1
|
Kalecký K, Buitrago L, Alarcon JM, Singh A, Bottiglieri T, Kaddurah-Daouk R, Hernández AI. Rescue of hippocampal synaptic plasticity and memory performance by Fingolimod (FTY720) in APP/PS1 model of Alzheimer's disease is accompanied by correction in metabolism of sphingolipids, polyamines, and phospholipid saturation composition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633452. [PMID: 39868189 PMCID: PMC11761635 DOI: 10.1101/2025.01.17.633452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Previously, our metabolomic, transcriptomic, and genomic studies characterized the ceramide/sphingomyelin pathway as a therapeutic target in Alzheimer's disease, and we demonstrated that FTY720, a sphingosine-1-phospahate receptor modulator approved for treatment of multiple sclerosis, recovers synaptic plasticity and memory in APP/PS1 mice. To further investigate how FTY720 rescues the pathology, we performed metabolomic analysis in brain, plasma, and liver of trained APP/PS1 and wild-type mice. APP/PS1 mice showed area-specific brain disturbances in polyamines, phospholipids, and sphingolipids. Most changes were completely or partially normalized in FTY720-treated subjects, indicating rebalancing the "sphingolipid rheostat", reactivating phosphatidylethanolamine synthesis via mitochondrial phosphatidylserine decarboxylase pathway, and normalizing polyamine levels that support mitochondrial activity. Synaptic plasticity and memory were rescued, with spermidine synthesis in temporal cortex best corresponding to hippocampal CA3-CA1 plasticity normalization. FTY720 effects, also reflected in other pathways, are consistent with promotion of mitochondrial function, synaptic plasticity, and anti-inflammatory environment, while reducing pro-apoptotic and pro-inflammatory signals.
Collapse
Affiliation(s)
- Karel Kalecký
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Luna Buitrago
- Neural and Behavioral Sciences Program, School of Graduate Studies, Department of Neurology/Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Juan Marcos Alarcon
- Neural and Behavioral Sciences Program, School of Graduate Studies, The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Pathology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Abanish Singh
- Department of Psychiatry and Behavioral Sciences; and Department of Medicine, Duke University School of Medicine, Durham, Durham, NC, USA
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioural Sciences, Duke University, Durham, NC, USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Alejandro Iván Hernández
- Neural and Behavioral Sciences Program, School of Graduate Studies, The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Pathology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | | |
Collapse
|
2
|
Kumar V, Lee KY, Acharya A, Babik MS, Christian-Hinman CA, Rhodes JS, Tsai NP. mGluR7 allosteric modulator AMN082 corrects protein synthesis and pathological phenotypes in FXS. EMBO Mol Med 2024; 16:506-522. [PMID: 38374465 PMCID: PMC10940663 DOI: 10.1038/s44321-024-00038-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024] Open
Abstract
Fragile X syndrome (FXS) is the leading cause of inherited autism and intellectual disabilities. Aberrant protein synthesis due to the loss of fragile X messenger ribonucleoprotein (FMRP) is the major defect in FXS, leading to a plethora of cellular and behavioral abnormalities. However, no treatments are available to date. In this study, we found that activation of metabotropic glutamate receptor 7 (mGluR7) using a positive allosteric modulator named AMN082 represses protein synthesis through ERK1/2 and eIF4E signaling in an FMRP-independent manner. We further demonstrated that treatment of AMN082 leads to a reduction in neuronal excitability, which in turn ameliorates audiogenic seizure susceptibility in Fmr1 KO mice, the FXS mouse model. When evaluating the animals' behavior, we showed that treatment of AMN082 reduces repetitive behavior and improves learning and memory in Fmr1 KO mice. This study uncovers novel functions of mGluR7 and AMN082 and suggests the activation of mGluR7 as a potential therapeutic approach for treating FXS.
Collapse
Affiliation(s)
- Vipendra Kumar
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Kwan Young Lee
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Anirudh Acharya
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Matthew S Babik
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Catherine A Christian-Hinman
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Justin S Rhodes
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA
| | - Nien-Pei Tsai
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
3
|
Ou M, Cho HY, Fu J, Thein TZ, Wang W, Swenson SD, Minea RO, Stathopoulos A, Schönthal AH, Hofman FM, Tang L, Chen TC. Inhibition of autophagy and induction of glioblastoma cell death by NEO214, a perillyl alcohol-rolipram conjugate. Autophagy 2023; 19:3169-3188. [PMID: 37545052 PMCID: PMC10621246 DOI: 10.1080/15548627.2023.2242696] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 07/26/2023] [Indexed: 08/08/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor, exhibiting a high rate of recurrence and poor prognosis. Surgery and chemoradiation with temozolomide (TMZ) represent the standard of care, but, in most cases, the tumor develops resistance to further treatment and the patients succumb to disease. Therefore, there is a great need for the development of well-tolerated, effective drugs that specifically target chemoresistant gliomas. NEO214 was generated by covalently conjugating rolipram, a PDE4 (phosphodiesterase 4) inhibitor, to perillyl alcohol, a naturally occurring monoterpene related to limonene. Our previous studies in preclinical models showed that NEO214 harbors anticancer activity, is able to cross the blood-brain barrier (BBB), and is remarkably well tolerated. In the present study, we investigated its mechanism of action and discovered inhibition of macroautophagy/autophagy as a key component of its anticancer effect in glioblastoma cells. We show that NEO214 prevents autophagy-lysosome fusion, thereby blocking autophagic flux and triggering glioma cell death. This process involves activation of MTOR (mechanistic target of rapamycin kinase) activity, which leads to cytoplasmic accumulation of TFEB (transcription factor EB), a critical regulator of genes involved in the autophagy-lysosomal pathway, and consequently reduced expression of autophagy-lysosome genes. When combined with chloroquine and TMZ, the anticancer impact of NEO214 is further potentiated and unfolds against TMZ-resistant cells as well. Taken together, our findings characterize NEO214 as a novel autophagy inhibitor that could become useful for overcoming chemoresistance in glioblastoma.Abbreviations: ATG: autophagy related; BAFA1: bafilomycin A1; BBB: blood brain barrier; CQ: chloroquine; GBM: glioblastoma; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MGMT: O-6-methylguanine-DNA methyltransferase; MTOR: mechanistic target of rapamycin kinase; MTORC: MTOR complex; POH: perillyl alcohol; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB; TMZ: temozolomide.
Collapse
Affiliation(s)
- Mengting Ou
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Hee-Yeon Cho
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Chemistry, Physics, and Engineering, Biola University, La Mirada, CA, USA
| | - Jie Fu
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Thu Zan Thein
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Weijun Wang
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Stephen D. Swenson
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Radu O. Minea
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Apostolos Stathopoulos
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Axel H. Schönthal
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Florence M. Hofman
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Thomas C. Chen
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
4
|
Shi F, Collins S. Regulation of mTOR Signaling: Emerging Role of Cyclic Nucleotide-Dependent Protein Kinases and Implications for Cardiometabolic Disease. Int J Mol Sci 2023; 24:11497. [PMID: 37511253 PMCID: PMC10380887 DOI: 10.3390/ijms241411497] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The mechanistic target of rapamycin (mTOR) kinase is a central regulator of cell growth and metabolism. It is the catalytic subunit of two distinct large protein complexes, mTOR complex 1 (mTORC1) and mTORC2. mTOR activity is subjected to tight regulation in response to external nutrition and growth factor stimulation. As an important mechanism of signaling transduction, the 'second messenger' cyclic nucleotides including cAMP and cGMP and their associated cyclic nucleotide-dependent kinases, including protein kinase A (PKA) and protein kinase G (PKG), play essential roles in mediating the intracellular action of a variety of hormones and neurotransmitters. They have also emerged as important regulators of mTOR signaling in various physiological and disease conditions. However, the mechanism by which cAMP and cGMP regulate mTOR activity is not completely understood. In this review, we will summarize the earlier work establishing the ability of cAMP to dampen mTORC1 activation in response to insulin and growth factors and then discuss our recent findings demonstrating the regulation of mTOR signaling by the PKA- and PKG-dependent signaling pathways. This signaling framework represents a new non-canonical regulation of mTOR activity that is independent of AKT and could be a novel mechanism underpinning the action of a variety of G protein-coupled receptors that are linked to the mTOR signaling network. We will further review the implications of these signaling events in the context of cardiometabolic disease, such as obesity, non-alcoholic fatty liver disease, and cardiac remodeling. The metabolic and cardiac phenotypes of mouse models with targeted deletion of Raptor and Rictor, the two essential components for mTORC1 and mTORC2, will be summarized and discussed.
Collapse
Affiliation(s)
- Fubiao Shi
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sheila Collins
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
5
|
Skogestad J, Albert I, Hougen K, Lothe GB, Lunde M, Eken OS, Veras I, Huynh NTT, Børstad M, Marshall S, Shen X, Louch WE, Robinson EL, Cleveland JC, Ambardekar AV, Schwisow JA, Jonas E, Calejo AI, Morth JP, Taskén K, Melleby AO, Lunde PK, Sjaastad I, Carlson CR, Aronsen JM. Disruption of Phosphodiesterase 3A Binding to SERCA2 Increases SERCA2 Activity and Reduces Mortality in Mice With Chronic Heart Failure. Circulation 2023; 147:1221-1236. [PMID: 36876489 DOI: 10.1161/circulationaha.121.054168] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 02/08/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Increasing SERCA2 (sarco[endo]-plasmic reticulum Ca2+ ATPase 2) activity is suggested to be beneficial in chronic heart failure, but no selective SERCA2-activating drugs are available. PDE3A (phosphodiesterase 3A) is proposed to be present in the SERCA2 interactome and limit SERCA2 activity. Disruption of PDE3A from SERCA2 might thus be a strategy to develop SERCA2 activators. METHODS Confocal microscopy, 2-color direct stochastic optical reconstruction microscopy, proximity ligation assays, immunoprecipitations, peptide arrays, and surface plasmon resonance were used to investigate colocalization between SERCA2 and PDE3A in cardiomyocytes, map the SERCA2/PDE3A interaction sites, and optimize disruptor peptides that release PDE3A from SERCA2. Functional experiments assessing the effect of PDE3A-binding to SERCA2 were performed in cardiomyocytes and HEK293 vesicles. The effect of SERCA2/PDE3A disruption by the disruptor peptide OptF (optimized peptide F) on cardiac mortality and function was evaluated during 20 weeks in 2 consecutive randomized, blinded, and controlled preclinical trials in a total of 148 mice injected with recombinant adeno-associated virus 9 (rAAV9)-OptF, rAAV9-control (Ctrl), or PBS, before undergoing aortic banding (AB) or sham surgery and subsequent phenotyping with serial echocardiography, cardiac magnetic resonance imaging, histology, and functional and molecular assays. RESULTS PDE3A colocalized with SERCA2 in human nonfailing, human failing, and rodent myocardium. Amino acids 277-402 of PDE3A bound directly to amino acids 169-216 within the actuator domain of SERCA2. Disruption of PDE3A from SERCA2 increased SERCA2 activity in normal and failing cardiomyocytes. SERCA2/PDE3A disruptor peptides increased SERCA2 activity also in the presence of protein kinase A inhibitors and in phospholamban-deficient mice, and had no effect in mice with cardiomyocyte-specific inactivation of SERCA2. Cotransfection of PDE3A reduced SERCA2 activity in HEK293 vesicles. Treatment with rAAV9-OptF reduced cardiac mortality compared with rAAV9-Ctrl (hazard ratio, 0.26 [95% CI, 0.11 to 0.63]) and PBS (hazard ratio, 0.28 [95% CI, 0.09 to 0.90]) 20 weeks after AB. Mice injected with rAAV9-OptF had improved contractility and no difference in cardiac remodeling compared with rAAV9-Ctrl after aortic banding. CONCLUSIONS Our results suggest that PDE3A regulates SERCA2 activity through direct binding, independently of the catalytic activity of PDE3A. Targeting the SERCA2/PDE3A interaction prevented cardiac mortality after AB, most likely by improving cardiac contractility.
Collapse
Affiliation(s)
- Jonas Skogestad
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Ingrid Albert
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Karina Hougen
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Gustav B Lothe
- Department of Pharmacology, Oslo University Hospital, Norway (G.B.L.)
