DOI: 10.1002/jmv.28028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/26/2022] [Accepted: 07/23/2022] [Indexed: 12/15/2022]
Abstract
Infectious gastroenteritis is a common illness afflicting people worldwide. The two most common etiological agents of viral gastroenteritis, rotavirus and norovirus are known to recognize histo-blood group antigens (HBGAs) as attachment receptors. ABO, Lewis, and secretor HBGAs are distributed abundantly on mucosal epithelia, red blood cell membranes, and also secreted in biological fluids, such as saliva, intestinal content, milk, and blood. HBGAs are fucosylated glycans that have been implicated in the attachment of some enteric pathogens such as bacteria, parasites, and viruses. Single nucleotide polymorphisms in the genes encoding ABO (H), fucosyltransferase gene FUT2 (Secretor/Se), FUT3 (Lewis/Le) have been associated with changes in enzyme expression and HBGAs production. The highly polymorphic HBGAs among different populations and races influence genotype-specific susceptibility or resistance to enteric pathogens and its epidemiology, and vaccination seroconversion. Therefore, there is an urgent need to conduct population-based investigations to understand predisposition to enteric infections and gastrointestinal diseases. This review focuses on the relationship between HBGAs and predisposition to common human gastrointestinal illnesses caused by viral, bacterial, and parasitic agents.
Collapse
Affiliation(s)
- Kasturi Saikia
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Assam, India
| | - Niruprabha Saharia
- Department of Paediatrics, Tezpur Medical College and Hospital, Bihaguri, Tezpur, Assam, India
| | - Chongtham S Singh
- Department of Paediatrics, Regional Institute of Medical Sciences, Imphal, India
| | - Partha P Borah
- Department of Paediatrics and Neonatology, Pratiksha Hospital, Guwahati, Assam, India
| | - Nima D Namsa
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Assam, India.,Centre for Multi-disciplinary Research, Tezpur University, Napaam, Assam, India
| |
Collapse
|
33
|
Ndungo E, Holm JB, Gama S, Buchwald AG, Tennant SM, Laufer MK, Pasetti MF, Rasko DA. Dynamics of the Gut Microbiome in Shigella-Infected Children during the First Two Years of Life. mSystems 2022; 7:e0044222. [PMID: 36121169 PMCID: PMC9600951 DOI: 10.1128/msystems.00442-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/23/2022] [Indexed: 02/02/2023] Open
Abstract
Shigella continues to be a major contributor to diarrheal illness and dysentery in children younger than 5 years of age in low- and middle-income countries. Strategies for the prevention of shigellosis have focused on enhancing adaptive immunity. The interaction between Shigella and intrinsic host factors, such as the microbiome, remains unknown. We hypothesized that Shigella infection would impact the developing microbial community in infancy and, conversely, that changes in the gastrointestinal microbiome may predispose infections. To test this hypothesis, we characterized the gastrointestinal microbiota in a longitudinal birth cohort from Malawi that was monitored for Shigella infection using 16S rRNA amplicon sequencing. Children with at least one Shigella quantitative polymerase chain reaction (qPCR) positive sample during the first 2 years of life (cases) were compared to uninfected controls that were matched for sex and age. Overall, the microbial species diversity, as measured by the Shannon diversity index, increased over time, regardless of case status. At early time points, the microbial community was dominated by Bifidobacterium longum and Escherichia/Shigella. A greater abundance of Prevotella 9 and Bifidobacterium kashiwanohense was observed at 2 years of age. While no single species was associated with susceptibility to Shigella infection, significant increases in Lachnospiraceae NK4A136 and Fusicatenibacter saccharivorans were observed following Shigella infection. Both taxa are in the family Lachnospiraceae, which are known short-chain fatty acid producers that may improve gut health. Our findings identified temporal changes in the gastrointestinal microbiota associated with Shigella infection in Malawian children and highlight the need to further elucidate the microbial communities associated with disease susceptibility and resolution. IMPORTANCE Shigella causes more than 180 million cases of diarrhea globally, mostly in children living in poor regions. Infection can lead to severe health impairments that reduce quality of life. There is increasing evidence that disruptions in the gut microbiome early in life can influence susceptibility to illnesses. A delayed or impaired reconstitution of the microbiota following infection can further impact overall health. Aiming to improve our understanding of the interaction between Shigella and the developing infant microbiome, we investigated changes in the gut microbiome of Shigella-infected and uninfected children over the course of their first 2 years of life. We identified species that may be involved in recovery from Shigella infection and in driving the microbiota back to homeostasis. These findings support future studies into the elucidation of the interaction between the microbiota and enteric pathogens in young children and into the identification of potential targets for prevention or treatment.
