1
|
Schultz EP, Ponsness L, Lanchy JM, Zehner M, Klein F, Ryckman BJ. Human cytomegalovirus gH/gL/gO binding to PDGFRα provides a regulatory signal activating the fusion protein gB that can be blocked by neutralizing antibodies. J Virol 2025:e0003525. [PMID: 40202318 DOI: 10.1128/jvi.00035-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/11/2025] [Indexed: 04/10/2025] Open
Abstract
Herpesviruses require membrane fusion for entry and spread, a process facilitated by the fusion glycoprotein B (gB) and the regulatory factor gH/gL. The human cytomegalovirus (HCMV) gH/gL can be modified by the accessory protein gO, or the set of proteins UL128, UL130, and UL131. While the binding of the gH/gL/gO and gH/gL/UL128-131 complexes to cellular receptors, including PDGFRα and NRP2, has been well-characterized structurally, the specific role of receptor engagements by the gH/gL/gO and gH/gL/UL128-131 in regulation of fusion has remained unclear. We describe a cell-cell fusion assay that can quantitatively measure fusion on a timescale of minutes and demonstrate that binding of gH/gL/gO to PDGFRα dramatically enhances gB-mediated cell-cell fusion. In contrast, gH/gL/pUL128-131-regulated fusion is significantly slower, and gH/gL alone cannot promote gB fusion activity within this timescale. The genetic diversity of gO influenced the observed cell-cell fusion rates, correlating with previously reported effects on HCMV infectivity. Mutations in gL that had no effect on the formation of gH/gL/gO or binding to PDGFRa dramatically reduced the cell-cell fusion rate, suggesting that gL plays a critical role in linking the gH/gL/gO-PDGFRa receptor binding to activation of gB. Several neutralizing human monoclonal antibodies were found to potently block gH/gL/gO-PDGFRa-regulated cell-cell fusion, suggesting this mechanism as a therapeutic target. IMPORTANCE Development of vaccines and therapeutics targeting the fusion apparatus of human cytomegalovirus (HCMV) has been limited by the lack of an in vitro cell-cell fusion assay that faithfully models the receptor-dependent fusion characteristic of HCMV entry. The cell-cell fusion assay described here demonstrated that the binding of gH/gL/gO to its receptor, PDGFRα, serves to regulate the activity of the fusion protein gB, and this is specifically vulnerable to inhibition by neutralizing antibodies. Moreover, the measurement of fusion kinetics allows for mutational studies of the fusion mechanism, assessing the influence of genetic diversity among the viral glycoproteins and studying the mechanism of neutralizing antibodies.
Collapse
Affiliation(s)
- Eric P Schultz
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana, USA
| | - Lars Ponsness
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Jean-Marc Lanchy
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana, USA
| | - Matthias Zehner
- Laboratory for Infection and Immune Biology, University of Cologne, Cologne, Germany
- Institute of Virology, University Cologne, Cologne, Germany
- Faculty of Medicine, University of Cologne, Cologne, Germany
- University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Florian Klein
- Institute of Virology, University Cologne, Cologne, Germany
- Faculty of Medicine, University of Cologne, Cologne, Germany
- University Hospital Cologne, University of Cologne, Cologne, Germany
- Laboratory of Experimental Immunology, University of Cologne, Cologne, Germany
| | - Brent J Ryckman
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana, USA
| |
Collapse
|
2
|
Nuevalos Guaita M, Jimoh TO, Barrall EB, Atanasoff KE, Ehrlich ME, Gandy S, García-Ríos E, Perez Romero P, Duty JA, Tortorella D. Characterization of human cytomegalovirus infection dynamics in human microglia. J Gen Virol 2025; 106:002096. [PMID: 40299764 PMCID: PMC12041478 DOI: 10.1099/jgv.0.002096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/20/2025] [Indexed: 05/01/2025] Open
Abstract
Human cytomegalovirus (HCMV) is a β-herpesvirus that establishes asymptomatic infections in immunocompetent individuals but can cause severe or even life-threatening symptoms in immunocompromised patients. HCMV can replicate in a wide variety of cells through the engagement of diverse cell factors with the viral envelope protein gH/gL/gO (trimer) or gH/gL/UL128/UL130/UL131a (pentamer), allowing for systemic spread within the human host. This study explores HCMV infection tropism and dynamics in human microglia, demonstrating the susceptibility of microglia to both clinical and laboratory HCMV strains, albeit with lower efficacy for the laboratory strain, implying that both the gH/gL-trimer and -pentamer can mediate virus entry in microglia. The importance of the gH/gL pentamer for virus entry was demonstrated by the inhibition of virus infection upon pre-incubation with a soluble neuropilin-2 (NRP-2) entry factor. Further, we demonstrated that HCMV infection can be effectively inhibited by monoclonal antibodies specific for the gH/gL complexes and HCMV hyperimmunoglobulin. Lastly, we report that microglia infection can be prevented by newly characterized chemical entry inhibitors. Altogether, these findings underscore the potential of microglia as valuable models for studying HCMV neurotropism and strategies to block virus infection in cells that can impact neurological disorders.
Collapse
Affiliation(s)
- Marcos Nuevalos Guaita
- National Center for Microbiology, Instituto de Salud Carlos III. Majadahonda, Madrid, Spain
| | - Tajudeen O. Jimoh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emma B. Barrall
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristina E. Atanasoff
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sam Gandy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry and Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J Peters VA Medical Center, Bronx NY, USA
| | - Estéfani García-Ríos
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Pilar Perez Romero
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - J. Andrew Duty
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Therapeutic Antibody Development, Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Domenico Tortorella
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
3
|
Grijpink LCM, van der Valk WH, van Beelen ESA, de Groot JCMJ, Locher H, Vossen ACTM. Cytomegalovirus host receptor expression in the human fetal inner ear. PLoS One 2025; 20:e0320605. [PMID: 40163451 PMCID: PMC11957294 DOI: 10.1371/journal.pone.0320605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/20/2025] [Indexed: 04/02/2025] Open
Abstract
Fetal infection with human cytomegalovirus (hCMV) can cause sensorineural hearing loss and vestibular impairment, yet its pathogenesis remains unclear. This study aims to identify potential target cell types of hCMV in the human fetal inner ear. Viral particles use several envelope glycoproteins to enter target cells, including the pentameric complex, the trimeric complex and glycoprotein B. Platelet-derived growth factor receptor alpha (PDGFRA) serves as the receptor in fibroblasts, neuropilin-2 (NRP2) in epithelial, endothelial and dendritic cells as well as in leukocytes. Upon binding of these glycoproteins, glycoprotein B initiates membrane fusion which is proposed to be mediated by EGFR. When and where these proteins are expressed in the fetal inner ear during development is unknown. To address this, expression patterns of PDGFRA, NRP2 and EGFR were investigated in human fetal inner ear tissue using single-nucleus RNA sequencing data (first trimester: N = 2) and immunohistochemistry (first trimester: N = 6, second trimester: N = 5). PDGFRA gene and protein expression was detected in mesenchymal cells, NRP2 protein expression in epithelial cells and endothelial cells, and EGFR gene and protein expression in both epithelial cells and mesenchymal cells. Notably, all three receptors were present in tissue from the first and second trimesters. In conclusion, hCMV host receptors PDGFRA, NRP2 and EGFR are expressed in mesenchymal, epithelial and endothelial cells within the cochlea and vestibular organs during the first and second trimesters. These cell types may serve as targets for hCMV infection of the fetal inner ear.
Collapse
Affiliation(s)
- Lucia C. M. Grijpink
- Leiden University Center for Infectious Diseases (LUCID), Medical Microbiology and Infection Control, Leiden University Medical Center, Leiden, The Netherlands
| | - Wouter H. van der Valk
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Edward S. A. van Beelen
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - John C. M. J. de Groot
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Heiko Locher
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Ann C. T. M. Vossen
- Leiden University Center for Infectious Diseases (LUCID), Medical Microbiology and Infection Control, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
4
|
Wang HY, Taher H, Kreklywich CN, Schmidt KA, Scheef EA, Barfield R, Otero CE, Valencia SM, Zhang K, Callahan C, Monticolo F, Qiao Y, Gilbride RM, Crooks CM, Mirza A, Knight K, Moström MJ, Manuel TD, Sprehe L, Kendall S, Burgt NV, Kowalik TF, Barry PA, Hansen SG, Shu J, Tarantal AF, Chan C, Streblow DN, Picker LJ, Kaur A, Früh K, Permar SR, Malouli D. The pentameric complex is not required for congenital CMV transmission in seronegative rhesus macaques. Sci Transl Med 2025; 17:eadm8961. [PMID: 40073152 DOI: 10.1126/scitranslmed.adm8961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 08/29/2024] [Accepted: 01/22/2025] [Indexed: 03/14/2025]
Abstract
Congenital cytomegalovirus (cCMV) is the leading infectious cause of neonatal neurological impairment worldwide, but the viral factors enabling vertical spread across the placenta remain undetermined. The pentameric complex (PC), composed of the subunits gH/gL/UL128/UL130/UL131A, has been demonstrated to be important for entry into nonfibroblast cells in vitro. These findings link the PC to broad cell tropism and virus dissemination in vivo, denoting all subunits as potential targets for intervention strategies and vaccine development. To determine the relevance of the PC for congenital transmission in a translational nonhuman primate model, we engineered a rhesus CMV (RhCMV) mutant lacking the orthologs of UL128 and UL130, which demonstrated diminished infection of epithelial cells in vitro. However, intravenous inoculation of either CD4+ T cell-depleted or immunocompetent RhCMV-seronegative pregnant rhesus macaques (RMs) in the early second trimester with the PC-deficient mutant resulted in maternal RhCMV peak plasma viremia similar to inoculations with PC-intact RhCMV, although virus shedding in saliva and urine was limited. Infections with the PC-intact virus induced IgG responses that neutralized RhCMV entry into epithelial cells in tissue culture. These responses were reduced, but not absent, from animals infected with the PC-deficient virus, which also induced IgG responses against gH. Moreover, congenital CMV transmission was confirmed in multiple animals infected with PC-deficient virus by detecting viral DNA in the amniotic fluid, indicating that transplacental transmission in RMs is not contingent on the PC.
Collapse
Affiliation(s)
- Hsuan-Yuan Wang
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
- Duke University Medical Center, Durham, NC 27710, USA
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Husam Taher
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Craig N Kreklywich
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Kimberli A Schmidt
- Department of Pathology and Laboratory Medicine, Center for Immunology and Infectious Diseases, California National Primate Research Center, University of California Davis, Davis, CA 95616, USA
| | - Elizabeth A Scheef
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Richard Barfield
- Department of Biostatistics and Bioinformatics and Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Claire E Otero
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
- Duke University Medical Center, Durham, NC 27710, USA
| | | | - Ke Zhang
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Boston, MA 02142, USA
| | - Claire Callahan
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Francesco Monticolo
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Yueqing Qiao
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Roxanne M Gilbride
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Chelsea M Crooks
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Anne Mirza
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Kelsey Knight
- Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Matilda J Moström
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Tabitha D Manuel
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Lesli Sprehe
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Savannah Kendall
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Nathan Vande Burgt
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Timothy F Kowalik
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Peter A Barry
- Department of Pathology and Laboratory Medicine, Center for Immunology and Infectious Diseases, California National Primate Research Center, University of California Davis, Davis, CA 95616, USA
| | - Scott G Hansen
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Jian Shu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Boston, MA 02142, USA
- Harvard-MIT Program in Health Sciences and Technology, MIT, Cambridge, MA 02139, USA
| | - Alice F Tarantal
- Departments of Pediatrics and Cell Biology and Human Anatomy, School of Medicine, and California National Primate Research Center, University of California Davis, Davis, CA 95616, USA
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics and Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Daniel N Streblow
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Louis J Picker
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Amitinder Kaur
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Klaus Früh
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Sallie R Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Daniel Malouli
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| |
Collapse
|
5
|
Blanco R, Muñoz JP. Molecular Insights into HR-HPV and HCMV Co-Presence in Cervical Cancer Development. Cancers (Basel) 2025; 17:582. [PMID: 40002177 PMCID: PMC11853276 DOI: 10.3390/cancers17040582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/27/2024] [Accepted: 11/03/2024] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Cervical cancer remains a significant health concern worldwide and the primary cause of cancerous cervical lesions is the infection with high-risk human papillomavirus (HR-HPV). However, emerging evidence suggests that HR-HPV infection alone is insufficient for cancer development, and other co-factors may contribute to cervical carcinogenesis. Human cytomegalovirus (HCMV), a common herpesvirus frequently detected in cervical cancer samples, has demonstrated oncogenic potential. OBJECTIVES This review aims to explore the molecular interactions between HR-HPV and HCMV in promoting cervical cancer progression. METHODS A comprehensive search was conducted in PubMed and Google Scholar, focusing on articles examining the role of HCMV in cervical tissues and/or cells, selected based on relevance and significance. RESULTS The reviewed literature indicates that HCMV and HR-HPV share several oncogenic mechanisms that could drive cervical cell transformation. CONCLUSIONS Both viruses may synergistically promote cervical epithelial transformation and tumor progression in multiple ways. HR-HPV may facilitate HCMV entry by increasing host cell receptors essential for viral attachment. Additionally, HR-HPV and HCMV may cooperatively disrupt cellular processes, enhancing carcinogenesis. Both viruses may also modulate the local immune environment, enabling immune evasion and lesion persistence. However, further in vitro and in vivo studies are required to validate these hypotheses.