- Bjørknes College, Oslo, Norway (G.B.L., J.M.A.)
| | - Marianne Lunde
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Olav Søvik Eken
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
- Department of Molecular Medicine, University of Oslo, Norway (O.S.E., I.V., N.T.T.-H., A.O.M., J.M.A.)
| | - Ioanni Veras
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
- Department of Molecular Medicine, University of Oslo, Norway (O.S.E., I.V., N.T.T.-H., A.O.M., J.M.A.)
| | - Ngoc Trang Thi Huynh
- Department of Molecular Medicine, University of Oslo, Norway (O.S.E., I.V., N.T.T.-H., A.O.M., J.M.A.)
| | - Mira Børstad
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Serena Marshall
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Xin Shen
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - William E Louch
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Emma Louise Robinson
- Division of Cardiology, Department of Medicine (E.L.R., A.V.A., J.A.S., E.J.), University of Colorado Anschutz Medical Campus, Aurora
| | - Joseph C Cleveland
- Department of Surgery (J.C.C.), University of Colorado Anschutz Medical Campus, Aurora
| | - Amrut V Ambardekar
- Division of Cardiology, Department of Medicine (E.L.R., A.V.A., J.A.S., E.J.), University of Colorado Anschutz Medical Campus, Aurora
| | - Jessica A Schwisow
- Division of Cardiology, Department of Medicine (E.L.R., A.V.A., J.A.S., E.J.), University of Colorado Anschutz Medical Campus, Aurora
| | - Eric Jonas
- Division of Cardiology, Department of Medicine (E.L.R., A.V.A., J.A.S., E.J.), University of Colorado Anschutz Medical Campus, Aurora
| | - Ana I Calejo
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership (A.I.C.C., J.P.M., K.T.), Oslo University Hospital and University of Oslo, Norway
| | - Jens Preben Morth
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership (A.I.C.C., J.P.M., K.T.), Oslo University Hospital and University of Oslo, Norway
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby (J.P.M.)
| | - Kjetil Taskén
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership (A.I.C.C., J.P.M., K.T.), Oslo University Hospital and University of Oslo, Norway
- Institute for Cancer Research, Oslo University Hospital and Institute for Clinical Medicine, University of Oslo, Norway (K.T.)
| | - Arne Olav Melleby
- Department of Molecular Medicine, University of Oslo, Norway (O.S.E., I.V., N.T.T.-H., A.O.M., J.M.A.)
| | - Per Kristian Lunde
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Cathrine Rein Carlson
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Jan Magnus Aronsen
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
- Bjørknes College, Oslo, Norway (G.B.L., J.M.A.)
- Department of Molecular Medicine, University of Oslo, Norway (O.S.E., I.V., N.T.T.-H., A.O.M., J.M.A.)
| |
Collapse
|
6
|
Mechanisms of Male Reproductive Toxicity of Polybrominated Diphenyl Ethers. Int J Mol Sci 2022; 23:ijms232214229. [PMID: 36430706 PMCID: PMC9693139 DOI: 10.3390/ijms232214229] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Polybrominated diphenyl ethers (PBDE) are a group of flame retardants used in a variety of artificial materials. Despite being phased out in most industrial countries, they remain in the environment and human tissues due to their persistence, lipophilicity, and bioaccumulation. Populational and experimental studies demonstrate the male reproductive toxicity of PBDEs including increased incidence of genital malformations (hypospadias and cryptorchidism), altered weight of testes and other reproductive tissues, altered testes histology and transcriptome, decreased sperm production and sperm quality, altered epigenetic regulation of developmental genes in spermatozoa, and altered secretion of reproductive hormones. A broad range of mechanistic hypotheses of PBDE reproductive toxicity has been suggested. Among these hypotheses, oxidative stress, the disruption of estrogenic signaling, and mitochondria disruption are affected by PBDE concentrations much higher than concentrations found in human tissues, making them unlikely links between exposures and adverse reproductive outcomes in the general population. Robust evidence suggests that at environmentally relevant doses, PBDEs and their metabolites may affect male reproductive health via mechanisms including AR antagonism and the disruption of a complex network of metabolic signaling.
Collapse
|
7
|
Kosillo P, Ahmed KM, Aisenberg EE, Karalis V, Roberts BM, Cragg SJ, Bateup HS. Dopamine neuron morphology and output are differentially controlled by mTORC1 and mTORC2. eLife 2022; 11:e75398. [PMID: 35881440 PMCID: PMC9328766 DOI: 10.7554/elife.75398] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/08/2022] [Indexed: 02/07/2023] Open
Abstract
The mTOR pathway is an essential regulator of cell growth and metabolism. Midbrain dopamine neurons are particularly sensitive to mTOR signaling status as activation or inhibition of mTOR alters their morphology and physiology. mTOR exists in two distinct multiprotein complexes termed mTORC1 and mTORC2. How each of these complexes affect dopamine neuron properties, and whether they have similar or distinct functions is unknown. Here, we investigated this in mice with dopamine neuron-specific deletion of Rptor or Rictor, which encode obligatory components of mTORC1 or mTORC2, respectively. We find that inhibition of mTORC1 strongly and broadly impacts dopamine neuron structure and function causing somatodendritic and axonal hypotrophy, increased intrinsic excitability, decreased dopamine production, and impaired dopamine release. In contrast, inhibition of mTORC2 has more subtle effects, with selective alterations to the output of ventral tegmental area dopamine neurons. Disruption of both mTOR complexes leads to pronounced deficits in dopamine release demonstrating the importance of balanced mTORC1 and mTORC2 signaling for dopaminergic function.
Collapse
Affiliation(s)
- Polina Kosillo
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Kamran M Ahmed
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Erin E Aisenberg
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| | - Vasiliki Karalis
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Bradley M Roberts
- Department of Physiology, Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
| | - Stephanie J Cragg
- Department of Physiology, Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
| | - Helen S Bateup
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
- Chan Zuckerberg Biohub, San FranciscoSan FranciscoUnited States
| |
Collapse
|
8
|
Li Y, Cheng Y, Zhou Y, Du H, Zhang C, Zhao Z, Chen Y, Zhou Z, Mei J, Wu W, Chen M. High fat diet-induced obesity leads to depressive and anxiety-like behaviors in mice via AMPK/mTOR-mediated autophagy. Exp Neurol 2021; 348:113949. [PMID: 34902357 DOI: 10.1016/j.expneurol.2021.113949] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022]
Abstract
Depression is one of the most common mental illnesses in modern society. In recent years, several studies show that there are disturbances in lipid metabolism in depressed patients. High-fat diet may lead to anxiety and depression, but the mechanisms involved remain unclear. In our study, we found that 8 weeks of high-fat feeding effectively induced metabolic disorders, including obesity and hyperlipidemia in mice. Interestingly, the mice also showed depressive and anxiety-like behaviors. We further found activated microglia and astrocyte, increased neuroinflammation, decreased autophagy and BDNF levels in mice after high-fat feeding. Besides, high-fat feeding can also inhibit AMPK phosphorylation and induce mTOR phosphorylation. After treating with the mTOR inhibitor rapamycin, autophagy and BDNF levels were elevated. The number of activated microglia and astrocyte, and pro-inflammation levels were reduced. Besides, rapamycin can also reduce the body weight and serum lipid level in high fat feeding mice. Depressive and anxiety-like behaviors were also ameliorated to some extent after rapamycin treatment. In summary, these results suggest that high-fat diet-induced obesity may lead to depressive and anxiety-like behaviors in mice by inhibiting AMPK phosphorylation and promoting mTOR shift to phosphorylation to inhibit autophagy. Therefore, improving lipid metabolism or enhancing autophagy through the AMPK/mTOR pathway could be potential targets for the treatment of obesity depression.
Collapse
Affiliation(s)
- Yong Li
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Yujie Cheng
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Yuan Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Hongmei Du
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Cui Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Zhentao Zhao
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Yuenan Chen
- Department of Clinical Pharmacy, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Zhongnan Zhou
- Department of Clinical Pharmacy, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jinyu Mei
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China.
| | - Wenning Wu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| | - Ming Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
9
|
Yang Y, Xiang P, Chen Q, Luo Y, Wang H, Li H, Yang L, Hu C, Zhang J, Li Y, Xia H, Chen Z, Yang J. The imbalance of PGD2-DPs pathway is involved in the type 2 diabetes brain injury by regulating autophagy. Int J Biol Sci 2021; 17:3993-4004. [PMID: 34671214 PMCID: PMC8495389 DOI: 10.7150/ijbs.60149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 09/07/2021] [Indexed: 12/17/2022] Open
Abstract
Prostaglandin D2 (PGD2) is the most abundant prostaglandin in the brain, but its involvement in brain damage caused by type 2 diabetes (T2D) has not been reported. In the present study, we found that increased PGD2 content is related to the inhibition of autophagy, which aggravates brain damage in T2D, and may be involved in the imbalanced expression of the corresponding PGD2 receptors DP1 and DP2. We demonstrated that DP2 inhibited autophagy and promotedT2D-induced brain damage by activating the PI3K/AKT/mTOR pathway, whereas DP1enhanced autophagy and amelioratedT2D brain damage by activating the cAMP/PKA pathway. In a T2D rat model, DP1 expression was decreased, and DP2 expression was increased; therefore, the imbalance in PGD2-DPs may be involved in T2D brain damage through the regulation of autophagy. However, there have been no reports on whether PKA can directly inhibit mTOR. The PKA catalytic subunit (PKA-C) has three subtypes (α, β and γ), and γ is not expressed in the brain. Subsequently, we suggested that PKA could directly interact with mTOR through PKA-C(α) and PKA-C(β). Our results suggest that the imbalance in PGD2-DPs is related to changes in autophagy levels in T2D brain damage, and PGD2 is involved in T2D brain damage by promoting autophagy via DP1-PKA/mTOR and inhibiting autophagy via DP2-PI3K/AKT/mTOR.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China.,Department of Pharmacology, Chongqing Health Center for Women and Children Chongqing 400016, China
| | - Pu Xiang
- Department of pharmacy,Dianjiang People's Hospital of Chongqing, Dianjiang, Chongqing 408300, China
| | - Qi Chen
- Pharmacy department of GuiZhou Provincial People,s Hospital, Guiyang 550000, China
| | - Ying Luo
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Hong Wang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Huan Li
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Lu Yang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Congli Hu
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Jiahua Zhang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Yuke Li
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Hui Xia
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Zhihao Chen
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Junqing Yang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| |
Collapse
|
10
|
Ashraf S, Ashraf N, Yilmaz G, Harmancey R. Crosstalk between beta-adrenergic and insulin signaling mediates mechanistic target of rapamycin hyperactivation in liver of high-fat diet-fed male mice. Physiol Rep 2021; 9:e14958. [PMID: 34231324 PMCID: PMC8261682 DOI: 10.14814/phy2.14958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 11/24/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease. While increased nutrient intake and sympathetic activity have been associated with the disease, the pathogenesis of NAFLD remains incompletely understood. We investigated the impact of the interaction of high dietary fat and sugar intake with increased beta-adrenergic receptor (β-AR) signaling on the activity of nutrient-sensing pathways and fuel storage in the liver. C57BL/6J mice were fed a standard rodent diet (STD), a high-fat diet (HFD), a high-fat/high-sugar Western diet (WD), a high-sugar diet with mixed carbohydrates (HCD), or a high-sucrose diet (HSD). After 6 week on diets, mice were treated with isoproterenol (ISO) and the activity of liver mTOR complex 1 (mTORC1)-related signaling analyzed by immunoblotting and correlated with tissue triglyceride and glycogen contents. ISO-stimulated AKT- and ERK-mediated activation of mTORC1 in STD-fed mice. Consumption of all four high-calorie diets exacerbated downstream activation of ribosomal protein S6 kinase beta-1 (S6K1) in response to ISO. S6K1 activity was greater with the fat-enriched HFD and WD and correlated with the presence of metabolic syndrome and a stronger activation of AKT and ERK1/2 pathways. Fat-enriched diets also increased triglyceride accumulation and inhibited glycogen mobilization under β-AR stimulation. In conclusion, crosstalk between β-AR and insulin signaling may contribute to HFD-induced hepatic steatosis through ERK1/2- and AKT-mediated hyperactivation of the mTORC1/S6K1 axis. The findings provide further rationale for the development of therapies aimed at targeting augmented β-AR signaling in the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Sadia Ashraf
- Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMSUSA
- Mississippi Center for Obesity ResearchUniversity of Mississippi Medical CenterJacksonMSUSA
| | | | - Gizem Yilmaz
- Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMSUSA
- Mississippi Center for Obesity ResearchUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Romain Harmancey
- Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMSUSA
- Mississippi Center for Obesity ResearchUniversity of Mississippi Medical CenterJacksonMSUSA
| |
Collapse
|
11
|
Paes D, Schepers M, Rombaut B, van den Hove D, Vanmierlo T, Prickaerts J. The Molecular Biology of Phosphodiesterase 4 Enzymes as Pharmacological Targets: An Interplay of Isoforms, Conformational States, and Inhibitors. Pharmacol Rev 2021; 73:1016-1049. [PMID: 34233947 DOI: 10.1124/pharmrev.120.000273] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The phosphodiesterase 4 (PDE4) enzyme family plays a pivotal role in regulating levels of the second messenger cAMP. Consequently, PDE4 inhibitors have been investigated as a therapeutic strategy to enhance cAMP signaling in a broad range of diseases, including several types of cancers, as well as in various neurologic, dermatological, and inflammatory diseases. Despite their widespread therapeutic potential, the progression of PDE4 inhibitors into the clinic has been hampered because of their related relatively small therapeutic window, which increases the chance of producing adverse side effects. Interestingly, the PDE4 enzyme family consists of several subtypes and isoforms that can be modified post-translationally or can engage in specific protein-protein interactions to yield a variety of conformational states. Inhibition of specific PDE4 subtypes, isoforms, or conformational states may lead to more precise effects and hence improve the safety profile of PDE4 inhibition. In this review, we provide an overview of the variety of PDE4 isoforms and how their activity and inhibition is influenced by post-translational modifications and interactions with partner proteins. Furthermore, we describe the importance of screening potential PDE4 inhibitors in view of different PDE4 subtypes, isoforms, and conformational states rather than testing compounds directed toward a specific PDE4 catalytic domain. Lastly, potential mechanisms underlying PDE4-mediated adverse effects are outlined. In this review, we illustrate that PDE4 inhibitors retain their therapeutic potential in myriad diseases, but target identification should be more precise to establish selective inhibition of disease-affected PDE4 isoforms while avoiding isoforms involved in adverse effects. SIGNIFICANCE STATEMENT: Although the PDE4 enzyme family is a therapeutic target in an extensive range of disorders, clinical use of PDE4 inhibitors has been hindered because of the adverse side effects. This review elaborately shows that safer and more effective PDE4 targeting is possible by characterizing 1) which PDE4 subtypes and isoforms exist, 2) how PDE4 isoforms can adopt specific conformations upon post-translational modifications and protein-protein interactions, and 3) which PDE4 inhibitors can selectively bind specific PDE4 subtypes, isoforms, and/or conformations.