Collapse
Affiliation(s)
- Esther Ndungo
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Johanna B. Holm
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Syze Gama
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Andrea G. Buchwald
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sharon M. Tennant
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Miriam K. Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Marcela F. Pasetti
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - David A. Rasko
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
34
|
Sauvaitre T, Van Landuyt J, Durif C, Roussel C, Sivignon A, Chalancon S, Uriot O, Van Herreweghen F, Van de Wiele T, Etienne-Mesmin L, Blanquet-Diot S. Role of mucus-bacteria interactions in Enterotoxigenic Escherichia coli (ETEC) H10407 virulence and interplay with human microbiome. NPJ Biofilms Microbiomes 2022; 8:86. [PMID: 36266277 PMCID: PMC9584927 DOI: 10.1038/s41522-022-00344-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
The intestinal mucus layer has a dual role in human health constituting a well-known microbial niche that supports gut microbiota maintenance but also acting as a physical barrier against enteric pathogens. Enterotoxigenic Escherichia coli (ETEC), the major agent responsible for traveler's diarrhea, is able to bind and degrade intestinal mucins, representing an important but understudied virulent trait of the pathogen. Using a set of complementary in vitro approaches simulating the human digestive environment, this study aimed to describe how the mucus microenvironment could shape different aspects of the human ETEC strain H10407 pathophysiology, namely its survival, adhesion, virulence gene expression, interleukin-8 induction and interactions with human fecal microbiota. Using the TNO gastrointestinal model (TIM-1) simulating the physicochemical conditions of the human upper gastrointestinal (GI) tract, we reported that mucus secretion and physical surface sustained ETEC survival, probably by helping it to face GI stresses. When integrating the host part in Caco2/HT29-MTX co-culture model, we demonstrated that mucus secreting-cells favored ETEC adhesion and virulence gene expression, but did not impede ETEC Interleukin-8 (IL-8) induction. Furthermore, we proved that mucosal surface did not favor ETEC colonization in a complex gut microbial background simulated in batch fecal experiments. However, the mucus-specific microbiota was widely modified upon the ETEC challenge suggesting its role in the pathogen infectious cycle. Using multi-targeted in vitro approaches, this study supports the major role played by mucus in ETEC pathophysiology, opening avenues in the design of new treatment strategies.
Collapse
Affiliation(s)
- Thomas Sauvaitre
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé (MEDIS), CRNH Auvergne, 63000, Clermont-Ferrand, France.,Ghent University, Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Josefien Van Landuyt
- Ghent University, Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Claude Durif
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé (MEDIS), CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Charlène Roussel
- Université Laval, Nutrition and Functional Foods Institute (INAF), 2440 Bd Hochelaga Suite 1710, Québec, QC, G1V 0A6, Canada
| | - Adeline Sivignon
- Université Clermont Auvergne, UMR 1071 Inserm, USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), 63000, Clermont-Ferrand, France
| | - Sandrine Chalancon
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé (MEDIS), CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Ophélie Uriot
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé (MEDIS), CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Florence Van Herreweghen
- Ghent University, Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Tom Van de Wiele
- Ghent University, Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Lucie Etienne-Mesmin
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé (MEDIS), CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Stéphanie Blanquet-Diot
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé (MEDIS), CRNH Auvergne, 63000, Clermont-Ferrand, France.
| |
Collapse
|
35
|
Suzuki TA, Fitzstevens JL, Schmidt VT, Enav H, Huus KE, Ngwese MM, Grießhammer A, Pfleiderer A, Adegbite BR, Zinsou JF, Esen M, Velavan TP, Adegnika AA, Song LH, Spector TD, Muehlbauer AL, Marchi N, Kang H, Maier L, Blekhman R, Ségurel L, Ko G, Youngblut ND, Kremsner P, Ley RE. Codiversification of gut microbiota with humans. Science 2022; 377:1328-1332. [PMID: 36108023 PMCID: PMC10777373 DOI: 10.1126/science.abm7759] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The gut microbiomes of human populations worldwide have many core microbial species in common. However, within a species, some strains can show remarkable population specificity. The question is whether such specificity arises from a shared evolutionary history (codiversification) between humans and their microbes. To test for codiversification of host and microbiota, we analyzed paired gut metagenomes and human genomes for 1225 individuals in Europe, Asia, and Africa, including mothers and their children. Between and within countries, a parallel evolutionary history was evident for humans and their gut microbes. Moreover, species displaying the strongest codiversification independently evolved traits characteristic of host dependency, including reduced genomes and oxygen and temperature sensitivity. These findings all point to the importance of understanding the potential role of population-specific microbial strains in microbiome-mediated disease phenotypes.