Collapse
Affiliation(s)
- Rancés Blanco
- Independent Researcher, Av. Vicuña Mackenna Poniente 6315, La Florida 8240000, Chile
| | - Juan P. Muñoz
- Laboratorio de Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile
| |
Collapse
|
6
|
Schultz EP, Ponsness L, Lanchy JM, Zehner M, Klein F, Ryckman BJ. Human cytomegalovirus gH/gL/gO binding to PDGFRα provides a regulatory signal activating the fusion protein gB that can be blocked by neutralizing antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.631902. [PMID: 39829861 PMCID: PMC11741351 DOI: 10.1101/2025.01.08.631902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Herpesviruses require membrane fusion for entry and spread, a process facilitated by the fusion glycoprotein B (gB) and the regulatory factor gH/gL. The human cytomegalovirus (HCMV) gH/gL can be modified by the accessory protein gO, or the set of proteins UL128, UL130 and UL131. While the binding of the gH/gL/gO and gH/gL/UL128-131 complexes to cellular receptors including PDFGRα and NRP2 has been well-characterized structurally, the specific role of receptor engagements by the gH/gL/gO and gH/gL/UL128-131 in regulation of fusion has remained unclear. We describe a cell-cell fusion assay that can quantitatively measure fusion on a timescale of minutes and demonstrate that binding of gH/gL/gO to PDGFRα dramatically enhances gB-mediated cell-cell fusion. In contrast, gH/gL/pUL128-131-regulated fusion is significantly slower and gH/gL alone cannot promote gB fusion activity within this timescale. The genetic diversity of gO influenced the observed cell-cell fusion rates, correlating with previously reported effects on HCMV infectivity. Mutations in gL that had no effect on formation of gH/gL/gO or binding to PDGFRα dramatically reduced the cell-cell fusion rate, suggesting that gL plays a critical role in linking the gH/gL/gO-PDGFRα receptor-binding to activation of gB. Several neutralizing human monoclonal antibodies were found to potently block gH/gL/gO-PDGFRα regulated cell-cell fusion, suggesting this mechanism as a therapeutic target.
Collapse
Affiliation(s)
- Eric P. Schultz
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| | - Lars Ponsness
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Jean-Marc Lanchy
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| | - Matthias Zehner
- Laboratory for Infection and Immune Biology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Brent J. Ryckman
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
7
|
Shang Z, Li X. Human cytomegalovirus: pathogenesis, prevention, and treatment. MOLECULAR BIOMEDICINE 2024; 5:61. [PMID: 39585514 PMCID: PMC11589059 DOI: 10.1186/s43556-024-00226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
Human cytomegalovirus (HCMV) infection remains a significant global health challenge, particularly for immunocompromised individuals and newborns. This comprehensive review synthesizes current knowledge on HCMV pathogenesis, prevention, and treatment strategies. We examine the molecular mechanisms of HCMV entry, focusing on the structure and function of key envelope glycoproteins (gB, gH/gL/gO, gH/gL/pUL128-131) and their interactions with cellular receptors such as PDGFRα, NRP2, and THBD. The review explores HCMV's sophisticated immune evasion strategies, including interference with pattern recognition receptor signaling, modulation of antigen presentation, and regulation of NK and T cell responses. We highlight recent advancements in developing neutralizing antibodies, various vaccine strategies (live-attenuated, subunit, vector-based, DNA, and mRNA), antiviral compounds (both virus-targeted and host-targeted), and emerging cellular therapies such as TCR-T cell approaches. By integrating insights from structural biology, immunology, and clinical research, we identify critical knowledge gaps and propose future research directions. This analysis aims to stimulate cross-disciplinary collaborations and accelerate the development of more effective prevention and treatment strategies for HCMV infections, addressing a significant unmet medical need.
Collapse
Affiliation(s)
- Zifang Shang
- Research Experiment Center, Meizhou Academy of Medical Sciences, Meizhou People's Hospital, Meizhou, 514031, Guangdong, China.
- Guangdong Engineering Technological Research Center of Clinical Molecular Diagnosis and Antibody Drugs, Meizhou, 514031, Guangdong, China.
| | - Xin Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| |
Collapse
|
8
|
Ohman MS, Albright ER, Gelbmann CB, Kalejta RF. The Pentamer glycoprotein complex inhibits viral Immediate Early transcription during Human Cytomegalovirus infections. Proc Natl Acad Sci U S A 2024; 121:e2408078121. [PMID: 39292744 PMCID: PMC11441559 DOI: 10.1073/pnas.2408078121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/16/2024] [Indexed: 09/20/2024] Open
Abstract
The Pentamer complex of Human Cytomegalovirus (HCMV) consists of the viral glycoproteins gH, gL, UL128, UL130, and UL131 and is incorporated into infectious virions. HCMV strains propagated extensively in vitro in fibroblasts carry UL128, UL130, or UL131 alleles that do not make a functional complex and thus lack Pentamer function. Adding functional Pentamer to such strains decreases virus growth in fibroblasts. Here, we show that the Pentamer inhibits productive HCMV replication in fibroblasts by repressing viral Immediate Early (IE) transcription. We show that ectopic expression of the viral IE1 protein, a target of Pentamer-mediated transcriptional repression, complements the growth defect of a Pentamer-positive virus. Furthermore, we show that the Pentamer also represses viral IE transcription in cell types where HCMV in vitro latency is studied. Finally, we identify UL130 as a functional subunit of the Pentamer for IE transcriptional repression and demonstrate that cyclic AMP Response Element (CRE) and NFkB sites within the Major Immediate Early Promoter that drives IE1 transcription contribute to this repression. We conclude that the HCMV Pentamer represses viral IE transcription.
Collapse
Affiliation(s)
- Michael S. Ohman
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53706
| | - Emily R. Albright
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53706
| | - Christopher B. Gelbmann
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53706
| | - Robert F. Kalejta
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI53706
| |
Collapse
|
9
|
Cimato G, Zhou X, Brune W, Frascaroli G. Human cytomegalovirus glycoprotein variants governing viral tropism and syncytium formation in epithelial cells and macrophages. J Virol 2024; 98:e0029324. [PMID: 38837351 PMCID: PMC11265420 DOI: 10.1128/jvi.00293-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024] Open
Abstract
Human cytomegalovirus (HCMV) displays a broad cell tropism, and the infection of biologically relevant cells such as epithelial, endothelial, and hematopoietic cells supports viral transmission, systemic spread, and pathogenesis in the human host. HCMV strains differ in their ability to infect and replicate in these cell types, but the genetic basis of these differences has remained incompletely understood. In this study, we investigated HCMV strain VR1814, which is highly infectious for epithelial cells and macrophages and induces cell-cell fusion in both cell types. A VR1814-derived bacterial artificial chromosome (BAC) clone, FIX-BAC, was generated many years ago but has fallen out of favor because of its modest infectivity. By sequence comparison and genetic engineering of FIX, we demonstrate that the high infectivity of VR1814 and its ability to induce syncytium formation in epithelial cells and macrophages depends on VR1814-specific variants of the envelope glycoproteins gB, UL128, and UL130. We also show that UL130-neutralizing antibodies inhibit syncytium formation, and a FIX-specific mutation in UL130 is responsible for its low infectivity by reducing the amount of the pentameric glycoprotein complex in viral particles. Moreover, we found that a VR1814-specific mutation in US28 further increases viral infectivity in macrophages, possibly by promoting lytic rather than latent infection of these cells. Our findings show that variants of gB and the pentameric complex are major determinants of infectivity and syncytium formation in epithelial cells and macrophages. Furthermore, the VR1814-adjusted FIX strains can serve as valuable tools to study HCMV infection of myeloid cells.IMPORTANCEHuman cytomegalovirus (HCMV) is a major cause of morbidity and mortality in transplant patients and the leading cause of congenital infections. HCMV infects various cell types, including epithelial cells and macrophages, and some strains induce the fusion of neighboring cells, leading to the formation of large multinucleated cells called syncytia. This process may limit the exposure of the virus to host immune factors and affect pathogenicity. However, the reason why some HCMV strains exhibit a broader cell tropism and why some induce cell fusion more than others is not well understood. We compared two closely related HCMV strains and provided evidence that small differences in viral envelope glycoproteins can massively increase or decrease the virus infectivity and its ability to induce syncytium formation. The results of the study suggest that natural strain variations may influence HCMV infection and pathogenesis in humans.
Collapse
Affiliation(s)
| | - Xuan Zhou
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Wolfram Brune
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | | |
Collapse
|
10
|
Kobayashi R, Hashida N. Overview of Cytomegalovirus Ocular Diseases: Retinitis, Corneal Endotheliitis, and Iridocyclitis. Viruses 2024; 16:1110. [PMID: 39066272 PMCID: PMC11281654 DOI: 10.3390/v16071110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/24/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Cytomegalovirus (CMV) infection is a significant clinical concern in newborns, immunocompromised patients with acquired immunodeficiency syndrome (AIDS), and patients undergoing immunosuppressive therapy or chemotherapy. CMV infection affects many organs, such as the lungs, digestive organs, the central nerve system, and eyes. In addition, CMV infection sometimes occurs in immunocompetent individuals. CMV ocular diseases includes retinitis, corneal endotheliitis, and iridocyclitis. CMV retinitis often develops in infected newborns and immunocompromised patients. CMV corneal endotheliitis and iridocyclitis sometimes develop in immunocompetent individuals. Systemic infections and CMV ocular diseases often require systemic treatment in addition to topical treatment.
Collapse
Affiliation(s)
| | - Noriyasu Hashida
- Department of Ophthalmology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
11
|
Shouman S, El-Kholy N, Hussien AE, El-Derby AM, Magdy S, Abou-Shanab AM, Elmehrath AO, Abdelwaly A, Helal M, El-Badri N. SARS-CoV-2-associated lymphopenia: possible mechanisms and the role of CD147. Cell Commun Signal 2024; 22:349. [PMID: 38965547 PMCID: PMC11223399 DOI: 10.1186/s12964-024-01718-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/15/2024] [Indexed: 07/06/2024] Open
Abstract
T lymphocytes play a primary role in the adaptive antiviral immunity. Both lymphocytosis and lymphopenia were found to be associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While lymphocytosis indicates an active anti-viral response, lymphopenia is a sign of poor prognosis. T-cells, in essence, rarely express ACE2 receptors, making the cause of cell depletion enigmatic. Moreover, emerging strains posed an immunological challenge, potentially alarming for the next pandemic. Herein, we review how possible indirect and direct key mechanisms could contribute to SARS-CoV-2-associated-lymphopenia. The fundamental mechanism is the inflammatory cytokine storm elicited by viral infection, which alters the host cell metabolism into a more acidic state. This "hyperlactic acidemia" together with the cytokine storm suppresses T-cell proliferation and triggers intrinsic/extrinsic apoptosis. SARS-CoV-2 infection also results in a shift from steady-state hematopoiesis to stress hematopoiesis. Even with low ACE2 expression, the presence of cholesterol-rich lipid rafts on activated T-cells may enhance viral entry and syncytia formation. Finally, direct viral infection of lymphocytes may indicate the participation of other receptors or auxiliary proteins on T-cells, that can work alone or in concert with other mechanisms. Therefore, we address the role of CD147-a novel route-for SARS-CoV-2 and its new variants. CD147 is not only expressed on T-cells, but it also interacts with other co-partners to orchestrate various biological processes. Given these features, CD147 is an appealing candidate for viral pathogenicity. Understanding the molecular and cellular mechanisms behind SARS-CoV-2-associated-lymphopenia will aid in the discovery of potential therapeutic targets to improve the resilience of our immune system against this rapidly evolving virus.
Collapse
Affiliation(s)
- Shaimaa Shouman
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Nada El-Kholy
- Department of Drug Discovery, H. Lee Moffit Cancer Center& Research Institute, Tampa, FL, 33612, USA
- Cancer Chemical Biology Ph.D. Program, University of South Florida, Tampa, FL, 33620, USA
| | - Alaa E Hussien
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Azza M El-Derby
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Shireen Magdy
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Ahmed M Abou-Shanab
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | | | - Ahmad Abdelwaly
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
- Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA
| | - Mohamed Helal
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt.