Collapse
Affiliation(s)
- Dean Paes
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| | - Melissa Schepers
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| | - Ben Rombaut
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| | - Daniel van den Hove
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| | - Tim Vanmierlo
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| | - Jos Prickaerts
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| |
Collapse
|
12
|
Glucagon transiently stimulates mTORC1 by activation of an EPAC/Rap1 signaling axis. Cell Signal 2021; 84:110010. [PMID: 33872697 PMCID: PMC8169602 DOI: 10.1016/j.cellsig.2021.110010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/22/2022]
Abstract
Activation of the protein kinase mechanistic target of rapamycin (mTOR) in both complexes 1 and 2 (mTORC1/2) in the liver is repressed during fasting and rapidly stimulated in response to a meal. The effect of feeding on hepatic mTORC1/2 is attributed to an increase in plasma levels of nutrients, such as amino acids, and insulin. By contrast, fasting is associated with elevated plasma levels of glucagon, which is conventionally viewed as having a counter-regulatory role to insulin. More recently an expanded role for glucagon action in post-prandial metabolism has been demonstrated. Herein we investigated the impact of insulin and glucagon on mTORC1/2 activation. In H4IIE and HepG2 cultures, insulin enhanced phosphorylation of the mTORC1 substrates S6K1 and 4E-BP1. Surprisingly, the effect of glucagon on mTORC1 was biphasic, wherein there was an acute increase in phosphorylation of S6K1 and 4E-BP1 over the first hour of exposure, followed by latent suppression. The transient stimulatory effect of glucagon on mTORC1 was not additive with insulin, suggesting convergent signaling. Glucagon enhanced cAMP levels and mTORC1 stimulation required activation of the glucagon receptor, PI3K/Akt, and exchange protein activated by cAMP (EPAC). EPAC acts as the guanine nucleotide exchange factor for the small GTPase Rap1. Rap1 expression enhanced S6K1 phosphorylation and glucagon addition to culture medium promoted Rap1-GTP loading. Signaling through mTORC1 acts to regulate protein synthesis and we found that glucagon promoted an EPAC-dependent increase in protein synthesis. Overall, the findings support that glucagon elicits acute activation of mTORC1/2 by an EPAC-dependent increase in Rap1-GTP.
Collapse
|
13
|
Wang Y, Gao S, Zheng V, Chen L, Ma M, Shen S, Qu J, Zhang H, Gurney ME, O'Donnell JM, Xu Y. A Novel PDE4D Inhibitor BPN14770 Reverses Scopolamine-Induced Cognitive Deficits via cAMP/SIRT1/Akt/Bcl-2 Pathway. Front Cell Dev Biol 2020; 8:599389. [PMID: 33363155 PMCID: PMC7758534 DOI: 10.3389/fcell.2020.599389] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/17/2020] [Indexed: 01/03/2023] Open
Abstract
A global, quantitative proteomics/systems-biology analysis of the selective pharmacological inhibition of phosphodiesterase-4D (PDE4D) revealed the differential regulation of pathways associated with neuroplasticity in memory-associated brain regions. Subtype selective inhibitors of PDE4D bind in an allosteric site that differs between mice and humans in a single amino acid (tyrosine vs. phenylalanine, respectively). Therefore to study selective inhibition of PDE4D by BPN14770, a subtype selective allosteric inhibitor of PDE4D, we utilized a line of mice in which the PDE4D gene had been humanized by mutating the critical tyrosine to phenylalanine. Relatively low doses of BPN14770 were effective at reversing scopolamine-induced memory and cognitive deficits in humanized PDE4D mice. Inhibition of PDE4D alters the expression of protein kinase A (PKA), Sirt1, Akt, and Bcl-2/Bax which are components of signaling pathways for regulating endocrine response, stress resistance, neuronal autophagy, and apoptosis. Treatment with a series of antagonists, such as H89, sirtinol, and MK-2206, reversed the effect of BPN14770 as shown by behavioral tests and immunoblot analysis. These findings suggest that inhibition of PDE4D enhances signaling through the cAMP-PKA-SIRT1-Akt -Bcl-2/Bax pathway and thereby may provide therapeutic benefit in neurocognitive disorders.
Collapse
Affiliation(s)
- Yulu Wang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Shichao Gao
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Victor Zheng
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Ling Chen
- Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Behavioral Medicine and Psychiatry, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, United States.,Department of Physiology and Pharmacology, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Min Ma
- Department of Cell Stress and Biophysical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Shichen Shen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Jun Qu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Hanting Zhang
- Department of Behavioral Medicine and Psychiatry, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, United States.,Department of Physiology and Pharmacology, Blanchette Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | | | - James M O'Donnell
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Ying Xu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| |
Collapse
|
14
|
Ryu HH, Ha SH. HSP70 interacts with Rheb, inhibiting mTORC1 signaling. Biochem Biophys Res Commun 2020; 533:1198-1203. [DOI: 10.1016/j.bbrc.2020.07.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022]
|
15
|
Ramírez-Jarquín UN, Shahani N, Pryor W, Usiello A, Subramaniam S. The mammalian target of rapamycin (mTOR) kinase mediates haloperidol-induced cataleptic behavior. Transl Psychiatry 2020; 10:336. [PMID: 33009372 PMCID: PMC7532208 DOI: 10.1038/s41398-020-01014-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/20/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is a ubiquitously expressed serine/threonine kinase protein complex (mTORC1 or mTORC2) that orchestrates diverse functions ranging from embryonic development to aging. However, its brain tissue-specific roles remain less explored. Here, we have identified that the depletion of the mTOR gene in the mice striatum completely prevented the extrapyramidal motor side effects (catalepsy) induced by the dopamine 2 receptor (D2R) antagonist haloperidol, which is the most widely used typical antipsychotic drug. Conversely, a lack of striatal mTOR in mice did not affect catalepsy triggered by the dopamine 1 receptor (D1R) antagonist SCH23390. Along with the lack of cataleptic effects, the administration of haloperidol in mTOR mutants failed to increase striatal phosphorylation levels of ribosomal protein pS6 (S235/236) as seen in control animals. To confirm the observations of the genetic approach, we used a pharmacological method and determined that the mTORC1 inhibitor rapamycin has a profound influence upon post-synaptic D2R-dependent functions. We consistently found that pretreatment with rapamycin entirely prevented (in a time-dependent manner) the haloperidol-induced catalepsy, and pS6K (T389) and pS6 (S235/236) signaling upregulation, in wild-type mice. Collectively, our data indicate that striatal mTORC1 blockade may offer therapeutic benefits with regard to the prevention of D2R-dependent extrapyramidal motor side effects of haloperidol in psychiatric illness.
Collapse
Affiliation(s)
- Uri Nimrod Ramírez-Jarquín
- grid.214007.00000000122199231Department of Neuroscience, The Scripps Research Institute, Florida, Jupiter, Florida 33458 USA
| | - Neelam Shahani
- grid.214007.00000000122199231Department of Neuroscience, The Scripps Research Institute, Florida, Jupiter, Florida 33458 USA
| | - William Pryor
- grid.214007.00000000122199231Department of Neuroscience, The Scripps Research Institute, Florida, Jupiter, Florida 33458 USA
| | - Alessandro Usiello
- grid.9841.40000 0001 2200 8888Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy ,grid.4691.a0000 0001 0790 385XLaboratory of Behavioral Neuroscience, CEINGE Biotecnologie Avanzate, 80145 Naples, Italy
| | - Srinivasa Subramaniam
- Department of Neuroscience, The Scripps Research Institute, Florida, Jupiter, Florida, 33458, USA.
| |
Collapse
|
16
|
Melick CH, Jewell JL. Regulation of mTORC1 by Upstream Stimuli. Genes (Basel) 2020; 11:genes11090989. [PMID: 32854217 PMCID: PMC7565831 DOI: 10.3390/genes11090989] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 01/08/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is an evolutionary conserved Ser/Thr protein kinase that senses multiple upstream stimuli to control cell growth, metabolism, and autophagy. mTOR is the catalytic subunit of mTOR complex 1 (mTORC1). A significant amount of research has uncovered the signaling pathways regulated by mTORC1, and the involvement of these signaling cascades in human diseases like cancer, diabetes, and ageing. Here, we review advances in mTORC1 regulation by upstream stimuli. We specifically focus on how growth factors, amino acids, G-protein coupled receptors (GPCRs), phosphorylation, and small GTPases regulate mTORC1 activity and signaling.
Collapse
Affiliation(s)
- Chase H. Melick
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jenna L. Jewell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence:
| |
Collapse
|
17
|
Shaher F, Qiu H, Wang S, Hu Y, Wang W, Zhang Y, Wei Y, AL-ward H, Abdulghani MAM, Alenezi SK, Baldi S, Zhou S. Associated Targets of the Antioxidant Cardioprotection of Ganoderma lucidum in Diabetic Cardiomyopathy by Using Open Targets Platform: A Systematic Review. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7136075. [PMID: 32775437 PMCID: PMC7397440 DOI: 10.1155/2020/7136075] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022]
Abstract
Even with substantial advances in cardiovascular therapy, the morbidity and mortality rates of diabetic cardiomyopathy (DCM) continually increase. Hence, a feasible therapeutic approach is urgently needed. Objectives. This work is aimed at systemically reviewing literature and addressing cell targets in DCM through the possible cardioprotection of G. lucidum through its antioxidant effects by using the Open Targets Platform (OTP) website. Methods. The OTP website version of 19.11 was accessed in December 2019 to identify the studies in DCM involving G. lucidum. Results. Among the 157 cell targets associated with DCM, the mammalian target of rapamycin (mTOR) was shared by all evidence, drug, and text mining data with 0.08 score association. mTOR also had the highest score association 0.1 with autophagy in DCM. Among the 1731 studies of indexed PubMed articles on G. lucidum published between 1985 and 2019, 33 addressed the antioxidant effects of G. lucidum and its molecular signal pathways involving oxidative stress and therefore were included in the current work. Conclusion. mTOR is one of the targets by DCM and can be inhibited by the antioxidative properties of G. lucidum directly via scavenging radicals and indirectly via modulating mTOR signal pathways such as Wnt signaling pathway, Erk1/2 signaling, and NF-κB pathways.
Collapse
Affiliation(s)
- Fahmi Shaher
- Department of Pathophysiology, College of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Hongbin Qiu
- Department of Pathophysiology, College of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Shuqiu Wang
- Department of Pathophysiology, College of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Yu Hu
- Department of Pathophysiology, College of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Weiqun Wang
- Department of Physiology, College of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Yu Zhang
- Department of Pharmacology, College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Yao Wei
- Department of Pathophysiology, College of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Hisham AL-ward
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Mahfoudh A. M. Abdulghani
- Department of Pharmacology and Toxicology, Unaizah College Pharmacy, Qassim University, Saudi Arabia
| | - Sattam Khulaif Alenezi
- Department of Pharmacology and Toxicology, Unaizah College Pharmacy, Qassim University, Saudi Arabia
| | - Salem Baldi
- Department of Clinical Laboratory Diagnostics, College of Basic Medicine, Dalian Medical University, China
| | - Shaobo Zhou
- School of Life Sciences, Institute of Biomedical and Environmental Science and Technology, University of Bedfordshire, Luton LU1 3JU, UK
| |
Collapse
|
18
|
Cyclic nucleotide phosphodiesterases: New targets in the metabolic syndrome? Pharmacol Ther 2020; 208:107475. [PMID: 31926200 DOI: 10.1016/j.pharmthera.2020.107475] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022]
Abstract
Metabolic diseases have a tremendous impact on human morbidity and mortality. Numerous targets regulating adenosine monophosphate kinase (AMPK) have been identified for treating the metabolic syndrome (MetS), and many compounds are being used or developed to increase AMPK activity. In parallel, the cyclic nucleotide phosphodiesterase families (PDEs) have emerged as new therapeutic targets in cardiovascular diseases, as well as in non-resolved pathologies. Since some PDE subfamilies inactivate cAMP into 5'-AMP, while the beneficial effects in MetS are related to 5'-AMP-dependent activation of AMPK, an analysis of the various controversial relationships between PDEs and AMPK in MetS appears interesting. The present review will describe the various PDE families, AMPK and molecular mechanisms in the MetS and discuss the PDEs/PDE modulators related to the tissues involved, thus supporting the discovery of original molecules and the design of new therapeutic approaches in MetS.