Collapse
Affiliation(s)
- Taichi A. Suzuki
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - J. Liam Fitzstevens
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Victor T. Schmidt
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Hagay Enav
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Kelsey E. Huus
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Mirabeau Mbong Ngwese
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Anne Grießhammer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Anne Pfleiderer
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Bayode R. Adegbite
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Jeannot F. Zinsou
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Meral Esen
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Thirumalaisamy P. Velavan
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
- Vietnamese German Center for Medical Research, Hanoi, Vietnam
| | - Ayola A. Adegnika
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- German Center for Infection Research, Tübingen, Germany
- Fondation pour la Recherche Scientifique, Cotonou, Bénin
| | - Le Huu Song
- Vietnamese German Center for Medical Research, Hanoi, Vietnam
- 108 Military Central Hospital, Hanoi, Vietnam
| | - Timothy D. Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Amanda L. Muehlbauer
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, MN, USA
| | - Nina Marchi
- Eco-anthropologie, Muséum National d’Histoire Naturelle, CNRS, Université de Paris, Paris, France
| | - Hyena Kang
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Lisa Maier
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Ran Blekhman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Laure Ségurel
- Eco-anthropologie, Muséum National d’Histoire Naturelle, CNRS, Université de Paris, Paris, France
- Laboratoire de Biométrie et Biologie Evolutive, CNRS, Université Lyon 1, Villeurbanne, France
| | - GwangPyo Ko
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Nicholas D. Youngblut
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Peter Kremsner
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- German Center for Infection Research, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Ruth E. Ley
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| |
Collapse
|
36
|
Cannon JL, Seabolt MH, Xu R, Montmayeur A, Suh SH, Diez-Valcarce M, Bucardo F, Becker-Dreps S, Vinjé J. Gut Microbiome Changes Occurring with Norovirus Infection and Recovery in Infants Enrolled in a Longitudinal Birth Cohort in Leon, Nicaragua. Viruses 2022; 14:v14071395. [PMID: 35891376 PMCID: PMC9323674 DOI: 10.3390/v14071395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 02/05/2023] Open
Abstract
Noroviruses are associated with one fifth of diarrheal illnesses globally and are not yet preventable with vaccines. Little is known about the effects of norovirus infection on infant gut microbiome health, which has a demonstrated role in protecting hosts from pathogens and a possible role in oral vaccine performance. In this study, we characterized infant gut microbiome changes occurring with norovirus-associated acute gastroenteritis (AGE) and the extent of recovery. Metagenomic sequencing was performed on the stools of five infants participating in a longitudinal birth cohort study conducted in León, Nicaragua. Taxonomic and functional diversities of gut microbiomes were profiled at time points before, during, and after norovirus infection. Initially, the gut microbiomes resembled those of breastfeeding infants, rich in probiotic species. When disturbed by AGE, Gammaproteobacteria dominated, particularly Pseudomonas species. Alpha diversity increased but the genes involved in carbohydrate metabolism and glycan biosynthesis decreased. After the symptoms subsided, the gut microbiomes rebounded with their taxonomic and functional communities resembling those of the pre-infection microbiomes. In this study, during disruptive norovirus-associated AGE, the gut microbiome was temporarily altered, returning to a pre-infection composition a median of 58 days later. Our study provides new insights for developing probiotic treatments and furthering our understanding of the role that episodes of AGE have in shaping the infant gut microbiome, their long-term outcomes, and implications for oral vaccine effectiveness.
Collapse
Affiliation(s)
- Jennifer L. Cannon
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (R.X.); (A.M.); (S.H.S.); (M.D.-V.); (J.V.)
- CDC Foundation, Atlanta, GA 30329, USA
- Correspondence: ; Tel.: +1-404-639-2396
| | - Matthew H. Seabolt
- Office of Advanced Molecular Detection, National Center for Emerging & Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA;
- Leidos Inc., Reston, VA 20190, USA
| | - Ruijie Xu
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (R.X.); (A.M.); (S.H.S.); (M.D.-V.); (J.V.)
| | - Anna Montmayeur
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (R.X.); (A.M.); (S.H.S.); (M.D.-V.); (J.V.)
| | - Soo Hwan Suh
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (R.X.); (A.M.); (S.H.S.); (M.D.-V.); (J.V.)
- Ministry of Food and Drug Safety, Cheonju-Si 28159, Korea
| | - Marta Diez-Valcarce
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (R.X.); (A.M.); (S.H.S.); (M.D.-V.); (J.V.)
| | - Filemón Bucardo
- Center for Infectious Diseases Research, National Autonomous University of Nicaragua—León (UNAN-León), León 21000, Nicaragua;
| | - Sylvia Becker-Dreps
- Department of Family Medicine and Epidemiology, University of North Carolina Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Jan Vinjé
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (R.X.); (A.M.); (S.H.S.); (M.D.-V.); (J.V.)
| |
Collapse
|
37
|
Borges AL, Lou YC, Sachdeva R, Al-Shayeb B, Penev PI, Jaffe AL, Lei S, Santini JM, Banfield JF. Widespread stop-codon recoding in bacteriophages may regulate translation of lytic genes. Nat Microbiol 2022; 7:918-927. [PMID: 35618772 PMCID: PMC9197471 DOI: 10.1038/s41564-022-01128-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 04/21/2022] [Indexed: 11/09/2022]
Abstract
Bacteriophages (phages) are obligate parasites that use host bacterial translation machinery to produce viral proteins. However, some phages have alternative genetic codes with reassigned stop codons that are predicted to be incompatible with bacterial translation systems. We analysed 9,422 phage genomes and found that stop-codon recoding has evolved in diverse clades of phages that infect bacteria present in both human and animal gut microbiota. Recoded stop codons are particularly over-represented in phage structural and lysis genes. We propose that recoded stop codons might function to prevent premature production of late-stage proteins. Stop-codon recoding has evolved several times in closely related lineages, which suggests that adaptive recoding can occur over very short evolutionary timescales.