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt.
| |
Collapse
|
12
|
Chesnokova LS, Mosher BS, Fulkerson HL, Nam HW, Shakya AK, Yurochko AD. Distinct early role of PTEN regulation during HCMV infection of monocytes. Proc Natl Acad Sci U S A 2024; 121:e2312290121. [PMID: 38483999 PMCID: PMC10962971 DOI: 10.1073/pnas.2312290121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/01/2023] [Indexed: 03/19/2024] Open
Abstract
Human cytomegalovirus (HCMV) infection of monocytes is essential for viral dissemination and persistence. We previously identified that HCMV entry/internalization and subsequent productive infection of this clinically relevant cell type is distinct when compared to other infected cells. We showed that internalization and productive infection required activation of epidermal growth factor receptor (EGFR) and integrin/c-Src, via binding of viral glycoprotein B to EGFR, and the pentamer complex to β1/β3 integrins. To understand how virus attachment drives entry, we compared infection of monocytes with viruses containing the pentamer vs. those without the pentamer and then used a phosphoproteomic screen to identify potential phosphorylated proteins that influence HCMV entry and trafficking. The screen revealed that the most prominent pentamer-biased phosphorylated protein was the lipid- and protein-phosphatase phosphatase and tensin homolog (PTEN). PTEN knockdown with siRNA or PTEN inhibition with a PTEN inhibitor decreased pentamer-mediated HCMV entry, without affecting trimer-mediated entry. Inhibition of PTEN activity affected lipid metabolism and interfered with the onset of the endocytic processes required for HCMV entry. PTEN inactivation was sufficient to rescue pentamer-null HCMV from lysosomal degradation. We next examined dephosphorylation of a PTEN substrate Rab7, a regulator of endosomal maturation. Inhibition of PTEN activity prevented dephosphorylation of Rab7. Phosphorylated Rab7, in turn, blocked early endosome to late endosome maturation and promoted nuclear localization of the virus and productive infection.
Collapse
Affiliation(s)
- Liudmila S. Chesnokova
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| | - Bailey S. Mosher
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| | - Heather L. Fulkerson
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| | - Hyung W. Nam
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| | - Akhalesh K. Shakya
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| | - Andrew D. Yurochko
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Feist-Weller Cancer Center, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA 71103, Shreveport, LA71103
- Center for Excellence in Arthritis and Rheumatology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center of Excellence for Emerging Viral Threats, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| |
Collapse
|
13
|
Golconda P, Andrade-Medina M, Oberstein A. Subconfluent ARPE-19 Cells Display Mesenchymal Cell-State Characteristics and Behave like Fibroblasts, Rather Than Epithelial Cells, in Experimental HCMV Infection Studies. Viruses 2023; 16:49. [PMID: 38257749 PMCID: PMC10821009 DOI: 10.3390/v16010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Human cytomegalovirus (HCMV) has a broad cellular tropism and epithelial cells are important physiological targets during infection. The retinal pigment epithelial cell line ARPE-19 has been used to model HCMV infection in epithelial cells for decades and remains a commonly used cell type for studying viral entry, replication, and the cellular response to infection. We previously found that ARPE-19 cells, despite being derived from an epithelial cell explant, express extremely low levels of canonical epithelial proteins, such as E-cadherin and EpCAM. Here, we perform comparative studies of ARPE-19 and additional epithelial cell lines with strong epithelial characteristics. We find that ARPE-19 cells cultured under subconfluent conditions resemble mesenchymal fibroblasts, rather than epithelial cells; this is consistent with previous studies showing that ARPE-19 cultures require extended periods of high confluency culture to maintain epithelial characteristics. By reanalyzing public gene expression data and using machine learning, we find evidence that ARPE-19 cultures maintained across many labs exhibit mesenchymal characteristics and that the majority of studies employing ARPE-19 use them in a mesenchymal state. Lastly, by performing experimental HCMV infections across mesenchymal and epithelial cell lines, we find that ARPE-19 cells behave like mesenchymal fibroblasts, producing logarithmic yields of cell-free infectious progeny, while cell lines with strong epithelial character exhibit an atypical infectious cycle and naturally restrict the production of cell-free progeny. Our work highlights important characteristics of the ARPE-19 cell line and suggests that subconfluent ARPE-19 cells may not be optimal for modeling epithelial infection with HCMV or other human viruses. It also suggests that HCMV biosynthesis and/or spread may occur quite differently in epithelial cells compared to mesenchymal cells. These differences could contribute to viral persistence or pathogenesis in epithelial tissues.
Collapse
Affiliation(s)
| | | | - Adam Oberstein
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 835 South Wolcott Ave., Chicago, IL 60612, USA; (P.G.); (M.A.-M.)
| |
Collapse
|
14
|
Corneillie L, Lemmens I, Weening K, De Meyer A, Van Houtte F, Tavernier J, Meuleman P. Virus-Host Protein Interaction Network of the Hepatitis E Virus ORF2-4 by Mammalian Two-Hybrid Assays. Viruses 2023; 15:2412. [PMID: 38140653 PMCID: PMC10748205 DOI: 10.3390/v15122412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Throughout their life cycle, viruses interact with cellular host factors, thereby influencing propagation, host range, cell tropism and pathogenesis. The hepatitis E virus (HEV) is an underestimated RNA virus in which knowledge of the virus-host interaction network to date is limited. Here, two related high-throughput mammalian two-hybrid approaches (MAPPIT and KISS) were used to screen for HEV-interacting host proteins. Promising hits were examined on protein function, involved pathway(s), and their relation to other viruses. We identified 37 ORF2 hits, 187 for ORF3 and 91 for ORF4. Several hits had functions in the life cycle of distinct viruses. We focused on SHARPIN and RNF5 as candidate hits for ORF3, as they are involved in the RLR-MAVS pathway and interferon (IFN) induction during viral infections. Knocking out (KO) SHARPIN and RNF5 resulted in a different IFN response upon ORF3 transfection, compared to wild-type cells. Moreover, infection was increased in SHARPIN KO cells and decreased in RNF5 KO cells. In conclusion, MAPPIT and KISS are valuable tools to study virus-host interactions, providing insights into the poorly understood HEV life cycle. We further provide evidence for two identified hits as new host factors in the HEV life cycle.
Collapse
Affiliation(s)
- Laura Corneillie
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Irma Lemmens
- VIB-UGent Center for Medical Biotechnology, Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Karin Weening
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Amse De Meyer
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Freya Van Houtte
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Jan Tavernier
- VIB-UGent Center for Medical Biotechnology, Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
15
|
Parsons AJ, Stein KR, Atanasoff KE, Ophir SI, Casado JP, Tortorella D. The CD46 ectodomain participates in human cytomegalovirus infection of epithelial cells. J Gen Virol 2023; 104:001892. [PMID: 37668349 PMCID: PMC10484303 DOI: 10.1099/jgv.0.001892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023] Open
Abstract
Human cytomegalovirus (HCMV) primary infections are typically asymptomatic in healthy individuals yet can cause increased morbidity and mortality in organ transplant recipients, AIDS patients, neonates, and the elderly. The successful, widespread dissemination of this virus among the population can be attributed in part to its wide cellular tropism and ability to establish life-long latency. HCMV infection is a multi-step process that requires numerous cellular and viral factors. The viral envelope consists of envelope protein complexes that interact with cellular factors; such interactions dictate virus recognition and attachment to different cell types, followed by fusion either at the cell membrane or within an endocytic vesicle. Several HCMV entry factors, including neuropilin-2 (Nrp2), THBD, CD147, OR14I1, and CD46, are characterized as participating in HCMV pentamer-specific entry of non-fibroblast cells such as epithelial, trophoblast, and endothelial cells, respectively. This study focuses on characterizing the structural elements of CD46 that impact HCMV infection. Infectivity studies of wild-type and CD46 knockout epithelial cells demonstrated that levels of CD46 expressed on the cell surface were directly related to HCMV infectivity. Overexpression of CD46 isomers BC1, BC2, and C2 enhanced infection. Further, CD46 knockout epithelial cells expressing CD46 deletion and chimeric molecules identified that the intact ectodomain was critical for rescue of HCMV infection in CD46 knockout cells. Collectively, these data support a model that the extracellular domain of CD46 participates in HCMV infection due to its surface expression.
Collapse
Affiliation(s)
- Andrea J. Parsons
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kathryn R. Stein
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kristina E. Atanasoff
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sabrina I. Ophir
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jailene Paredes Casado
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Domenico Tortorella
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
16
|
Bošnjak B, Henze E, Lueder Y, Do KTH, Rezalotfi A, Čuvalo B, Ritter C, Schimrock A, Willenzon S, Georgiev H, Fritz L, Galla M, Wagner K, Messerle M, Förster R. MCK2-mediated MCMV infection of macrophages and virus dissemination to the salivary gland depends on MHC class I molecules. Cell Rep 2023; 42:112597. [PMID: 37289588 DOI: 10.1016/j.celrep.2023.112597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 03/14/2023] [Accepted: 05/18/2023] [Indexed: 06/10/2023] Open
Abstract
Murine cytomegalovirus (MCMV) infection of macrophages relies on MCMV-encoded chemokine 2 (MCK2), while infection of fibroblasts occurs independently of MCK2. Recently, MCMV infection of both cell types was found to be dependent on cell-expressed neuropilin 1. Using a CRISPR screen, we now identify that MCK2-dependent infection requires MHC class Ia/β-2-microglobulin (B2m) expression. Further analyses reveal that macrophages expressing MHC class Ia haplotypes H-2b and H-2d, but not H-2k, are susceptible to MCK2-dependent infection with MCMV. The importance of MHC class I expression for MCK2-dependent primary infection and viral dissemination is highlighted by experiments with B2m-deficient mice, which lack surface expression of MHC class I molecules. In those mice, intranasally administered MCK2-proficient MCMV mimics infection patterns of MCK2-deficient MCMV in wild-type mice: it does not infect alveolar macrophages and subsequently fails to disseminate into the salivary glands. Together, these data provide essential knowledge for understanding MCMV-induced pathogenesis, tissue targeting, and virus dissemination.
Collapse
Affiliation(s)
- Berislav Bošnjak
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany.
| | - Elisa Henze
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Yvonne Lueder
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Kim Thi Hoang Do
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Alaleh Rezalotfi
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Berislav Čuvalo
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Christiane Ritter
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Anja Schimrock
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Stefanie Willenzon
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Hristo Georgiev
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Lea Fritz
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Karen Wagner
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Martin Messerle
- Institute of Virology, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany; German Centre for Infection Research (DZIF), Partner site Hannover, Hannover, Germany.
| |
Collapse
|
17
|
Bošnjak B, Lueder Y, Messerle M, Förster R. Imaging cytomegalovirus infection and ensuing immune responses. Curr Opin Immunol 2023; 82:102307. [PMID: 36996701 DOI: 10.1016/j.coi.2023.102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/30/2023]
Abstract
Cytomegaloviruses (CMVs) possess exquisite mechanisms enabling colonization, replication, and release allowing spread to new hosts. Moreover, they developed ways to escape the control of the host immune responses and hide latently within the host cells. Here, we outline studies that visualized individual CMV-infected cells using reporter viruses. These investigations provided crucial insights into all steps of CMV infection and mechanisms the host's immune response struggles to control it. Uncovering complex viral and cellular interactions and underlying molecular as well as immunological mechanisms are a prerequisite for the development of novel therapeutic interventions for successful treatment of CMV-related pathologies in neonates and transplant patients.
Collapse
|
18
|
Sharma P, Dwivedi R, Ray P, Shukla J, Pomin VH, Tandon R. Inhibition of Cytomegalovirus by Pentacta pygmaea Fucosylated Chondroitin Sulfate Depends on Its Molecular Weight. Viruses 2023; 15:v15040859. [PMID: 37112839 PMCID: PMC10142442 DOI: 10.3390/v15040859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/13/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Many viruses attach to host cells by first interacting with cell surface proteoglycans containing heparan sulfate (HS) glycosaminoglycan chains and then by engaging with specific receptor, resulting in virus entry. In this project, HS–virus interactions were targeted by a new fucosylated chondroitin sulfate from the sea cucumber Pentacta pygmaea (PpFucCS) in order to block human cytomegalovirus (HCMV) entry into cells. Human foreskin fibroblasts were infected with HCMV in the presence of PpFucCS and its low molecular weight (LMW) fractions and the virus yield at five days post-infection was assessed. The virus attachment and entry into the cells were visualized by labeling the purified virus particles with a self-quenching fluorophore octadecyl rhodamine B (R18). The native PpFucCS exhibited potent inhibitory activity against HCMV specifically blocking virus entry into the cell and the inhibitory activities of the LMW PpFucCS derivatives were proportional to their chain lengths. PpFucCS and the derived oligosaccharides did not exhibit any significant cytotoxicity; moreover, they protected the infected cells from virus-induced lytic cell death. In conclusion, PpFucCS inhibits the entry of HCMV into cells and the high MW of this carbohydrate is a key structural element to achieve the maximal anti-viral effect. This new marine sulfated glycan can be developed into a potential prophylactic and therapeutic antiviral agent against HCMV infection.
Collapse
|
19
|
Kyaw T, Drummond G, Bobik A, Peter K. Myocarditis: causes, mechanisms, and evolving therapies. Expert Opin Ther Targets 2023; 27:225-238. [PMID: 36946552 DOI: 10.1080/14728222.2023.2193330] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Myocarditis is a severe lymphocyte-mediated inflammatory disorder of the heart, mostly caused by viruses and immune checkpoint inhibitors (ICIs). Recently, myocarditis as a rare adverse event of mRNA vaccines for SARS-CoV-2 has caused global attention. The clinical consequences of myocarditis can be very severe, but specific treatment options are lacking or not yet clinically proven. AREAS COVERED This paper offers a brief overview of the biology of viruses that frequently cause myocarditis, focusing on mechanisms important for viral entry and replication following host infection. Current and new potential therapeutic targets/strategies especially for viral myocarditis are reviewed systematically. In particular, the immune system in myocarditis is dissected with respect to infective viral and non-infective, ICI-induced myocarditis. EXPERT OPINION Vaccination is an excellent emerging preventative strategy for viral myocarditis, but most vaccines still require further development. Anti-viral treatments that inhibit viral replication need to be considered following viral infection in host myocardium, as lower viral load reduces inflammation severity. Understanding how the immune system continues to damage the heart even after viral clearance will define novel therapeutic targets/strategies. We propose that viral myocarditis can be best treated using a combination of antiviral agents and immunotherapies that control cytotoxic T cell activity.