Collapse
|
19
|
Mastelic-Gavillet B, Navarro Rodrigo B, Décombaz L, Wang H, Ercolano G, Ahmed R, Lozano LE, Ianaro A, Derré L, Valerio M, Tawadros T, Jichlinski P, Nguyen-Ngoc T, Speiser DE, Verdeil G, Gestermann N, Dormond O, Kandalaft L, Coukos G, Jandus C, Ménétrier-Caux C, Caux C, Ho PC, Romero P, Harari A, Vigano S. Adenosine mediates functional and metabolic suppression of peripheral and tumor-infiltrating CD8 + T cells. J Immunother Cancer 2019; 7:257. [PMID: 31601268 PMCID: PMC6788118 DOI: 10.1186/s40425-019-0719-5] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/28/2019] [Indexed: 12/16/2022] Open
Abstract
Background Several mechanisms are present in the tumor microenvironment (TME) to impair cytotoxic T cell responses potentially able to control tumor growth. Among these, the accumulation of adenosine (Ado) contributes to tumor progression and represents a promising immunotherapeutic target. Ado has been shown to impair T cell effector function, but the role and mechanisms employed by Ado/Ado receptors (AdoRs) in modulating human peripheral and tumor-infiltrating lymphocyte (TIL) function are still puzzling. Methods CD8+ T cell cytokine production following stimulation was quantified by intracellular staining and flow cytometry. The cytotoxic capacity of tumor infiltrating lymphocytes (TILs) was quantified by the chromium release assay following co-culture with autologous or anti-CD3-loaded tumor cell lines. The CD8+ T cell metabolic fitness was evaluated by the seahorse assay and by the quantification of 2-NBDG uptake and CD71/CD98 upregulation upon stimulation. The expression of AdoRs was assessed by RNA flow cytometry, a recently developed technology that we validated by semiquantitative RT-PCR (qRT-PCR), while the impact on T cell function was evaluated by the use of selective antagonists and agonists. The influence of Ado/AdoR on the PKA and mTOR pathways was evaluated by phosphoflow staining of p-CREB and p-S6, respectively, and validated by western blot. Results Here, we demonstrate that Ado signaling through the A2A receptor (A2AR) in human peripheral CD8+ T cells and TILs is responsible for the higher sensitivity to Ado-mediated suppression of T central memory cells. We confirmed that Ado is able to impair peripheral and tumor-expanded T cell effector functions, and we show for the first time its impact on metabolic fitness. The Ado-mediated immunosuppressive effects are mediated by increased PKA activation that results in impairment of the mTORC1 pathway. Conclusions Our findings unveil A2AR/PKA/mTORC1 as the main Ado signaling pathway impairing the immune competence of peripheral T cells and TILs. Thus, p-CREB and p-S6 may represent useful pharmacodynamic and efficacy biomarkers of immunotherapies targeting Ado. The effect of Ado on T cell metabolic fitness reinforces the importance of the adenosinergic pathway as a target for next-generation immunotherapy. Electronic supplementary material The online version of this article (10.1186/s40425-019-0719-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Beatris Mastelic-Gavillet
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Blanca Navarro Rodrigo
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Laure Décombaz
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Haiping Wang
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Giuseppe Ercolano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Rita Ahmed
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Angela Ianaro
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Laurent Derré
- Department of Urology, Urology Research Unit, CHUV, Lausanne, Switzerland
| | - Massimo Valerio
- Department of Urology, Urology Research Unit, CHUV, Lausanne, Switzerland
| | - Thomas Tawadros
- Department of Urology, Urology Research Unit, CHUV, Lausanne, Switzerland
| | - Patrice Jichlinski
- Department of Urology, Urology Research Unit, CHUV, Lausanne, Switzerland
| | - Tu Nguyen-Ngoc
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Daniel E Speiser
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Grégory Verdeil
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | | | | | - Lana Kandalaft
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Camilla Jandus
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Christine Ménétrier-Caux
- Department of Immunology Virology and Inflammation, Univ Lyon, Université Claude Bernard Lyon 1, 69008, Lyon, France.,INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Christophe Caux
- Department of Immunology Virology and Inflammation, Univ Lyon, Université Claude Bernard Lyon 1, 69008, Lyon, France.,INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Ping-Chih Ho
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Pedro Romero
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Alexandre Harari
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Selena Vigano
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
20
|
Yun S, Hu R, Schwaemmle ME, Scherer AN, Zhuang Z, Koleske AJ, Pallas DC, Schwartz MA. Integrin α5β1 regulates PP2A complex assembly through PDE4D in atherosclerosis. J Clin Invest 2019; 129:4863-4874. [PMID: 31408443 PMCID: PMC6819111 DOI: 10.1172/jci127692] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 08/07/2019] [Indexed: 12/15/2022] Open
Abstract
Fibronectin in the vascular wall promotes inflammatory activation of the endothelium during vascular remodeling and atherosclerosis. These effects are mediated in part by fibronectin binding to integrin α5, which recruits and activates phosphodiesterase 4D5 (PDE4D5) by inducing its dephosphorylation on an inhibitory site Ser651. Active PDE then hydrolyzes anti-inflammatory cAMP to facilitate inflammatory signaling. To test this model in vivo, we mutated the integrin binding site in PDE4D5 in mice. This mutation reduced endothelial inflammatory activation in athero-prone regions of arteries, and, in a hyperlipidemia model, reduced atherosclerotic plaque size while increasing markers of plaque stability. We then investigated the mechanism of PDE4D5 activation. Proteomics identified the PP2A regulatory subunit B55α as the factor recruiting PP2A to PDE4D5. The B55α-PP2A complex localized to adhesions and directly dephosphorylated PDE4D5. This interaction also unexpectedly stabilized the PP2A-B55α complex. The integrin-regulated, pro-atherosclerotic transcription factor Yap is also dephosphorylated and activated through this pathway. PDE4D5 therefore mediates matrix-specific regulation of EC phenotype via an unconventional adapter role, assembling and anchoring a multifunctional PP2A complex with other targets. These results are likely to have widespread consequences for control of cell function by integrins.
Collapse
Affiliation(s)
- Sanguk Yun
- Department of Internal Medicine, Yale Cardiovascular Research Center, and
| | - Rui Hu
- Department of Internal Medicine, Yale Cardiovascular Research Center, and
| | | | - Alexander N. Scherer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Zhenwu Zhuang
- Department of Internal Medicine, Yale Cardiovascular Research Center, and
| | - Anthony J. Koleske
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - David C. Pallas
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Martin A. Schwartz
- Department of Internal Medicine, Yale Cardiovascular Research Center, and
- Department of Biomedical Engineering, and
- Department of Cell Biology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
21
|
The effects of proteasome on baseline and methamphetamine-dependent dopamine transmission. Neurosci Biobehav Rev 2019; 102:308-317. [DOI: 10.1016/j.neubiorev.2019.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 04/29/2019] [Accepted: 05/09/2019] [Indexed: 12/16/2022]
|
22
|
Jewell JL, Fu V, Hong AW, Yu FX, Meng D, Melick CH, Wang H, Lam WLM, Yuan HX, Taylor SS, Guan KL. GPCR signaling inhibits mTORC1 via PKA phosphorylation of Raptor. eLife 2019; 8:43038. [PMID: 31112131 PMCID: PMC6529218 DOI: 10.7554/elife.43038] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/30/2019] [Indexed: 01/14/2023] Open
Abstract
The mammalian target of rapamycin complex 1 (mTORC1) regulates cell growth, metabolism, and autophagy. Extensive research has focused on pathways that activate mTORC1 like growth factors and amino acids; however, much less is known about signaling cues that directly inhibit mTORC1 activity. Here, we report that G-protein coupled receptors (GPCRs) paired to Gαs proteins increase cyclic adenosine 3’5’ monophosphate (cAMP) to activate protein kinase A (PKA) and inhibit mTORC1. Mechanistically, PKA phosphorylates the mTORC1 component Raptor on Ser 791, leading to decreased mTORC1 activity. Consistently, in cells where Raptor Ser 791 is mutated to Ala, mTORC1 activity is partially rescued even after PKA activation. Gαs-coupled GPCRs stimulation leads to inhibition of mTORC1 in multiple cell lines and mouse tissues. Our results uncover a signaling pathway that directly inhibits mTORC1, and suggest that GPCRs paired to Gαs proteins may be potential therapeutic targets for human diseases with hyperactivated mTORC1.
Collapse
Affiliation(s)
- Jenna L Jewell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States.,Harold C Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, United States.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Vivian Fu
- Department of Pharmacology, University of California, San Diego, La Jolla, United States.,Moores Cancer Center, University of California San Diego, La Jolla, United States
| | - Audrey W Hong
- Department of Pharmacology, University of California, San Diego, La Jolla, United States.,Moores Cancer Center, University of California San Diego, La Jolla, United States
| | - Fa-Xing Yu
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Delong Meng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States.,Harold C Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, United States.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Chase H Melick
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States.,Harold C Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, United States.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Huanyu Wang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States.,Harold C Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, United States.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Wai-Ling Macrina Lam
- Department of Pharmacology, University of California, San Diego, La Jolla, United States.,Moores Cancer Center, University of California San Diego, La Jolla, United States
| | - Hai-Xin Yuan
- Department of Pharmacology, University of California, San Diego, La Jolla, United States.,Moores Cancer Center, University of California San Diego, La Jolla, United States
| | - Susan S Taylor
- Department of Pharmacology, University of California, San Diego, La Jolla, United States.,Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, United States
| | - Kun-Liang Guan
- Department of Pharmacology, University of California, San Diego, La Jolla, United States.,Moores Cancer Center, University of California San Diego, La Jolla, United States
| |
Collapse
|
23
|
Choi S, Sadra A, Kang J, Ryu JR, Kim JH, Sun W, Huh SO. Farnesylation-defective Rheb Increases Axonal Length Independently of mTORC1 Activity in Embryonic Primary Neurons. Exp Neurobiol 2019; 28:172-182. [PMID: 31138988 PMCID: PMC6526111 DOI: 10.5607/en.2019.28.2.172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 02/01/2023] Open
Abstract
Rheb (Ras homolog enriched in the brain) is a small GTPase protein that plays an important role in cell signaling for development of the neocortex through modulation of mTORC1 (mammalian-target-of-rapamycin-complex-1) activity. mTORC1 is known to control various biological processes including axonal growth in forming complexes at the lysosomal membrane compartment. As such, anchoring of Rheb on the lysosomal membrane via the farnesylation of Rheb at its cysteine residue (C180) is required for its promotion of mTOR activity. To test the significance of Rheb farnesylation, we overexpressed a farnesylation mutant form of Rheb, Rheb C180S, in primary rat hippocampal neurons and also in mouse embryonic neurons using in utero electroporation. Interestingly, we found that Rheb C180S maintained promotional effect of axonal elongation similar to the wild-type Rheb in both test systems. On the other hand, Rheb C180S failed to exhibit the multiple axon-promoting effect which is found in wild-type Rheb. The levels of phospho-4EBP1, a downstream target of mTORC1, were surprisingly increased in Rheb C180S transfected neurons, despite the levels of phosphorylated mTOR being significantly decreased compared to control vector transfectants. A specific mTORC1 inhibitor, rapamycin, also could not completely abolish axon elongation characteristics of Rheb C180S in transfected cells. Our data suggests that Rheb in a non-membrane compartment can promote the axonal elongation via phosphorylation of 4EBP1 and through an mTORC1-independent pathway.
Collapse
Affiliation(s)
- Seunghyuk Choi
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon 24252, Korea
| | - Ali Sadra
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon 24252, Korea
| | - Jieun Kang
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon 24252, Korea
| | - Jae Ryun Ryu
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21 Plus, Seoul 02841, Korea
| | - June Hoan Kim
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21 Plus, Seoul 02841, Korea
| | - Woong Sun
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21 Plus, Seoul 02841, Korea
| | - Sung-Oh Huh
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
24
|
Cagnetta R, Frese CK, Shigeoka T, Krijgsveld J, Holt CE. Rapid Cue-Specific Remodeling of the Nascent Axonal Proteome. Neuron 2018; 99:29-46.e4. [PMID: 30008298 PMCID: PMC6048689 DOI: 10.1016/j.neuron.2018.06.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/24/2017] [Accepted: 05/31/2018] [Indexed: 01/13/2023]
Abstract
Axonal protein synthesis and degradation are rapidly regulated by extrinsic signals during neural wiring, but the full landscape of proteomic changes remains unknown due to limitations in axon sampling and sensitivity. By combining pulsed stable isotope labeling of amino acids in cell culture with single-pot solid-phase-enhanced sample preparation, we characterized the nascent proteome of isolated retinal axons on an unparalleled rapid timescale (5 min). Our analysis detects 350 basally translated axonal proteins on average, including several linked to neurological disease. Axons stimulated by different cues (Netrin-1, BDNF, Sema3A) show distinct signatures with more than 100 different nascent protein species up- or downregulated within the first 5 min followed by further dynamic remodeling. Switching repulsion to attraction triggers opposite regulation of a subset of common nascent proteins. Our findings thus reveal the rapid remodeling of the axonal proteomic landscape by extrinsic cues and uncover a logic underlying attraction versus repulsion.