Collapse
Affiliation(s)
- Adair L Borges
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Yue Clare Lou
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Rohan Sachdeva
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Earth and Planetary Science, University of California, Berkeley, CA, USA
| | - Basem Al-Shayeb
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Petar I Penev
- Earth and Planetary Science, University of California, Berkeley, CA, USA
| | - Alexander L Jaffe
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Shufei Lei
- Earth and Planetary Science, University of California, Berkeley, CA, USA
| | - Joanne M Santini
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Environmental Science, Policy and Management, University of California, Berkeley, CA, USA.
- Earth and Planetary Science, University of California, Berkeley, CA, USA.
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
38
|
Sauvaitre T, Van Herreweghen F, Delbaere K, Durif C, Van Landuyt J, Fadhlaoui K, Huille S, Chaucheyras-Durand F, Etienne-Mesmin L, Blanquet-Diot S, Van de Wiele T. Lentils and Yeast Fibers: A New Strategy to Mitigate Enterotoxigenic Escherichia coli (ETEC) Strain H10407 Virulence? Nutrients 2022; 14:nu14102146. [PMID: 35631287 PMCID: PMC9144138 DOI: 10.3390/nu14102146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 01/10/2023] Open
Abstract
Dietary fibers exhibit well-known beneficial effects on human health, but their anti-infectious properties against enteric pathogens have been poorly investigated. Enterotoxigenic Escherichia coli (ETEC) is a major food-borne pathogen that causes acute traveler’s diarrhea. Its virulence traits mainly rely on adhesion to an epithelial surface, mucus degradation, and the secretion of two enterotoxins associated with intestinal inflammation. With the increasing burden of antibiotic resistance worldwide, there is an imperious need to develop novel alternative strategies to control ETEC infections. This study aimed to investigate, using complementary in vitro approaches, the inhibitory potential of two dietary-fiber-containing products (a lentil extract and yeast cell walls) against the human ETEC reference strain H10407. We showed that the lentil extract decreased toxin production in a dose-dependent manner, reduced pro-inflammatory interleukin-8 production, and modulated mucus-related gene induction in ETEC-infected mucus-secreting intestinal cells. We also report that the yeast product reduced ETEC adhesion to mucin and Caco-2/HT29-MTX cells. Both fiber-containing products strengthened intestinal barrier function and modulated toxin-related gene expression. In a complex human gut microbial background, both products did not elicit a significant effect on ETEC colonization. These pioneering data demonstrate the promising role of dietary fibers in controlling different stages of the ETEC infection process.
Collapse
Affiliation(s)
- Thomas Sauvaitre
- UMR 454 INRAE, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France; (T.S.); (C.D.); (K.F.); (F.C.-D.); (L.E.-M.)
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (F.V.H.); (K.D.); (J.V.L.); (T.V.d.W.)
| | - Florence Van Herreweghen
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (F.V.H.); (K.D.); (J.V.L.); (T.V.d.W.)
| | - Karen Delbaere
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (F.V.H.); (K.D.); (J.V.L.); (T.V.d.W.)
| | - Claude Durif
- UMR 454 INRAE, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France; (T.S.); (C.D.); (K.F.); (F.C.-D.); (L.E.-M.)
| | - Josefien Van Landuyt
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (F.V.H.); (K.D.); (J.V.L.); (T.V.d.W.)
| | - Khaled Fadhlaoui
- UMR 454 INRAE, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France; (T.S.); (C.D.); (K.F.); (F.C.-D.); (L.E.-M.)
| | | | - Frédérique Chaucheyras-Durand
- UMR 454 INRAE, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France; (T.S.); (C.D.); (K.F.); (F.C.-D.); (L.E.-M.)
- Lallemand SAS, 19 Rue des Briquetiers, BP 59, CEDEX, F-31702 Blagnac, France
| | - Lucie Etienne-Mesmin
- UMR 454 INRAE, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France; (T.S.); (C.D.); (K.F.); (F.C.-D.); (L.E.-M.)
| | - Stéphanie Blanquet-Diot
- UMR 454 INRAE, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 28 Place Henri Dunant, F-63000 Clermont-Ferrand, France; (T.S.); (C.D.); (K.F.); (F.C.-D.); (L.E.-M.)