Collapse
Affiliation(s)
- Tin Kyaw
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute
- Centre for Inflammatory Diseases, Monash Medical Centre, Monash University, Melbourne, Australia
- Department of Cardiometabolic Health, University of Melbourne Melbourne Australia
| | - Grant Drummond
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University Melbourne Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, Australia
| | - Alex Bobik
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute
- Centre for Inflammatory Diseases, Monash Medical Centre, Monash University, Melbourne, Australia
- Department of Cardiometabolic Health, University of Melbourne Melbourne Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, Australia
- Heart Centre, Alfred Hospital, Melbourne, Australia
| | - Karlheinz Peter
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute
- Department of Cardiometabolic Health, University of Melbourne Melbourne Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University Melbourne Australia
- Heart Centre, Alfred Hospital, Melbourne, Australia
- Department of Immunology, Monash University Melbourne Australia
| |
Collapse
|
20
|
Zhong L, Zhang W, Krummenacher C, Chen Y, Zheng Q, Zhao Q, Zeng MS, Xia N, Zeng YX, Xu M, Zhang X. Targeting herpesvirus entry complex and fusogen glycoproteins with prophylactic and therapeutic agents. Trends Microbiol 2023:S0966-842X(23)00077-X. [DOI: 10.1016/j.tim.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 04/03/2023]
|
21
|
Neutralization Epitopes in Trimer and Pentamer Complexes Recognized by Potent Cytomegalovirus-Neutralizing Human Monoclonal Antibodies. Microbiol Spectr 2022; 10:e0139322. [PMID: 36342276 PMCID: PMC9784774 DOI: 10.1128/spectrum.01393-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Human cytomegalovirus (HCMV) infects 36% to almost 100% of adults and causes severe complications only in immunocompromised individuals. HCMV viral surface trimeric (gH/gL/gO) and pentameric (gH/gL/UL128/UL130/UL131A) complexes play important roles in HCMV infection and tropism. Here, we isolated and identified a total of four neutralizing monoclonal antibodies (MAbs) derived from HCMV-seropositive blood donors. Based on their reactivity to HCMV trimer and pentamer, these MAbs can be divided into two groups. MAbs PC0012, PC0014, and PC0035 in group 1 bind both trimer and pentamer and neutralize CMV by interfering with the postattachment steps of CMV entering into cells. These three antibodies recognize antigenic epitopes clustered in a similar area, which are overlapped by the epitope recognized by the known neutralizing antibody MSL-109. MAb PC0034 in group 2 binds only to pentamer and neutralizes CMV by blocking the binding of pentamer to cells. Epitope mapping using pentamer mutants showed that amino acid T94 of the subunit UL128 and K27 of UL131A on the pentamer are key epitope-associated residues recognized by PC0034. This study provides new evidence and insight information on the importance of the development of the CMV pentamer as a CMV vaccine. In addition, these newly identified potent CMV MAbs can be attractive candidates for development as antibody therapeutics for the prevention and treatment of HCMV infection. IMPORTANCE The majority of the global population is infected with HCMV, but severe complications occur only in immunocompromised individuals. In addition, CMV infection is a major cause of birth defects in newborns. Currently, there are still no approved prophylactic vaccines or therapeutic monoclonal antibodies (MAbs) for clinical use against HCMV infection. This study identified and characterized a panel of four neutralizing MAbs targeting the HCMV pentamer complex with specific aims to identify a key protein(s) and antigenic epitopes in the HCMV pentamer complex. The study also explored the mechanism by which these newly identified antibodies neutralize HCMV in order to design better HCMV vaccines focusing on the pentamer and to provide attractive candidates for the development of effective cocktail therapeutics for the prevention and treatment of HCMV infection.
Collapse
|
22
|
Penner I, Büscher N, Dejung M, Freiwald A, Butter F, Plachter B. Subviral Dense Bodies of Human Cytomegalovirus Induce an Antiviral Type I Interferon Response. Cells 2022; 11:cells11244028. [PMID: 36552792 PMCID: PMC9777239 DOI: 10.3390/cells11244028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
(1) Background: Cells infected with the human cytomegalovirus (HCMV) produce subviral particles, termed dense bodies (DBs), both in-vitro and in-vivo. They are released from cells, comparable to infectious virions, and are enclosed by a membrane that resembles the viral envelope and mediates the entry into cells. To date, little is known about how the DB uptake influences the gene expression in target cells. The purpose of this study was to investigate the impact of DBs on cells, in the absence of a viral infection. (2) Methods: Mass spectrometry, immunoblot analyses, siRNA knockdown, and a CRISPR-CAS9 knockout, were used to investigate the changes in cellular gene expression following a DB exposure; (3) Results: A number of interferon-regulated genes (IRGs) were upregulated after the fibroblasts and endothelial cells were exposed to DBs. This upregulation was dependent on the DB entry and mediated by the type I interferon signaling through the JAK-STAT pathway. The induction of IRGs was mediated by the sensing of the DB-introduced DNA by the pattern recognition receptor cGAS. (4) Conclusions: The induction of a strong type I IFN response by DBs is a unique feature of the HCMV infection. The release of DBs may serve as a danger signal and concomitantly contribute to the induction of a strong, antiviral immune response.
Collapse
Affiliation(s)
- Inessa Penner
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Nicole Büscher
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Mario Dejung
- Institute for Molecular Biology, 55128 Mainz, Germany
| | - Anja Freiwald
- Institute for Molecular Biology, 55128 Mainz, Germany
| | - Falk Butter
- Institute for Molecular Biology, 55128 Mainz, Germany
| | - Bodo Plachter
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
- Correspondence:
| |
Collapse
|
23
|
ACE2-Independent Alternative Receptors for SARS-CoV-2. Viruses 2022; 14:v14112535. [PMID: 36423144 PMCID: PMC9692829 DOI: 10.3390/v14112535] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Severe acute respiratory syndrome-related coronavirus (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), is highly contagious and remains a major public health challenge despite the availability of effective vaccines. SARS-CoV-2 enters cells through the binding of its spike receptor-binding domain (RBD) to the human angiotensin-converting enzyme 2 (ACE2) receptor in concert with accessory receptors/molecules that facilitate viral attachment, internalization, and fusion. Although ACE2 plays a critical role in SARS-CoV-2 replication, its expression profiles are not completely associated with infection patterns, immune responses, and clinical manifestations. Additionally, SARS-CoV-2 infects cells that lack ACE2, and the infection is resistant to monoclonal antibodies against spike RBD in vitro, indicating that some human cells possess ACE2-independent alternative receptors, which can mediate SARS-CoV-2 entry. Here, we discuss these alternative receptors and their interactions with SARS-CoV-2 components for ACE2-independent viral entry. These receptors include CD147, AXL, CD209L/L-SIGN/CLEC4M, CD209/DC-SIGN/CLEC4L, CLEC4G/LSECtin, ASGR1/CLEC4H1, LDLRAD3, TMEM30A, and KREMEN1. Most of these receptors are known to be involved in the entry of other viruses and to modulate cellular functions and immune responses. The SARS-CoV-2 omicron variant exhibits altered cell tropism and an associated change in the cell entry pathway, indicating that emerging variants may use alternative receptors to escape the immune pressure against ACE2-dependent viral entry provided by vaccination against RBD. Understanding the role of ACE2-independent alternative receptors in SARS-CoV-2 viral entry and pathogenesis may provide avenues for the prevention of infection by SARS-CoV-2 variants and for the treatment of COVID-19.
Collapse
|
24
|
Iacobucci I, Monaco V, Canè L, Bibbò F, Cioffi V, Cozzolino F, Guarino A, Zollo M, Monti M. Spike S1 domain interactome in non-pulmonary systems: A role beyond the receptor recognition. Front Mol Biosci 2022; 9:975570. [PMID: 36225252 PMCID: PMC9550266 DOI: 10.3389/fmolb.2022.975570] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/29/2022] [Indexed: 12/05/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes Coronavirus Disease 2019 (COVID-19), which, since 2019 in China, has rapidly become a worldwide pandemic. The aggressiveness and global spread were enhanced by the many SARS-CoV-2 variants that have been isolated up to now. These mutations affect mostly the viral glycoprotein Spike (S), the capsid protein mainly involved in the early stages of viral entry processes, through the recognition of specific receptors on the host cell surface. In particular, the subunit S1 of the Spike glycoprotein contains the Receptor Binding Domain (RBD) and it is responsible for the interaction with the angiotensin-converting enzyme 2 (ACE2). Although ACE2 is the primary Spike host receptor currently studied, it has been demonstrated that SARS-CoV-2 is also able to infect cells expressing low levels of ACE2, indicating that the virus may have alternative receptors on the host cells. The identification of the alternative receptors can better elucidate the pathogenicity and the tropism of SARS-CoV-2. Therefore, we investigated the Spike S1 interactomes, starting from host membrane proteins of non-pulmonary cell lines, such as human kidney (HK-2), normal colon (NCM460D), and colorectal adenocarcinoma (Caco-2). We employed an affinity purification-mass spectrometry (AP-MS) to pull down, from the membrane protein extracts of all cell lines, the protein partners of the recombinant form of the Spike S1 domain. The purified interactors were identified by a shotgun proteomics approach. The lists of S1 potential interacting proteins were then clusterized according to cellular localization, biological processes, and pathways, highlighting new possible S1 intracellular functions, crucial not only for the entrance mechanisms but also for viral replication and propagation processes.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Vittoria Monaco
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Luisa Canè
- CEINGE Advanced Biotechnologies, Naples, Italy
- Department of Translational Medical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Francesca Bibbò
- CEINGE Advanced Biotechnologies, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies (DMMBM), University of Naples “Federico II”, Naples, Italy
| | - Valentina Cioffi
- Department of Translational Medical Science, Section of Pediatrics, University of Naples “Federico II”, Naples, Italy
| | - Flora Cozzolino
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Alfredo Guarino
- Department of Translational Medical Science, Section of Pediatrics, University of Naples “Federico II”, Naples, Italy
| | - Massimo Zollo
- CEINGE Advanced Biotechnologies, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies (DMMBM), University of Naples “Federico II”, Naples, Italy
| | - Maria Monti
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| |
Collapse
|
25
|
Endothelial Cell Infection by Guinea Pig Cytomegalovirus Is a Lytic or Persistent Infection Depending on Tissue Origin but Requires Viral Pentamer Complex and pp65 Tegument Protein. J Virol 2022; 96:e0083122. [PMID: 36000848 PMCID: PMC9472625 DOI: 10.1128/jvi.00831-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The guinea pig is the only small animal model for congenital cytomegalovirus (CMV) but requires species-specific guinea pig cytomegalovirus (GPCMV). Infection of epithelial cells and trophoblasts by GPCMV requires the viral glycoprotein pentamer complex (PC) and endocytic entry because of the absence of platelet-derived growth factor receptor alpha (PDGFRA). Endothelial cells represent an important cell type for infection, dissemination in the host, and disease but have been poorly evaluated for GPCMV. Novel endothelial cell lines were established from animal vascular systems, including aorta (EndoC) and placental umbilical cord vein (GPUVEC). Cell lines were characterized for endothelial cell protein markers (PECAM1, vWF, and FLI1) and evaluated for GPCMV infection. Only PC-positive virus was capable of infecting endothelial cells. Individual knockout mutants for unique PC components (GP129, GP131, and GP133) were unable to infect endothelial cells without impacting fibroblast infection. Ectopic expression of PDGFRA in EndoC cells enabled GPCMV(PC-) infection via direct cell entry independent of the PC. Neutralizing antibodies to the essential viral gB glycoprotein were insufficient to prevent endothelial cell infection, which also required antibodies to gH/gL and the PC. Endothelial cell infection was also dependent upon viral tegument pp65 protein (GP83) to counteract the IFI16/cGAS-STING innate immune pathway, similar to epithelial cell infection. GPCMV endothelial cells were lytically (EndoC) or persistently (GPUVEC) infected dependent on tissue origin. The ability to establish a persistent infection in the umbilical cord could potentially enable sustained and more significant infection of the fetus in utero. Overall, results demonstrate the importance of this translationally relevant model for CMV research. IMPORTANCE Congenital CMV is a leading cause of cognitive impairment and deafness in newborns, and a vaccine is a high priority. The only small animal model for congenital CMV is the guinea pig and guinea pig cytomegalovirus (GPCMV) encoding functional HCMV homolog viral glycoprotein complexes necessary for cell entry that are neutralizing-antibody vaccine targets. Endothelial cells are important in HCMV for human disease and viral dissemination. GPCMV endothelial cell infection requires the viral pentamer complex (PC), which further increases the importance of this complex as a vaccine target, as antibodies to the immunodominant and essential viral glycoprotein gB fail to prevent endothelial cell infection. GPCMV endothelial cell infection established either a fully lytic or a persistent infection, depending on tissue origin. The potential for persistent infection in the umbilical cord potentially enables sustained infection of the fetus in utero, likely increasing the severity of congenital disease.