Collapse
Affiliation(s)
- Roberta Cagnetta
- Department of Physiology Development and Neuroscience, Downing Street, University of Cambridge, Cambridge CB2 3DY, UK
| | - Christian K Frese
- European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, Heidelberg 69117, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg 69120, Germany; CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, Cologne 50931, Germany
| | - Toshiaki Shigeoka
- Department of Physiology Development and Neuroscience, Downing Street, University of Cambridge, Cambridge CB2 3DY, UK
| | - Jeroen Krijgsveld
- European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, Heidelberg 69117, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg 69120, Germany; Excellence Cluster CellNetworks, University of Heidelberg, Im Neuenheimer Feld 581, Heidelberg 69120, Germany.
| | - Christine E Holt
- Department of Physiology Development and Neuroscience, Downing Street, University of Cambridge, Cambridge CB2 3DY, UK.
| |
Collapse
|
25
|
Liu Y, Pejchinovski M, Wang X, Fu X, Castelletti D, Watnick TJ, Arcaro A, Siwy J, Mullen W, Mischak H, Serra AL. Dual mTOR/PI3K inhibition limits PI3K-dependent pathways activated upon mTOR inhibition in autosomal dominant polycystic kidney disease. Sci Rep 2018; 8:5584. [PMID: 29615724 PMCID: PMC5882886 DOI: 10.1038/s41598-018-22938-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/27/2018] [Indexed: 12/17/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the development of kidney cysts leading to kidney failure in adulthood. Inhibition of mammalian target of rapamycin (mTOR) slows polycystic kidney disease (PKD) progression in animal models, but randomized controlled trials failed to prove efficacy of mTOR inhibitor treatment. Here, we demonstrate that treatment with mTOR inhibitors result in the removal of negative feedback loops and up-regulates pro-proliferative phosphatidylinositol 3-kinase (PI3K)-Akt and PI3K-extracellular signal-regulated kinase (ERK) signaling in rat and mouse PKD models. Dual mTOR/PI3K inhibition with NVP-BEZ235 abrogated these pro-proliferative signals and normalized kidney morphology and function by blocking proliferation and fibrosis. Our findings suggest that multi-target PI3K/mTOR inhibition may represent a potential treatment for ADPKD.
Collapse
Affiliation(s)
- Yang Liu
- Institute of Physiology, University of Zürich, Zürich, Switzerland.,Department of Biomedicine, Cancer Immunology Laboratory, University Hospital Basel, Basel, Switzerland
| | | | - Xueqi Wang
- Department of Nephrology, Second Military Medical University, Shanghai, China
| | - Xuebin Fu
- Department of Chemistry and Applied Biosciences, Molecular Pharmacology Unit, Swiss Federal Institute of Technology Zürich, Zürich, Switzerland
| | | | - Terry J Watnick
- Division of Nephrology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Alexandre Arcaro
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | | | - William Mullen
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Harald Mischak
- Mosaiques Diagnostics GmbH, Hanover, Germany.,Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Andreas L Serra
- Epidemiology, Biostatistics and Prevention Institute, University of Zürich, and Suisse ADPKD, Klinik Hirslanden Zürich, Switzerland.
| |
Collapse
|
26
|
Nakhaei-Rad S, Haghighi F, Nouri P, Rezaei Adariani S, Lissy J, Kazemein Jasemi NS, Dvorsky R, Ahmadian MR. Structural fingerprints, interactions, and signaling networks of RAS family proteins beyond RAS isoforms. Crit Rev Biochem Mol Biol 2018; 53:130-156. [PMID: 29457927 DOI: 10.1080/10409238.2018.1431605] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Saeideh Nakhaei-Rad
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Fereshteh Haghighi
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Parivash Nouri
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Soheila Rezaei Adariani
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Jana Lissy
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Neda S Kazemein Jasemi
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Radovan Dvorsky
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Mohammad Reza Ahmadian
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| |
Collapse
|
27
|
Heard JJ, Phung I, Potes MI, Tamanoi F. An oncogenic mutant of RHEB, RHEB Y35N, exhibits an altered interaction with BRAF resulting in cancer transformation. BMC Cancer 2018; 18:69. [PMID: 29320991 PMCID: PMC5763582 DOI: 10.1186/s12885-017-3938-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 12/19/2017] [Indexed: 12/31/2022] Open
Abstract
Background RHEB is a unique member of the RAS superfamily of small GTPases expressed in all tissues and conserved from yeast to humans. Early studies on RHEB indicated a possible RHEB-RAF interaction, but this has not been fully explored. Recent work on cancer genome databases has revealed a reoccurring mutation in RHEB at the Tyr35 position, and a recent study points to the oncogenic potential of this mutant that involves activation of RAF/MEK/ERK signaling. These developments prompted us to reassess the significance of RHEB effect on RAF, and to compare mutant and wild type RHEB. Methods To study RHEB-RAF interaction, and the effect of the Y35N mutation on this interaction, we used transfection, immunoprecipitation, and Western blotting techniques. We generated cell lines stably expressing RHEB WT, RHEB Y35N, and KRAS G12V, and monitored cellular transforming properties through cell proliferation, anchorage independent growth, cell cycle analysis, and foci formation assays. Results We observe a strong interaction between RHEB and BRAF, but not with CRAF. This interaction is dependent on an intact RHEB effector domain and RHEB-GTP loading status. RHEB overexpression decreases RAF activation of the RAF/MEK/ERK pathway and RHEB knockdown results in an increase in RAF/MEK/ERK activation. RHEB Y35N mutation has decreased interaction with BRAF, and RHEB Y35N cells exhibit greater BRAF/CRAF heterodimerization resulting in increased RAF/MEK/ERK signaling. This leads to cancer transformation of RHEB Y35N stably expressing cell lines, similar to KRAS G12 V expressing cell lines. Conclusions RHEB interaction with BRAF is crucial for inhibiting RAF/MEK/ERK signaling. The RHEB Y35N mutant sustains RAF/MEK/ERK signaling due to a decreased interaction with BRAF, leading to increased BRAF/CRAF heterodimerization. RHEB Y35N expressing cells undergo cancer transformation due to decreased interaction between RHEB and BRAF resulting in overactive RAF/MEK/ERK signaling. Taken together with the previously established function of RHEB to activate mTORC1 signaling, it appears that RHEB performs a dual function; one is to suppress the RAF/MEK/ERK signaling and the other is to activate mTORC1 signaling. Electronic supplementary material The online version of this article (10.1186/s12885-017-3938-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jeffrey J Heard
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, 1602 Molecular Sciences Bldg, 609 Charles E. Young Dr. East, Los Angeles, CA, 90095-1489, USA
| | - Ivy Phung
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, 1602 Molecular Sciences Bldg, 609 Charles E. Young Dr. East, Los Angeles, CA, 90095-1489, USA
| | - Mark I Potes
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, 1602 Molecular Sciences Bldg, 609 Charles E. Young Dr. East, Los Angeles, CA, 90095-1489, USA
| | - Fuyuhiko Tamanoi
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, 1602 Molecular Sciences Bldg, 609 Charles E. Young Dr. East, Los Angeles, CA, 90095-1489, USA. .,Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
28
|
Meng W, Liang X, Chen H, Luo H, Bai J, Li G, Zhang Q, Xiao T, He S, Zhang Y, Xu Z, Xiao B, Liu M, Hu F, Liu F. Rheb Inhibits Beiging of White Adipose Tissue via PDE4D5-Dependent Downregulation of the cAMP-PKA Signaling Pathway. Diabetes 2017; 66:1198-1213. [PMID: 28242620 PMCID: PMC5860267 DOI: 10.2337/db16-0886] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/14/2016] [Indexed: 12/14/2022]
Abstract
Beiging of white adipose tissue has potential antiobesity and antidiabetes effects, yet the underlying signaling mechanisms remain to be fully elucidated. Here we show that adipose-specific knockout of Rheb, an upstream activator of mechanistic target of rapamycin complex 1 (mTORC1), protects mice from high-fat diet-induced obesity and insulin resistance. On the one hand, Rheb deficiency in adipose tissue reduced mTORC1 signaling, increased lipolysis, and promoted beiging and energy expenditure. On the other hand, overexpression of Rheb in primary adipocytes significantly inhibited CREB phosphorylation and uncoupling protein 1 (UCP1) expression. Mechanistically, fat-specific knockout of Rheb increased cAMP levels, cAMP-dependent protein kinase (PKA) activity, and UCP1 expression in subcutaneous white adipose tissue. Interestingly, treating primary adipocytes with rapamycin only partially alleviated the suppressing effect of Rheb on UCP1 expression, suggesting the presence of a novel mechanism underlying the inhibitory effect of Rheb on thermogenic gene expression. Consistent with this notion, overexpression of Rheb stabilizes the expression of cAMP-specific phosphodiesterase 4D5 (PDE4D5) in adipocytes, whereas knockout of Rheb greatly reduced cellular levels of PDE4D5 concurrently with increased cAMP levels, PKA activation, and UCP1 expression. Taken together, our findings reveal Rheb as an important negative regulator of beige fat development and thermogenesis. In addition, Rheb is able to suppress the beiging effect through an mTORC1-independent mechanism.
Collapse
Affiliation(s)
- Wen Meng
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiuci Liang
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongzhi Chen
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hairong Luo
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juli Bai
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Guangdi Li
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qinghai Zhang
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ting Xiao
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sijia He
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Yacheng Zhang
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhipeng Xu
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Xiao
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Meilian Liu
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Fang Hu
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Feng Liu
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX
| |
Collapse
|
29
|
CK2 is a key regulator of SLC4A2-mediated Cl -/HCO 3- exchange in human airway epithelia. Pflugers Arch 2017; 469:1073-1091. [PMID: 28455748 PMCID: PMC5554290 DOI: 10.1007/s00424-017-1981-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/27/2017] [Accepted: 04/10/2017] [Indexed: 12/17/2022]
Abstract
Transepithelial bicarbonate secretion by human airway submucosal glands and surface epithelial cells is crucial to maintain the pH-sensitive innate defence mechanisms of the lung. cAMP agonists stimulate HCO3- secretion via coordinated increases in basolateral HCO3- influx and accumulation, as well as CFTR-dependent HCO3- efflux at the luminal membrane of airway epithelial cells. Here, we investigated the regulation of a basolateral located, DIDS-sensitive, Cl-/HCO3- exchanger, anion exchanger 2 (AE2; SLC4A2) which is postulated to act as an acid loader, and therefore potential regulator of HCO3- secretion, in human airway epithelial cells. Using intracellular pH measurements performed on Calu-3 cells, we demonstrate that the activity of the basolateral Cl-/HCO3- exchanger was significantly downregulated by cAMP agonists, via a PKA-independent mechanism and also required Ca2+ and calmodulin under resting conditions. AE2 contains potential phosphorylation sites by a calmodulin substrate, protein kinase CK2, and we demonstrated that AE2 activity was reduced in the presence of CK2 inhibition. Moreover, CK2 inhibition abolished the activity of AE2 in primary human nasal epithelia. Studies performed on mouse AE2 transfected into HEK-293T cells confirmed almost identical Ca2+/calmodulin and CK2 regulation to that observed in Calu-3 and primary human nasal cells. Furthermore, mouse AE2 activity was reduced by genetic knockout of CK2, an effect which was rescued by exogenous CK2 expression. Together, these findings are the first to demonstrate that CK2 is a key regulator of Cl--dependent HCO3- export at the serosal membrane of human airway epithelial cells.
Collapse
|
30
|
Knott EP, Assi M, Rao SNR, Ghosh M, Pearse DD. Phosphodiesterase Inhibitors as a Therapeutic Approach to Neuroprotection and Repair. Int J Mol Sci 2017; 18:E696. [PMID: 28338622 PMCID: PMC5412282 DOI: 10.3390/ijms18040696] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/10/2017] [Accepted: 03/15/2017] [Indexed: 12/21/2022] Open
Abstract
A wide diversity of perturbations of the central nervous system (CNS) result in structural damage to the neuroarchitecture and cellular defects, which in turn are accompanied by neurological dysfunction and abortive endogenous neurorepair. Altering intracellular signaling pathways involved in inflammation and immune regulation, neural cell death, axon plasticity and remyelination has shown therapeutic benefit in experimental models of neurological disease and trauma. The second messengers, cyclic adenosine monophosphate (cyclic AMP) and cyclic guanosine monophosphate (cyclic GMP), are two such intracellular signaling targets, the elevation of which has produced beneficial cellular effects within a range of CNS pathologies. The only known negative regulators of cyclic nucleotides are a family of enzymes called phosphodiesterases (PDEs) that hydrolyze cyclic nucleotides into adenosine monophosphate (AMP) or guanylate monophosphate (GMP). Herein, we discuss the structure and physiological function as well as the roles PDEs play in pathological processes of the diseased or injured CNS. Further we review the approaches that have been employed therapeutically in experimental paradigms to block PDE expression or activity and in turn elevate cyclic nucleotide levels to mediate neuroprotection or neurorepair as well as discuss both the translational pathway and current limitations in moving new PDE-targeted therapies to the clinic.