- Correspondence: ; Tel.: +33-(0)4-73-17-83-90
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (F.V.H.); (K.D.); (J.V.L.); (T.V.d.W.)
| |
Collapse
|
39
|
Van Alst AJ, Demey LM, DiRita VJ. Vibrio cholerae requires oxidative respiration through the bd-I and cbb3 oxidases for intestinal proliferation. PLoS Pathog 2022; 18:e1010102. [PMID: 35500027 PMCID: PMC9109917 DOI: 10.1371/journal.ppat.1010102] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/16/2022] [Accepted: 04/05/2022] [Indexed: 01/05/2023] Open
Abstract
Vibrio cholerae respires both aerobically and anaerobically and, while oxygen may be available to it during infection, other terminal electron acceptors are proposed for population expansion during infection. Unlike gastrointestinal pathogens that stimulate significant inflammation leading to elevated levels of oxygen or alternative terminal electron acceptors, V. cholerae infections are not understood to induce a notable inflammatory response. To ascertain the respiration requirements of V. cholerae during infection, we used Multiplex Genome Editing by Natural Transformation (MuGENT) to create V. cholerae strains lacking aerobic or anaerobic respiration. V. cholerae strains lacking aerobic respiration were attenuated in infant mice 105-fold relative to wild type, while strains lacking anaerobic respiration had no colonization defect, contrary to earlier work suggesting a role for anaerobic respiration during infection. Using several approaches, including one we developed for this work termed Comparative Multiplex PCR Amplicon Sequencing (CoMPAS), we determined that the bd-I and cbb3 oxidases are essential for small intestinal colonization of V. cholerae in the infant mouse. The bd-I oxidase was also determined as the primary oxidase during growth outside the host, making V. cholerae the only example of a Gram-negative bacterial pathogen in which a bd-type oxidase is the primary oxidase for energy acquisition inside and outside of a host. The bacterium that causes cholera, Vibrio cholerae, can grow with or without oxygen. When growing without oxygen it may use other molecules that serve the same purpose as oxygen, acting as a terminal electron acceptor in an energy-generating process known as respiration. Given the largely anaerobic nature of the gastrointestinal tract, and the lack of significant inflammation during cholera infection, a process that can stimulate elevated levels of oxygen and other terminal electron acceptors, we sought to understand the respiratory mechanisms of V. cholerae during infection. We used a powerful genome-editing method to construct mutant strains of V. cholerae lacking some or all of the complement of proteins required for aerobic or anaerobic respiration. By analyzing these mutants in the laboratory and in intestinal colonization of infant mice, we determined that the ability to respire without oxygen is completely dispensable for V. cholerae to thrive during infection. We determined that two of the four oxygen-dependent respiration mechanisms are essential for V. cholerae to grow during infection, with the other two dispensable for wild type levels of colonization.
Collapse
Affiliation(s)
- Andrew J. Van Alst
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Lucas M. Demey
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Victor J. DiRita
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
40
|
Cho JY, Liu R, Hsiao A. Microbiota-Associated Biofilm Regulation Leads to Vibrio cholerae Resistance Against Intestinal Environmental Stress. Front Cell Infect Microbiol 2022; 12:861677. [PMID: 35573801 PMCID: PMC9095495 DOI: 10.3389/fcimb.2022.861677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
The commensal microbes of the gut microbiota make important contributions to host defense against gastrointestinal pathogens, including Vibrio cholerae, the etiologic agent of cholera. As interindividual microbiota variation drives individual differences in infection susceptibility, we examined both host and V. cholerae gene expression during infection of suckling mice transplanted with different model human commensal communities, including an infection-susceptible configuration representing communities damaged by recurrent diarrhea and malnutrition in cholera endemic areas and a representative infection-resistant microbiota characteristic of healthy individuals. In comparison to colonization of animals with resistant microbiota, animals bearing susceptible microbiota challenged with V. cholerae downregulate genes associated with generation of reactive oxygen/nitrogen stress, while V. cholerae in these animals upregulates biofilm-associated genes. We show that V. cholerae in susceptible microbe infection contexts are more resistant to oxidative stress and inhibitory bile metabolites generated by the action of commensal microbes and that both phenotypes are dependent on biofilm-associated genes, including vpsL. We also show that susceptible and infection-resistant microbes drive different bile acid compositions in vivo by the action of bile salt hydrolase enzymes. Taken together, these findings provide a better understanding of how the microbiota uses multiple mechanisms to modulate the infection-associated host environment encountered by V. cholerae, leading to commensal-dependent differences in infection susceptibility.
Collapse
Affiliation(s)
- Jennifer Y. Cho
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
| | - Rui Liu
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
- Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, Riverside, CA, United States
| | - Ansel Hsiao
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Ansel Hsiao,
| |
Collapse
|
41
|
Barrassso K, Chac D, Debela MD, Geigel C, Steenhaut A, Rivera Seda A, Dunmire CN, Harris JB, Larocque RC, Midani FS, Qadri F, Yan J, Weil AA, Ng WL. Impact of a human gut microbe on Vibrio cholerae host colonization through biofilm enhancement. eLife 2022; 11:73010. [PMID: 35343438 PMCID: PMC8993218 DOI: 10.7554/elife.73010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Recent studies indicate that the human intestinal microbiota could impact the outcome of infection by Vibrio cholerae, the etiological agent of the diarrheal disease cholera. A commensal bacterium, Paracoccus aminovorans, was previously identified in high abundance in stool collected from individuals infected with V. cholerae when compared to stool from uninfected persons. However, if and how P. aminovorans interacts with V. cholerae has not been experimentally determined; moreover, whether any association between this bacterium alters the behaviors of V. cholerae to affect the disease outcome is unclear. Here, we show that P. aminovorans and V. cholerae together form dual-species biofilm structure at the air–liquid interface, with previously uncharacterized novel features. Importantly, the presence of P. aminovorans within the murine small intestine enhances V. cholerae colonization in the same niche that is dependent on the Vibrio exopolysaccharide and other major components of mature V. cholerae biofilm. These studies illustrate that multispecies biofilm formation is a plausible mechanism used by a gut microbe to increase the virulence of the pathogen, and this interaction may alter outcomes in enteric infections.