Collapse
|
26
|
Chin A, Liu J, Jardetzky T, Johnson DC, Vanarsdall A. Identification of functionally important domains of human cytomegalovirus gO that act after trimer binding to receptors. PLoS Pathog 2022; 18:e1010452. [PMID: 35452493 PMCID: PMC9032346 DOI: 10.1371/journal.ppat.1010452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 03/17/2022] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) entry involves trimer (gH/gL/gO) that interacts with PDGFRα in fibroblasts. Entry into epithelial and endothelial cells requires trimer, which binds unidentified receptors, and pentamer (gH/gL/UL128-131), which binds neuropilin-2. To identify functionally important domains in trimer, we screened an overlapping 20-mer gO peptide library and identified two sets of peptides: 19/20 (a.a. 235–267) and 32/33 (a.a. 404–436) that could block virus entry. Soluble trimer containing wild type gO blocked HCMV entry, whereas soluble trimers with the 19/20 or 32/33 sequences mutated did not block entry. Interestingly, the mutant trimers retained the capacity to bind to cellular receptors including PDGFRα. Peptide 19/20 and 32/33 sequences formed a lobe extending from the surface of gO and an adjacent concave structure, respectively. Neither of these sets of sequences contacted PDGFRα. Instead, our data support a model in which the 19/20 and 32/33 trimer sequences function downstream of receptor binding, e.g. trafficking of HCMV into endosomes or binding to gB for entry fusion. We also screened for peptides that bound antibodies (Abs) in human sera, observing that peptides 20 and 26 bound Abs. These peptides engendered neutralizing Abs (NAbs) after immunization of rabbits and could pull out NAbs from human sera. Peptides 20 and 26 sequences represent the first NAb epitopes identified in trimer. These studies describe two important surfaces on gO defined by: i) peptides 19/20 and 32/33, which apparently act downstream of receptor binding and ii) peptide 26 that interacts with PDGFRα. Both these surfaces are targets of NAbs. Human cytomegalovirus (HCMV) infects 80% of the world population, causing severe morbidity and mortality in transplant patients and can be transmitted to the developing fetus leading to severe neurological defects. The current anti-viral agents used to treat HCMV are not very effective as viruses can develop resistance and there is no licensed HCMV vaccine available. Recently, there has been intense interest in the HCMV envelope glycoproteins involved in entry as a component of vaccines. One glycoprotein complex, the gH/gL/gO trimer is especially intriguing as it is required for infection of extracellular virus in all cell types. Here, we identify domains in the trimer that have an essential function in entry downstream of receptor binding and are also epitopes recognized by naturally induced neutralizing antibodies. These results will have implications for advancing the efforts to develop novel HCMV therapeutics.
Collapse
Affiliation(s)
- Andrea Chin
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jing Liu
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Theodore Jardetzky
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - David C. Johnson
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Adam Vanarsdall
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
27
|
Choi KY, El-Hamdi NS, McGregor A. Cross Strain Protection against Cytomegalovirus Reduces DISC Vaccine Efficacy against CMV in the Guinea Pig Model. Viruses 2022; 14:760. [PMID: 35458490 PMCID: PMC9031936 DOI: 10.3390/v14040760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023] Open
Abstract
Congenital cytomegalovirus (CMV) is a leading cause of disease in newborns and a vaccine is a high priority. The guinea pig is the only small animal model for congenital CMV but requires guinea pig cytomegalovirus (GPCMV). Previously, a disabled infectious single cycle (DISC) vaccine strategy demonstrated complete protection against congenital GPCMV (22122 strain) and required neutralizing antibodies to various viral glycoprotein complexes. This included gB, essential for all cell types, and the pentamer complex (PC) for infection of non-fibroblast cells. All GPCMV research has utilized prototype strain 22122 limiting the translational impact, as numerous human CMV strains exist allowing re-infection and congenital CMV despite convalescent immunity. A novel GPCMV strain isolate (designated TAMYC) enabled vaccine cross strain protection studies. A GPCMV DISC (PC+) vaccine (22122 strain) induced a comprehensive immune response in animals, but vaccinated animals challenged with the TAMYC strain virus resulted in sustained viremia and the virus spread to target organs (liver, lung and spleen) with a significant viral load in the salivary glands. Protection was better than natural convalescent immunity, but the results fell short of previous DISC vaccine sterilizing immunity against the homologous 22122 virus challenge, despite a similarity in viral glycoprotein sequences between strains. The outcome suggests a limitation of the current DISC vaccine design against heterologous infection.
Collapse
Affiliation(s)
| | | | - Alistair McGregor
- Department Microbial Pathogenesis & Immunology, College of Medicine, Texas A&M University, Bryan, TX 77807, USA; (K.Y.C.); (N.S.E.-H.)
| |
Collapse
|
28
|
Rescue of Pentamer-Null Strains of Human Cytomegalovirus in Epithelial Cells by Use of Histone Deacetylase Inhibitors Reveals an Additional Postentry Function for the Pentamer Complex. J Virol 2022; 96:e0003122. [PMID: 35343807 DOI: 10.1128/jvi.00031-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) tropism for epithelial cells is determined by the pentameric glycoprotein complex found on the viral envelope. Laboratory-adapted strains, such as AD169, typically develop loss-of-function mutations for the pentamer, thus losing the ability to efficiently initiate lytic replication in epithelial cells. Using our human salivary gland-derived epithelial (hSGE) cell model, we observed that 3 chemically distinct histone deacetylase (HDAC) inhibitors can rescue infection in hSGE cells using pentamer-null strains of HCMV. Additionally, infection in ARPE-19 epithelial cells was rescued in a similar manner. We isolated nuclei from AD169-infected cells, quantified viral genomes by quantitative PCR (qPCR), and discovered that while HDAC inhibitors increased immediate early (IE) gene expression, they did not increase the amount of viral DNA in the nucleus. Using immunofluorescence microscopy, we observed that pentamer-null strains showed punctate patterning of pp71 in proximity to the nucleus of infected cells, while pp71 was localized to the nucleus after infection with pentamer-containing strains. Upon treatment with HDAC inhibitors, these punctae remained perinuclear, while more cells displayed entry into the lytic cycle, noted by increased IE-positive nuclei. Taken together, our data indicate that HCMV pentamer-null viruses are able to infect epithelial cells (albeit less efficiently than pentamer-positive viruses) and traffic to the nucleus but fail to initiate lytic gene expression once there. These studies reveal a novel postentry function of the pentamer in addition to the recognized role of pentamer in mediating entry. IMPORTANCE Human cytomegalovirus has a wide cellular tropism, which is driven by one of its glycoprotein complexes, the pentamer. Laboratory-adapted strains continuously passaged on fibroblasts readily lose pentamer function and thus lose their ability to infect diverse cell types such as epithelial cells. Pentamer has been attributed an entry function during infection, but mechanistic details as to how this is achieved have not been definitely demonstrated. In this study, we investigate how pharmacological rescue of pentamer-null strains during epithelial infection by histone deacetylase inhibitors implicates a novel role for the pentamer downstream of entry. This work expands on potential functions of the pentamer, will drive future studies to understand mechanistically how it affects tropism, and provides a new target for future therapeutics.
Collapse
|
29
|
Wrapp D, Ye X, Ku Z, Su H, Jones HG, Wang N, Mishra AK, Freed DC, Li F, Tang A, Li L, Jaijyan DK, Zhu H, Wang D, Fu TM, Zhang N, An Z, McLellan JS. Structural basis for HCMV Pentamer recognition by neuropilin 2 and neutralizing antibodies. SCIENCE ADVANCES 2022; 8:eabm2546. [PMID: 35275718 PMCID: PMC8916728 DOI: 10.1126/sciadv.abm2546] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Human cytomegalovirus (HCMV) encodes multiple surface glycoprotein complexes to infect a variety of cell types. The HCMV Pentamer, composed of gH, gL, UL128, UL130, and UL131A, enhances entry into epithelial, endothelial, and myeloid cells by interacting with the cell surface receptor neuropilin 2 (NRP2). Despite the critical nature of this interaction, the molecular determinants that govern NRP2 recognition remain unclear. Here, we describe the cryo-EM structure of NRP2 bound to Pentamer. The high-affinity interaction between these proteins is calcium dependent and differs from the canonical carboxyl-terminal arginine (CendR) binding that NRP2 typically uses. We also determine the structures of four neutralizing human antibodies bound to the HCMV Pentamer to define susceptible epitopes. Two of these antibodies compete with NRP2 binding, but the two most potent antibodies recognize a previously unidentified epitope that does not overlap the NRP2-binding site. Collectively, these findings provide a structural basis for HCMV tropism and antibody-mediated neutralization.
Collapse
Affiliation(s)
- Daniel Wrapp
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Xiaohua Ye
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhiqiang Ku
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hang Su
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Harrison G. Jones
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Nianshuang Wang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Akaash K. Mishra
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Daniel C. Freed
- Merck Research Laboratories, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | - Fengsheng Li
- Merck Research Laboratories, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | - Aimin Tang
- Merck Research Laboratories, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | - Leike Li
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Dabbu Kumar Jaijyan
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Hua Zhu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Dai Wang
- Merck Research Laboratories, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | - Tong-Ming Fu
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Corresponding author. (Z.A.); (J.S.M.)
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
- Corresponding author. (Z.A.); (J.S.M.)
| |
Collapse
|
30
|
Hattori Y, Hattori K, Machida T, Matsuda N. Vascular endotheliitis associated with infections: Its pathogenetic role and therapeutic implication. Biochem Pharmacol 2022; 197:114909. [PMID: 35021044 PMCID: PMC8743392 DOI: 10.1016/j.bcp.2022.114909] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/20/2022]
Abstract
Vascular endothelial cells are major participants in and regulators of immune responses and inflammation. Vascular endotheliitis is regarded as a host immune-inflammatory response of the endothelium forming the inner surface of blood vessels in association with a direct consequence of infectious pathogen invasion. Vascular endotheliitis and consequent endothelial dysfunction can be a principle determinant of microvascular failure, which would favor impaired perfusion, tissue hypoxia, and subsequent organ failure. Emerging evidence suggests the role of vascular endotheliitis in the pathogenesis of coronavirus disease 2019 (COVID-19) and its related complications. Thus, once initiated, vascular endotheliitis and resultant cytokine storm cause systemic hyperinflammation and a thrombotic phenomenon in COVID-19, leading to acute respiratory distress syndrome and widespread organ damage. Vascular endotheliitis also appears to be a contributory factor to vasculopathy and coagulopathy in sepsis that is defined as life-threatening organ dysfunction due to a dysregulated response of the host to infection. Therefore, protecting endothelial cells and reversing vascular endotheliitis may be a leading therapeutic goal for these diseases associated with vascular endotheliitis. In this review, we outline the etiological and pathogenic importance of vascular endotheliitis in infection-related inflammatory diseases, including COVID-19, and possible mechanisms leading to vascular endotheliitis. We also discuss pharmacological agents which may be now considered as potential endotheliitis-based treatment modalities for those diseases.
Collapse
Affiliation(s)
- Yuichi Hattori
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Tobetsu, Japan; Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| | - Kohshi Hattori
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Takuji Machida
- Department of Pharmacological Sciences, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Tobetsu, Japan
| | - Naoyuki Matsuda
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
31
|
Helal MA, Shouman S, Abdelwaly A, Elmehrath AO, Essawy M, Sayed SM, Saleh AH, El-Badri N. Molecular basis of the potential interaction of SARS-CoV-2 spike protein to CD147 in COVID-19 associated-lymphopenia. J Biomol Struct Dyn 2022; 40:1109-1119. [PMID: 32936048 PMCID: PMC7544927 DOI: 10.1080/07391102.2020.1822208] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023]
Abstract
Lymphopenia is considered one of the most characteristic clinical features of the coronavirus disease 2019 (COVID-19). SARS-CoV-2 infects host cells via the interaction of its spike protein with the human angiotensin-converting enzyme 2 (hACE2) receptor. Since T lymphocytes display a very low expression level of hACE2, a novel receptor might be involved in the entry of SARS-CoV-2 into T cells. The transmembrane glycoprotein CD147 is highly expressed by activated T lymphocytes, and was recently proposed as a probable route for SARS-CoV-2 invasion. To understand the molecular basis of the potential interaction of SARS-CoV-2 to CD147, we have investigated the binding of the viral spike protein to this receptor in-silico. The results showed that this binding is dominated by electrostatic interactions involving residues Arg403, Asn481, and the backbone of Gly502. The overall binding arrangement shows the CD147 C-terminal domain interacting with the spike external subdomain in the grove between the short antiparallel β strands, β1' and β2', and the small helix α1'. This proposed interaction was further confirmed using MD simulation and binding free energy calculation. These data contribute to a better understanding of the mechanism of infection of SARS-CoV-2 to T lymphocytes and could provide valuable insights for the rational design of adjuvant treatment for COVID-19. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohamed A. Helal
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Shaimaa Shouman
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
| | - Ahmad Abdelwaly
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Ahmed O. Elmehrath
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
- Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Essawy
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
| | - Shireen M. Sayed
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
| | - Amr H. Saleh
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
32
|
Tyl MD, Betsinger CN, Cristea IM. Virus-host protein interactions as footprints of human cytomegalovirus replication. Curr Opin Virol 2022; 52:135-147. [PMID: 34923282 PMCID: PMC8844139 DOI: 10.1016/j.coviro.2021.11.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 02/03/2023]
Abstract
Human cytomegalovirus (HCMV) is a pervasive β-herpesvirus that causes lifelong infection. The lytic replication cycle of HCMV is characterized by global organelle remodeling and dynamic virus-host interactions, both of which are necessary for productive HCMV replication. With the advent of new technologies for investigating protein-protein and protein-nucleic acid interactions, numerous critical interfaces between HCMV and host cells have been identified. Here, we review temporal and spatial virus-host interactions that support different stages of the HCMV replication cycle. Understanding how HCMV interacts with host cells during entry, replication, and assembly, as well as how it interfaces with host cell metabolism and immune responses promises to illuminate processes that underlie the biology of infection and the resulting pathologies.