Collapse
Affiliation(s)
- Eric P Knott
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| | - Mazen Assi
- The Miami Project to Cure Paralysis, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
| | - Sudheendra N R Rao
- The Miami Project to Cure Paralysis, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
| | - Mousumi Ghosh
- The Miami Project to Cure Paralysis, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
- The Department of Neurological Surgery, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
- The Department of Neurological Surgery, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
- The Neuroscience Program, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
- The Interdisciplinary Stem Cell Institute, The Miller School of Medicine at the University of Miami, Miami, FL 33136, USA.
- Bruce Wayne Carter Department of Veterans Affairs Medical Center, Miami, FL 33136, USA.
| |
Collapse
|
31
|
Interaction between integrin α5 and PDE4D regulates endothelial inflammatory signalling. Nat Cell Biol 2016; 18:1043-53. [PMID: 27595237 PMCID: PMC5301150 DOI: 10.1038/ncb3405] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 08/03/2016] [Indexed: 12/16/2022]
Abstract
Atherosclerosis is primarily a disease of lipid metabolism and inflammation; however, it is also closely associated with endothelial extracellular matrix (ECM) remodelling, with fibronectin accumulating in the laminin-collagen basement membrane. To investigate how fibronectin modulates inflammation in arteries, we replaced the cytoplasmic tail of the fibronectin receptor integrin α5 with that of the collagen/laminin receptor integrin α2. This chimaera suppressed inflammatory signalling in endothelial cells on fibronectin and in knock-in mice. Fibronectin promoted inflammation by suppressing anti-inflammatory cAMP. cAMP was activated through endothelial prostacyclin secretion; however, this was ECM-independent. Instead, cells on fibronectin suppressed cAMP via enhanced phosphodiesterase (PDE) activity, through direct binding of integrin α5 to phosphodiesterase-4D5 (PDE4D5), which induced PP2A-dependent dephosphorylation of PDE4D5 on the inhibitory site Ser651. In vivo knockdown of PDE4D5 inhibited inflammation at athero-prone sites. These data elucidate a molecular mechanism linking ECM remodelling and inflammation, thereby identifying a new class of therapeutic targets.
Collapse
|
32
|
Tudor JC, Davis EJ, Peixoto L, Wimmer ME, van Tilborg E, Park AJ, Poplawski SG, Chung CW, Havekes R, Huang J, Gatti E, Pierre P, Abel T. Sleep deprivation impairs memory by attenuating mTORC1-dependent protein synthesis. Sci Signal 2016; 9:ra41. [PMID: 27117251 DOI: 10.1126/scisignal.aad4949] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Sleep deprivation is a public health epidemic that causes wide-ranging deleterious consequences, including impaired memory and cognition. Protein synthesis in hippocampal neurons promotes memory and cognition. The kinase complex mammalian target of rapamycin complex 1 (mTORC1) stimulates protein synthesis by phosphorylating and inhibiting the eukaryotic translation initiation factor 4E-binding protein 2 (4EBP2). We investigated the involvement of the mTORC1-4EBP2 axis in the molecular mechanisms mediating the cognitive deficits caused by sleep deprivation in mice. Using an in vivo protein translation assay, we found that loss of sleep impaired protein synthesis in the hippocampus. Five hours of sleep loss attenuated both mTORC1-mediated phosphorylation of 4EBP2 and the interaction between eukaryotic initiation factor 4E (eIF4E) and eIF4G in the hippocampi of sleep-deprived mice. Increasing the abundance of 4EBP2 in hippocampal excitatory neurons before sleep deprivation increased the abundance of phosphorylated 4EBP2, restored the amount of eIF4E-eIF4G interaction and hippocampal protein synthesis to that seen in mice that were not sleep-deprived, and prevented the hippocampus-dependent memory deficits associated with sleep loss. These findings collectively demonstrate that 4EBP2-regulated protein synthesis is a critical mediator of the memory deficits caused by sleep deprivation.
Collapse
Affiliation(s)
- Jennifer C Tudor
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emily J Davis
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lucia Peixoto
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mathieu E Wimmer
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erik van Tilborg
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alan J Park
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shane G Poplawski
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Caroline W Chung
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robbert Havekes
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jiayan Huang
- Global Statistical Science, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Evelina Gatti
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, INSERM U1104, CNRS UMR7280, 13288 Marseille, France. Institute for Research in Biomedicine (iBiMED) and Aveiro Health Sciences Program, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Philippe Pierre
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, INSERM U1104, CNRS UMR7280, 13288 Marseille, France. Institute for Research in Biomedicine (iBiMED) and Aveiro Health Sciences Program, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ted Abel
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
33
|
Abstract
TOR (target of rapamycin) and its mammalian ortholog mTOR have been discovered in an effort to understand the mechanisms of action of the immunosuppressant drug rapamycin extracted from a bacterium of the Easter Island (Rapa Nui) soil. mTOR is a serine/threonine kinase found in two functionally distinct complexes, mTORC1 and mTORC2, which are differentially regulated by a great number of nutrients such as glucose and amino acids, energy (oxygen and ATP/AMP content), growth factors, hormones, and neurotransmitters. mTOR controls many basic cellular functions such as protein synthesis, energy metabolism, cell size, lipid metabolism, autophagy, mitochondria, and lysosome biogenesis. In addition, mTOR-controlled signaling pathways regulate many integrated physiological functions of the nervous system including neuronal development, synaptic plasticity, memory storage, and cognition. Thus it is not surprising that deregulation of mTOR signaling is associated with many neurological and psychiatric disorders. Preclinical and preliminary clinical studies indicate that inhibition of mTORC1 can be beneficial for some pathological conditions such as epilepsy, cognitive impairment, and brain tumors, whereas stimulation of mTORC1 (direct or indirect) can be beneficial for other pathologies such as depression or axonal growth and regeneration.
Collapse
Affiliation(s)
- Joël Bockaert
- Centre National de la Recherche Scientifique, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale U1191, Montpellier, France; and Université de Montpellier, UMR-5203, Montpellier, France
| | - Philippe Marin
- Centre National de la Recherche Scientifique, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale U1191, Montpellier, France; and Université de Montpellier, UMR-5203, Montpellier, France
| |
Collapse
|
34
|
Tsujimura K, Irie K, Nakashima H, Egashira Y, Fukao Y, Fujiwara M, Itoh M, Uesaka M, Imamura T, Nakahata Y, Yamashita Y, Abe T, Takamori S, Nakashima K. miR-199a Links MeCP2 with mTOR Signaling and Its Dysregulation Leads to Rett Syndrome Phenotypes. Cell Rep 2015; 12:1887-901. [PMID: 26344767 DOI: 10.1016/j.celrep.2015.08.028] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 06/06/2015] [Accepted: 08/08/2015] [Indexed: 01/03/2023] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused by MECP2 mutations. Although emerging evidence suggests that MeCP2 deficiency is associated with dysregulation of mechanistic target of rapamycin (mTOR), which functions as a hub for various signaling pathways, the mechanism underlying this association and the molecular pathophysiology of RTT remain elusive. We show here that MeCP2 promotes the posttranscriptional processing of particular microRNAs (miRNAs) as a component of the microprocessor Drosha complex. Among the MeCP2-regulated miRNAs, we found that miR-199a positively controls mTOR signaling by targeting inhibitors for mTOR signaling. miR-199a and its targets have opposite effects on mTOR activity, ameliorating and inducing RTT neuronal phenotypes, respectively. Furthermore, genetic deletion of miR-199a-2 led to a reduction of mTOR activity in the brain and recapitulated numerous RTT phenotypes in mice. Together, these findings establish miR-199a as a critical downstream target of MeCP2 in RTT pathogenesis by linking MeCP2 with mTOR signaling.
Collapse
Affiliation(s)
- Keita Tsujimura
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan; Laboratory of Molecular Neuroscience, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | - Koichiro Irie
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Hideyuki Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Yoshihiro Egashira
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Yoichiro Fukao
- Plant Global Education Project, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan; Department of Bioinformatics, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Masayuki Fujiwara
- Plant Global Education Project, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan; Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | - Masayuki Itoh
- Department of Mental Retardation and Birth Defect Research, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan
| | - Masahiro Uesaka
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Takuya Imamura
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Yasukazu Nakahata
- Laboratory of Gene Regulation Research, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | - Yui Yamashita
- Animal Resource Development Unit, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe 650-0047, Japan
| | - Takaya Abe
- Genetic Engineering Team, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe 650-0047, Japan
| | - Shigeo Takamori
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan; Laboratory of Molecular Neuroscience, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan.
| |
Collapse
|
35
|
Chang HH, Young SH, Sinnett-Smith J, Chou CEN, Moro A, Hertzer KM, Hines OJ, Rozengurt E, Eibl G. Prostaglandin E2 activates the mTORC1 pathway through an EP4/cAMP/PKA- and EP1/Ca2+-mediated mechanism in the human pancreatic carcinoma cell line PANC-1. Am J Physiol Cell Physiol 2015; 309:C639-49. [PMID: 26310818 DOI: 10.1152/ajpcell.00417.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 08/14/2015] [Indexed: 02/07/2023]
Abstract
Obesity, a known risk factor for pancreatic cancer, is associated with inflammation and insulin resistance. Proinflammatory prostaglandin E2 (PGE2) and elevated insulin-like growth factor type 1 (IGF-1), related to insulin resistance, are shown to play critical roles in pancreatic cancer progression. We aimed to explore a potential cross talk between PGE2 signaling and the IGF-1/Akt/mammalian target of rapamycin complex 1 (mTORC1) pathway in pancreatic cancer, which may be a key to unraveling the obesity-cancer link. In PANC-1 human pancreatic cancer cells, we showed that PGE2 stimulated mTORC1 activity independently of Akt, as evaluated by downstream signaling events. Subsequently, using pharmacological and genetic approaches, we demonstrated that PGE2-induced mTORC1 activation is mediated by the EP4/cAMP/PKA pathway, as well as an EP1/Ca(2+)-dependent pathway. The cooperative roles of the two pathways were supported by the maximal inhibition achieved with the combined pharmacological blockade, and the coexistence of highly expressed EP1 (mediating the Ca(2+) response) and EP2 or EP4 (mediating the cAMP/PKA pathway) in PANC-1 cells and in the prostate cancer line PC-3, which also robustly exhibited PGE2-induced mTORC1 activation, as identified from a screen in various cancer cell lines. Importantly, we showed a reinforcing interaction between PGE2 and IGF-1 on mTORC1 signaling, with an increase in IL-23 production as a cellular outcome. Our data reveal a previously unrecognized mechanism of PGE2-stimulated mTORC1 activation mediated by EP4/cAMP/PKA and EP1/Ca(2+) signaling, which may be of great importance in elucidating the promoting effects of obesity in pancreatic cancer. Ultimately, a precise understanding of these molecular links may provide novel targets for efficacious interventions devoid of adverse effects.
Collapse
Affiliation(s)
- Hui-Hua Chang
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California; and
| | - Steven H Young
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - James Sinnett-Smith
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Caroline Ei Ne Chou
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California; and
| | - Aune Moro
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California; and
| | - Kathleen M Hertzer
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California; and
| | - Oscar Joe Hines
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California; and
| | - Enrique Rozengurt
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Guido Eibl
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California; and
| |
Collapse
|
36
|
Chao H, Li H, Grande R, Lira V, Yan Z, Harris TE, Li C. Involvement of mTOR in Type 2 CRF Receptor Inhibition of Insulin Signaling in Muscle Cells. Mol Endocrinol 2015; 29:831-41. [PMID: 25875045 DOI: 10.1210/me.2014-1245] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Type 2 corticotropin-releasing factor receptor (CRFR2) is expressed in skeletal muscle and stimulation of the receptor has been shown to inhibit the effect of insulin on glucose uptake in muscle cells. Currently, little is known about the mechanisms underlying this process. In this study, we first showed that both in vivo and in vitro CRFR2 expression in muscle was closely correlated with insulin sensitivity, with elevated receptor levels observed in insulin resistant muscle cells. Stimulation of CRFR2 by urocortin 2 (Ucn 2), a CRFR2-selective ligand, in C2C12 myotubes greatly attenuated insulin-induced glucose uptake. The inhibitory effect of CRFR2 signaling required cAMP production and is involved the mammalian target of rapamycine pathway, as rapamycin reversed the inhibitory effect of CRFR2 stimulation on insulin-induced glucose uptake. Moreover, stimulation of CRFR2 failed to inhibit glucose uptake in muscle cells induced by platelet-derived growth factor, which, similar to insulin, signals through Akt-mediated pathway but is independently of insulin receptor substrate (IRS) proteins to promote glucose uptake. This result argues that CRFR2 signaling modulates insulin's action likely at the levels of IRS. Consistent with this notion, Ucn 2 reduced insulin-induced tyrosine phosphorylation of IRS-1, and treatment with rapamycin reversed the inhibitory effect of Ucn 2 on IRS-1 and Akt phosphorylation. In conclusion, the inhibitory effect of CRFR2 signaling on insulin action is mediated by cAMP in a mammalian target of rapamycine-dependent manner, and IRS-1 is a key nodal point where CRFR2 signaling modulates insulin-stimulated glucose uptake in muscle cells.