Collapse
Affiliation(s)
- Kelsey Barrassso
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Seattle, United States
| | - Denise Chac
- Department of Medicine, University of Washington, Seattle, United States
| | - Meti D Debela
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, United States
| | - Catherine Geigel
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Anjali Steenhaut
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, United States
| | - Abigail Rivera Seda
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, United States
| | - Chelsea N Dunmire
- Department of Medicine, University of Washington, Seattle, United States
| | - Jason B Harris
- Department of Pediatrics, Massachusetts General Hospital, Boston, United States
| | - Regina C Larocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, United States
| | - Firas S Midani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, United States
| | | | - Jing Yan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Ana A Weil
- Department of Medicine, University of Washington, Seattle, United States
| | - Wai-Leung Ng
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, United States
| |
Collapse
|
42
|
Chen J, Byun H, Liu R, Jung IJ, Pu Q, Zhu CY, Tanchoco E, Alavi S, Degnan PH, Ma AT, Roggiani M, Beld J, Goulian M, Hsiao A, Zhu J. A commensal-encoded genotoxin drives restriction of Vibrio cholerae colonization and host gut microbiome remodeling. Proc Natl Acad Sci U S A 2022; 119:e2121180119. [PMID: 35254905 PMCID: PMC8931321 DOI: 10.1073/pnas.2121180119] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/01/2022] [Indexed: 02/08/2023] Open
Abstract
SignificanceIn a polymicrobial battlefield where different species compete for nutrients and colonization niches, antimicrobial compounds are the sword and shield of commensal microbes in competition with invading pathogens and each other. The identification of an Escherichia coli-produced genotoxin, colibactin, and its specific targeted killing of enteric pathogens and commensals, including Vibrio cholerae and Bacteroides fragilis, sheds light on our understanding of intermicrobial interactions in the mammalian gut. Our findings elucidate the mechanisms through which genotoxins shape microbial communities and provide a platform for probing the larger role of enteric multibacterial interactions regarding infection and disease outcomes.
Collapse
Affiliation(s)
- Jiandong Chen
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Hyuntae Byun
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Rui Liu
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA 92521
| | - I-Ji Jung
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Qinqin Pu
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | | | - Ethan Tanchoco
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA 92521
| | - Salma Alavi
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA 92521
| | - Patrick H. Degnan
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA 92521
| | - Amy T. Ma
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Manuela Roggiani
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Joris Beld
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Mark Goulian
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Ansel Hsiao
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA 92521
| | - Jun Zhu
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
43
|
Marfil-Sánchez A, Zhang L, Alonso-Pernas P, Mirhakkak M, Mueller M, Seelbinder B, Ni Y, Santhanam R, Busch A, Beemelmanns C, Ermolaeva M, Bauer M, Panagiotou G. An integrative understanding of the large metabolic shifts induced by antibiotics in critical illness. Gut Microbes 2022; 13:1993598. [PMID: 34793277 PMCID: PMC8604395 DOI: 10.1080/19490976.2021.1993598] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Antibiotics are commonly used in the Intensive Care Unit (ICU); however, several studies showed that the impact of antibiotics to prevent infection, multi-organ failure, and death in the ICU is less clear than their benefit on course of infection in the absence of organ dysfunction. We characterized here the compositional and metabolic changes of the gut microbiome induced by critical illness and antibiotics in a cohort of 75 individuals in conjunction with 2,180 gut microbiome samples representing 16 different diseases. We revealed an "infection-vulnerable" gut microbiome environment present only in critically ill treated with antibiotics (ICU+). Feeding of Caenorhabditis elegans with Bifidobacterium animalis and Lactobacillus crispatus, species that expanded in ICU+ patients, revealed a significant negative impact of these microbes on host viability and developmental homeostasis. These results suggest that antibiotic administration can dramatically impact essential functional activities in the gut related to immune responses more than critical illness itself, which might explain in part untoward effects of antibiotics in the critically ill.