Collapse
Affiliation(s)
- Matthew D. Tyl
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Cora N. Betsinger
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA,Corresponding author and lead contact: Ileana M. Cristea, 210 Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, Tel: 6092589417, Fax: 6092584575,
| |
Collapse
|
33
|
Mimura N, Nagamatsu T, Morita K, Taguchi A, Toya T, Kumasawa K, Iriyama T, Kawana K, Inoue N, Fujii T, Osuga Y. Suppression of human trophoblast syncytialization by human cytomegalovirus infection. Placenta 2021; 117:200-208. [PMID: 34933151 DOI: 10.1016/j.placenta.2021.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Placental dysfunction triggers fetal growth restriction in congenital human cytomegalovirus (HCMV) infection. Studies suggest that HCMV infection interferes with the differentiation of human trophoblasts. However, the underlying mechanisms have not been clarified. This study investigated the impact of HCMV infection on gene transcriptomes in cytotrophoblasts (CTBs) associated with placental dysfunction. METHODS CTBs were isolated from human term placentas, and spontaneous syncytialization was observed in vitro. The transcriptome profiles were compared between CTB groups with and without HCMV infection by cap analysis gene expression sequencing. The effect of HCMV infection on trophoblast differentiation was evaluated by examining cell fusion status using immunocytochemical staining for desmoplakin and assessing the production of cell differentiation markers, including hCG, PlGF, and soluble Flt-1, using ELISA. RESULTS The expression of the genes categorized in the signaling pathways related to the cell cycle was significantly enhanced in CTBs with HCMV infection compared with uninfected CTBs. HCMV infection hindered the alteration of the gene expression profile associated with syncytialization. This suppressive effect under HCMV infection was concurrent with the reduction in hCG and PlGF secretion. Immunostaining for desmoplakin revealed that HCMV infection reduced the cell fusion of cultured CTBs. These findings imply that HCMV infection has a negative impact on syncytialization, which is indispensable for the maintenance of villous function. DISCUSSION HCMV infection interferes with gene expression profiles and functional differentiation of trophoblasts. Suppression of syncytialization may be a survival strategy for HCMV to expand infection and could be associated with placental dysfunction.
Collapse
Affiliation(s)
- Nobuko Mimura
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Japan.
| | - Kazuki Morita
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Japan
| | - Ayumi Taguchi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Japan
| | - Takashi Toya
- Hematology Division, Tokyo Metropolitan Komagome Hospital, Tokyo, Japan
| | - Keiichi Kumasawa
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Japan
| | - Takayuki Iriyama
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Japan
| | - Kei Kawana
- Department of Obstetrics and Gynecology, Faculty of Medicine, Nihon University, Japan
| | - Naoki Inoue
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Japan
| |
Collapse
|
34
|
Smith NA, Chan GC, O’Connor CM. Modulation of host cell signaling during cytomegalovirus latency and reactivation. Virol J 2021. [DOI: 10.1186/s12985-021-01674-1
expr 947873540 + 978833141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
AbstractBackgroundHuman cytomegalovirus (HCMV) resides latently in cells of the myeloid compartment, including CD34+hematopoietic progenitor cells and circulating monocytes. Healthy hosts maintain the virus latently, and this infection is, for the most part, asymptomatic. However, given the proper external cues, HCMV reactivates from latency, at which point the virus disseminates, causing disease. The viral and cellular factors dictating the balance between these phases of infection are incompletely understood, though a large body of literature support a role for viral-mediated manipulation of host cell signaling.Main bodyTo establish and maintain latency, HCMV has evolved various means by which it usurps host cell factors to alter the cellular environment to its own advantage, including altering host cell signaling cascades. As early as virus entry into myeloid cells, HCMV usurps cellular signaling to change the cellular milieu, and this regulation includes upregulation, as well as downregulation, of different signaling cascades. Indeed, given proper reactivation cues, this signaling is again altered to allow for transactivation of viral lytic genes.ConclusionsHCMV modulation of host cell signaling is not binary, and many of the cellular pathways altered are finely regulated, wherein the slightest modification imparts profound changes to the cellular milieu. It is also evident that viral-mediated cell signaling differs not only between these phases of infection, but also is myeloid cell type specific. Nonetheless, understanding the exact pathways and the means by which HCMV mediates them will undoubtedly provide novel targets for therapeutic intervention.
Collapse
|
35
|
Siska PJ, Decking SM, Babl N, Matos C, Bruss C, Singer K, Klitzke J, Schön M, Simeth J, Köstler J, Siegmund H, Ugele I, Paulus M, Dietl A, Kolodova K, Steines L, Freitag K, Peuker A, Schönhammer G, Raithel J, Graf B, Geismann F, Lubnow M, Mack M, Hau P, Bohr C, Burkhardt R, Gessner A, Salzberger B, Wagner R, Hanses F, Hitzenbichler F, Heudobler D, Lüke F, Pukrop T, Herr W, Wolff D, Spang R, Poeck H, Hoffmann P, Jantsch J, Brochhausen C, Lunz D, Rehli M, Kreutz M, Renner K. Metabolic imbalance of T cells in COVID-19 is hallmarked by basigin and mitigated by dexamethasone. J Clin Invest 2021; 131:148225. [PMID: 34779418 DOI: 10.1172/jci148225] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
Metabolic pathways regulate immune responses and disrupted metabolism leads to immune dysfunction and disease. Coronavirus disease 2019 (COVID-19) is driven by imbalanced immune responses, yet the role of immunometabolism in COVID-19 pathogenesis remains unclear. By investigating 87 patients with confirmed SARS-CoV-2 infection, 6 critically ill non-COVID-19 patients, and 47 uninfected controls, we found an immunometabolic dysregulation in patients with progressed COVID-19. Specifically, T cells, monocytes, and granulocytes exhibited increased mitochondrial mass, yet only T cells accumulated intracellular reactive oxygen species (ROS), were metabolically quiescent, and showed a disrupted mitochondrial architecture. During recovery, T cell ROS decreased to match the uninfected controls. Transcriptionally, T cells from severe/critical COVID-19 patients showed an induction of ROS-responsive genes as well as genes related to mitochondrial function and the basigin network. Basigin (CD147) ligands cyclophilin A and the SARS-CoV-2 spike protein triggered ROS production in T cells in vitro. In line with this, only PCR-positive patients showed increased ROS levels. Dexamethasone treatment resulted in a downregulation of ROS in vitro and T cells from dexamethasone-treated patients exhibited low ROS and basigin levels. This was reflected by changes in the transcriptional landscape. Our findings provide evidence of an immunometabolic dysregulation in COVID-19 that can be mitigated by dexamethasone treatment.
Collapse
Affiliation(s)
- Peter J Siska
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Sonja-Maria Decking
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology, University of Regensburg, Regensburg, Germany
| | - Nathalie Babl
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Carina Matos
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Christina Bruss
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Katrin Singer
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Department of Otorhinolaryngology, University Hospital Regensburg, Regensburg
| | - Jana Klitzke
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Marian Schön
- Department of Statistical Bioinformatics, Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Jakob Simeth
- Department of Statistical Bioinformatics, Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Josef Köstler
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Heiko Siegmund
- Institute of Pathology, University of Regensburg, Regensburg, Germany.,Central Biobank Regensburg, University Hospital and University of Regensburg, Regensburg, Germany
| | - Ines Ugele
- Department of Otorhinolaryngology, University Hospital Regensburg, Regensburg
| | | | | | - Kristina Kolodova
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology, University of Regensburg, Regensburg, Germany
| | | | - Katharina Freitag
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Alice Peuker
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Gabriele Schönhammer
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Johanna Raithel
- Regensburg Center for Interventional Immunology, University of Regensburg, Regensburg, Germany
| | | | | | | | | | - Peter Hau
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology
| | - Christopher Bohr
- Department of Otorhinolaryngology, University Hospital Regensburg, Regensburg
| | | | - Andre Gessner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | | | - Ralf Wagner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Frank Hanses
- Department of Infection Prevention and Infectious Diseases, and.,Emergency Department, University Hospital Regensburg, Regensburg, Germany
| | | | - Daniel Heudobler
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Bavarian Cancer Research Center, Regensburg, Germany
| | - Florian Lüke
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Bavarian Cancer Research Center, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Daniel Wolff
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology, University of Regensburg, Regensburg, Germany
| | - Rainer Spang
- Department of Statistical Bioinformatics, Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Hendrik Poeck
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Petra Hoffmann
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology, University of Regensburg, Regensburg, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Christoph Brochhausen
- Institute of Pathology, University of Regensburg, Regensburg, Germany.,Central Biobank Regensburg, University Hospital and University of Regensburg, Regensburg, Germany
| | | | - Michael Rehli
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology, University of Regensburg, Regensburg, Germany
| | - Marina Kreutz
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology, University of Regensburg, Regensburg, Germany
| | - Kathrin Renner
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
36
|
Landázuri N, Gorwood J, Terelius Y, Öberg F, Yaiw KC, Rahbar A, Söderberg-Nauclér C. The Endothelin Receptor Antagonist Macitentan Inhibits Human Cytomegalovirus Infection. Cells 2021; 10:cells10113072. [PMID: 34831300 PMCID: PMC8619441 DOI: 10.3390/cells10113072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/15/2021] [Accepted: 10/23/2021] [Indexed: 12/27/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection is an important cause of morbidity and mortality in immunocompromised patients and a major etiological factor for congenital birth defects in newborns. Ganciclovir and its pro-drug valganciclovir are the preferred drugs in use today for prophylaxis and treatment of viremic patients. Due to long treatment times, patients are at risk for developing viral resistance to ganciclovir and to other drugs with a similar mechanism of action. We earlier found that the endothelin receptor B (ETBR) is upregulated during HCMV infection and that it plays an important role in the life cycle of this virus. Here, we tested the hypothesis that ETBR blockade could be used in the treatment of HCMV infection. As HCMV infection is specific to humans, we tested our hypothesis in human cell types that are relevant for HCMV pathogenesis; i.e., endothelial cells, epithelial cells and fibroblasts. We infected these cells with HCMV and treated them with the ETBR specific antagonist BQ788 or ETR antagonists that are approved by the FDA for treatment of pulmonary hypertension; macitentan, its metabolite ACT-132577, bosentan and ambrisentan, and as an anti-viral control, we used ganciclovir or letermovir. At concentrations expected to be relevant in vivo, macitentan, ACT-132577 and BQ788 effectively inhibited productive infection of HCMV. Of importance, macitentan also inhibited productive infection of a ganciclovir-resistant HCMV isolate. Our results suggest that binding or signaling through ETBR is crucial for viral replication, and that selected ETBR blockers inhibit HCMV infection.
Collapse
Affiliation(s)
- Natalia Landázuri
- Microbial Pathogenesis Unit, Department of Medicine Solna, Karolinska Institutet, SE-171 76 Stockholm, Sweden; (N.L.); (J.G.); (K.C.Y.); (A.R.)
- Division of Neurology, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Jennifer Gorwood
- Microbial Pathogenesis Unit, Department of Medicine Solna, Karolinska Institutet, SE-171 76 Stockholm, Sweden; (N.L.); (J.G.); (K.C.Y.); (A.R.)
- Division of Neurology, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Ylva Terelius
- Medivir AB, SE-141 22 Huddinge, Sweden; (Y.T.); (F.Ö.)
| | - Fredrik Öberg
- Medivir AB, SE-141 22 Huddinge, Sweden; (Y.T.); (F.Ö.)
| | - Koon Chu Yaiw
- Microbial Pathogenesis Unit, Department of Medicine Solna, Karolinska Institutet, SE-171 76 Stockholm, Sweden; (N.L.); (J.G.); (K.C.Y.); (A.R.)
- Division of Neurology, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Afsar Rahbar
- Microbial Pathogenesis Unit, Department of Medicine Solna, Karolinska Institutet, SE-171 76 Stockholm, Sweden; (N.L.); (J.G.); (K.C.Y.); (A.R.)
- Division of Neurology, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Cecilia Söderberg-Nauclér
- Microbial Pathogenesis Unit, Department of Medicine Solna, Karolinska Institutet, SE-171 76 Stockholm, Sweden; (N.L.); (J.G.); (K.C.Y.); (A.R.)