Collapse
Affiliation(s)
- Hongxia Chao
- Departments of Pharmacology (H.C., H.L., R.G., Z.Y., T.H., C.L.), Medicine (V.L., Z.Y.), and Molecular Physiology and Biophysics (Z.Y.), and Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center (Z.Y.), University of Virginia Health System, Charlottesville, Virginia 22908
| | - Haochen Li
- Departments of Pharmacology (H.C., H.L., R.G., Z.Y., T.H., C.L.), Medicine (V.L., Z.Y.), and Molecular Physiology and Biophysics (Z.Y.), and Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center (Z.Y.), University of Virginia Health System, Charlottesville, Virginia 22908
| | - Rebecca Grande
- Departments of Pharmacology (H.C., H.L., R.G., Z.Y., T.H., C.L.), Medicine (V.L., Z.Y.), and Molecular Physiology and Biophysics (Z.Y.), and Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center (Z.Y.), University of Virginia Health System, Charlottesville, Virginia 22908
| | - Vitor Lira
- Departments of Pharmacology (H.C., H.L., R.G., Z.Y., T.H., C.L.), Medicine (V.L., Z.Y.), and Molecular Physiology and Biophysics (Z.Y.), and Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center (Z.Y.), University of Virginia Health System, Charlottesville, Virginia 22908
| | - Zhen Yan
- Departments of Pharmacology (H.C., H.L., R.G., Z.Y., T.H., C.L.), Medicine (V.L., Z.Y.), and Molecular Physiology and Biophysics (Z.Y.), and Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center (Z.Y.), University of Virginia Health System, Charlottesville, Virginia 22908
| | - Thurl E Harris
- Departments of Pharmacology (H.C., H.L., R.G., Z.Y., T.H., C.L.), Medicine (V.L., Z.Y.), and Molecular Physiology and Biophysics (Z.Y.), and Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center (Z.Y.), University of Virginia Health System, Charlottesville, Virginia 22908
| | - Chien Li
- Departments of Pharmacology (H.C., H.L., R.G., Z.Y., T.H., C.L.), Medicine (V.L., Z.Y.), and Molecular Physiology and Biophysics (Z.Y.), and Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center (Z.Y.), University of Virginia Health System, Charlottesville, Virginia 22908
| |
Collapse
|
37
|
Ghorbani A, Jeddi-Tehrani M, Saidpour A, Safa M, Bayat AA, Zand H. PI3K/AKT and Mdm2 activation are associated with inhibitory effect of cAMP increasing agents on DNA damage-induced cell death in human pre-B NALM-6 cells. Arch Biochem Biophys 2014; 566:58-66. [PMID: 25524737 DOI: 10.1016/j.abb.2014.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/17/2014] [Accepted: 11/21/2014] [Indexed: 11/24/2022]
Abstract
DNA damage response (DDR) consists of both proapoptotic and prosurvival signaling branches. Superiority of each signaling branch determines the outcome of DNA damage: death or allowing the repair. The present authors have previously shown that an increased intracellular level of cAMP disrupts p53-mediated apoptosis in human pre-B NALM-6 cells and inhibition of NF-κB prevents prosurvival effect of cAMP during DNA damage. AKT/PKB (protein kinase B) is a general mediator of survival signaling. AKT signaling inhibits p53-mediated transcription and apoptosis. The results of present study showed that cAMP disrupted DNA damage/p53-mediated apoptosis through AKT and subsequent NF-κB activation. These results suggested that AKT may be found as part of a complex with scaffolding proteins, beta-arrestins and PDE4D. cAMP disarticulated the complex through binding to PDE4D compartment. It seems that release of AKT protein potentiated DDR activated pro-survival AKT in NALM-6 cells. Taken together, the present data indicated that regulation of AKT signaling may determine the fate of cells exposed to genotoxic stress.
Collapse
Affiliation(s)
- Arman Ghorbani
- Faculty of Nutrition and Diet Therapy, Department of Cellular and Molecular Nutrition, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Atoosa Saidpour
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Safa
- Department of Hematology, Cellular and Molecular Research Center, Faculty of Allied Medicine, Iran University of Medical Sciences, Iran
| | - Ahmad Ali Bayat
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Hamid Zand
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
38
|
Wang X, Wang Y, Zheng X, Hao X, Liang Y, Wu M, Wang X, Wang Z. Direct Interaction between Ras Homolog Enriched in Brain and FK506 Binding Protein 38 in Cashmere Goat Fetal Fibroblast Cells. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 27:1671-7. [PMID: 25358358 PMCID: PMC4213676 DOI: 10.5713/ajas.2014.14145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/08/2014] [Accepted: 07/14/2014] [Indexed: 11/27/2022]
Abstract
Ras homolog enriched in brain (Rheb) and FK506 binding protein 38 (FKBP38) are two important regulatory proteins in the mammalian target of rapamycin (mTOR) pathway. There are contradictory data on the interaction between Rheb and FKBP38 in human cells, but this association has not been examined in cashmere goat cells. To investigate the interaction between Rheb and FKBP38, we overexpressed goat Rheb and FKBP38 in goat fetal fibroblasts, extracted whole proteins, and performed coimmunoprecipitation to detect them by western blot. We found Rheb binds directly to FKBP38. Then, we constructed bait vectors (pGBKT7-Rheb/FKBP38) and prey vectors (pGADT7-Rheb/FKBP38), and examined their interaction by yeast two-hybrid assay. Their direct interaction was observed, regardless of which plasmid served as the prey or bait vector. These results indicate that the 2 proteins interact directly in vivo. Novel evidence is presented on the mTOR signal pathway in Cashmere goat cells.
Collapse
Affiliation(s)
- Xiaojing Wang
- Chifeng Municipal Hospital, Chifeng, Inner Mongolia 024000, China
| | - Yanfeng Wang
- Chifeng Municipal Hospital, Chifeng, Inner Mongolia 024000, China
| | - Xu Zheng
- Chifeng Municipal Hospital, Chifeng, Inner Mongolia 024000, China
| | - Xiyan Hao
- Chifeng Municipal Hospital, Chifeng, Inner Mongolia 024000, China
| | - Yan Liang
- Chifeng Municipal Hospital, Chifeng, Inner Mongolia 024000, China
| | - Manlin Wu
- Chifeng Municipal Hospital, Chifeng, Inner Mongolia 024000, China
| | - Xiao Wang
- Chifeng Municipal Hospital, Chifeng, Inner Mongolia 024000, China
| | - Zhigang Wang
- Chifeng Municipal Hospital, Chifeng, Inner Mongolia 024000, China
| |
Collapse
|
39
|
Bejarano E, Rodríguez-Navarro JA. Autophagy and amino acid metabolism in the brain: implications for epilepsy. Amino Acids 2014; 47:2113-26. [DOI: 10.1007/s00726-014-1822-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/31/2014] [Indexed: 12/31/2022]
|
40
|
Role of soluble adenylyl cyclase in cell death and growth. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2646-55. [PMID: 25010002 DOI: 10.1016/j.bbadis.2014.06.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 12/13/2022]
Abstract
cAMP signaling is an evolutionarily conserved intracellular communication system controlling numerous cellular functions. Until recently, transmembrane adenylyl cyclase (tmAC) was considered the major source for cAMP in the cell, and the role of cAMP signaling was therefore attributed exclusively to the activity of this family of enzymes. However, increasing evidence demonstrates the role of an alternative, intracellular source of cAMP produced by type 10 soluble adenylyl cyclase (sAC). In contrast to tmAC, sAC produces cAMP in various intracellular microdomains close to specific cAMP targets, e.g., in nucleus and mitochondria. Ongoing research demonstrates involvement of sAC in diverse physiological and pathological processes. The present review is focused on the role of cAMP signaling, particularly that of sAC, in cell death and growth. Although the contributions of sAC to the regulation of these cellular functions have only recently been discovered, current data suggest that sAC plays key roles in mitochondrial bioenergetics and the mitochondrial apoptosis pathway, as well as cell proliferation and development. Furthermore, recent reports suggest the importance of sAC in several pathologies associated with apoptosis as well as in oncogenesis. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease.
Collapse
|
41
|
Recent progress in the study of the Rheb family GTPases. Cell Signal 2014; 26:1950-7. [PMID: 24863881 DOI: 10.1016/j.cellsig.2014.05.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 05/15/2014] [Indexed: 11/20/2022]
Abstract
In this review we highlight recent progress in the study of Rheb family GTPases. Structural studies using X-ray crystallography and NMR have given us insight into unique features of this GTPase. Combined with mutagenesis studies, these works have expanded our understanding of residues that affect Rheb GTP/GDP bound ratios, effector protein interactions, and stimulation of mTORC1 signaling. Analysis of cancer genome databases has revealed that several human carcinomas contain activating mutations of the protein. Rheb's role in activating mTORC1 signaling at the lysosome in response to stimuli has been further elucidated. Rheb has also been suggested to play roles in other cellular pathways including mitophagy and peroxisomal ROS response. A number of studies in mice have demonstrated the importance of Rheb in development, as well as in a variety of functions including cardiac protection and myelination. We conclude with a discussion of future prospects in the study of Rheb family GTPases.
Collapse
|
42
|
Maurice DH, Ke H, Ahmad F, Wang Y, Chung J, Manganiello VC. Advances in targeting cyclic nucleotide phosphodiesterases. Nat Rev Drug Discov 2014; 13:290-314. [PMID: 24687066 DOI: 10.1038/nrd4228] [Citation(s) in RCA: 593] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) catalyse the hydrolysis of cyclic AMP and cyclic GMP, thereby regulating the intracellular concentrations of these cyclic nucleotides, their signalling pathways and, consequently, myriad biological responses in health and disease. Currently, a small number of PDE inhibitors are used clinically for treating the pathophysiological dysregulation of cyclic nucleotide signalling in several disorders, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication and chronic obstructive pulmonary disease. However, pharmaceutical interest in PDEs has been reignited by the increasing understanding of the roles of individual PDEs in regulating the subcellular compartmentalization of specific cyclic nucleotide signalling pathways, by the structure-based design of novel specific inhibitors and by the development of more sophisticated strategies to target individual PDE variants.
Collapse
Affiliation(s)
- Donald H Maurice
- Biomedical and Molecular Sciences, Queen's University, Kingston K7L3N6, Ontario, Canada
| | - Hengming Ke
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Faiyaz Ahmad
- Cardiovascular and Pulmonary Branch, The National Heart, Lung and Blood Institute, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Yousheng Wang
- Beijing Technology and Business University, Beijing 100048, China
| | - Jay Chung
- Genetics and Developmental Biology Center, The National Heart, Lung and Blood Institute, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Vincent C Manganiello
- Cardiovascular and Pulmonary Branch, The National Heart, Lung and Blood Institute, US National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
43
|
May O, Yu H, Riederer B, Manns MP, Seidler U, Bachmann O. Short-term regulation of murine colonic NBCe1-B (electrogenic Na+/HCO3(-) cotransporter) membrane expression and activity by protein kinase C. PLoS One 2014; 9:e92275. [PMID: 24642792 PMCID: PMC3958514 DOI: 10.1371/journal.pone.0092275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 02/20/2014] [Indexed: 12/22/2022] Open
Abstract
The colonic mucosa actively secretes HCO3(-), and several lines of evidence point to an important role of Na+/HCO3(-) cotransport (NBC) as a basolateral HCO3(-) import pathway. We could recently demonstrate that the predominant NBC isoform in murine colonic crypts is electrogenic NBCe1-B, and that secretagogues cause NBCe1 exocytosis, which likely represents a component of NBC activation. Since protein kinase C (PKC) plays a key role in the regulation of ion transport by trafficking events, we asked whether it is also involved in the observed NBC activity increase. Crypts were isolated from murine proximal colon to assess PKC activation as well as NBC function and membrane abundance using fluorometric pHi measurements and cell surface biotinylation, respectively. PKC isoform translocation and phosphorylation occurred in response to PMA-, as well as secretagogue stimulation. The conventional and novel PKC inhibitors Gö6976 or Gö6850 did not alter NBC function or surface expression by themselves, but stimulation with forskolin (10(-5) M) or carbachol (10(-4) M) in their presence led to a significant decrease in NBC-mediated proton flux, and biotinylated NBCe1. Our data thus indicate that secretagogues lead to PKC translocation and phosphorylation in murine colonic crypts, and that PKC is necessary for the increase in NBC transport rate and membrane abundance caused by cholinergic and cAMP-dependent stimuli.