Collapse
Affiliation(s)
- Andrea Marfil-Sánchez
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Lu Zhang
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | | | - Mohammad Mirhakkak
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Melinda Mueller
- Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Bastian Seelbinder
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Yueqiong Ni
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Rakesh Santhanam
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Anne Busch
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Christine Beemelmanns
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Maria Ermolaeva
- Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany,Maria Ermolaeva Stress Tolerance and Homeostasis, Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstraße 11, Jena 07745, Germany
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany,Michael Bauer Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Gianni Panagiotou
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany,Department of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China,Lead Contact,CONTACT Gianni Panagiotou Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11A, Jena07745, Germany
| |
Collapse
|
44
|
Pfister CA, Light SH, Bohannan B, Schmidt T, Martiny A, Hynson NA, Devkota S, David L, Whiteson K. Conceptual Exchanges for Understanding Free-Living and Host-Associated Microbiomes. mSystems 2022; 7:e0137421. [PMID: 35014872 PMCID: PMC8751383 DOI: 10.1128/msystems.01374-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 12/26/2022] Open
Abstract
Whether a microbe is free-living or associated with a host from across the tree of life, its existence depends on a limited number of elements and electron donors and acceptors. Yet divergent approaches have been used by investigators from different fields. The "environment first" research tradition emphasizes thermodynamics and biogeochemical principles, including the quantification of redox environments and elemental stoichiometry to identify transformations and thus an underlying microbe. The increasingly common "microbe first" research approach benefits from culturing and/or DNA sequencing methods to first identify a microbe and encoded metabolic functions. Here, the microbe itself serves as an indicator for environmental conditions and transformations. We illustrate the application of both approaches to the study of microbiomes and emphasize how both can reveal the selection of microbial metabolisms across diverse environments, anticipate alterations to microbiomes in host health, and understand the implications of a changing climate for microbial function.
Collapse
Affiliation(s)
- Catherine A. Pfister
- Department of Ecology & Evolution and The Microbiome Center, University of Chicago, Chicago, Illinois, USA
| | - Samuel H. Light
- Department of Microbiology & Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Brendan Bohannan
- Environmental Studies and Biology, University of Oregon, Eugene, Oregon, USA
| | - Thomas Schmidt
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Adam Martiny
- Earth System Science & Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, USA
| | - Nicole A. Hynson
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Suzanne Devkota
- Microbiome Research, F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Lawrence David
- Molecular Genetics & Microbiology, Duke University, Durham, North Carolina, USA
| | - Katrine Whiteson
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| |
Collapse
|
45
|
Dynamic of the human gut microbiome under infectious diarrhea. Curr Opin Microbiol 2022; 66:79-85. [PMID: 35121284 DOI: 10.1016/j.mib.2022.01.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 11/20/2022]
Abstract
Despite the widespread implementation of sanitation, immunization and appropriate treatment, infectious diarrheal diseases still inflict a great health burden to children living in low resource settings. Conventional microbiology research in diarrhea have focused on the pathogen's biology and pathogenesis, but initial enteric infections could trigger subsequent perturbations in the gut microbiome, leading to short-term or long-term health effects. Conversely, such pre-existing perturbations could render children more vulnerable to enteropathogen colonization and diarrhea. Recent advances in DNA sequencing and bioinformatic analyses have been integrated in well-designed clinical and epidemiological studies, which allow us to track how the gut microbiome changes from disease onset to recovery. Here, we aim to summarize the current understanding on the diarrheal gut microbiome, stratified into different disease stages. Furthermore, we discuss how such perturbations could have impacts beyond an acute diarrhea episode, specifically on the child's nutritional status and the facilitation of antimicrobial resistance.
Collapse
|
46
|
Using Community Ecology Theory and Computational Microbiome Methods To Study Human Milk as a Biological System. mSystems 2022; 7:e0113221. [PMID: 35103486 PMCID: PMC8805635 DOI: 10.1128/msystems.01132-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human milk is a complex and dynamic biological system that has evolved to optimally nourish and protect human infants. Yet, according to a recent priority-setting review, “our current understanding of human milk composition and its individual components and their functions fails to fully recognize the importance of the chronobiology and systems biology of human milk in the context of milk synthesis, optimal timing and duration of feeding, and period of lactation” (P. Christian et al., Am J Clin Nutr 113:1063–1072, 2021, https://doi.org/10.1093/ajcn/nqab075). We attribute this critical knowledge gap to three major reasons as follows. (i) Studies have typically examined each subsystem of the mother-milk-infant “triad” in isolation and often focus on a single element or component (e.g., maternal lactation physiology or milk microbiome or milk oligosaccharides or infant microbiome or infant gut physiology). This undermines our ability to develop comprehensive representations of the interactions between these elements and study their response to external perturbations. (ii) Multiomics studies are often cross-sectional, presenting a snapshot of milk composition, largely ignoring the temporal variability during lactation. The lack of temporal resolution precludes the characterization and inference of robust interactions between the dynamic subsystems of the triad. (iii) We lack computational methods to represent and decipher the complex ecosystem of the mother-milk-infant triad and its environment. In this review, we advocate for longitudinal multiomics data collection and demonstrate how incorporating knowledge gleaned from microbial community ecology and computational methods developed for microbiome research can serve as an anchor to advance the study of human milk and its many components as a “system within a system.”