- Division of Neurology, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
- Correspondence:
| |
Collapse
|
37
|
Cryo-Electron Microscopy Structure and Interactions of the Human Cytomegalovirus gHgLgO Trimer with Platelet-Derived Growth Factor Receptor Alpha. mBio 2021; 12:e0262521. [PMID: 34700375 PMCID: PMC8546573 DOI: 10.1128/mbio.02625-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a herpesvirus that produces disease in transplant patients and newborn children. Entry of HCMV into cells relies on gH/gL trimer (gHgLgO) and pentamer (gHgLUL128–131) complexes that bind cellular receptors. Here, we studied the structure and interactions of the HCMV trimer, formed by AD169 strain gH and gL and TR strain gO proteins, with the human platelet-derived growth factor receptor alpha (PDGFRα). Three trimer surfaces make extensive contacts with three PDGFRα N-terminal domains, causing PDGFRα to wrap around gO in a structure similar to a human hand, explaining the high-affinity interaction. gO is among the least conserved HCMV proteins, with 8 distinct genotypes. We observed high conservation of residues mediating gO-gL interactions but more extensive gO variability in the PDGFRα interface. Comparisons between our trimer structure and a previously determined structure composed of different subunit genotypes indicate that gO variability is accommodated by adjustments in the gO-PDGFRα interface. We identified two loops within gO that were disordered and apparently glycosylated, which could be deleted without disrupting PDGFRα binding. We also identified four gO residues that contact PDGFRα, which when mutated produced markedly reduced receptor binding. These residues fall within conserved contact sites of gO with PDGFRα and may represent key targets for anti-trimer neutralizing antibodies and HCMV vaccines. Finally, we observe that gO mutations distant from the gL interaction site impact trimer expression, suggesting that the intrinsic folding or stability of gO can impact the efficiency of trimer assembly.
Collapse
|
38
|
Smith NA, Chan GC, O'Connor CM. Modulation of host cell signaling during cytomegalovirus latency and reactivation. Virol J 2021; 18:207. [PMID: 34663377 PMCID: PMC8524946 DOI: 10.1186/s12985-021-01674-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Human cytomegalovirus (HCMV) resides latently in cells of the myeloid compartment, including CD34+ hematopoietic progenitor cells and circulating monocytes. Healthy hosts maintain the virus latently, and this infection is, for the most part, asymptomatic. However, given the proper external cues, HCMV reactivates from latency, at which point the virus disseminates, causing disease. The viral and cellular factors dictating the balance between these phases of infection are incompletely understood, though a large body of literature support a role for viral-mediated manipulation of host cell signaling. MAIN BODY To establish and maintain latency, HCMV has evolved various means by which it usurps host cell factors to alter the cellular environment to its own advantage, including altering host cell signaling cascades. As early as virus entry into myeloid cells, HCMV usurps cellular signaling to change the cellular milieu, and this regulation includes upregulation, as well as downregulation, of different signaling cascades. Indeed, given proper reactivation cues, this signaling is again altered to allow for transactivation of viral lytic genes. CONCLUSIONS HCMV modulation of host cell signaling is not binary, and many of the cellular pathways altered are finely regulated, wherein the slightest modification imparts profound changes to the cellular milieu. It is also evident that viral-mediated cell signaling differs not only between these phases of infection, but also is myeloid cell type specific. Nonetheless, understanding the exact pathways and the means by which HCMV mediates them will undoubtedly provide novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Nicholas A Smith
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Gary C Chan
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Christine M O'Connor
- Department of Genomic Medicine, Infection Biology Program, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| |
Collapse
|
39
|
Pavišić V, Mahmutefendić Lučin H, Blagojević Zagorac G, Lučin P. Arf GTPases Are Required for the Establishment of the Pre-Assembly Compartment in the Early Phase of Cytomegalovirus Infection. Life (Basel) 2021; 11:867. [PMID: 34440611 PMCID: PMC8399710 DOI: 10.3390/life11080867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/31/2022] Open
Abstract
Shortly after entering the cells, cytomegaloviruses (CMVs) initiate massive reorganization of cellular endocytic and secretory pathways, which results in the forming of the cytoplasmic virion assembly compartment (AC). We have previously shown that the formation of AC in murine CMV- (MCMV) infected cells begins in the early phase of infection (at 4-6 hpi) with the pre-AC establishment. Pre-AC comprises membranes derived from the endosomal recycling compartment, early endosomes, and the trans-Golgi network, which is surrounded by fragmented Golgi cisterns. To explore the importance of Arf GTPases in the biogenesis of the pre-AC, we infected Balb 3T3 cells with MCMV and analyzed the expression and intracellular localization of Arf proteins in the early phases (up to 16 hpi) of infection and the development of pre-AC in cells with a knockdown of Arf protein expression by small interfering RNAs (siRNAs). Herein, we show that even in the early phase, MCMVs cause massive reorganization of the Arf system of the host cells and induce the over-recruitment of Arf proteins onto the membranes of pre-AC. Knockdown of Arf1, Arf3, Arf4, or Arf6 impaired the establishment of pre-AC. However, the knockdown of Arf1 and Arf6 also abolished the establishment of infection. Our study demonstrates that Arf GTPases are required for different steps of early cytomegalovirus infection, including the establishment of the pre-AC.
Collapse
Affiliation(s)
- Valentino Pavišić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.P.); (H.M.L.); (P.L.)
| | - Hana Mahmutefendić Lučin
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.P.); (H.M.L.); (P.L.)
- Nursing Department, University North, University Center Varaždin, Jurja Križanića 31b, 42000 Varaždin, Croatia
| | - Gordana Blagojević Zagorac
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.P.); (H.M.L.); (P.L.)
- Nursing Department, University North, University Center Varaždin, Jurja Križanića 31b, 42000 Varaždin, Croatia
| | - Pero Lučin
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.P.); (H.M.L.); (P.L.)
- Nursing Department, University North, University Center Varaždin, Jurja Križanića 31b, 42000 Varaždin, Croatia
| |
Collapse
|
40
|
STING facilitates nuclear import of herpesvirus genome during infection. Proc Natl Acad Sci U S A 2021; 118:2108631118. [PMID: 34385328 DOI: 10.1073/pnas.2108631118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Once inside the host cell, DNA viruses must overcome the physical barrier posed by the nuclear envelope to establish a successful infection. The mechanism underlying this process remains unclear. Here, we show that the herpesvirus exploits the immune adaptor stimulator of interferon genes (STING) to facilitate nuclear import of the viral genome. Following the entry of the viral capsid into the cell, STING binds the viral capsid, mediates capsid docking to the nuclear pore complex via physical interaction, and subsequently enables accumulation of the viral genome in the nucleus. Silencing STING in human cytomegalovirus (HCMV)-susceptible cells inhibited nuclear import of the viral genome and reduced the ensuing viral gene expression. Overexpressing STING increased the host cell's susceptibility to HCMV and herpes simplex virus 1 by improving the nuclear delivery of viral DNA at the early stage of infection. These observations suggest that the proviral activity of STING is conserved and exploited by the herpesvirus family. Intriguingly, in monocytes, which act as latent reservoirs of HCMV, STING deficiency negatively regulated the establishment of HCMV latency and reactivation. Our findings identify STING as a proviral host factor regulating latency and reactivation of herpesviruses.
Collapse
|
41
|
Choi KY, McGregor A. A Fully Protective Congenital CMV Vaccine Requires Neutralizing Antibodies to Viral Pentamer and gB Glycoprotein Complexes but a pp65 T-Cell Response Is Not Necessary. Viruses 2021; 13:v13081467. [PMID: 34452332 PMCID: PMC8402731 DOI: 10.3390/v13081467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 12/23/2022] Open
Abstract
A vaccine against congenital cytomegalovirus infection is a high priority. Guinea pig cytomegalovirus (GPCMV) is the only congenital CMV small animal model. GPCMV encodes essential glycoprotein complexes for virus entry (gB, gH/gL/gO, gM/gN) including a pentamer complex (gH/gL/GP129/GP131/GP133 or PC) for endocytic cell entry. The cohorts for protection against congenital CMV are poorly defined. Neutralizing antibodies to the viral glycoprotein complexes are potentially more important than an immunodominant T-cell response to the pp65 protein. In GPCMV, GP83 (pp65 homolog) is an evasion factor, and the GP83 mutant GPCMV has increased sensitivity to type I interferon. Although GP83 induces a cell-mediated response, a GP83-only-based vaccine strategy has limited efficacy. GPCMV attenuation via GP83 null deletion mutant in glycoprotein PC positive or negative virus was evaluated as live-attenuated vaccine strains (GP83dPC+/PC-). Vaccinated animals induced antibodies to viral glycoprotein complexes, and PC+ vaccinated animals had sterilizing immunity against wtGPCMV challenge. In a pre-conception vaccine (GP83dPC+) study, dams challenged mid-2nd trimester with wtGPCMV had complete protection against congenital CMV infection without detectable virus in pups. An unvaccinated control group had 80% pup transmission rate. Overall, gB and PC antibodies are key for protection against congenital CMV infection, but a response to pp65 is not strictly necessary.
Collapse
|
42
|
Gusev E, Sarapultsev A, Hu D, Chereshnev V. Problems of Pathogenesis and Pathogenetic Therapy of COVID-19 from the Perspective of the General Theory of Pathological Systems (General Pathological Processes). Int J Mol Sci 2021; 22:7582. [PMID: 34299201 PMCID: PMC8304657 DOI: 10.3390/ijms22147582] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 01/18/2023] Open
Abstract
The COVID-19 pandemic examines not only the state of actual health care but also the state of fundamental medicine in various countries. Pro-inflammatory processes extend far beyond the classical concepts of inflammation. They manifest themselves in a variety of ways, beginning with extreme physiology, then allostasis at low-grade inflammation, and finally the shockogenic phenomenon of "inflammatory systemic microcirculation". The pathogenetic core of critical situations, including COVID-19, is this phenomenon. Microcirculatory abnormalities, on the other hand, lie at the heart of a specific type of general pathological process known as systemic inflammation (SI). Systemic inflammatory response, cytokine release, cytokine storm, and thrombo-inflammatory syndrome are all terms that refer to different aspects of SI. As a result, the metabolic syndrome model does not adequately reflect the pathophysiology of persistent low-grade systemic inflammation (ChSLGI). Diseases associated with ChSLGI, on the other hand, are risk factors for a severe COVID-19 course. The review examines the role of hypoxia, metabolic dysfunction, scavenger receptors, and pattern-recognition receptors, as well as the processes of the hemophagocytic syndrome, in the systemic alteration and development of SI in COVID-19.
Collapse
Affiliation(s)
- Evgenii Gusev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia; (E.G.); (V.C.)
| | - Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia; (E.G.); (V.C.)
- School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 200092, China;
| | - Valeriy Chereshnev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia; (E.G.); (V.C.)
| |
Collapse
|
43
|
The Human Cytomegalovirus Protein UL116 Interacts with the Viral Endoplasmic-Reticulum-Resident Glycoprotein UL148 and Promotes the Incorporation of gH/gL Complexes into Virions. J Virol 2021; 95:e0220720. [PMID: 34011552 DOI: 10.1128/jvi.02207-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Heterodimers of glycoproteins H (gH) and L (gL) comprise a basal element of the viral membrane fusion machinery conserved across herpesviruses. In human cytomegalovirus (HCMV), the glycoprotein UL116 assembles onto gH at a position similar to that occupied by gL, forming a heterodimer that is incorporated into virions. Here, we show that UL116 promotes the expression of gH/gL complexes and is required for the efficient production of infectious cell-free virions. UL116-null mutants show a 10-fold defect in production of infectious cell-free virions from infected fibroblasts and epithelial cells. This defect is accompanied by reduced expression of two disulfide-linked gH/gL complexes that play crucial roles in viral entry: the heterotrimer of gH/gL with glycoprotein O (gO) and the pentameric complex of gH/gL with UL128, UL130, and UL131. Kifunensine, a mannosidase inhibitor that interferes with endoplasmic reticulum (ER)-associated degradation (ERAD) of terminally misfolded glycoproteins, restored levels of gH, gL, and gO in UL116-null-infected cells, indicating that constituents of HCMV gH complexes are unstable in the absence of UL116. Further, we find that gH/UL116 complexes are abundant in virions, since a major gH species not covalently linked to other glycoproteins, which has long been observed in the literature, is detected from wild-type but not UL116-null virions. Interestingly, UL116 coimmunoprecipitates with UL148, a viral ER-resident glycoprotein that attenuates ERAD of gO, and we observe elevated levels of UL116 in UL148-null virions. Collectively, our findings argue that UL116 is a chaperone for gH that supports the assembly, maturation, and incorporation of gH/gL complexes into virions. IMPORTANCE HCMV is a betaherpesvirus that causes dangerous opportunistic infections in immunocompromised patients as well as in the immune-naive fetus and preterm infants. The potential of the virus to enter new host cells is governed in large part by two alternative viral glycoprotein H (gH)/glycoprotein L (gL) complexes that play important roles in entry: gH/gL/gO and gH/gL/UL128-131. A recently identified virion gH complex, comprised of gH bound to UL116, adds a new layer of complexity to the mechanisms that contribute to HCMV infectivity. Here, we show that UL116 promotes the expression of gH/gL complexes and that UL116 interacts with the viral ER-resident glycoprotein UL148, a factor that supports the expression of gH/gL/gO. Overall, our results suggest that UL116 is a chaperone for gH. These findings have important implications for understanding HCMV cell tropism as well as for the development of vaccines against the virus.