Collapse
Affiliation(s)
- Oliver May
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Haoyang Yu
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Brigitte Riederer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Michael P. Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Ursula Seidler
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Oliver Bachmann
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
44
|
Okunishi K, DeGraaf AJ, Zasłona Z, Peters-Golden M. Inhibition of protein translation as a novel mechanism for prostaglandin E2 regulation of cell functions. FASEB J 2013; 28:56-66. [PMID: 24072780 DOI: 10.1096/fj.13-231720] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Prostaglandin E2 (PGE2) regulates numerous biological processes by modulating transcriptional activation, epigenetic control, proteolysis, and secretion of various proteins. Scar formation depends on fibroblast elaboration of matrix proteins such as collagen, and this process is strongly suppressed by PGE2 through activation of cAMP-dependent protein kinase A (PKA). However, the actual mechanism by which PGE2-PKA signaling inhibits collagen expression in fibroblasts has never been delineated, and that was the objective of this study. PGE2 unexpectedly induced a rapid reduction in procollagen I protein expression in adult lung fibroblasts, with a half-maximum effect at 1.5 h. This effect reflected its inhibition of translation rather than transcription. Global protein synthesis was also inhibited by PGE2. This action was mediated by PKA and involved both activation of ribosomal protein (rpS6) and suppression of mammalian target of rapamycin (mTOR). Similar effects of PGE2 were demonstrated in mouse peritoneal macrophages (PMs). These findings identify inhibition of translation as a new mechanism by which PGE2 regulates cellular function and a novel example of translational inhibition mediated by opposing actions on two distinct translational control pathways. Translational inhibition would be expected to contribute to dynamic alterations in cell function that accompany the changing PGE2 levels observed in disease states and with various pharmacotherapies.
Collapse
|
45
|
Pacheco Y, Calender A, Valeyre D, Lebecque S. [Role of T lymphocyte cyclic nucleotides and G protein in sarcoidosis]. Rev Mal Respir 2013; 30:644-56. [PMID: 24182651 DOI: 10.1016/j.rmr.2013.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 04/29/2013] [Indexed: 10/26/2022]
Abstract
CD4+ T lymphocytes play a major role in the pathophysiology of sarcoidosis. Many studies have investigated the immunological and genetic abnormalities in this disease. There are few studies concerning the metabolic pathways. Essentially they concern the pathways: STAT1, MAPK38, NF-κB, Galphai, cAMP and cGMP PDE and PEMT1. Using studies in the literature and results of our own work concerning some metabolic aspects of T lymphocytes in sarcoidosis, we present a revue of the various hypotheses, which involve dysfunction of cAMP signaling pathways, such as RAS/RAF/MEK/ERK in T lymphocytes, leading to a disorder of immunity.
Collapse
Affiliation(s)
- Y Pacheco
- UMR Inserm 1052, CNRS 5286, centre hospitalier Lyon-Sud, hospices civils de Lyon, faculté C.-Merieux, université Claude-Bernard Lyon-1, 69310 Pierre-Bénite, France.
| | | | | | | |
Collapse
|
46
|
Rhie SK, Coetzee SG, Noushmehr H, Yan C, Kim JM, Haiman CA, Coetzee GA. Comprehensive functional annotation of seventy-one breast cancer risk Loci. PLoS One 2013; 8:e63925. [PMID: 23717510 PMCID: PMC3661550 DOI: 10.1371/journal.pone.0063925] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 04/08/2013] [Indexed: 02/06/2023] Open
Abstract
Breast Cancer (BCa) genome-wide association studies revealed allelic frequency differences between cases and controls at index single nucleotide polymorphisms (SNPs). To date, 71 loci have thus been identified and replicated. More than 320,000 SNPs at these loci define BCa risk due to linkage disequilibrium (LD). We propose that BCa risk resides in a subgroup of SNPs that functionally affects breast biology. Such a shortlist will aid in framing hypotheses to prioritize a manageable number of likely disease-causing SNPs. We extracted all the SNPs, residing in 1 Mb windows around breast cancer risk index SNP from the 1000 genomes project to find correlated SNPs. We used FunciSNP, an R/Bioconductor package developed in-house, to identify potentially functional SNPs at 71 risk loci by coinciding them with chromatin biofeatures. We identified 1,005 SNPs in LD with the index SNPs (r(2)≥0.5) in three categories; 21 in exons of 18 genes, 76 in transcription start site (TSS) regions of 25 genes, and 921 in enhancers. Thirteen SNPs were found in more than one category. We found two correlated and predicted non-benign coding variants (rs8100241 in exon 2 and rs8108174 in exon 3) of the gene, ANKLE1. Most putative functional LD SNPs, however, were found in either epigenetically defined enhancers or in gene TSS regions. Fifty-five percent of these non-coding SNPs are likely functional, since they affect response element (RE) sequences of transcription factors. Functionality of these SNPs was assessed by expression quantitative trait loci (eQTL) analysis and allele-specific enhancer assays. Unbiased analyses of SNPs at BCa risk loci revealed new and overlooked mechanisms that may affect risk of the disease, thereby providing a valuable resource for follow-up studies.
Collapse
Affiliation(s)
- Suhn Kyong Rhie
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Simon G. Coetzee
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Houtan Noushmehr
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Chunli Yan
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jae Mun Kim
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Christopher A. Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Gerhard A. Coetzee
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
47
|
Molecular networks of human muscle adaptation to exercise and age. PLoS Genet 2013; 9:e1003389. [PMID: 23555298 PMCID: PMC3605101 DOI: 10.1371/journal.pgen.1003389] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/28/2013] [Indexed: 12/12/2022] Open
Abstract
Physical activity and molecular ageing presumably interact to precipitate musculoskeletal decline in humans with age. Herein, we have delineated molecular networks for these two major components of sarcopenic risk using multiple independent clinical cohorts. We generated genome-wide transcript profiles from individuals (n = 44) who then undertook 20 weeks of supervised resistance-exercise training (RET). Expectedly, our subjects exhibited a marked range of hypertrophic responses (3% to +28%), and when applying Ingenuity Pathway Analysis (IPA) up-stream analysis to ∼580 genes that co-varied with gain in lean mass, we identified rapamycin (mTOR) signaling associating with growth (P = 1.4×10−30). Paradoxically, those displaying most hypertrophy exhibited an inhibited mTOR activation signature, including the striking down-regulation of 70 rRNAs. Differential analysis found networks mimicking developmental processes (activated all-trans-retinoic acid (ATRA, Z-score = 4.5; P = 6×10−13) and inhibited aryl-hydrocarbon receptor signaling (AhR, Z-score = −2.3; P = 3×10−7)) with RET. Intriguingly, as ATRA and AhR gene-sets were also a feature of endurance exercise training (EET), they appear to represent “generic” physical activity responsive gene-networks. For age, we found that differential gene-expression methods do not produce consistent molecular differences between young versus old individuals. Instead, utilizing two independent cohorts (n = 45 and n = 52), with a continuum of subject ages (18–78 y), the first reproducible set of age-related transcripts in human muscle was identified. This analysis identified ∼500 genes highly enriched in post-transcriptional processes (P = 1×10−6) and with negligible links to the aforementioned generic exercise regulated gene-sets and some overlap with ribosomal genes. The RNA signatures from multiple compounds all targeting serotonin, DNA topoisomerase antagonism, and RXR activation were significantly related to the muscle age-related genes. Finally, a number of specific chromosomal loci, including 1q12 and 13q21, contributed by more than chance to the age-related gene list (P = 0.01–0.005), implying possible epigenetic events. We conclude that human muscle age-related molecular processes appear distinct from the processes regulated by those of physical activity. A fundamental challenge for modern medicine is to generate new strategies to cope with the rising proportion of older people within society, as unaddressed it will make many health care systems financially unviable. Ageing impacts both quality of life and longevity through reduced musculoskeletal function. What is unknown in humans is whether the decline with age, referred to as “sarcopenia,” represents a molecular ageing process or whether it is primarily driven by alterations in lifestyle, e.g. reduced physical activity and poor nutrition. Because the details of such interactions will be uniquely human, we aimed to produce the first reproducible global molecular profile of human muscle age, one that could be validated across independent clinical cohorts to ensure its general applicability. We combined this analysis with extensive data on the impact of exercise training on human muscle phenotype to then identify the processes predominately associated with age and not environment. We were able to identify unique gene pathways associated with human muscle growth and age and were able to conclude that human muscle age-related molecular processes appear distinct from the processes directly regulated by those of physical activity.
Collapse
|
48
|
Adegoke OA, Abdullahi A, Tavajohi-Fini P. mTORC1 and the regulation of skeletal muscle anabolism and mass. Appl Physiol Nutr Metab 2012; 37:395-406. [DOI: 10.1139/h2012-009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The mass and integrity of skeletal muscle is vital to whole-body substrate metabolism and health. Indeed, defects in muscle metabolism and functions underlie or exacerbate diseases like diabetes, rheumatoid arthritis, and cancer. Physical activity and nutrition are the 2 most important environmental factors that can affect muscle health. At the molecular level, the mammalian target of rapamycin complex 1 (mTORC1) is a critical signalling complex that regulates muscle mass. In response to nutrition and resistance exercise, increased muscle mass and activation of mTORC1 occur in parallel. In this review, we summarize recent findings on mTORC1 and its regulation in skeletal muscle in response to resistance exercise, alone or in combination with intake of protein or amino acids. Because increased activity of the complex is implicated in the development of muscle insulin resistance, obesity, and some cancers (e.g., ovarian, breast), drugs that target mTORC1 are being developed or are in clinical trials. However, various cancers are associated with extensive muscle wasting, due in part to tumour burden and malnutrition. This muscle wasting may also be a side effect of anticancer drugs. Because loss of muscle mass is associated not only with metabolic abnormalities but also dose limiting toxicity, we review the possible implications for skeletal muscle of long-term inhibition of mTORC1, especially in muscle wasting conditions.
Collapse
Affiliation(s)
- Olasunkanmi A.J. Adegoke
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, 4700 Keele Street, Toronto ON M3J 5P3, Canada
| | - Abdikarim Abdullahi
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, 4700 Keele Street, Toronto ON M3J 5P3, Canada
| | - Pegah Tavajohi-Fini
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, 4700 Keele Street, Toronto ON M3J 5P3, Canada
| |
Collapse
|
49
|
Jang JH, Lee CS, Hwang D, Ryu SH. Understanding of the roles of phospholipase D and phosphatidic acid through their binding partners. Prog Lipid Res 2011; 51:71-81. [PMID: 22212660 DOI: 10.1016/j.plipres.2011.12.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Phospholipase D (PLD) is a phosphatidyl choline (PC)-hydrolyzing enzyme that generates phosphatidic acid (PA), a lipid second messenger that modulates diverse intracellular signaling. Through interactions with signaling molecules, both PLD and PA can mediate a variety of cellular functions, such as, growth/proliferation, vesicle trafficking, cytoskeleton modulation, development, and morphogenesis. Therefore, systemic approaches for investigating PLD networks including interrelationship between PLD and PA and theirs binding partners, such as proteins and lipids, can enhance fundamental knowledge of roles of PLD and PA in diverse biological processes. In this review, we summarize previously reported protein-protein and protein-lipid interactions of PLD and PA and their binding partners. In addition, we describe the functional roles played by PLD and PA in these interactions, and provide PLD network that summarizes these interactions. The PLD network suggests that PLD and PA could act as a decision maker and/or as a coordinator of signal dynamics. This viewpoint provides a turning point for understanding the roles of PLD-PA as a dynamic signaling hub.
Collapse
Affiliation(s)
- Jin-Hyeok Jang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Kyungbook 790-784, South Korea
| | | | | | | |
Collapse
|
50
|
Neurofibromatosis-1 regulates mTOR-mediated astrocyte growth and glioma formation in a TSC/Rheb-independent manner. Proc Natl Acad Sci U S A 2011; 108:15996-6001. [PMID: 21896734 DOI: 10.1073/pnas.1019012108] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Converging evidence from the analysis of human brain tumors and genetically engineered mice has revealed that the mammalian target of rapamycin (mTOR) pathway is a central regulator of glial and glioma cell growth. In this regard, mutational inactivation of neurofibromatosis-1 (NF1), tuberous sclerosis complex (TSC), and PTEN genes is associated with glioma formation, such that pharmacologic inhibition of mTOR signaling results in attenuated tumor growth. This shared dependence on mTOR suggests that PTEN and NF1 (neurofibromin) glial growth regulation requires TSC/Rheb (Ras homolog enriched in brain) control of mTOR function. In this report, we use a combination of genetic silencing in vitro and conditional mouse transgenesis approaches in vivo to demonstrate that neurofibromin regulates astrocyte cell growth and glioma formation in a TSC/Rheb-independent fashion. First, we show that Nf1 or Pten inactivation, but not Tsc1 loss or Rheb overexpression, increases astrocyte cell growth in vitro. Second, Nf1-deficient increased mTOR signaling and astrocyte hyperproliferation is unaffected by Rheb shRNA silencing. Third, conditional Tsc1 inactivation or Rheb overexpression in glial progenitors of Nf1(+/-) mice does not lead to glioma formation. Collectively, these findings establish TSC/Rheb-independent mechanisms for mTOR-dependent glial cell growth control and gliomagenesis relevant to the design of therapies for individuals with glioma.
Collapse
|