Collapse
|
47
|
Rahman SU, Zhou K, Zhou S, Sun T, Mi R, Huang Y, Han X, Gong H, Chen Z. Curcumin mitigates Cryptosporidium parvum infection through modulation of gut microbiota and innate immune-related genes in immunosuppressed neonatal mice. Microb Pathog 2022; 164:105424. [PMID: 35092833 DOI: 10.1016/j.micpath.2022.105424] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 01/04/2023]
Abstract
Cryptosporidium parvum is a major cause of diarrheal disease in immature or weakened immune systems, mainly in infants and young children in resource-poor settings. Despite its high prevalence, fully effective and safe drugs for the treatment of C. parvum infections remain scarce, and there is no vaccine. Meanwhile, curcumin has shown protective effects against C. parvum infections. However, the mechanisms of action and relationship to the gut microbiota and innate immune responses are unclear. Immunosuppressed neonatal mice were infected with oocysts of C. parvum and either untreated or treated with a normal diet, curcumin or paromomycin. We found that curcumin stopped C. parvum oocysts shedding in the feces of infected immunosuppressed neonatal mice, prevented epithelial damage, and villi degeneration, as well as prevented recurrence of infection. Curcumin supplementation increased the relative abundance of Bacteroidetes and decreased the relative abundance of Firmicutes and Proteobacteria in mice infected with C. parvum as shown by 16S rRNA gene sequencing analysis. The relative abundance of Lactobacillus, Bacteroides, Akkermansia, Desulfovibrio, Prevotella, and Helicobacter was significantly associated with C. parvum infection inhibited by curcumin. Curcumin significantly (P < 0.01) suppressed IFN-γ and IL -18 gene expression levels in immunosuppressed neonatal C. parvum-infected mice. We demonstrate that the therapeutic effects curcumin are associated with alterations in the gut microbiota and innate immune-related genes, which may be linked to the anti-Cryptosporidium mechanisms of curcumin.
Collapse
Affiliation(s)
- Sajid Ur Rahman
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Keke Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - ShaSha Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Tiancong Sun
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Rongsheng Mi
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yan Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Xiangan Han
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Haiyan Gong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Zhaoguo Chen
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
48
|
Diarrheal disease and gut microbiome. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 192:149-177. [DOI: 10.1016/bs.pmbts.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Macbeth JC, Liu R, Alavi S, Hsiao A. A dysbiotic gut microbiome suppresses antibody mediated-protection against Vibrio cholerae. iScience 2021; 24:103443. [PMID: 34877500 PMCID: PMC8633975 DOI: 10.1016/j.isci.2021.103443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/01/2021] [Accepted: 11/10/2021] [Indexed: 11/29/2022] Open
Abstract
Cholera is a severe diarrheal disease that places a significant burden on global health. Cholera's high morbidity demands effective prophylactic strategies, but oral cholera vaccines exhibit variable efficacy in human populations. One contributor of variance in human populations is the gut microbiome, which in cholera-endemic areas is modulated by malnutrition, cholera, and non-cholera diarrhea. We conducted fecal transplants from healthy human donors and model communities of either human gut microbes that resemble healthy individuals or those of individuals recovering from diarrhea in various mouse models. We show microbiome-specific effects on host antibody responses against Vibrio cholerae, and that dysbiotic human gut microbiomes representative of cholera-endemic areas suppress the immune response against V. cholerae via CD4+ lymphocytes. Our findings suggest that gut microbiome composition at time of infection or vaccination may be pivotal for providing robust mucosal immunity, and suggest a target for improved prophylactic and therapeutic strategies for cholera.
Collapse
Affiliation(s)
- John C Macbeth
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA.,Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA
| | - Rui Liu
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA.,Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, Riverside, CA 92521, USA
| | - Salma Alavi
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA
| | - Ansel Hsiao
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
50
|
Bhuta R, DeNardo B, Wang J, Atoyan J, Zhang Y, Nelson D, Shapiro J. Durable changes in the gut microbiome in survivors of childhood acute lymphoblastic leukemia. Pediatr Blood Cancer 2021; 68:e29308. [PMID: 34467651 DOI: 10.1002/pbc.29308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/06/2022]
Abstract
There are limiteddata on long-term changes in the gut microbiome after acute lymphoblastic leukemia (ALL) therapy. We compared the gut microbial composition in stool samples of nine survivors of childhood ALL with 10 healthy sibling controls using 16S rRNA gene sequencing. Analysis of beta diversity within family units demonstrated a significant difference in bacterial strains between patients and healthy siblings. A significant difference in alpha diversity between patients and their healthy siblings was noted using Pielou's evenness. The composition of the gut microbiome differs between pediatric ALL survivors and healthy sibling controls for years after completion of therapy.
Collapse
Affiliation(s)
- Roma Bhuta
- Division of Pediatric Hematology-Oncology, Hasbro Children's Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Bradley DeNardo
- Division of Pediatric Hematology-Oncology, Hasbro Children's Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Jing Wang
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island, USA
| | - Janet Atoyan
- Rhode Island Genomics and Sequencing Center, University of Rhode Island, Kingston, Rhode Island, USA
| | - Ying Zhang
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island, USA
| | - David Nelson
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island, USA
| | - Jason Shapiro
- Division of Pediatric Gastroenterology, Hasbro Children's Hospital, Nutrition and Liver Diseases, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|