Collapse
|
44
|
Dos Santos Souza I, Ziveri J, Bouzinba-Segard H, Morand P, Bourdoulous S. Meningococcus, this famous unknown. C R Biol 2021; 344:127-143. [PMID: 34213851 DOI: 10.5802/crbiol.56] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 01/04/2023]
Abstract
Neisseria meningitidis (meningococcus) is a Gram-negative bacterium responsible for two devastating forms of invasive diseases: purpura fulminans and meningitis. Since the first description of the epidemic nature of the illness at the dawn of the nineteenth century, the scientific knowledge of meningococcal infection has increased greatly. Major advances have been made in the management of the disease with the advent of antimicrobial therapy and the implementation of meningococcal vaccines. More recently, an extensive knowledge has been accumulated on meningococcal interaction with its human host, revealing key processes involved in disease progression and new promising therapeutic approaches.
Collapse
Affiliation(s)
- Isabel Dos Santos Souza
- CNRS, UMR8104, Paris, France.,Inserm, U1016, Institut Cochin, Paris, France.,Université de Paris, Faculté de Santé, France
| | - Jason Ziveri
- Inserm, U1016, Institut Cochin, Paris, France.,Inserm, U1016, Institut Cochin, Paris, France.,Université de Paris, Faculté de Santé, France
| | - Haniaa Bouzinba-Segard
- Inserm, U1016, Institut Cochin, Paris, France.,Inserm, U1016, Institut Cochin, Paris, France.,Université de Paris, Faculté de Santé, France
| | - Philippe Morand
- Inserm, U1016, Institut Cochin, Paris, France.,Inserm, U1016, Institut Cochin, Paris, France.,Université de Paris, Faculté de Santé, France
| | - Sandrine Bourdoulous
- Inserm, U1016, Institut Cochin, Paris, France.,Inserm, U1016, Institut Cochin, Paris, France.,Université de Paris, Faculté de Santé, France
| |
Collapse
|
45
|
Role of host factors in SARS-CoV-2 entry. J Biol Chem 2021; 297:100847. [PMID: 34058196 PMCID: PMC8160279 DOI: 10.1016/j.jbc.2021.100847] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
The zoonotic transmission of highly pathogenic coronaviruses into the human population is a pressing concern highlighted by the ongoing SARS-CoV-2 pandemic. Recent work has helped to illuminate much about the mechanisms of SARS-CoV-2 entry into the cell, which determines host- and tissue-specific tropism, pathogenicity, and zoonotic transmission. Here we discuss current findings on the factors governing SARS-CoV-2 entry. We first reviewed key features of the viral spike protein (S) mediating fusion of the viral envelope and host cell membrane through binding to the SARS-CoV-2 receptor, angiotensin-converting enzyme 2. We then examined the roles of host proteases including transmembrane protease serine 2 and cathepsins in processing S for virus entry and the impact of this processing on endosomal and plasma membrane virus entry routes. We further discussed recent work on several host cofactors that enhance SARS-CoV-2 entry including Neuropilin-1, CD147, phosphatidylserine receptors, heparan sulfate proteoglycans, sialic acids, and C-type lectins. Finally, we discussed two key host restriction factors, i.e., interferon-induced transmembrane proteins and lymphocyte antigen 6 complex locus E, which can disrupt SARS-CoV-2 entry. The features of SARS-CoV-2 are presented in the context of other human coronaviruses, highlighting unique aspects. In addition, we identify the gaps in understanding of SARS-CoV-2 entry that will need to be addressed by future studies.
Collapse
|
46
|
Human Immunodeficiency Viruses Pseudotyped with SARS-CoV-2 Spike Proteins Infect a Broad Spectrum of Human Cell Lines through Multiple Entry Mechanisms. Viruses 2021; 13:v13060953. [PMID: 34064066 PMCID: PMC8224355 DOI: 10.3390/v13060953] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022] Open
Abstract
Severe acute respiratory syndrome-related coronavirus (SARS-CoV-2), the causative agent of coronavirus disease 19 (COVID-19), enters cells through attachment to the human angiotensin converting enzyme 2 (hACE2) via the receptor-binding domain (RBD) in the surface/spike (S) protein. Several pseudotyped viruses expressing SARS-CoV-2 S proteins are available, but many of these can only infect hACE2-overexpressing cell lines. Here, we report the use of a simple, two-plasmid, pseudotyped virus system comprising a SARS-CoV-2 spike-expressing plasmid and an HIV vector with or without vpr to investigate the SARS-CoV-2 entry event in various cell lines. When an HIV vector without vpr was used, pseudotyped SARS-CoV-2 viruses produced in the presence of fetal bovine serum (FBS) were able to infect only engineered hACE2-overexpressing cell lines, whereas viruses produced under serum-free conditions were able to infect a broader range of cells, including cells without hACE2 overexpression. When an HIV vector containing vpr was used, pseudotyped viruses were able to infect a broad spectrum of cell types regardless of whether viruses were produced in the presence or absence of FBS. Infection sensitivities of various cell types did not correlate with mRNA abundance of hACE2, TMPRSS2, or TMPRSS4. Pseudotyped SARS-CoV-2 viruses and replication-competent SARS-CoV-2 virus were equally sensitive to neutralization by an anti-spike RBD antibody in cells with high abundance of hACE2. However, the anti-spike RBD antibody did not block pseudotyped viral entry into cell lines with low abundance of hACE2. We further found that CD147 was involved in viral entry in A549 cells with low abundance of hACE2. Thus, our assay is useful for drug and antibody screening as well as for investigating cellular receptors, including hACE2, CD147, and tyrosine-protein kinase receptor UFO (AXL), for the SARS-CoV-2 entry event in various cell lines.
Collapse
|
47
|
Lee BJ, Min CK, Hancock M, Streblow DN, Caposio P, Goodrum FD, Yurochko AD. Human Cytomegalovirus Host Interactions: EGFR and Host Cell Signaling Is a Point of Convergence Between Viral Infection and Functional Changes in Infected Cells. Front Microbiol 2021; 12:660901. [PMID: 34025614 PMCID: PMC8138183 DOI: 10.3389/fmicb.2021.660901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/07/2021] [Indexed: 12/22/2022] Open
Abstract
Viruses have evolved diverse strategies to manipulate cellular signaling pathways in order to promote infection and/or persistence. Human cytomegalovirus (HCMV) possesses a number of unique properties that allow the virus to alter cellular events required for infection of a diverse array of host cell types and long-term persistence. Of specific importance is infection of bone marrow derived and myeloid lineage cells, such as peripheral blood monocytes and CD34+ hematopoietic progenitor cells (HPCs) because of their essential role in dissemination of the virus and for the establishment of latency. Viral induced signaling through the Epidermal Growth Factor Receptor (EGFR) and other receptors such as integrins are key control points for viral-induced cellular changes and productive and latent infection in host organ systems. This review will explore the current understanding of HCMV strategies utilized to hijack cellular signaling pathways, such as EGFR, to promote the wide-spread dissemination and the classic life-long herpesvirus persistence.
Collapse
Affiliation(s)
- Byeong-Jae Lee
- Department of Microbiology & Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States.,Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States.,Center of Excellence for Emerging Viral Threats, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
| | - Chan-Ki Min
- Department of Microbiology & Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States.,Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States.,Center of Excellence for Emerging Viral Threats, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
| | - Meaghan Hancock
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, United States
| | - Daniel N Streblow
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, United States
| | - Patrizia Caposio
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, United States
| | | | - Andrew D Yurochko
- Department of Microbiology & Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States.,Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States.,Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States.,Center of Excellence in Arthritis and Rheumatology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
| |
Collapse
|
48
|
Guinea pig cytomegalovirus protective T cell antigen GP83 is a functional pp65 homolog for innate immune evasion and pentamer dependent virus tropism. J Virol 2021; 95:JVI.00324-21. [PMID: 33658350 PMCID: PMC8139670 DOI: 10.1128/jvi.00324-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The guinea pig is the only small animal model for congenital CMV but requires species-specific guinea pig cytomegalovirus (GPCMV). Tegument protein GP83 is the presumed homolog of HCMV pp65 but gene duplication in the UL82-UL84 homolog locus in various animal CMV made it unclear if GP83 was a functional homolog. A GP83 null deletion mutant GPCMV (GP83dPC+) generated in the backdrop of glycoprotein pentamer complex (PC) positive virus, required for non-fibroblast infection, had normal growth kinetics on fibroblasts but was highly impaired on epithelial and trophoblast cells. GP83dPC+ virus was highly sensitive to IFN-I suggesting GP83 had an innate immune evasion function. GP83 interacted with cellular DNA sensors guinea pig IFI16 and cGAS indicating a role in the cGAS/STING pathway. Ectopically expressed GP83 in trophoblast cells restored GP83dPC+ virus growth. Additionally, mutant virus growth was restored in epithelial cells by expression of bovine viral diarrhea virus (BVDV) NPRO protein targeting IRF3 as part of the cGAS/STING pathway or alternatively by expression of fibroblast cell receptor PDGFRA. HCMV pp65 is a T cell target antigen and a recombinant adenovirus encoding GP83 was evaluated as a vaccine. In GPCMV challenge studies, vaccinated animals had varying levels of protection against wild type virus with a protective response against 22122 prototype strain but little protection against a novel clinical strain of GPCMV (TAMYC), despite 100% identity in GP83 protein sequences. Overall, GP83 is a functional pp65 homolog with novel importance for epithelial cell infection but a GP83 T cell response provides limited vaccine efficacy.ImportanceCongenital CMV (cCMV) is a leading cause of cognitive impairment and deafness in newborns and a vaccine is a high priority. The guinea pig is the only small animal model for cCMV but requires guinea pig cytomegalovirus (GPCMV). The translational impact of GPCMV research is potentially reduced if the virus does not encode functional HCMV homolog proteins. This study demonstrates that tegument protein GP83 (pp65 homolog) is involved in innate immune evasion and highly important for infection of non-fibroblast cells via the viral glycoprotein pentamer complex (PC)-dependent endocytic entry pathway. The PC pathway is highly significant for virus dissemination and disease in the host, including cCMV. A GP83 candidate Ad-vaccine strategy in animals induced a cell-mediated response but failed to provide cross strain protection against a novel clinical strain of GPCMV. Results suggest that the pp65 antigen provides very limited efficacy as a stand-alone vaccine, especially in cross strain protection.
Collapse
|
49
|
Abstract
Human cytomegalovirus (HCMV) entry into host cells is a complex process involving interactions between an array of viral glycoproteins with multiple host cell surface receptors. A significant amount of research has been devoted toward identifying these glycoprotein and cellular receptor interactions as the broad cellular tropism of HCMV suggests a highly regulated yet adaptable process that controls viral binding and penetration. However, deciphering the initial binding and cellular receptor activation events by viral glycoproteins remains challenging. The relatively low abundance of receptors and/or interactions with glycoproteins during viral entry, the hydrophobicity of membrane receptors, and the rapid degradation and recycling of activated receptors have complicated the analysis of HCMV entry and the cellular signaling pathways initiated by HCMV engagement to the host membrane. Here, we describe the different methodologies used in our laboratory and others to analyze the interactions between HCMV glycoproteins and host cellular receptors during the entry stage of the viral life cycle.
Collapse
|
50
|
Griffiths P, Reeves M. Pathogenesis of human cytomegalovirus in the immunocompromised host. Nat Rev Microbiol 2021; 19:759-773. [PMID: 34168328 PMCID: PMC8223196 DOI: 10.1038/s41579-021-00582-z] [Citation(s) in RCA: 325] [Impact Index Per Article: 81.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2021] [Indexed: 12/16/2022]
Abstract
Human cytomegalovirus (HCMV) is a herpesvirus that infects ~60% of adults in developed countries and more than 90% in developing countries. Usually, it is controlled by a vigorous immune response so that infections are asymptomatic or symptoms are mild. However, if the immune system is compromised, HCMV can replicate to high levels and cause serious end organ disease. Substantial progress is being made in understanding the natural history and pathogenesis of HCMV infection and disease in the immunocompromised host. Serial measures of viral load defined the dynamics of HCMV replication and are now used routinely to allow intervention with antiviral drugs in individual patients. They are also used as pharmacodynamic read-outs to evaluate prototype vaccines that may protect against HCMV replication and to define immune correlates of this protection. This novel information is informing the design of randomized controlled trials of new antiviral drugs and vaccines currently under evaluation. In this Review, we discuss immune responses to HCMV and countermeasures deployed by the virus, the establishment of latency and reactivation from it, exogenous reinfection with additional strains, pathogenesis, development of end organ disease, indirect effects of infection, immune correlates of control of replication, current treatment strategies and the evaluation of novel vaccine candidates.
Collapse
Affiliation(s)
- Paul Griffiths
- Institute for Immunity and Transplantation, University College London, London, UK.
| | - Matthew Reeves
- grid.83440.3b0000000121901201Institute for Immunity and Transplantation, University College London, London, UK
| |
Collapse
|